JPH1047062A - Various kinds of energy preservation cycle internal combustion engines - Google Patents

Various kinds of energy preservation cycle internal combustion engines

Info

Publication number
JPH1047062A
JPH1047062A JP9063719A JP6371997A JPH1047062A JP H1047062 A JPH1047062 A JP H1047062A JP 9063719 A JP9063719 A JP 9063719A JP 6371997 A JP6371997 A JP 6371997A JP H1047062 A JPH1047062 A JP H1047062A
Authority
JP
Japan
Prior art keywords
diameter
reduced
combustion chamber
piston
main combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9063719A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9063719A priority Critical patent/JPH1047062A/en
Publication of JPH1047062A publication Critical patent/JPH1047062A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the energy conversion efficiency of a piston cycle, and suppress occurrence of environmental pollution including CO2 , by forming a diameter enlarged piston and a crankshaft jouraled to a connecting rod in a manner that the diameter enlarged piston is reciprocated and the crankshaft is rotated by isolation combustion and isolation canceling in a diameter contracted main combustion chamber by a diameter contracted piston. SOLUTION: Appropriate recess parts are formed in diameter enlarged pistons on both right and left sides of a double-end diameter enlarged piston, and a diameter contracted piston 2 is projected in the approximately central part of the recess parts. Then, when the diameter enlarged pistons are reciprocated, normal exhaust and scavenging are executed over before and behind a bottom dead center. Also, the isolation of a diameter contracted main combustion chamber having a taper diameter contracted part 7 is started together with the lifting of the diameter enlarged pistons, and subsequently, air compressed in a diameter enlarged combustion chamber is ejected from a slant air channel 14 to the slant upper part of the diameter contracted main combustion chamber by being passed from a diameter enlarged combustion chamber side through a one-way air channel 4 including a check valve 3, and burned after being agitated and mixed with fuel ejected from fuel ejection means 5. Also, in the diameter contracted main combustion chamber having more than a constant capacity, water ejection is performed by water ejection means 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通常及び特殊なピ
ストン往復運動を、回転動力に変換する、ピストンサイ
クルのエネルギ変換効率を高めるため、力学的エネルギ
保存の第3の法則を利用して、死点近傍でのエネルギ放
出量(ピストンの行程容積)を僅少として、大部分の熱
エネルギは隔離燃焼により縮径主燃焼室に保存貯金して
おき、例えば死点後クランク角度で30゜以後に縮径主
燃焼室内隔離燃焼解除する、先の出願のエネルギ保存サ
イクル機関の改良に関する。
BACKGROUND OF THE INVENTION The present invention utilizes the third law of mechanical energy conservation in order to increase the energy conversion efficiency of a piston cycle, which converts normal and special piston reciprocating motion into rotational power. The amount of energy released near the dead center (stroke volume of the piston) is reduced, and most of the heat energy is stored in the reduced-diameter main combustion chamber by isolated combustion. The present invention relates to an improvement in the energy conservation cycle engine of the earlier application which releases isolated combustion in the reduced diameter main combustion chamber.

【0002】[0002]

【従来の技術】従来の技術としては、通常の定容サイク
ル機関や定圧サイクル機関があり、車両及び船舶及び農
業機械や各種機械の駆動用、熱と電気の併給用等に使用
されており、COの低減を含む公害の低減が急務とな
っております。段付き燃焼室・段付きピストンの従来技
術も多いのですが、いずれも定容サイクルや定圧サイク
ルであるため成功例がなく、成功例を対照に説明する。
即ち、実際の定容サイクル機関や定圧サイクル機関は、
図1(a)に示すように、燃焼室はシリンダヘッド内面
とピストン上面との間に形成されるため、大径の燃焼室
に最大燃焼圧力や最高燃焼温度が加わり、冷却を必須と
するため冷却損失が大増大するのに加えて、最大燃焼圧
力を上昇すると出力当たりの重量及び摩擦損失が大増大
するため、最大燃焼圧力を大増大しても重量及び摩擦損
失の増大が僅少な縮径主燃焼室内隔離燃焼として機関を
大幅に軽量化すると共に冷却損失と摩擦損失を大低減す
る技術が待望されるのに加えて、燃焼に際しては、通常
死点後40゜乃至60゜程度の燃焼期間があります。し
かし、ピストンが死点から後退し始めると、燃焼室がシ
リンダ内と連通した状態での燃焼となり、ピストン後退
に伴って燃焼室容積は急激に増大することになり、その
結果極度の非定容燃焼となり、燃焼圧力及び燃焼温度は
急激に低下して、最悪の燃焼条件に急移行するため、N
Oxを低減すると未燃分が増大し、未燃分を低減する燃
焼にするとNOxが増大する通常の公害増大燃焼になる
ため、定容撹拌燃焼期間及び高速撹拌燃焼期間を大増大
した高速撹拌燃焼が待望され、発明したものがエネルギ
保存サイクル機関です。
2. Description of the Related Art As conventional techniques, there are ordinary constant-volume cycle engines and constant-pressure cycle engines, which are used for driving vehicles and ships, agricultural machines and various machines, and for supplying heat and electricity together. There is an urgent need to reduce pollution, including reducing CO 2 . There are many conventional technologies of stepped combustion chambers and stepped pistons, but there are no successful cases because each is a constant volume cycle or a constant pressure cycle.
That is, the actual constant volume cycle engine and constant pressure cycle engine are:
As shown in FIG. 1A, since the combustion chamber is formed between the inner surface of the cylinder head and the upper surface of the piston, the maximum combustion pressure and the maximum combustion temperature are applied to the large-diameter combustion chamber, and cooling is essential. In addition to the large increase in cooling loss, increasing the maximum combustion pressure will increase the weight per unit output and friction loss. Therefore, even if the maximum combustion pressure is increased, the increase in weight and friction loss will be slight. In addition to the long-awaited technology for greatly reducing the weight of the engine and greatly reducing the cooling loss and friction loss as isolated combustion in the main combustion chamber, the combustion period is usually about 40 to 60 degrees after the dead center. there is. However, when the piston begins to recede from the dead center, combustion occurs in a state where the combustion chamber communicates with the inside of the cylinder, and the volume of the combustion chamber rapidly increases as the piston retreats, resulting in an extremely non-constant volume. Combustion occurs, the combustion pressure and combustion temperature drop sharply, and suddenly shift to the worst combustion conditions.
When Ox is reduced, the unburned portion increases, and when combustion is performed to reduce the unburned portion, NOx increases, resulting in normal pollution increasing combustion. Therefore, high-speed stirring combustion in which the constant volume stirring combustion period and the high-speed stirring combustion period are greatly increased. The long-awaited and invented is the energy conservation cycle organization.

【0003】図1及び図2の定圧サイクル機関の圧力線
図を参照して別の説明をすると、通常の定圧サイクル機
関や定容サイクル機関のように、燃焼によって発生する
最大の熱エネルギの全部を含めて大部分の熱エネルギ
を、図2のように死点後30゜までに放出すると、放出
量だけエネルギが減少するため、摩擦力の増大として消
費してしまい、仕事量(ピストン行程容積)は非常に僅
少となるのに加えて、摩擦損失が最小となって単位時間
の仕事量が最大になり、最も大量に熱エネルギの放出が
必要な死点後90゜の絶好機には、熱エネルギが略14
分の1等に大低減するため、30%に近い熱エネルギの
大損失も予想されます。従って、定容サイクル機関で
は、図2の圧力線図が更に死点側に移動するため、30
%を遥かに越える熱エネルギの大損失が予想されます。
即ち、最大の熱エネルギの全部を摩擦損失最大側で放出
するのが、従来技術で最大の欠点であるため、最大の熱
エネルギを摩擦損失最小側で放出する技術が強く待望さ
れ、発明したものがエネルギ保存サイクル機関です。
Another explanation will be given with reference to the pressure diagrams of the constant-pressure cycle engine shown in FIGS. 1 and 2. As shown in FIG. When most of the heat energy including the heat is released by 30 ° after the dead center as shown in FIG. 2, the energy is reduced by the amount of the discharge and consumed as an increase in the frictional force. ) Is extremely small, and in addition to the friction loss is minimized, the work per unit time is maximized. Heat energy is about 14
It is expected that large loss of heat energy close to 30% will be achieved because it is greatly reduced to 1 / etc. Therefore, in the constant-volume cycle engine, the pressure diagram of FIG.
A large loss of thermal energy is expected, far in excess of%.
That is, since the biggest disadvantage of the conventional technology is to release all of the maximum heat energy on the maximum friction loss side, a technology for releasing the maximum heat energy on the minimum friction loss side has been strongly desired and invented. Is an energy conservation cycle organization.

【0004】図2の定圧サイクル機関の圧力線図を私達
が自転車ペタルを垂直に踏み下げて効率良く前進させる
場合と比較して説明すると、定圧サイクル機関や定容サ
イクル機関では、燃焼によって発生する最大の熱エネル
ギの全部を含めて大部分の熱エネルギを、死点乃至死点
後30゜までに放出しますが私達は自然法則を経験則か
ら熟知しているため、自転車ペタルが上死点にあると
き、全エネルギを垂直方向に放出する等小学生でもしな
いし、特に摩擦損失が最小で回転動力変換効率が絶好機
の上死点後90°で、自転車ペタルに加える力を略14
分の1に大低減することは絶対にありません。私達は自
然法則を経験則より熟知しているため、自転車ペタルが
上死点にあるときは、必要最小限度のエネルギ放出量と
なり、回転動力変換効率絶好機の上死点後90゜に向か
って自転車ペタルに加わる力が次第に大きくなります。
即ち私達が自転車を効率良く前進させる場合と同様に、
熱エネルギの放出時期及び放出量の配分の最適化を図っ
たものがエネルギ保存サイクル機関です。即ち上死点で
燃料の全熱エネルギを放出させる場合は、回転動力変換
効率が最悪なのに加えて、摩擦損失も最大になり、回転
動力変換効率の絶好機の上死点後90゜で燃料の全熱エ
ネルギを放出させる場合は、摩擦損失が最小となり回転
動力変換効率が最高になることが、図2から容易に理解
できます。即ち、最大の熱エネルギ放出時期を、摩擦損
失最大側から摩擦損失最小側に移動したサイクルが強く
待望されるため、なされたエネルギ保存サイクル機関を
簡単にすることも含めて、回転動力変換効率の上昇を図
るのが本発明です。
The pressure diagram of the constant pressure cycle engine shown in FIG. 2 will be described in comparison with the case where we efficiently step forward on the bicycle petal by vertically stepping down the bicycle petal. Most of the heat energy, including all of the maximum heat energy, is released by the dead center or 30 後 after the dead center. Elementary school students do not release all energy in the vertical direction when in the dead center. Especially, the frictional loss is minimal and the rotational power conversion efficiency is 90 ° after the top dead center of the perfect machine.
Absolutely no reduction to a factor of one. We know the laws of nature better than empirical rules, so when the bicycle petal is at the top dead center, the required minimum amount of energy is released, and the rotational power conversion efficiency machine reaches 90 ° after the top dead center. The force applied to the bicycle petal gradually increases.
That is, just as if we were to move the bike forward efficiently,
The energy preservation cycle engine optimizes the timing and distribution of heat energy release. That is, when the total heat energy of the fuel is released at the top dead center, the rotational power conversion efficiency is the worst, and the friction loss is also maximized. It can be easily understood from Fig. 2 that when all heat energy is released, the friction loss is minimized and the rotational power conversion efficiency is maximized. That is, since a cycle in which the maximum heat energy release timing is shifted from the friction loss maximum side to the friction loss minimum side is strongly expected, the rotational power conversion efficiency including the simplification of the energy conservation cycle engine that has been made can be improved. It is the present invention that aims to rise.

【0005】[0005]

【発明が解決しようとする課題】上述の如く、CO
低減を含む公害の低減が急務となっており、この発明
は、自然法則の有効利用を極限まで探究したエネルギ保
存サイクルとして、ピストンの往復運動を回転運動に変
換する、ピストンサイクルのエネルギ変換効率を高め
て、COの低減を含む公害の大低減を図る、先の出願
の各種エネルギ保存サイクル機関の改良を図ると共に構
造を簡単にするため、新機構を追加することを目的とす
る。即ち本発明の目的は、通常の各種クランク機関をエ
ネルギ保存サイクル機関とした、各種A型エネルギ保存
サイクル機関に末広ノズルを増設して、保存貯金により
増大した熱エネルギを速度形質量エネルギとして、拡径
ピストンの頂面に正確に高速噴射することである。本発
明の目的は、特殊な構成の振り子運動ピストンクランク
機関をエネルギ保存サイクル機関とした、各種B型エネ
ルギ保存サイクル機関に末広ノズルのテーパ縮径部7を
増設して、保存貯金増大した速度形質量熱エネルギを、
拡径ピストンの頂面に正確に高速噴射し、新機構を追加
することである 本発明の目的は、特殊な構成の対向振り子運動ピストン
クランク機関をエネルギ保存サイクル機関とした、各種
C型エネルギ保存サイクル機関に末広ノズルのテーパ縮
径部7を増設して、保存貯金した速度形質量熱エネルギ
を、拡径ピストンの頂面に正確に高速噴射し、新機構を
追加することである。本発明の目的は、特殊な構成の振
り子運動ピストンクランク機関をエネルギ保存サイクル
機関とした、各種B型エネルギ保存サイクル機関の振り
子腕を省略して、両頭拡径ピストンの往復運動により、
直接クランク軸を回転させて回転動力とする、両頭拡径
ピストンクランク機関をエネルギ保存サイクルとした各
種D型エネルギ保存サイクル機関に新機構を追加するこ
とである。本発明の目的は、特殊な構成の対向振り子運
動ピストンクランク機関をエネルギ保存サイクル機関と
した、各種C型エネルギ保存サイクル機関の振り子腕を
省略して、夫夫の両頭拡径ピストンの対向往復運動によ
り、直接夫夫のクランク軸を回転させて回転動力とす
る、対向往復運動両頭拡径ピストンクランク機関をエネ
ルギ保存サイクルとした各種E型エネルギ保存サイクル
機関(完全往復機関を含めて)に新機構を追加すること
である。又、共通の課題として従来技術では、大径の燃
焼室に最大燃焼圧力や最高燃焼温度が加わるため、冷却
が必須となって冷却損失が増大し、最大燃焼圧力を上昇
すると出力当たりの重量及び摩擦損失が大増大するし、
水素燃料の燃焼が困難という課題があるため、燃料の種
類及び燃料点火方式及びサイクル数及び掃気方式及び機
関の型式等を問わずに重量当たりの比出力を大増大する
と共に、摩擦損失を大低減しながら、COを含む公害
の大低減を図ることである。
As described above, there is an urgent need to reduce pollution including reduction of CO 2 , and the present invention proposes the use of a piston as an energy conservation cycle that seeks the maximum use of the law of nature to the utmost. Converts reciprocating motion to rotary motion, enhances the energy conversion efficiency of the piston cycle, greatly reduces pollution including CO 2 reduction, and improves the various energy storage cycle engines of the previous application and simplifies the structure. Therefore, the purpose is to add a new mechanism. That is, an object of the present invention is to add a divergent nozzle to various A-type energy storage cycle engines, in which ordinary various crank engines are used as energy storage cycle engines, and expand thermal energy increased by storage savings as speed-type mass energy. High-speed injection accurately on the top surface of the diameter piston. SUMMARY OF THE INVENTION It is an object of the present invention to provide a speed saving type in which a tapered portion 7 of a divergent nozzle is added to various types of B-type energy storage cycle engines, in which a pendulum motion piston crank engine having a special configuration is used as an energy storage cycle engine. Mass heat energy,
It is an object of the present invention to accurately inject high-speed fuel onto the top surface of an enlarged piston and to add a new mechanism. An additional new mechanism is to add a tapered reduced diameter portion 7 of a divergent nozzle to a cycle engine to accurately and rapidly inject the stored speed-type mass heat energy to the top surface of the expanded piston. An object of the present invention is to use a pendulum motion piston crank engine of a special configuration as an energy storage cycle engine, omit the pendulum arms of various B-type energy storage cycle engines, and reciprocate the double-headed enlarged piston,
An object of the present invention is to add a new mechanism to various D-type energy storage cycle engines that use a double-headed, large-diameter piston-crank engine as an energy storage cycle that directly rotates the crankshaft to generate rotational power. SUMMARY OF THE INVENTION An object of the present invention is to omit the pendulum arms of various C-type energy storage cycle engines in which a specially configured opposed pendulum motion piston crank engine is used as an energy storage cycle engine, and to oppose reciprocating motion of each of the double-head enlarged pistons. A new mechanism for various E-type energy storage cycle engines (including a full reciprocating engine) with an energy storage cycle of a reciprocating double-headed piston crank engine that rotates the crankshaft directly to generate rotational power. Is to add. Further, as a common problem, in the conventional technology, the maximum combustion pressure and the maximum combustion temperature are applied to the large-diameter combustion chamber, so that cooling is indispensable and the cooling loss increases. Friction loss will increase greatly,
Due to the difficulty of hydrogen fuel combustion, the specific power per weight is greatly increased regardless of the type of fuel, fuel ignition system and cycle number, scavenging system and engine type, and friction loss is greatly reduced. Meanwhile, it is intended to greatly reduce pollution including CO 2 .

【0006】[0006]

【課題を解決するための手段】本発明は以上の課題に鑑
み、COの低減を含む公害の低減が困難な、通常の定
容サイクル機関及び定圧サイクル機関に換えて、各種エ
ネルギ保存サイクル機関を改良又は簡単にしてCO
含む公害の大低減を図ることである。即ち、上述のよう
に図1(a)の従来技術では、ピストンが死点を越えた
瞬間からピストンの後退に伴って、急激に燃焼室容積が
増大する極度の非定容燃焼による公害の増大燃焼に加え
て、死点近傍で大部分の熱エネルギを放出するため、最
も大量に熱エネルギの放出が必要な回転動力変換効率の
絶好機には、熱エネルギが殆ど無くなるため、熱エネル
ギの大損失となります。以上の従来技術の問題点を同時
に解消するため、図1(c)のように例えば5分の1に
縮径した縮径主燃焼室隔離燃焼として、高圧燃焼室の肉
圧を5分の1として大幅に軽量化する一方で、最大軸受
荷重も25分の1として、出力当たりの重量及び摩擦損
失を大低減すると共に、最大燃焼圧力の大上昇を可能に
して、例えば死点後40゜で隔離燃焼解除するエネルギ
保存サイクル機関とすると、従来技術の極度の非定容燃
焼を25倍の定容燃焼に近づけられるし、死点乃至死点
後40゜までの熱エネルギ放出量(ピストンの行程容
積)を25分の1として、25分の24の熱エネルギを
縮径主燃焼室内に保存貯金増大しておき、絶好機に向け
て速度形エネルギ+容積形エネルギとして放出して、熱
効率の大上昇が可能になるのに加えて、25倍の定容大
接近隔離撹拌燃焼により、燃焼室容積が一定容積を越え
ると、燃焼温度も3500℃を越えて燃焼圧力も大上昇
するため、水噴射手段を追加して水蒸気質量容積を大増
大する一方で、水素燃料燃焼に最適の断熱無冷却機関も
含めた、蒸気・内燃合体機関による公害の大低減燃焼を
可能にするのに加えて、隔離解除時の大圧力差による高
速噴射撹拌燃焼として、拡径ピストンを衝動+反動+容
積形エネルギにより噴射駆動して、大回転力を発生させ
てCO及び公害の大低減燃焼を追加します。本発明は
以上のうち、速度形質量エネルギとして噴射する場合の
無駄噴射を皆無にして、回転動力変換効率を更に上昇さ
せるため、末広ノズルに相当するテーパ縮径部7を追加
して、噴流の有効利用を図るものです。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, the reduction of pollution, including reduction of CO 2 is difficult, instead of the conventional constant volume cycle engine and the constant pressure cycle engine, various energy saving cycle engine To greatly reduce pollution including CO 2 . That is, as described above, in the conventional technique of FIG. 1A, the pollution increases due to extremely non-constant volume combustion in which the volume of the combustion chamber rapidly increases as the piston retreats from the moment the piston crosses the dead center. In addition to combustion, most of the heat energy is released near the dead center. Therefore, a rotary power conversion efficiency that requires the largest amount of heat energy to be released has almost no heat energy. It will be a loss. In order to solve the above-mentioned problems of the prior art at the same time, as shown in FIG. 1 (c), the reduced pressure of the high-pressure combustion chamber is reduced to 1/5, for example, as reduced-diameter main combustion chamber isolated combustion reduced to 1/5. As a result, the maximum bearing load is also reduced by a factor of 25 to greatly reduce the weight per output and the frictional loss, and make it possible to greatly increase the maximum combustion pressure. If the engine is an energy conservation cycle engine that releases isolated combustion, the conventional non-constant volume combustion can be approximated to 25 times the constant volume combustion, and the amount of heat energy released from the dead point to 40 ° after the dead point (the piston stroke) can be obtained. Volume) is reduced to 1/25, and 24/25 thermal energy is stored and increased in the reduced-diameter main combustion chamber, and is released as speed-type energy + volume-type energy toward an ideal machine, resulting in high thermal efficiency. 25 in addition to being able to climb When the volume of the combustion chamber exceeds a certain volume due to the constant-volume, close-separation stirring combustion, the combustion temperature also exceeds 3500 ° C., and the combustion pressure greatly increases. Therefore, the water injection means is added to greatly increase the steam mass volume. On the other hand, in addition to enabling a large reduction in pollution by the combined steam and internal combustion engine, including an adiabatic uncooled engine that is optimal for hydrogen fuel combustion, in addition to high-speed injection stirring combustion due to a large pressure difference at the time of isolation release , urge the enlarged diameter piston + recoil + is injected driven by positive displacement energy, and add a large reduction combustion of CO 2 and pollution by generating a large rotation force. Among the above, the present invention adds a tapered reduced diameter portion 7 corresponding to a divergent nozzle to further increase rotational power conversion efficiency by eliminating wasteful injection in the case of injection as velocity type mass energy. It is for effective use.

【0007】図1(b)(c)のように、通常のクラン
ク機関をエネルギ保存サイクルとしたA型エネルギ保存
サイクル機関の実施例及び図2を参照して説明すると、
拡径ピストンの適宜の凹1の略中央より、テーパ根部2
(円筒根部を含む)を有する縮径ピストンを突出して、
該拡径ピストンがシリンダ内を上死点と下死点との間で
往復運動可能として、図にない排気弁を含めて、下死点
前後に亘って通常の排気及び掃気を行う2サイクルA型
エネルギ保存サイクル機関において、拡径ピストンの上
昇と共にテーパ縮径部7を有する縮径主燃焼室の隔離が
始まり、次に拡径燃焼室で圧縮された空気が拡径燃焼室
側から挿入れ固着された、逆止弁3を含む一方向空気流
路4を通って、斜め空気流路14より縮径主燃焼室の斜
め上方に噴射され、燃料噴射手段5から噴射された燃料
と撹拌混合して、縮径主燃焼室内定容大接近隔離燃焼と
して、一定容積以上の縮径主燃焼室では水噴射手段23
より水噴射を可能にして、蒸気・内燃合体機関としま
す。拡径ピストンが後退を始めると、拡径燃焼室内圧力
が低下を始めるため、縮径ピストンの外周に多段に設け
た鍔状凹凸6により、多段に減圧して燃焼ガスの漏洩量
を制定します。拡径ピストンが死点後クランク角度で例
えば40゜まで後退すると、縮径主燃焼室内隔離燃焼解
除しますが、テーパ縮径部7が末広ノズルを構成して燃
焼ガスを拡径ピストン頂部に正確に高速噴射しますが、
適宜の凹部1が深い程ピストン頭部の揺れ動きを低減し
掃気効率を低下する一方で、出力の大増大を図る過程で
大圧力差による高速噴射撹拌燃焼として未燃分を再度皆
無に近づけると共に、拡径ピストンを速度形質量エネル
ギ+容積形エネルギにより衝動+反動+圧力により強力
に後退させて、大回転力を発生させて熱効率の大上昇と
公害の大低減を図り、通常の排気及び掃気に移行しま
す。
As shown in FIGS. 1 (b) and 1 (c), an embodiment of an A type energy storage cycle engine using an ordinary crank engine as an energy storage cycle and FIG.
From the approximate center of an appropriate concave portion 1 of the diameter-enlarging piston, a tapered root portion 2
Protruding a reduced diameter piston (including a cylindrical root),
A two-cycle A in which the diameter-expanding piston is capable of reciprocating in the cylinder between top dead center and bottom dead center, and performs normal exhaust and scavenging around the bottom dead center, including an exhaust valve not shown. In the type energy conservation cycle engine, isolation of the reduced-diameter main combustion chamber having the tapered reduced-diameter portion 7 starts with the rise of the expanded piston, and then air compressed in the expanded combustion chamber is inserted from the expanded combustion chamber side. The fuel is injected obliquely above the reduced-diameter main combustion chamber from the oblique air flow path 14 through the fixed one-way air flow path 4 including the check valve 3, and is agitated and mixed with the fuel injected from the fuel injection means 5. In the reduced-diameter main combustion chamber, the water injection means 23 is used as the constant-volume, close-separation combustion in the reduced-diameter main combustion chamber.
A steam / internal combustion engine that enables more water injection. When the expanding piston starts to recede, the pressure in the expanding combustion chamber starts to decrease.Therefore, the amount of combustion gas leakage is established by reducing the pressure in multiple stages by the flange-shaped irregularities 6 provided on the outer circumference of the reducing piston in multiple stages. . When the enlarged piston retracts to a crank angle of, for example, 40 ° after the dead center, the isolated combustion in the reduced diameter main combustion chamber is released. However, the tapered reduced diameter portion 7 forms a divergent nozzle to accurately transfer the combustion gas to the top of the enlarged diameter piston. High-speed injection,
The deeper the appropriate concave portion 1 is, the less the swinging motion of the piston head is reduced and the scavenging efficiency is reduced. On the other hand, in the process of achieving a large increase in output, unburned components are again reduced to almost none as high-speed injection stirring combustion due to a large pressure difference. The expanding piston is strongly retracted by impulse + reaction + pressure by velocity-type mass energy + volume-type energy to generate a large rotating force to achieve a large increase in thermal efficiency and a great reduction in pollution, and to shift to normal exhaust and scavenging. To do.

【0008】又、完全弾性衝突では、衝突の際に運動エ
ネルギが減少しない事が証明されており、従って最も好
ましい往復運動は、最も構造が簡単な比容積・比重量が
小さい2サイクル両頭拡径ピストンの往復運動となりま
す。本発明はサイクル数を問いませんが、最も簡単なエ
ネルギ保存サイクル機関を構成させるため、2サイクル
両頭拡径ピストンの往復運動により直接クランク軸を回
転させて、回転動力変換効率の上昇を図るものを含める
ものです。即ち、図3のD型エネルギ保存サイクル機関
の第1実施例を参照して、往復運動について説明する
と、最も重要なことは、往復運動によって運動エネルギ
が減少しないことです。2サイクル両頭拡径ピストンの
往復運動は、左死点も右死点も圧縮爆発行程となるた
め、完全弾性衝突の連続となり、運動エネルギの減少す
る部分が無いということです。運動エネルギの減少損失
について別の説明をすると、時計の振り子の往復運動
は、錘りの重さをいくら重くしても、長さが同じなら同
じ速さで往復運動を続けられます。一方通常の1気筒ク
ランク機関(ダイキン4、5HP汎用エンジン)をクラ
ンク軸とはずみ車だけにして力一杯回転させると、慣性
力で8回転乃至10回転しますが、ピストン等の往復運
動部分のかわりに、連接棒を含めて5Kgの錘りを吊り
下げて力一杯回転させても、運動エネルギの減少損失が
非常に大きいため、慣性力で1回転させるのは非常に困
難です。従って、私の予想では、運動エネルギの減少損
失が、最も普及されている通常の4サイクル機関で30
%乃至20%(昔の新聞報道からの推測では、バンケル
博士は30%前後と予想していた?)、通常の2サイク
ル機関で15%乃至10%、2サイクル両頭拡径ピスト
ン機関で0%に近づきます。即ち、通常の4サイクルク
ランク機関で往復運動部分を軽量化すると、ピストン速
度を増大して比出力を増大し、熱効率も上昇する実状で
すが、運動エネルギの減少損失を20%以下にするのは
困難なため、運動エネルギの減少損失を皆無にできる2
サイクル両頭拡径ピストン機関が好ましいのです。
Further, it has been proved that the kinetic energy does not decrease at the time of the collision in the completely elastic collision. Therefore, the most preferable reciprocating motion is the simplest structure having the small specific volume and specific weight and the two-cycle double-ended expansion. Reciprocating movement of the piston. Although the present invention does not matter the number of cycles, in order to configure the simplest energy storage cycle engine, the crankshaft is directly rotated by the reciprocating motion of the two-cycle double-headed expanding piston to increase the rotational power conversion efficiency. Includes That is, the reciprocating motion will be described with reference to the first embodiment of the D-type energy storage cycle engine shown in FIG. 3. The most important point is that the kinetic energy is not reduced by the reciprocating motion. The reciprocating motion of the two-stroke double-headed piston expands the compression and explosion strokes at both the left and right dead centers, which results in a continuation of complete elastic collision and no kinetic energy reduction. Another explanation of the loss of kinetic energy is that the reciprocating motion of the pendulum of a watch can continue to reciprocate at the same speed, no matter how heavy the weight, if the length is the same. On the other hand, if a normal one-cylinder crank engine (Daikin 4, 5HP general-purpose engine) is fully rotated with only the crankshaft and flywheel, it will rotate 8 to 10 times by inertia, but instead of the reciprocating parts such as pistons. Even if a 5kg weight including the connecting rod is suspended and rotated as much as possible, it is extremely difficult to make one rotation with inertial force because the loss of kinetic energy is extremely large. Therefore, my expectation is that the loss of kinetic energy loss will be 30% for the most prevalent normal four-stroke engines.
% To 20% (according to old newspaper reports, Dr. Wankel expected around 30%?), 15% to 10% for a normal two-stroke engine, and 0% for a two-stroke double-headed piston engine. Approaching. That is, if the reciprocating part is lightened in a normal four-cycle crank engine, the piston speed is increased, the specific output is increased, and the thermal efficiency is also increased. However, the loss of the kinetic energy is reduced to 20% or less. Because it is difficult, kinetic energy reduction loss can be eliminated 2
A cycle double-ended piston engine is preferred.

【0009】上述の解決手段を先の出願で開示しており
ますが、先の出願では、両頭拡径ピストンの往復運動に
より、振り子腕を振り子運動させて、該振り子運動によ
りクランク軸を回転させて回転動力を得る構成のため、
振り子腕が振り子運動するための容積が増大して構造が
複雑になる課題があり、一方エネルギ保存サイクル機関
は、例えば5倍に拡径した拡径ピストンにより圧縮空気
を縮径主燃焼室に供給して、縮径主燃焼室内隔離燃焼と
して燃焼を大幅に改良して、高圧燃焼ガスを速度形質量
エネルギとして、拡径ピストンの頂面に正確に短時間で
高速噴射して回転動力に変換するため、速度形質量エネ
ルギを効率良く回転動力に変換するためには、短行程機
関や超短行程機関が好ましく、従って、両頭拡径ピスト
ンの往復運動により直接クランク軸を回転させて、回転
動力に変換すると、構造を大幅に簡単にして小形軽量大
出力が更に可能になります。そこで本発明は、両頭拡径
ピストンの円筒部略中央にクランク軸側カム11又はク
ランク軸側直動軸受を、往復自在に収容維持する平行軌
道12を平行に半径方向に設けて、クランク軸を回転自
在に軸支したクランク軸側カム11又はクランク軸側直
動軸受を収容維持して、両頭拡径ピストンの往復運動に
より、直接噛み合い同期手段17やはずみ車を含むクラ
ンク軸等を回転させて、効率良く回転動力を得る構成と
して構造を大幅に簡単にする一方で、比容積及び比重量
の大低減を図る構成ものを追加したものです。
The above-mentioned solution is disclosed in the earlier application. In the earlier application, the reciprocating motion of the double-headed enlarged piston causes the pendulum arm to pendulum move, and the crankshaft is rotated by the pendulum motion. To obtain rotational power
There is a problem that the capacity for the pendulum arm to perform the pendulum movement increases and the structure becomes complicated. On the other hand, in the energy conservation cycle engine, compressed air is supplied to the reduced-diameter main combustion chamber by, for example, a 5-diameter-expanded piston. Then, the combustion is greatly improved as isolated combustion in the reduced diameter main combustion chamber, and high-pressure combustion gas is converted into rotational power by injecting high-speed combustion gas as velocity-type mass energy accurately and quickly at high speed onto the top surface of the expanded piston. Therefore, in order to efficiently convert speed-type mass energy into rotational power, a short-stroke engine or an ultra-short-stroke engine is preferable.Therefore, the crankshaft is directly rotated by the reciprocating motion of the double-headed piston to generate rotational power. Converting it will greatly simplify the structure and make small, light and large output possible. In view of the above, the present invention provides a parallel track 12 for radially holding a crankshaft-side cam 11 or a crankshaft-side direct-acting bearing in a radial direction substantially parallel to the center of a cylindrical portion of a double-headed piston. By accommodating and maintaining the crankshaft-side cam 11 or the crankshaft-side linear motion bearing that is rotatably supported, the reciprocating motion of the double-headed enlarged piston rotates the direct-meshing synchronization means 17 and the crankshaft including the flywheel, It is a configuration that greatly simplifies the structure as a configuration that efficiently obtains rotational power, while adding a configuration that greatly reduces specific volume and specific weight.

【0010】[0010]

【発明の実施の形態】発明の実施の形態を実施例に基づ
き図面を参照して説明するが、実施例と既説明とその構
成が略同じ部分には、同一名称又は符号を付して、その
重複説明は省略し、特徴的な部分や説明不足部分は順次
説明する。又、発明の意図及び予想を明快に具体的に説
明するため、数字で説明しておりますが、数字に限定す
るものではありません。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on embodiments with reference to the drawings. The overlapping description will be omitted, and the characteristic portions and the portions that are insufficiently described will be sequentially described. In addition, to clearly and specifically explain the intention and expectation of the invention, the explanation is made with numbers, but is not limited to the numbers.

【0011】図3のD型エネルギ保存サイクル内燃機関
の第1実施例を説明すると、両頭拡径ピストンの左右夫
夫の拡径ピストンの適宜の凹部1の略中央より、テーパ
根部2を有する縮径ピストンを突出して、該両頭拡径ピ
ストンがシリンダ内を左死点と右死点との間で往復運動
容易として、左右の死点前後に亘って通常の排気及び掃
気を行う、2サイクルD型エネルギ保存サイクル機関に
おいて、掃気後の圧縮過程に、テーパ根部2及び鍔状凹
凸6及び先端の幅広凸部の外周に後端を適宜に残して運
動方向に斜めに延びる複数の騒音低減溝15を設けた縮
径ピストンにより、テーパ縮径部7を有する円筒形の縮
径主燃焼室の隔離が始まり、次いで拡径燃焼室で圧縮さ
れた空気が、拡径燃焼室側から挿入れ固着された逆止弁
3を含む一方向空気流路4を通って、複数の斜め空気流
路14より縮径主燃焼室内の斜め横方向に噴射され、燃
料噴射手段5から噴射された燃料と撹拌混合して、縮径
主燃焼室内定容大接近隔離燃焼として、一定容積以上の
縮径主燃焼室では水噴射を可能にして蒸気・内燃合体機
関とします。両頭拡径ピストンが後退を始めると拡径燃
焼室内圧力が低下を始めるため、縮径ピストンの外周に
多段に設けた鍔状凹凸6により、多段に減圧して燃焼ガ
スの漏洩量を最適に制定します。更に拡径ピストンが後
退すると縮径主燃焼室内隔離燃焼解除しますが、先ず縮
径ピストンの騒音低減溝15により燃焼ガスの噴射方向
を制定すると共に、騒音の低減を図り、次にテーパ縮径
部7が末広ノズルを構成して、燃焼ガスを適宜の凹部1
に正確に高速噴射して回転力の大増大を図る一方で、高
速噴射の過程で大圧力差による高速噴射撹拌燃焼とし
て、未燃分の再度皆無を図ると共に、拡径ピストンを速
度形質量エネルギ+容積形エネルギにより、衝動+反動
+圧力により強力に後退させて、大回転力を発生させ
て、熱効率の大上昇と公害の大低減を図り、通常の排気
及び掃気に移行する2サイクルD型エネルギ保存サイク
ル内燃機関の第1実施例とします。
A first embodiment of the D-type energy-storing cycle internal combustion engine shown in FIG. 3 will now be described. A two-cycle D that projects a diameter piston to facilitate normal reciprocating movement between the left dead center and the right dead center within the cylinder by the double-headed enlarged piston, thereby performing normal exhaust and scavenging before and after the left and right dead centers. In the compression process after scavenging, a plurality of noise reduction grooves 15 extending obliquely in the direction of motion in the compression process after scavenging, leaving the rear end appropriately on the outer periphery of the tapered root portion 2 and the flange-shaped unevenness 6 and the wide convex portion at the front end. The cylindrical piston having the tapered diameter-reduced portion 7 starts to separate the cylindrical reduced-diameter main combustion chamber, and then the air compressed in the expanded-diameter combustion chamber is inserted and fixed from the expanded-diameter combustion chamber side. One-way empty including check valve 3 The fuel is injected obliquely laterally in the reduced diameter main combustion chamber from the plurality of oblique air flow paths 14 through the flow path 4, and is agitated and mixed with the fuel injected from the fuel injection means 5 to make the constant volume of the reduced diameter main combustion chamber constant. As a large close-separation combustion, a steam-internal combustion engine is enabled by enabling water injection in the reduced diameter main combustion chamber with a certain volume or more. When the double-ended piston starts to retract, the pressure in the enlarged combustion chamber starts to decrease. Therefore, the flange-shaped unevenness 6 provided on the outer periphery of the reduced-diameter piston reduces the pressure in multiple stages to optimally establish the amount of combustion gas leakage. To do. When the diameter-expanding piston further retracts, the isolated combustion is released from the diameter-reduced main combustion chamber. First, the combustion gas injection direction is determined by the noise reduction groove 15 of the diameter-reduced piston, noise is reduced, and then the taper diameter is reduced. The part 7 constitutes a divergent nozzle, and the combustion gas is supplied to the appropriate recess 1.
High-speed injection to achieve a large increase in rotational force, while in the process of high-speed injection, high-pressure injection agitation combustion due to a large pressure difference, eliminating unburned components again, and increasing the diameter of the expanding piston to speed-type mass energy Two-cycle D-type energy that moves back to normal exhaust and scavenging by generating a large rotational force by strongly retreating by impulsive force + reaction force + pressure by + volumetric energy to generate a large increase in thermal efficiency and greatly reduce pollution. This is the first embodiment of a storage cycle internal combustion engine.

【0012】図3を参照して別の説明をすると、円筒形
のシリンダの左右中央よりには、夫夫排気穴及び掃気穴
を適宜に設けて、左右に固着したシリンダヘッドと両頭
拡径ピストンの夫夫の拡径ピストンとの間に拡径燃焼室
を形成させて、シリンダヘッドの略中心には縮径主燃焼
室を夫夫設けて、燃料噴射燃焼が可能に夫夫燃料噴射手
段5を具備して、該燃焼をNOx大低減燃焼とするため
の水噴射手段23を夫夫に追加具備して、該縮径主燃焼
室及び拡径燃焼室から冷却損失を排除するため、該縮径
主燃焼室及びテーパ縮径部7及び適宜の凸部24を含め
て及び/前記縮径ピストン及びテーパ根部2及び適宜の
凹部1を含めて、夫夫を耐熱耐蝕材21及び断熱材22
により耐熱耐蝕断熱構造とします。又、前述のようにエ
ネルギ保存サイクル機関は短行程機関乃至超短行程機関
が好ましいため、圧縮点火機関とする場合は無駄容積を
縮小するため、前記耐熱耐蝕材21に弾力性を含めたも
のが好ましい。両頭拡径ピストンの略中央半径方向に
は、該往復運動によりクランク軸を回転させるための平
行軌道12・12を、平行に具備して、該クランク軸に
回転自在に外嵌枢支したクランク軸側カム11又は後述
するクランク軸側直動軸受を、平行軌道12・12の間
に往復自在に挿入れ維持して、両頭拡径ピストンの往復
運動により直接はずみ車を含むクランク軸を回転させ
て、回転動力とする2サイクルD型エネルギ保存サイク
ル内燃機関の第1実施例とします。
Another explanation will be given with reference to FIG. 3. Explaining that the exhaust hole and the scavenging hole are appropriately provided from the left and right center of the cylindrical cylinder, respectively, and the cylinder head and the double-headed enlarged piston fixed to the left and right are provided. A large-diameter combustion chamber is formed between each of the large-diameter pistons and a large-diameter main combustion chamber is provided substantially at the center of the cylinder head to enable fuel injection combustion. In order to eliminate the cooling loss from the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber, a water injection means 23 is additionally provided for each of the combustion chambers to make the combustion a large NOx reduction combustion. The diameter main combustion chamber and the tapered reduced diameter portion 7 and the appropriate convex portion 24 and / or the reduced diameter piston and the tapered root portion 2 and the appropriate concave portion 1 are each made of a heat and corrosion resistant material 21 and a heat insulating material 22.
Heat and corrosion resistant insulation structure. As described above, since the energy storage cycle engine is preferably a short-stroke engine or an ultra-short-stroke engine, when the compression ignition engine is used, the heat-resistant and corrosion-resistant material 21 having elasticity should be used in order to reduce the waste volume. preferable. A substantially parallel radial track 12 for rotating the crankshaft by the reciprocating motion is provided in a substantially central radial direction of the double-head enlarged piston, and the crankshaft rotatably fitted to the crankshaft is rotatably fitted on the crankshaft. The side cam 11 or a later-described crankshaft-side linear motion bearing is reciprocally inserted and maintained between the parallel raceways 12 and 12, and the crankshaft including the flywheel is directly rotated by the reciprocating motion of the double-head enlarged piston. The first embodiment of a two-cycle D-type energy-saving cycle internal combustion engine using rotating power is used.

【0013】図4・図7を参照して、B型エネルギ保存
サイクル内燃機関の第1実施例を説明すると、B型エネ
ルギ保存サイクル機関の主要部は図3の前記D型エネル
ギ保存サイクル機関と略同じのため、振り子ピストンク
ランク機構と説明不足部分を説明すると、振り子腕が左
右に振り子運動容易に、シリンダ穴16を設けたシリン
ダの左死点と右死点との間で往復運動する、両頭拡径ピ
ストンの円筒部略中央には振り子腕を挿入れるピストン
穴8を設けて、該半径方向に振り子側カム10又は振り
子側直動軸受を挿入れ維持する平行軌道12・12を設
けて挿入れ維持し、両頭拡径ピストンの往復運動により
振り子腕が揺動して、平行軌道12・12の間を振り子
側カム11又は振り子側直動軸受が往復容易に振り子腕
を設けて、該振り子腕の上部を本体側に振り子運動容易
に吊り下げて、振り子腕の揺動によりクランク軸及びは
ずみ車が回転可能に、振り子腕に上下動容易に平行軌道
12・12に枢支されたクランク軸側直動軸受(スライ
ドウエイを含む)又はクランク軸側カム11に、クラン
ク軸を回転自在に枢支して、両頭拡径ピストンの往復運
動により振り子腕を振り子運動させて、該振り子運動に
よりクランク軸を回転させて回転動力を得る、新振り子
ピストンクランク機構とします。縮径主燃焼室の内径を
例えば5分の1に縮径して隔離燃焼にすると、高圧縮径
主燃焼室の肉厚を略5分の1として大軽量が可能にな
り、従来技術より25倍も定容燃焼に近づけた撹拌燃焼
及び、隔離解除時の大圧力差による高速噴射撹拌燃焼に
より、1回の燃焼期間で燃焼条件を2回も極限まで良く
するため、燃焼が改善されて、水噴射する蒸気・内燃合
体機関による断熱無冷却機関を含めて、NOxと未撚分
を同時に皆無に近づけることが可能になり、加えて最大
燃焼圧力による摩擦最大荷重や軸受最大荷重を25分の
1として振動要因を大低減できる一方で、大増大した水
蒸気質量容積を含む高圧燃焼ガスの、速度形質量エネル
ギ+容積形エネルギを適宜の凹部1に高速噴射して、衝
動+反動+圧力により、両頭拡径ピストンを強力に後退
させて大回転力を発生させると共に、過早点火や異状燃
焼の影響も25分の1になるため、過早点火や異状燃焼
を有効利用した早期完全燃焼終了技術が可能になり、拡
径燃焼室は大幅に低圧低温の薄肉燃焼室として、機関全
体を大軽量化して比出力を大増大しながら、COを含
む公害の大低減を図るものが各種エネルギ保存サイクル
機関であり、そのうち両頭拡径ピストンの往復運動によ
り、振り子腕を振り子運動させて、該振り子運動により
はずみ車を含むクランク軸を回転させて、回転動力とす
るものがB型エネルギ保存サイクル内燃機関となりま
す。
Referring to FIGS. 4 and 7, a first embodiment of a B-type energy storage cycle internal combustion engine will be described. The main part of the B-type energy storage cycle engine is the same as the D-type energy storage cycle engine shown in FIG. Since the pendulum piston crank mechanism and the insufficiency are substantially the same, the pendulum arm reciprocates easily between the left dead point and the right dead point of the cylinder provided with the cylinder hole 16 in such a manner that the pendulum arm easily moves right and left. A piston hole 8 into which a pendulum arm is inserted is provided substantially at the center of the cylindrical portion of the double-headed enlarged piston, and parallel tracks 12 are provided in the radial direction to insert and maintain a pendulum-side cam 10 or a pendulum-side linear motion bearing. The pendulum arm is swung by the reciprocating motion of the double-headed enlarged piston, and the pendulum-side cam 11 or the pendulum-side linear motion bearing easily provides the pendulum arm between the parallel orbits 12 and 12. Pretend The upper part of the arm is easily suspended on the main body side by pendulum movement, and the swing of the pendulum arm allows the crankshaft and flywheel to rotate. The crankshaft is rotatably supported by a linear motion bearing (including a slideway) or a camshaft-side cam 11, and the pendulum arm is pendulum-moved by the reciprocating motion of the double-ended piston, and the crankshaft is moved by the pendulum motion. A new pendulum piston crank mechanism that obtains rotational power by rotating When isolated combustion is performed by reducing the inner diameter of the reduced diameter main combustion chamber to, for example, one-fifth, the thickness of the high compression diameter main combustion chamber can be reduced to approximately one-fifth to achieve a large and light weight. By the agitation combustion that is twice as close to the constant volume combustion and the high-speed injection agitation combustion due to the large pressure difference when the isolation is released, the combustion conditions are improved to the limit twice in one combustion period, so that the combustion is improved. Including the adiabatic uncooled engine with the steam / internal combustion engine that injects water, it is possible to make NOx and untwisted components almost zero at the same time. In addition, the maximum frictional load due to the maximum combustion pressure and the maximum bearing load can be reduced by 25 minutes. While the vibration factor can be greatly reduced as 1, high-speed combustion energy of high-pressure combustion gas containing a greatly increased water vapor mass volume is injected at a high speed into an appropriate concave portion 1 by an impulse + reaction + pressure. Strongly behind the double-headed piston As a result, the effect of premature ignition and abnormal combustion is reduced by a factor of 25, so that early complete combustion termination technology that makes effective use of premature ignition and abnormal combustion can be achieved. Are energy saving cycle engines that use a large-scale, low-pressure, low-temperature, thin-walled combustion chamber to greatly reduce the pollution, including CO 2 , while increasing the specific power by increasing the weight and weight of the entire engine. The reciprocating motion of the piston causes the pendulum arm to perform a pendulum motion, and the pendulum motion causes the crankshaft including the flywheel to rotate.

【0014】図5のE型エネルギ保存サイクル内燃機関
の第1実施例を説明すると、対向に設けた夫夫の両頭拡
径ピストンの左右夫夫の拡径ピストンの適宜の凹部1の
略中央より、テーパ根部2を有する縮径ピストンを突出
して、該両頭拡径ピストンがシリンダ内を外死点と内死
点との間で対向往復運動容易として、夫夫の外死点前後
に亘って及び/夫夫の内死点前後に亘って、夫夫通常の
排気及び掃気を行う2サイクルE型エネルギ保存サイク
ル機関において、掃気後の圧縮過程に、夫夫テーパ根部
2及び鍔状凹凸6及び先端の幅広凸部の外周に後端を適
宜に残して運動方向に斜めに延びる複数の騒音低減溝1
5を設けた縮径ピストンにより、夫夫テーパ縮径部7を
有する縮径主燃焼室の隔離が始まり、次いで夫夫の拡径
燃焼室で圧縮された空気が、拡径燃焼室側から挿入れ固
着された夫夫の逆止弁3を含む一方向空気流路4を通っ
て、夫夫複数の斜め空気流路14より縮径主燃焼室内の
斜め横方向に噴射され、夫夫の燃料噴射手段5から噴射
された燃料と撹拌混合して、夫夫の縮径主燃焼室内定容
大接近隔離燃焼として、一定容積以上の縮径主燃焼室で
は水噴射手段23を可能にして蒸気・内燃合体機関とし
ます。夫夫の両頭拡径ピストンが後退を始めると拡径燃
焼室内圧力が低下を始めるため、夫夫の縮径ピストンの
外周に多段に設けた鍔状凹凸6により、多段に減圧して
燃焼ガスの漏洩量を最適に制定します。更に拡径ピスト
ンが夫夫後退すると縮径主燃焼室内隔離燃焼解除します
が、先ず夫夫の縮径ピストンの騒音低減溝15により燃
焼ガスの噴射方向を制定すると共に、騒音の低減を図
り、次に夫夫のテーパ縮径部7が末広ノズルを構成し
て、燃焼ガスを夫夫の適宜の凹部1に正確に高速噴射し
て回転力の大増大を図る一方で、高速噴射の過程で大圧
力差による高速撹拌燃焼として未燃分の再度皆無を図る
と共に、夫夫の拡径ピストンを速度形質量エネルギ+容
積形エネルギにより、衝動1反動+圧力により強力に後
退させて、大回転力を発生させて、熱効率の大上昇と公
害の大低減を図り、夫夫通常の排気及び掃気に移行する
対向往復運動2サイクルE型エネルギ保存サイクル内燃
機関の第1実施例とします。
A first embodiment of the E-type energy storage cycle internal combustion engine shown in FIG. 5 will be described. , Projecting a reduced diameter piston having a tapered root portion 2 so that the double-headed enlarged diameter piston facilitates the opposing reciprocating movement between the outer dead center and the inner dead center in the cylinder. / In a two-cycle E-type energy storage cycle engine that performs normal exhaust and scavenging before and after the husband's inner dead center, respectively, during the compression process after scavenging, each of the tapered root 2 and the flange-shaped irregularities 6 and the tip A plurality of noise reduction grooves 1 extending obliquely in the direction of movement while appropriately leaving a rear end on the outer periphery of the wide convex portion
The reduced-diameter piston provided with 5 starts isolation of the reduced-diameter main combustion chamber having the tapered reduced-diameter portion 7, and then air compressed in the respective expanded-diameter combustion chamber is inserted from the expanded-diameter combustion chamber side. The fuel is injected obliquely in the reduced-diameter main combustion chamber from the plurality of oblique air passages 14 through the one-way air passages 4 including the respective check valves 3 which are fixed and fixed. The fuel injected from the injection means 5 is agitated and mixed with the fuel to reduce the volume of the reduced-diameter main combustion chamber to a constant-volume, large-close-separation combustion. It is an internal combustion engine. Since the pressure in the expanded combustion chamber starts to decrease when the double-ended pistons start to retract, the pressure of the combustion gas is reduced in multiple stages by the flange-shaped irregularities 6 provided on the outer periphery of the reduced-diameter pistons in multiple stages. Optimize the amount of leakage. When the diameter-expanding piston retreats further, the isolated combustion is released from the reduced-diameter main combustion chamber. First, the combustion gas injection direction is established by the noise reduction groove 15 of each diameter-reduced piston, and noise is reduced. Next, each of the tapered diameter reducing portions 7 constitutes a divergent nozzle, and the combustion gas is accurately injected at a high speed into each of the appropriate concave portions 1 to achieve a large increase in the rotational force. The non-combustible portion is eliminated again as a high-speed agitation combustion due to the large pressure difference. At the same time, the large-diameter piston is strongly retracted by the impulse 1 reaction + pressure by the speed type mass energy + the volume type energy to reduce the large rotational force. The first embodiment of a two-cycle E-type energy-saving cycle internal combustion engine with two reciprocating motions, each of which shifts to normal exhaust and scavenging, with the aim of greatly increasing the thermal efficiency and greatly reducing pollution by generating heat.

【0015】図5を参照して別の説明をすると、図3の
D型エネルギ保存サイクル内燃機関の第1実施例を、対
向に連結して噛合い同期手段17により、夫夫の両頭拡
径ピストンの対向往復運動を同期させて振動を大低減し
て、超大型のE型エネルギ保存サイクル内燃機関を可能
にするものです。即ち、対向に設けた夫夫のシリンダの
左右に夫夫シリンダヘットを固着して対向に連結し、円
筒形のシリンダの左右中央寄りには、夫夫排気穴及び掃
気穴を適宜に設けて、夫夫左右に固着したシリンダヘッ
トと両頭拡径ピストンとの間に拡径燃焼室を形成させ
て、夫夫のシリンダヘットの略中心には夫夫縮径主燃焼
室を形成させて、夫夫燃料噴射燃焼が可能に夫夫に燃料
噴射手段5を具備して、該燃焼をNOx大低減燃焼とす
るための水噴射手段23を夫夫追加具備して、該縮径主
燃焼室及び拡径燃焼室から冷却損失を排除するため、該
縮径主燃焼室及びテーパ縮径部7及び適宜の凸部24を
含めて及び/前記夫夫の縮径ピストン及びテーパ根部2
及び適宜の凹部1を含めて、夫夫を耐熱耐蝕材21及び
断熱材22により耐熱耐蝕断熱構造とします。又、前述
のようにエネルギ保存サイクル機関は短行程機関乃至超
短行程機関が好ましいため、圧縮点火機関とする場合は
無駄容積を縮小するため、前記耐熱耐蝕材21に適宜の
弾力性を含めたものが好ましい。夫夫の両頭拡径ピスト
ンの略中央半径方向には、該往復運動によりクランク軸
を回転させるための平行軌道12・12を夫夫に平行に
具備して、該クランク軸に回転自在に外嵌枢支したクラ
ンク軸側カム11・11又は夫夫のクランク軸側直動軸
受を、夫夫の平行軌道12・12の間に夫夫往復自在に
挿入れ維持して、夫夫の両頭拡径ピストンの対向往復運
動により、直接噛み合い同期手段17を含む夫夫のクラ
ンク軸を回転させて回転動力とする、2サイクルE型エ
ネルギ保存サイクル内燃機関の第1実施例とします。
Another explanation will be given with reference to FIG. 5. The first embodiment of the D-type energy storage cycle internal combustion engine shown in FIG. Synchronizes opposing reciprocating motions of the pistons to greatly reduce vibrations, enabling a super-large E-type energy conservation cycle internal combustion engine. That is, the respective cylinder heads are fixedly attached to the left and right sides of the respective opposing cylinders and connected to each other, and the respective exhaust holes and scavenging holes are appropriately provided near the left and right center of the cylindrical cylinder, An enlarged combustion chamber is formed between the cylinder head fixed to the right and left and the double-head enlarged piston, and a reduced-diameter main combustion chamber is formed substantially at the center of each cylinder head. The fuel injection means 5 is provided so as to enable fuel injection combustion, and the water injection means 23 for making the combustion a large NOx reduction combustion is additionally provided. In order to eliminate the cooling loss from the combustion chamber, the reduced diameter main combustion chamber and the tapered reduced diameter portion 7 and the appropriate convex portion 24 are included and / or the reduced diameter piston and the tapered root portion 2 are respectively included.
Each of them, including the appropriate recess 1, is made of a heat and corrosion resistant material 21 and a heat insulating material 22 to form a heat and corrosion resistant and heat insulating structure. Further, as described above, since the energy saving cycle engine is preferably a short-stroke engine or an ultra-short-stroke engine, when the compression ignition engine is used, the heat resistant and corrosion-resistant material 21 is provided with appropriate elasticity in order to reduce the waste volume. Are preferred. In the approximate center radial direction of each of the double-headed pistons, parallel orbits 12 and 12 for rotating the crankshaft by the reciprocating motion are provided in parallel with each other, and are rotatably fitted to the crankshafts. The pivotally supported crankshaft side cams 11 and / or the respective crankshaft side linear bearings are inserted and maintained between the respective parallel orbits 12 and 12 so as to be able to reciprocate freely. The first embodiment of a two-cycle E-type energy-saving cycle internal combustion engine in which respective crankshafts including the direct meshing synchronizing means 17 are rotated by opposing reciprocating motions of pistons to generate rotational power.

【0016】図6・図7を参照して、C型エネルギ保存
サイクル内燃機関の第1実施例を説明すると、C型エネ
ルギ保存サイクル機関の主要部は図5の前記E型エネル
ギ保存サイクル機関の第1実施例と殆ど同じのため、対
向振り子ピストンクランク機構と説明不足部分を説明す
ると、図4の前記B型エネルギ保存サイクル機関を夫夫
対向に結合して、両頭拡径ピストンの対向往復運動を、
夫夫の振り子腕及びクランク軸及び噛み合い同期手段1
7により同期させて振動を大低減して、超大型のC型エ
ネルギ保存サイクル機関を可能にするもので、クランク
軸より適宜に回転動力を得るものです。適宜の凹部1の
名称について説明すると、拡径ピストンの頂面形状につ
いては先の出願で多数の形状を開示しているためその全
部を含めるため適宜の凹部としたものです。深い凹部に
するとテーパ縮径部7より高速噴射された燃焼ガスを捕
捉し易く、シリンダの熱負荷を低減できますが、掃気効
率が大きく悪化するため、掃気効率を重要とするときは
凹部が次第に浅くなり平面形状も含めるもので、従って
適宜の凸部24にも平面形状が含まれます。又、縮径主
燃焼室を例えば5分の1に縮径して隔離燃焼とすると、
最大燃焼圧力による最大軸受荷重が25分の1に大低減
するため、最大軸受荷重も最大圧縮圧力に大低減して、
最大圧縮圧力を大上昇した最大燃焼圧力の大上昇による
COの低減も可能になり、運動エネルギの減少損失の
非常に少ない2サイクル両頭拡径ピストンの往復運動に
より、振り子腕を介して噛み合い同期手段17を含むク
ランク軸を回転させて回転動力とするC型エネルギ保存
サイクル内燃機関とします。
Referring to FIGS. 6 and 7, a first embodiment of the C-type energy storage cycle internal combustion engine will be described. The main part of the C-type energy storage cycle engine is the same as that of the E-type energy storage cycle engine shown in FIG. Since it is almost the same as the first embodiment, the opposed pendulum piston crank mechanism and the lack of explanation will be described. The B-type energy storage cycle engine shown in FIG. To
Husband's pendulum arm, crankshaft and meshing synchronization means 1
7, which greatly reduces vibration by synchronizing and enables an ultra-large C-type energy storage cycle engine, which obtains rotational power appropriately from the crankshaft. Explaining the name of the appropriate concave portion 1, the top surface shape of the enlarged diameter piston is an appropriate concave portion so as to include all the shapes since many shapes are disclosed in the earlier application. A deep recess makes it easier to catch the combustion gas injected at a high speed from the tapered portion 7 and reduces the thermal load on the cylinder. However, the scavenging efficiency is greatly reduced. The shape becomes shallower and includes a planar shape. Therefore, the appropriate convex portion 24 also includes a planar shape. Further, if the diameter of the reduced diameter main combustion chamber is reduced to, for example, 1/5 to perform isolated combustion,
Since the maximum bearing load due to the maximum combustion pressure is greatly reduced by a factor of 25, the maximum bearing load is also greatly reduced to the maximum compression pressure,
The maximum compression pressure has been greatly increased, and the maximum combustion pressure has been greatly increased, so that CO 2 can be reduced. The reciprocating motion of the two-cycle double-headed piston with very little loss of kinetic energy has been engaged and synchronized through the pendulum arm. A C-type energy storage cycle internal combustion engine that rotates the crankshaft including the means 17 and generates rotational power.

【0017】図8を参照して、クランク軸の使用例及び
噛み合い同期手段17を説明すると、A型エネルギ保存
サイクル機関は通常機関のため説明不要ですが、B型及
びD型エネルギ保存サイクル内燃機関の場合は、クラン
ク軸は1本でよいため、図の噛み合い同期手段17に換
えて図3及び図4のはずみ車を固着して2気筒づつ連結
するため、2気筒・4気筒・6気筒・8気筒というよう
に2気筒刻みで多気筒内燃機関に移行します。C型及び
E型エネルギ保存サイクル内燃機関の場合は、クランク
軸が2本必要になり、夫夫の両頭拡径ピストンの対向往
復運動を同期させて無振動に近づけるための、噛み合い
同期手段17等の同期手段を具備します。噛み合い同期
手段17は必要に応じて機械式過給機としても兼用する
ものです。この発明は振動を大低減することにより、超
大型のC型及びE型エネルギ保存サイクル内燃機関を可
能にするものですが、クランク軸が2本となり4気筒づ
つの連結となるため、4気筒・8気筒・12気筒という
ように4気筒刻みで多気筒内燃機関に移行し、適宜に動
力伝達軸に連結します。
Referring to FIG. 8, the use example of the crankshaft and the meshing synchronizing means 17 will be described. The A-type energy storage cycle engine is a normal engine and therefore need not be described. In the case of (1), only one crankshaft is required, so that the flywheels of FIGS. 3 and 4 are fixedly connected to each other by two cylinders instead of the meshing synchronizing means 17 in the figure, so that two cylinders, four cylinders, six cylinders, and eight cylinders are used. It shifts to a multi-cylinder internal combustion engine every two cylinders, such as a cylinder. In the case of the C-type and E-type energy storage cycle internal combustion engines, two crankshafts are required, and the meshing synchronizing means 17 for synchronizing the opposing reciprocating motions of the respective double-headed enlarged pistons so as to approach vibration-free, etc. With synchronization means. The meshing synchronizing means 17 is also used as a mechanical supercharger if necessary. This invention makes it possible to use ultra-large C-type and E-type energy conservation cycle internal combustion engines by greatly reducing vibration. However, since there are two crankshafts and four cylinders are connected, four cylinders and four cylinders are connected. Transition to a multi-cylinder internal combustion engine in 4-cylinder increments, such as 8-cylinder and 12-cylinder, and connect to the power transmission shaft as appropriate.

【0018】図9を参照して、各種エネルギ保存サイク
ル内燃機関の第1の実施形態について説明すると、この
実施形態は、超小型縮径主燃焼室内隔離燃焼乃至小型縮
径主燃焼室内隔離燃焼に対応する実施形態です。即ち、
超小型縮径主燃焼室内定容大接近隔離燃焼乃至小型縮径
主燃焼室内定容大接近隔離燃焼にすると、縮径主燃焼室
内も拡径燃焼室内も掃気が困難なため、残留ガスの多い
雰囲気でNOx低減燃焼にはなりますが、燃焼室が小さ
いと冷却され易いため、水噴射に不向きの燃焼となりま
す。従って、そのような燃焼に対応するものが第1の実
施形態となります。即ち、縮径主燃焼室に空気と燃料が
供給されると、縮径主燃焼室内定容大接近隔離燃焼とな
り、圧縮過程から加熱過程に移行し、隔離燃焼解除によ
り縮径主燃焼室と拡径燃焼室が連通して、速度形エネル
ギの衝動+反動を含む容積形エネルギの膨張過程とな
り、次に拡径燃焼室から通常の排気・掃気過程に移行し
ます。通常のように排気エネルギによりターボ過給機を
駆動して、排気部より排気します。通常のようにターボ
過給機で吸入圧縮された空気は、通常のように拡径燃焼
室に供給され、圧縮過程の終わりに拡径燃焼室から一方
向空気流路を通って縮径主燃焼室に供給されて、燃料の
供給により縮径主燃焼室内定容大接近隔離燃焼となり、
第1の実施形態のサイクルとなります。
Referring to FIG. 9, a description will be given of a first embodiment of an internal combustion engine of various energy storage cycles. This embodiment is applicable to an isolated combustion in an ultra-small diameter reduced main combustion chamber or an isolated combustion in a small diameter reduced main combustion chamber. The corresponding embodiment. That is,
In the case of ultra-small diameter reduced main combustion chamber constant volume large close isolation combustion or small diameter reduced main combustion chamber constant volume large close isolation combustion, it is difficult to scavenge both the reduced diameter main combustion chamber and the enlarged diameter combustion chamber, so there is a lot of residual gas NOx reduction combustion is performed in an atmosphere, but if the combustion chamber is small, it is easy to cool down, making it unsuitable for water injection. Therefore, the first embodiment corresponds to such combustion. That is, when air and fuel are supplied to the reduced-diameter main combustion chamber, the reduced-diameter main combustion chamber becomes constant-volume close-separation combustion, and the process shifts from the compression process to the heating process. The radial combustion chamber communicates, and the volume-type energy expansion process including the speed-type energy impulse + reaction occurs, and then the normal-diameter exhaust / scavenging process starts from the large-diameter combustion chamber. As usual, the turbocharger is driven by exhaust energy and exhausted from the exhaust section. Normally, the air sucked and compressed by the turbocharger is supplied to the expanded combustion chamber as usual, and at the end of the compression process, the reduced-diameter main combustion passes through the one-way air flow path from the expanded combustion chamber. The fuel is supplied to the combustion chamber, and the fuel is supplied to the reduced-diameter main combustion chamber as a constant-volume close-separation combustion,
This is the cycle of the first embodiment.

【0019】図10を参照して、各種エネルギ保存サイ
クル内燃機関の第2の実施形態について説明すると、こ
の実施形態は、小型縮径主燃焼室内隔離燃焼乃至中型縮
径主燃焼室内隔離燃焼に対応する実施形態です。即ち、
小型縮径主燃焼室内定容大接近隔離燃焼乃至中型縮径主
燃焼室内定容大接近隔離燃焼にすると、縮径主燃焼室も
拡径燃焼室も掃気が困難なため、残留ガスの多い雰囲気
でのNOx低減燃焼にはなりますが、燃焼室が少し大き
くなると断熱燃焼室にすると、水噴射が可能な燃焼とな
ります。しかし設備費を節減する必要もあるため、第2
の実施形態となります。即ち、縮径主燃焼室に空気と燃
料が供給されて圧縮過程から加熱過程に移行し、縮径主
燃焼室内定容大接近隔離燃焼となり、適宜に排気部熱交
換手段18で加熱された水が供給されると、NOxも未
燃分も生成しない燃焼を図る蒸気・内燃合体機関に移行
し、隔離燃焼解除により縮径主燃焼室と拡径燃焼室が連
通して、高圧の速度形質量エネルギの衝動+反動を含む
容積形エネルギの膨張過程となり、次に拡径燃焼室から
通常の排気過程に移行します。通常のように排気エネル
ギによりターボ過給機を駆動しますが、燃焼ガスを大気
圧まで膨張させると、540カロリーの熱量で1700
倍に膨張した水蒸気質量容積が含まれるため、ターボ過
給機の駆動力を増大して排気部より排気します。通常以
上にターボ過給機で吸入圧縮された空気は、通常のよう
に拡径燃焼室に供給され、圧縮過程の終わりに拡径燃焼
室より縮径主燃焼室に供給されて、燃料の供給及び適宜
の水噴射を含めて縮径主燃焼室内定容大接近隔離燃焼と
なり、第2の実施形態のサイクルとなります。
Referring to FIG. 10, a description will be given of a second embodiment of an internal combustion engine having various energy conservation cycles. This embodiment corresponds to the isolated combustion in the small reduced-diameter main combustion chamber or the isolated combustion in the medium-sized reduced-diameter main combustion chamber. It is an embodiment to do. That is,
When small-diameter main combustion chamber constant-volume large-close-separation combustion to medium-sized reduced-diameter main combustion chamber constant-volume close-separation combustion is used, it is difficult to scavenge both the reduced-diameter main combustion chamber and the enlarged-diameter combustion chamber. However, if the combustion chamber becomes a little larger, adiabatic combustion chamber can be used for water injection. However, it is necessary to reduce equipment costs.
It becomes the embodiment of. That is, air and fuel are supplied to the reduced-diameter main combustion chamber to shift from the compression process to the heating process, resulting in constant-volume close-separation combustion in the reduced-diameter main combustion chamber, and the water heated by the exhaust-portion heat exchange means 18 as appropriate. Is supplied, the engine shifts to a steam / internal combustion combined engine that performs combustion that generates neither NOx nor unburned components, and the reduced-diameter main combustion chamber and the expanded combustion chamber communicate with each other by releasing the isolated combustion, and the high-pressure velocity-type mass The process of expansion of volumetric energy including energy impulse + reaction is followed by the transition from the expanded combustion chamber to the normal exhaust process. The turbocharger is driven by the exhaust energy as usual, but when the combustion gas is expanded to the atmospheric pressure, the heat of 540 calories is 1700.
Since it contains the twice-expanded mass of water vapor, the driving force of the turbocharger is increased and exhausted from the exhaust section. The air that has been sucked and compressed by the turbocharger more than usual is supplied to the expanded combustion chamber as usual, and is supplied from the expanded combustion chamber to the reduced main combustion chamber at the end of the compression process to supply fuel. In addition, including the appropriate water injection, the reduced-diameter main combustion chamber becomes the constant-volume, close-separation combustion, which is the cycle of the second embodiment.

【0020】図11を参照して、各種エネルギ保存サイ
クル内燃機関の第3の実施形態について説明すると、こ
の実施形態は、中型縮径主燃焼室内隔離燃焼乃至大型縮
径主燃焼室内隔離燃焼に対応する実施形態です。即ち、
中型縮径主燃焼室内定容大接近隔離燃焼乃至大型縮径主
燃焼室内定容大接近隔離燃焼にすると、縮径主燃焼室も
拡径燃焼室も掃気が困難なため、残留ガスの多い雰囲気
でのNOx低減燃焼にはなりますが、縮径主燃焼室が大
きくなると断熱燃焼室も容易となり、一定容積以上の断
熱燃焼室では燃焼温度も3500゜Cを越えて燃焼圧力
も大上昇するため、水噴射によりNOxを皆無に近づけ
る燃焼を必須とします。しかし設備費を節減する必要も
あるため第3の実施形態となります。即ち、縮径主燃焼
室に空気と燃料が供給されて圧縮過程から加熱過程に移
行し、縮径主燃焼室内定容大接近隔離燃焼となり排気部
熱交換手段18及び縮径部熱交換手段19で加熱された
水が適宜に供給されると、NOxも未燃分もない燃焼を
目的とした蒸気・内燃合体機関に移行し、隔離燃焼解除
により縮径主燃焼室と拡径燃焼室が連通して、高圧の速
度形エネルギの衝動+反動を含む容積形エネルギの膨張
過程となり、次に拡径燃焼室から通常の排気過程に移行
します。通常のように排気エネルギによりターボ過給機
を駆動しますが、燃焼ガスを大気圧まで膨張させると、
540カロリーの気化潜熱で1700倍に膨張した水蒸
気が多いためターボ過給機の比出力を増大して排気部よ
り排気します。通常以上にターボ過給機で吸入圧縮が強
化された空気は、通常のように拡径燃焼室に供給され、
圧縮過程の終わりに拡径燃焼室から一方向空気流路を介
して縮径主燃焼室に供給されて、燃料の供給及び適宜の
水噴射を含めて縮径主燃焼室内定容大接近隔離燃焼とな
り、第3の実施形態のサイクルとなります。
Referring to FIG. 11, a description will be given of a third embodiment of an internal combustion engine having various energy storage cycles. This embodiment corresponds to the isolated combustion in the medium-sized reduced main combustion chamber or the isolated combustion in the large-sized reduced main combustion chamber. It is an embodiment to do. That is,
When medium-sized reduced-diameter main combustion chamber constant-volume close-separation combustion or large-diameter main combustion chamber constant-volume close-separation combustion is used, it is difficult to scavenge both the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber. However, if the diameter of the main combustion chamber becomes large, the adiabatic combustion chamber becomes easy, and the combustion temperature of the adiabatic combustion chamber with a certain volume or more exceeds 3500 ° C and the combustion pressure rises greatly. In addition, combustion that makes NOx almost zero by water injection is essential. However, since it is necessary to reduce equipment costs, this is the third embodiment. That is, air and fuel are supplied to the reduced-diameter main combustion chamber, and a transition is made from the compression process to the heating process. When the heated water is supplied as appropriate, the system shifts to a steam / internal combustion engine for the purpose of burning NOx and unburned components, and the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber communicate with each other by releasing isolated combustion. Then, the expansion process of volumetric energy including the impulse + reaction of high-pressure velocity-type energy is performed, and then the process proceeds from the expanded combustion chamber to the normal exhaust process. The turbocharger is driven by the exhaust energy as usual, but when the combustion gas is expanded to atmospheric pressure,
Because there is a lot of water vapor expanded 1700 times due to the latent heat of vaporization of 540 calories, the specific output of the turbocharger is increased and exhausted from the exhaust part. The air whose suction compression is enhanced by the turbocharger more than usual is supplied to the expanded combustion chamber as usual,
At the end of the compression process, the fuel is supplied from the expanded combustion chamber to the reduced-diameter main combustion chamber via a one-way air flow path. This is the cycle of the third embodiment.

【0021】図12を参照して各種エネルギ保存サイク
ル内燃機関の第4の実施形態について説明すると、この
実施形態は、大型縮径主燃焼室内隔離燃焼乃至超大型縮
径主燃焼室内隔離燃焼に対応する実施形態です。即ち、
大型縮径主燃焼室内定容大接近隔離燃焼乃至超大型縮径
主燃焼室内定容大接近隔離燃焼にすると、縮径主燃焼室
も拡径燃焼室も掃気が困難なため、残留ガスの多い雰囲
気でのNOx低減燃焼にはなりますが、縮径主燃焼室が
更に大きくなると断熱燃焼室も必須となり、大型断熱燃
焼室では、燃焼温度も3500°Cを越えて燃焼圧力も
大上昇してNOx増大燃焼となりますが、燃焼時間が最
大となるため、できるだけ高温の水を最大量噴射した、
燃焼温度を最低にしたNOx皆無燃焼も可能になり、第
4の実施形態となります。即ち、縮径主燃焼室に空気と
燃料が供給されて圧縮過程から加熱過程に移行し、縮径
主燃焼室内定容大接近隔離燃焼となり、排気部熱交換手
段18及び縮径部熱交換手段19及び燃焼部熱交換手段
20で加熱された水が適宜に供給されると、NOxも未
燃分も無い燃焼が可能な蒸気・内燃合体機関に移行し、
隔離燃焼解除により縮径主燃焼室と拡径燃焼室が連通し
て、高圧の速度形エネルギの衝動+反動を含む容積形エ
ネルギの膨張過程となり、次に拡径燃焼室から通常の排
気過程に移行します。通常のように排気エネルギにより
ターボ過給機を駆動しますが、燃焼ガスを大気圧まで膨
張させると、540カロリーの気化潜熱で1700倍に
膨張した水蒸気質量容積が非常に多いため、ターボ過給
機の比出力を大増大して排気部より排気します。通常よ
り大幅にターボ過給機で吸入圧縮が強化された空気は、
通常のように拡径燃焼室に供給され、圧縮過程の終わり
に拡径燃焼室から一方向空気流路を介して縮径主燃焼室
に供給されて、燃料の供給及び適宜の水噴射を含めて縮
径主燃焼室内定容大接近隔離燃焼となり、第4の実施形
態のサイクルとなります。以上、共通の実施形態に係る
給湯用等の熱供給については、別途廃熱回収熱交換手段
を排気部に設けますが、排気部熱交換手段18のあるも
のは、その後流に廃熱回収熱交換手段を設けるのが好ま
しい。
A fourth embodiment of the internal combustion engine having various energy conservation cycles will be described with reference to FIG. 12. This embodiment corresponds to the isolated combustion in the large-diameter main combustion chamber or the isolated combustion in the super-large-diameter main combustion chamber. It is an embodiment to do. That is,
Large-diameter main combustion chamber constant-volume close-constant combustion or ultra-large-diameter main combustion chamber constant-volume close-separation combustion makes it difficult to scavenge both the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber. Although NOx reduction combustion is performed in an atmosphere, if the diameter-reduced main combustion chamber becomes even larger, an adiabatic combustion chamber becomes indispensable. In a large adiabatic combustion chamber, the combustion temperature exceeds 3500 ° C and the combustion pressure rises greatly. NOx increase combustion, but since the combustion time is maximum, the maximum amount of hot water was injected as much as possible.
NOx combustion without combustion temperature is also possible, which is the fourth embodiment. That is, air and fuel are supplied to the reduced-diameter main combustion chamber, and a transition is made from the compression process to the heating process, and constant-volume, close-separation combustion is performed in the reduced-diameter main combustion chamber. When the water heated by the heat exchange means 19 and the combustion part heat exchange means 20 is appropriately supplied, the process shifts to a steam / internal combustion combined engine capable of burning without NOx and unburned components,
When the isolated combustion is released, the reduced-diameter main combustion chamber and the expanded combustion chamber communicate with each other to form a volumetric energy expansion process including a high-pressure velocity-type energy impulse + reaction, and then from the expanded-diameter combustion chamber to a normal exhaust process. Migrate. The turbocharger is driven by the exhaust energy as usual, but when the combustion gas is expanded to the atmospheric pressure, the steam mass volume expanded 1700 times with the vaporization latent heat of 540 calories is very large, so the turbocharger is used. The specific output of the machine is greatly increased and exhausted from the exhaust section. The air whose suction compression has been greatly enhanced by the turbocharger
It is supplied to the expanded combustion chamber as usual, and at the end of the compression process is supplied from the expanded combustion chamber to the reduced diameter main combustion chamber via a one-way air flow path, including fuel supply and appropriate water injection. As a result, constant-volume close-separation combustion is performed in the reduced-diameter main combustion chamber, and the cycle is the fourth embodiment. As described above, for heat supply for hot water supply and the like according to the common embodiment, a separate waste heat recovery heat exchange means is provided in the exhaust unit. Preferably, an exchange means is provided.

【0022】[0022]

【発明の効果】一方向空気流路を設けて隔離燃焼とする
ことにより、例えば5分の1に縮径した縮径主燃焼室内
定容大接近隔離燃焼にする及び、両頭拡径ピストンの往
復運動により直接又は振り子腕を介してクランク軸を回
転させると、 (1)隔離期間中の撹拌燃焼を従来技術の25倍も定容
燃焼に近づけられるため、NOxや未燃分を皆無にする
ための水噴射を含む各種燃焼法により、公害を大低減可
能にする大きな効果があります。 (2)高圧燃焼室を小径円筒型として、容易に断熱無冷
却高温燃焼として、水噴射を追加した蒸気・内燃合体機
関が可能になり、NOxや未燃分を皆無に近づけられる
のに加えて、圧縮容易な水により速度形質量エネルギの
大増大及び/540カロリーの気化潜熱により1700
倍(大気圧)に大増大する容積形速度エネルギの大増大
によりCOを低減する大きな効果があります。 (3)隔離燃焼解除時に高圧の燃焼ガス噴流を、拡径ピ
ストンの頂部に噴射して回転力を大増大する一方で、大
圧力差による高速噴射撹拌燃焼により未燃分を再度皆無
に近づけるためCOを含む公害の低減に大きな効果が
あります。 (4)最大燃焼圧力及び最大摩擦圧力及び異状燃焼の影
響が25分の1になる一方で振動が低減するのに加え
て、従来技術の最大軸受荷重も25分の1になるため、
最大軸受荷重が最大燃焼圧力から最大圧縮圧力に大低減
するため、最大燃焼圧力を大上昇してCOを大低減す
るために大きな効果があります。 (5)高圧燃焼室が5分の1に縮径した隔離燃焼となる
ため、縮径主燃焼室の肉厚を略5分の1に薄肉軽量化し
た高圧燃焼室とする一方で、拡径燃焼室が大幅に低圧低
温の薄肉燃焼室となるため、出力当たりの比重量を従来
の軽量化技術より更に大幅に軽量化できる大きな効果が
あります。 (6)本発明は燃焼法の大改善及び回転力の大増大及び
出力当たりの比重量の大低減を図る発明であるため、燃
料の種類及び点火方式及びサイクル数及び掃気方式及び
機関の型式を問わずに、COを含む公害の大低減を図
るために大きな効果があります。 (7)本発明には、両頭拡径ピストンの往復運動により
直接クランク軸を回転して回転動力とする構成を含むた
め、部品数を大低減して構造を簡単にすると共に、小型
軽量大出力低燃費にする大きな効果があります。
According to the present invention, by providing a one-way air flow path and performing isolated combustion, for example, a reduced-diameter main combustion chamber whose diameter has been reduced to one-fifth, large-capacity isolated combustion, and reciprocation of a double-ended piston are performed. When the crankshaft is rotated by movement directly or through the pendulum arm, (1) the stirring combustion during the isolation period can be approached to the constant volume combustion 25 times that of the conventional technology, so that NOx and unburned components are completely eliminated. Various combustion methods, including water injection, have a great effect of greatly reducing pollution. (2) A small-diameter cylindrical high-pressure combustion chamber makes it easy to perform adiabatic non-cooled high-temperature combustion, enabling a steam-internal-combined engine with water injection added. A large increase in velocity type mass energy with water that is easy to compress and 1700 with latent heat of vaporization of / 540 calories
Times by the large increase in volume-type speed energy which large increases (atmospheric pressure) there is a large effect of reducing the CO 2. (3) In order to greatly increase the rotational force by injecting a high-pressure combustion gas jet to the top of the diameter-expanding piston when the isolated combustion is released, to reduce the unburned portion to zero again by high-speed injection stirring combustion due to the large pressure difference. It has a great effect on reducing pollution including CO 2 . (4) In addition to reducing vibration while reducing the effect of maximum combustion pressure and friction pressure and abnormal combustion by a factor of 25, the maximum bearing load of the prior art is also reduced by a factor of 25.
Since the maximum bearing load is large reduction in the maximum compression pressure from the maximum combustion pressure and a large effect to a large reduction of CO 2 and atmospheric increase the maximum combustion pressure. (5) Since the high-pressure combustion chamber performs isolated combustion with a diameter reduced to one-fifth, the diameter of the reduced-diameter main combustion chamber is reduced to approximately one-fifth and the thickness is reduced while the high-pressure combustion chamber is reduced in thickness. Since the combustion chamber is a low-pressure, low-temperature, thin-walled combustion chamber, the specific weight per output has a great effect that it can be much more reduced than conventional lightweight technologies. (6) Since the present invention aims to greatly improve the combustion method, greatly increase the rotational force, and greatly reduce the specific weight per output, the type of fuel, the ignition method, the number of cycles, the scavenging method, and the model of the engine are changed. Regardless, it has a great effect to greatly reduce pollution including CO 2 . (7) The present invention includes a configuration in which the crankshaft is directly rotated by the reciprocating motion of the double-ended piston to generate rotational power, so that the number of parts is greatly reduced, the structure is simplified, and the size, weight and output are reduced. It has a great effect on low fuel consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A型エネルギ保存サイクル内燃機関の実施例を
従来技術と比較して説明するための一部断面図。
FIG. 1 is a partial cross-sectional view for explaining an embodiment of an A-type energy storage cycle internal combustion engine in comparison with a conventional technique.

【図2】各種エネルギ保存サイクル内燃機関のクランク
角度に対する燃焼圧力の変化を従来技術と比較説明する
ための概略グラフである。
FIG. 2 is a schematic graph for comparing a change in combustion pressure with respect to a crank angle of a various energy storage cycle internal combustion engine with a conventional technique.

【図3】D型エネルギ保存サイクル内燃機関の第1実施
例の一部断面図。
FIG. 3 is a partial sectional view of a first embodiment of a D-type energy storage cycle internal combustion engine.

【図4】B型エネルギ保存サイクル内燃機関の第1実施
例の一部断面図。
FIG. 4 is a partial sectional view of a first embodiment of a B-type energy storage cycle internal combustion engine.

【図5】E型エネルギ保存サイクル内燃機関の第1実施
例の一部断面図。
FIG. 5 is a partial sectional view of a first embodiment of an E-type energy storage cycle internal combustion engine.

【図6】C型エネルギ保存サイクル内燃機関の第1実施
例の一部断面図。
FIG. 6 is a partial cross-sectional view of a first embodiment of a C-type energy storage cycle internal combustion engine.

【図7】C型エネルギ保存サイクル内燃機関の平面を示
す一部断面図。
FIG. 7 is a partial cross-sectional view showing a plane of a C-type energy storage cycle internal combustion engine.

【図8】各種エネルギ保存サイクル内燃機関のクランク
軸及び噛み合い同期手段を含めて、クランク軸の利用方
法を比較説明するための一部断面図。
FIG. 8 is a partial cross-sectional view for comparing and explaining how to use the crankshaft including the crankshaft and the meshing synchronizing means of the various energy storage cycle internal combustion engines.

【図9】各種エネルギ保存サイクル内燃機関の第1の実
施形態を示す全体構成図。
FIG. 9 is an overall configuration diagram showing a first embodiment of an internal combustion engine of various energy storage cycles.

【図10】各種エネルギ保存サイクル内燃機関の第2の
実施形態を示す全体構成図。
FIG. 10 is an overall configuration diagram showing a second embodiment of various energy storage cycle internal combustion engines.

【図11】各種エネルギ保存サイクル内燃機関の第3の
実施形態を示す全体構成図。
FIG. 11 is an overall configuration diagram showing a third embodiment of an internal combustion engine of various energy storage cycles.

【図12】各種エネルギ保存サイクル内燃機関の第4の
実施形態を示す全体構成図。
FIG. 12 is an overall configuration diagram showing a fourth embodiment of an internal combustion engine of various energy storage cycles.

【符号の説明】[Explanation of symbols]

1:適宜の凹部 2:テーパ根部 3:逆止弁
4:一方向空気流路 5:燃料噴射手段 6:鍔状凹凸 7:テーパ縮径
部 8:ピストン穴 10:振り子側カム 11:クランク軸側カム 1
2:平行軌道 13:本体側 14:斜め空気流路
15:騒音低減溝 16:シリンダ穴 17:噛み合い同期手段 18:排気部熱交換手段
19:縮径部熱交換手段 20:燃焼部熱交換手段
21:耐熱耐蝕材 22:断熱材 23:水噴射手段 24:適宜の凸部
1: appropriate concave portion 2: tapered root portion 3: check valve
4: One-way air flow path 5: Fuel injection means 6: Collar-like unevenness 7: Tapered reduced diameter portion 8: Piston hole 10: Pendulum side cam 11: Crankshaft side cam 1
2: Parallel track 13: Main body side 14: Diagonal air flow path 15: Noise reduction groove 16: Cylinder hole 17: Meshing synchronization means 18: Exhaust part heat exchange means
19: Heat exchange means of reduced diameter part 20: Heat exchange means of combustion part 21: Heat resistant and corrosion resistant material 22: Heat insulation material 23: Water injection means 24: Appropriate projection

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 75/02 F02B 75/02 Z 75/10 75/10 Z 75/18 75/18 J H F02F 1/00 F02F 1/00 D 1/18 1/18 B 1/24 1/24 E 3/00 3/00 D 302 302Z 3/28 3/28 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location F02B 75/02 F02B 75/02 Z 75/10 75/10 Z 75/18 75/18 JH F02F 1/00 F02F 1/00 D 1/18 1/18 B 1/24 1/24 E 3/00 3/00 D 302 302Z 3/28 3/28 B

Claims (50)

【特許請求の範囲】[Claims] 【請求項1】 圧縮過程・加熱過程・膨張過程・排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径されてテーパ根部(2)を有
する縮径ピストンを、適宜の凹部(1)の略中央より突
出した拡径ピストンの、上死点前後の所定期間に亘っ
て、テーパ縮径部(7)を有する縮径主燃焼室と拡径燃
焼室を連通して、該縮径主燃焼室に向かう流れだけを可
能にした一方向空気流路(4)を構成させて、前記縮径
ピストンによる該縮径主燃焼室内隔離燃焼及び隔離解除
により、前記拡径ピストンが往復運動して連接棒に軸支
されたクランク軸を回転させてエネルギ保存サイクルと
する方法。
1. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein a diameter-reduced piston having a tapered root portion (2) is appropriately reduced in the heating step. The enlarged piston protruding from the approximate center of the concave portion (1) communicates between the reduced-diameter main combustion chamber having the tapered reduced-diameter portion (7) and the expanded-diameter combustion chamber for a predetermined period before and after the top dead center. Forming a one-way air flow path (4) that allows only the flow toward the reduced-diameter main combustion chamber, and performing the isolated combustion and the release of the isolated piston by the reduced-diameter main combustion chamber. Reciprocate to rotate a crankshaft supported by a connecting rod to make an energy conservation cycle.
【請求項2】 圧縮過程・加熱過程・膨張過程・排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径されてテーパ根部(2)を有
する縮径ピストンを、夫夫の適宜の凹部(1)の略中央
より突出した両頭拡径ピストンの、左右の死点前後の所
定期間に亘って、テーパ縮径部(7)を有する縮径主燃
焼室と拡径燃焼室を連通して、該縮径主燃焼室に向かう
流れだけを可能にした一方向空気流路(4)を構成させ
て、前記縮径ピストンによる該縮径主燃焼室内隔離燃焼
及び隔離燃焼解除により、前記両頭拡径ピストンが往復
運動して直接クランク軸を回転させて、エネルギ保存サ
イクルとする方法。
2. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein a diameter-reduced piston having a tapered root portion (2) is appropriately reduced in the heating step. A reduced-diameter main combustion chamber having a tapered reduced-diameter portion (7) and a expanded-diameter combustion for a predetermined period before and after a dead center on the left and right sides of a double-head enlarged piston protruding from the approximate center of the appropriate concave portion (1) of the husband. A one-way air flow path (4) is provided which communicates with the chambers and allows only the flow toward the reduced-diameter main combustion chamber. A reciprocating movement of the double-headed piston to directly rotate the crankshaft to provide an energy-saving cycle.
【請求項3】 圧縮過程・加熱過程・膨張過程・排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径されてテーパ根部(2)を有
する縮径ピストンを、夫夫頂部略中央より突出した両頭
拡径ピストンの、左右の死点前後の所定期間に亘って、
テーパ縮径部(7)を有する縮径主燃焼室と拡径燃焼室
を連通して、該縮径主燃焼室に向かう流れだけを可能に
した一方向空気流路(4)を構成させて、前記縮径主燃
焼室内隔離燃焼及び隔離燃焼解除により、前記両頭拡径
ピストンが往復運動して振り子腕を振り子運動させて、
該振り子運動によりクランク軸を回転させて、エネルギ
保存サイクルとする方法。
3. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein a diameter-reduced piston having a tapered root portion (2) is appropriately reduced in the heating step. Over a predetermined period before and after the left and right dead centers of the double-headed enlarged piston protruding from the approximate center of the husband's top,
A one-way air flow path (4) is formed by communicating the reduced-diameter main combustion chamber having the tapered reduced-diameter portion (7) and the expanded-diameter combustion chamber to allow only the flow toward the reduced-diameter main combustion chamber. By the isolated combustion and the isolated combustion release of the reduced diameter main combustion chamber, the double-headed enlarged piston reciprocates to cause the pendulum arm to oscillate,
A method of rotating a crankshaft by the pendulum motion to make an energy conservation cycle.
【請求項4】 圧縮過程・加熱過程・膨張過程・排気過
程からなる対向往復運動ピストンサイクルであって、該
加熱過程において、適宜に縮径されてテーパ根部(2)
を有する縮径ピストンを、夫夫の適宜の凹部(1)の略
中央より突出した夫夫の両頭拡径ピストンの、夫夫の外
死点前後の所定期間に亘って及び/夫夫の内死点前後の
所定期間に亘って、夫夫テーパ縮径部(7)を有する縮
径主燃焼室と拡径燃焼室を連通して、該縮径主燃焼室に
向かう流れだけを可能にした一方向空気流路(4)を構
成させて、前記縮径ピストンによる該縮径主燃焼室内隔
離燃焼及び隔離燃焼解除により、前記夫夫の両頭拡径ピ
ストンが対向往復運動して、直接夫夫のクランク軸を回
転させてエネルギ保存サイクルとする方法。
4. An opposed reciprocating piston cycle comprising a compression process, a heating process, an expansion process, and an exhaust process, wherein the diameter of the tapered root portion is appropriately reduced in the heating process.
The diameter-reduced piston having the diameter is extended over a predetermined period before and after the outer dead center of each of the two-headed enlarged-diameter pistons protruding from the approximate center of the appropriate concave portion (1). For a predetermined period before and after the dead center, the reduced-diameter main combustion chamber and the increased-diameter combustion chamber each having the tapered diameter-reduced portion (7) are communicated, and only the flow toward the reduced-diameter main combustion chamber is enabled. By forming a one-way air flow path (4), the isolated pistons of the reduced diameter main combustion chamber and the release of the isolated combustion by the reduced diameter pistons reciprocate oppositely with each other, and the two-headed enlarged pistons directly move each other. A method of rotating the crankshaft to make an energy conservation cycle.
【請求項5】 圧縮過程・加熱過程・膨張過程・排気過
程からなる対向往復運動ピストンサイクルであって、該
加熱過程において、適宜に縮径されてテーパ根部(2)
を有する縮径ピストンを、夫夫の適宜の凹部(1)の略
中央より突出した夫夫の両頭拡径ピストンの、夫夫の外
死点前後の所定期間に亘って及び/夫夫の内死点前後の
所定期間に亘って、夫夫テーパ縮径部(7)を有する縮
径主燃焼室と拡径燃焼室を連通して、該縮径主燃焼室に
向かう流れだけを可能にした一方向空気流路(4)を構
成させて、前記縮径ピストンによる該縮径主燃焼室内隔
離燃焼及び隔離燃焼解除により、前記夫夫の両頭拡径ピ
ストンの対向往復運動により夫夫の振り子腕が振り子運
動して、該振り子運動により夫夫のクランク軸を回転さ
せてエネルギ保存サイクルとする方法。
5. An opposed reciprocating piston cycle comprising a compression process, a heating process, an expansion process, and an exhaust process, wherein the diameter of the tapered root portion is appropriately reduced in the heating process.
The diameter-reduced piston having the diameter is extended over a predetermined period before and after the outer dead center of each of the two-headed enlarged-diameter pistons protruding from the approximate center of the appropriate concave portion (1). For a predetermined period before and after the dead center, the reduced-diameter main combustion chamber and the increased-diameter combustion chamber each having the tapered diameter-reduced portion (7) are communicated, and only the flow toward the reduced-diameter main combustion chamber is enabled. A one-way air flow path (4) is formed, and the pendulum arms of each of the two-headed enlarged pistons are opposed by reciprocating movement of the two-headed enlarged pistons by the isolated combustion and the release of the isolated combustion by the reduced-diameter main combustion chamber by the reduced-diameter piston. Is a pendulum motion, and the pendulum motion rotates each of the crankshafts to form an energy conservation cycle.
【請求項6】 前記縮径主燃焼室にテーパ縮径部(7)
を増設して、速度形熱エネルギの噴射方向を制定する請
求項1乃至請求項5のいずれか1項に記載のエネルギ保
存サイクルとする方法。
6. A tapered reduced diameter portion (7) in said reduced diameter main combustion chamber.
6. The method according to claim 1, further comprising: establishing an injection direction of the velocity type thermal energy.
【請求項7】 前記夫夫の両頭拡径ピストンの対向往復
運動を同期させる、噛み合い同期手段(17)を設けて
夫夫のクランク軸を結合して同期させる請求項4又は請
求項5に記載のエネルギ保存サイクルとする方法。
7. The system according to claim 4, further comprising an engagement synchronizing means for synchronizing opposing reciprocating movements of the respective double-headed enlarged pistons, and synchronizing the respective crankshafts by coupling them. Energy conservation cycle.
【請求項8】 前記夫夫の両頭拡径ピストンの対向往復
運動を同期させる、噛み合い同期手段(17)を機械式
過給機としても兼用して請求項4乃至請求項6のいずれ
か1項に記載のエネルギ保存サイクルとする方法。
8. The mechanical supercharger according to claim 4, wherein the engagement synchronizing means for synchronizing the opposed reciprocating movements of the two-head enlarged pistons also serves as a mechanical supercharger. 5. A method for making an energy conservation cycle as described in 1. above.
【請求項9】 前記縮径主燃焼室内隔離燃焼させるた
め、該縮径主燃焼室と拡径燃焼室を連通して、該縮径主
燃焼室に向かう流れだけを可能にする逆止弁(3)を含
む一方向空気流路(4)を、少なくとも1組以上設けて
請求項1乃至請求項8のいずれか1項に記載のエネルギ
保存サイクルとする方法。
9. A non-return valve (10) for communicating with the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber so as to allow only the flow toward the reduced-diameter main combustion chamber to perform isolated combustion in the reduced-diameter main combustion chamber. A method as claimed in any one of the preceding claims, wherein at least one set of one-way air passages (4) including (3) is provided for the energy conservation cycle according to any of the preceding claims.
【請求項10】 前記縮径主燃焼室内隔離燃焼させるこ
とで、定容大接近撹拌燃焼及び隔離解除時の高速撹拌燃
焼とする一方で、該縮径主燃焼室に保存貯金された熱エ
ネルギを隔離解除時に速度形質量熱エネルギ+容積形熱
エネルギとして噴射する請求項1乃至請求項9のいずれ
か1項に記載のエネルギ保存サイクルとする方法。
10. The isolated combustion in the reduced-diameter main combustion chamber results in constant-volume large-approach agitated combustion and high-speed agitated combustion at the time of release of isolation, while the thermal energy stored and stored in the reduced-diameter main combustion chamber is reduced. The method of claim 1, wherein the injection is performed as velocity-type mass heat energy + volume-type heat energy when the isolation is released.
【請求項11】 前記両頭拡径ピストンの内部略中央に
は、クランク軸側カム(11)を往復自在に挿入れ維持
する平行軌道(12)を対向に設けて、両頭拡径ピスト
ンの往復運動によりクランク軸側カム(11)に回転自
在に軸支されたクランク軸が回転して動力を伝達可能に
した請求項2乃至請求項10のいずれか1項に記載のエ
ネルギ保存サイクルとする方法。
11. A parallel orbit (12) for inserting and maintaining a crankshaft-side cam (11) in a reciprocating manner is provided substantially at the center of the inside of the double-ended piston, and reciprocates the double-ended piston. The method according to any one of claims 2 to 10, wherein the crankshaft rotatably supported on the crankshaft-side cam (11) rotates to transmit power.
【請求項12】 前記両頭拡径ピストンの内部略中央に
は、クランク軸側直動軸受を往復自在に挿入れ維持する
平行軌道(12)を対向に設けて、両頭拡径ピストンの
往復運動によりクランク軸側直動軸受に回転自在に軸支
されたクランク軸が回転して回転動力にした請求項2乃
至請求項10のいずれか1項に記載のエネルギ保存サイ
クルとする方法。
12. A parallel orbit (12) for inserting and maintaining a crankshaft-side linear motion bearing in a reciprocating manner is provided substantially at the center of the inside of the double-headed enlarged piston so as to face each other. The method according to any one of claims 2 to 10, wherein the crankshaft rotatably supported by the linear motion bearing on the crankshaft is rotated to generate rotational power.
【請求項13】 前記縮径主燃焼室内隔離燃焼を解除す
る時期を、夫夫の拡径ピストンの死点後クランク角度で
30゜以後として、速度形質量熱エネルギを拡径ピスト
ンに噴射する請求項1乃至請求項12のいずれか1項に
記載のエネルギ保存サイクルとする方法。
13. A method of injecting velocity-type mass heat energy to the expanded piston, wherein the timing of releasing the isolated combustion in the reduced-diameter main combustion chamber is set to 30 ° or more after the dead angle of each of the expanded pistons. 13. A method as an energy storage cycle according to any one of claims 1 to 12.
【請求項14】 前記縮径ピストンの外周に鍔状凹凸
(6)を多段に設けて、多段に減圧して漏洩量を制定し
ながら縮径主燃焼室内定容大接近隔離撹拌燃焼とした請
求項1乃至請求項13のいずれか1項に記載のエネルギ
保存サイクルとする方法。
14. A reduced-diameter main combustion chamber having a constant-volume, close-separation, agitated combustion, in which a flange-shaped unevenness (6) is provided in multiple stages on the outer periphery of the reduced-diameter piston, and the pressure is reduced in multiple stages to establish the amount of leakage. 14. A method as an energy storage cycle according to any one of claims 1 to 13.
【請求項15】 前記縮径主燃焼室内隔離燃焼させるこ
とで、総合的には希薄燃焼とした請求項1乃至請求項1
4のいずれか1項に記載のエネルギ保存サイクルとする
方法。
15. The lean combustion as a whole by performing isolated combustion in the reduced diameter main combustion chamber.
5. A method according to claim 4, wherein the energy storage cycle is performed.
【請求項16】 前記縮径主燃焼室内隔離燃焼を燃料過
剰燃焼として請求項1乃至請求項15のいずれか1項に
記載のエネルギ保存サイクルとする方法。
16. The method according to claim 1, wherein the isolated combustion in the reduced-diameter main combustion chamber is an excess fuel combustion.
【請求項17】 前記縮径主燃焼室内隔離燃焼を、残留
ガスの多い雰囲気での中温高圧燃焼として、NOxと未
燃分を同時に皆無に近づける請求項1乃至請求項16の
いずれか1項に記載のエネルギ保存サイクルとする方
法。
17. The method according to claim 1, wherein the isolated combustion in the reduced-diameter main combustion chamber is a medium-temperature and high-pressure combustion in an atmosphere containing a large amount of residual gas, thereby simultaneously reducing NOx and unburned components to almost zero. A method as described in the energy conservation cycle.
【請求項18】 前記縮径主燃焼室内隔離燃焼及び隔離
解除時の高速噴射撹拌燃焼で、NOxと未燃分の同時大
低減を図る請求項1乃至請求項17のいずれか1項に記
載のエネルギ保存サイクルとする方法。
18. The method according to claim 1, wherein NOx and unburned components are simultaneously and largely reduced in the isolated combustion in the reduced-diameter main combustion chamber and the high-speed injection stirring combustion at the time of release of the isolation. A method that uses an energy conservation cycle.
【請求項19】 前記縮径主燃焼室内隔離燃焼に、該縮
径主燃焼室内水噴射する水噴射手段(23)を追加し
て、NOxと未燃分を同時に皆無に近づける請求項1乃
至請求項18のいずれか1項に記載のエネルギ保存サイ
クルとする方法。
19. A water injection means (23) for injecting water into the reduced-diameter main combustion chamber to the isolated combustion in the reduced-diameter main combustion chamber to simultaneously reduce NOx and unburned components to almost zero. Item 19. A method according to any one of Items 18, wherein the energy conservation cycle.
【請求項20】 前記縮径主燃焼室内隔離燃焼を最適時
に解除することで最大軸受荷重や振動を大低減する一方
で、小径の高圧縮径主燃焼室を薄肉軽量化すると共に、
拡径燃焼室は大幅に低圧低温の燃焼室として軽量化した
請求項1乃至請求項19のいずれか1項に記載のエネル
ギ保存サイクルとする方法。
20. While the isolated combustion in the reduced-diameter main combustion chamber is released at the optimum time, the maximum bearing load and vibration are greatly reduced, while the small-diameter high-compression main combustion chamber is reduced in thickness and weight.
20. The method as claimed in any one of claims 1 to 19, wherein the expanded combustion chamber is significantly reduced in weight as a low pressure and low temperature combustion chamber.
【請求項21】 前記速度形質量熱エネルギの噴射を受
ける拡径ピストンの頭部を適宜の凹部(1)として、対
応するシリンダヘッドを適宜の凸部(24)として請求
項1乃至請求項20のいずれか1項に記載のエネルギ保
存サイクルとする方法。
21. The head of the diameter-expanding piston receiving the injection of the velocity-type mass heat energy is an appropriate concave portion (1), and the corresponding cylinder head is an appropriate convex portion (24). A method as an energy conservation cycle according to any one of the preceding claims.
【請求項22】 前記縮径ピストンの先端の凸部を幅広
として外周面に、該凸部の下部を適宜に残して、前記拡
径ピストンの運動方向に対して斜めに延びる複数の騒音
低減溝(15)を設けた請求項1乃至請求項21のいず
れか1項に記載のエネルギ保存サイクルとする方法。
22. A plurality of noise reduction grooves extending obliquely with respect to the direction of movement of the diameter-expanding piston, with the convexity at the tip end of the diameter-reducing piston being widened and the lower part of the projection being appropriately left on the outer peripheral surface. 22. A method according to any one of the preceding claims, wherein (15) is provided.
【請求項23】 前記縮径主燃焼室内隔離燃焼に、該縮
径主燃焼室内水噴射する水噴射手段(23)を追加し
て、断熱無冷却機関とした請求項1乃至請求項22のい
ずれか1項に記載のエネルギ保存サイクルとする方法。
23. The adiabatic non-cooled engine according to claim 1, wherein a water injection means (23) for injecting water into the reduced diameter main combustion chamber is added to the isolated combustion in the reduced diameter main combustion chamber. 2. A method as set forth in claim 1, wherein the energy storage cycle is used.
【請求項24】 前記縮径主燃焼室内隔離燃焼により、
定容大接近燃焼期間を延長する請求項1乃至請求項23
のいずれか1項に記載のエネルギ保存サイクルとする方
法。
24. The isolated combustion in the reduced diameter main combustion chamber,
24. The constant volume large approach combustion period is extended.
A method as an energy conservation cycle according to any one of the preceding claims.
【請求項25】 前記縮径主燃焼室内隔離燃焼により、
定容大接近撹拌燃焼及び隔離解除時超高速撹拌燃焼とし
て完全燃焼終了期間を短縮確実として、拡径ピストンを
大拡径して超短行程機関により比出力の大増大を図る請
求項1乃至請求項24のいずれか1項に記載のエネルギ
保存サイクルとする方法。
25. The isolated combustion in the reduced diameter main combustion chamber,
Claim 1 to Claim 1 to Claim 1 to Claim 1 to claim 1 to increase the specific output by a super-short stroke engine by enlarging a large-diameter piston to ensure that the complete combustion termination period is shortened as constant-volume large-close-stirring combustion and ultra-high-speed stirring combustion at the time of isolation release. Item 30. A method according to Item 24, wherein the method is an energy conservation cycle.
【請求項26】 前記縮径主燃焼室内水噴射する水噴射
手段(23)に使用する水を、排気部熱交換手段(1
8)縮径部熱交換手段(19)燃焼部熱交換手段(2
0)のうち、少なくとも1手段以上で加熱された水とし
た請求項1乃至請求項25のいずれか1項に記載のエネ
ルギ保存サイクルとする方法。
26. An exhaust heat exchange means (1) for supplying water used for water injection means (23) for injecting water into the reduced diameter main combustion chamber.
8) Heat exchange means of reduced diameter part (19) Heat exchange means of combustion part (2
26. The method according to any one of claims 1 to 25, wherein water heated by at least one or more means in (0) is used.
【請求項27】 前記縮径主燃焼室及びテーパ縮径部
(7)及び縮径ピストン及び適宜の凹部(1)を耐熱耐
蝕材(21)及び断熱材(22)により耐熱耐蝕断熱構
造として請求項1乃至請求項26のいずれか1項に記載
のエネルギ保存サイクルとする方法。
27. The heat-resistant, corrosion-resistant and heat-insulating structure of the reduced-diameter main combustion chamber, the tapered diameter-reduced portion (7), the diameter-reduced piston, and an appropriate concave portion (1) by a heat-resistant and corrosion-resistant material (21) and a heat insulating material (22). 27. A method as an energy conservation cycle according to any one of the preceding claims.
【請求項28】 シリンダ内の上死点と下死点との間で
往復運動する拡径ピストンの、適宜の凹部(1)の略中
央より適宜に縮径してテーパ根部(2)を有する縮径ピ
ストンを突出し、 前記シリンダにはシリンダヘッドを設けて、前記縮径ピ
ストンを収容して隔離燃焼が可能に、最適に縮径してテ
ーパ縮径部(7)を有する縮径主燃焼室を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
形成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により前記拡径
ピストンが往復運動して、連接棒に回転自在に軸支され
たクランク軸を回転させて回転動力とするエネルギ保存
サイクル内燃機関。
28. A large-diameter piston reciprocating between a top dead center and a bottom dead center in a cylinder has a tapered root portion (2) whose diameter is appropriately reduced from substantially the center of an appropriate concave portion (1). A reduced-diameter main combustion chamber having a tapered reduced-diameter portion (7), which is provided with a reduced-diameter piston and a cylinder head is provided in the cylinder to accommodate the reduced-diameter piston and perform isolated combustion; And forming a one-way air flow path (4) that communicates the reduced-diameter main combustion chamber with the expanded-diameter combustion chamber and allows only the flow toward the reduced-diameter main combustion chamber. An energy-storing cycle internal combustion engine in which the expanded piston reciprocates due to isolated combustion and release of isolation in the main combustion chamber to rotate a crankshaft rotatably supported by a connecting rod to generate rotational power.
【請求項29】 シリンダ内の左死点と右死点との間で
往復運動する両頭拡径ピストンの、適宜の凹部(1)の
左右略中央より適宜に縮径してテーパ根部(2)を有す
る縮径ピストンを突出し、 前記シリンダの左右には夫夫シリンダヘッドを設けて、
夫夫前記縮径ピストンを収容して隔離燃焼が可能に、最
適に縮径してテーパ縮径部(7)を有する縮径主燃焼室
を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
構成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により前記両頭
拡径ピストンが往復運動して、該両頭拡径ピストンの往
復運動によりクランク軸を回転させて、回転動力を得る
エネルギ保存サイクル内燃機関。
29. A tapered root portion (2) of a double-headed enlarged piston reciprocating between a left dead center and a right dead center in a cylinder, the diameter of which is appropriately reduced from a substantially right and left center of an appropriate recess (1). Projecting a reduced diameter piston having a cylinder head on each of the left and right sides of the cylinder,
The reduced-diameter main combustion chamber having the tapered diameter-reduced portion (7) is formed by optimally reducing the diameter of the reduced-diameter main combustion chamber so as to accommodate the reduced-diameter piston and perform isolated combustion. A one-way air flow path (4) communicating with the combustion chamber and allowing only the flow toward the reduced-diameter main combustion chamber is formed. An energy storage cycle internal combustion engine that reciprocates and rotates the crankshaft by reciprocating the double-headed piston to obtain rotational power.
【請求項30】 対向に設けたシリンダ内の外死点と内
死点との間で対向往復運動する2つの両頭拡径ピストン
の、夫夫の適宜の凹部(1)の左右略中央より、適宜に
縮径してテーパ根部(2)を有する縮径ピストンを突出
し、 前記シリンダの左右には夫夫シリンダヘッドを設けて、
夫夫に前記縮径ピストンを収容して隔離燃焼が可能に、
最適に縮径してテーパ縮径部(7)を有する縮径主燃焼
室を形成させて、 該縮径主燃焼室と拡径燃焼室を連通し、該縮径主燃焼室
に向かう流れだけを可能にした一方向空気流路(4)を
夫夫に形成させて、 該縮径主燃焼室内隔離燃焼及び隔離解除により、前記夫
夫の両頭拡径ピストンが対向往復運動して、該対向往復
運動により夫夫のクランク軸を回転させて回転動力とす
るエネルギ保存サイクル内燃機関。
30. The two double-headed enlarged pistons reciprocatingly moving between an outer dead center and an inner dead center in a cylinder provided opposite each other, from right and left substantially centers of respective appropriate concave portions (1). A diameter-reduced piston having a tapered root (2) is projected by appropriately reducing the diameter, and cylinder heads are provided on the left and right sides of the cylinder, respectively.
The husband and wife accommodate the reduced-diameter piston to enable isolated combustion,
A diameter-reduced main combustion chamber having a tapered diameter-reduced portion (7) is formed by optimally reducing the diameter, and the reduced-diameter main combustion chamber communicates with the enlarged-diameter combustion chamber, and only the flow toward the reduced-diameter main combustion chamber is performed. And the two-headed enlarged pistons reciprocate in opposite directions by the isolated combustion and the release of isolation in the reduced-diameter main combustion chamber. An energy-storing cycle internal combustion engine in which each crankshaft is rotated by reciprocating motion to generate rotational power.
【請求項31】 前記両頭拡径ピストンの往復運動によ
りクランク軸を回転させるため、該両頭拡径ピストンの
内部略中央半径方向に、クランク軸に回転自在に外嵌枢
支されたクランク軸側カム(11)を、往復動自在に挿
入れ維持する平行軌道(12)を対向に設けた請求項2
9又は請求項30に記載のエネルギ保存サイクル内燃機
関。
31. A crankshaft-side cam rotatably fitted on a crankshaft so as to be rotatable around a crankshaft in a substantially central radial direction of the double-headed enlarged piston in order to rotate a crankshaft by reciprocating motion of the double-headed enlarged piston. The parallel track (12) for inserting and maintaining the (11) reciprocally is provided opposite to each other.
An energy storage cycle internal combustion engine according to claim 9 or claim 30.
【請求項32】 前記両頭拡径ピストンの往復運動によ
りクランク軸を回転させるため、該両頭拡径ピストンの
内部略中央半径方向に、クランク軸に回転自在に外嵌枢
支されたクランク軸側直動軸受を往復動自在に挿入れ維
持する平行軌道(12)を対向に設けた請求項29又は
請求項30に記載のエネルギ保存サイクル内燃機関。
32. In order to rotate the crankshaft by reciprocating motion of the double-headed enlarged piston, the crankshaft-side shaft rotatably fitted to the crankshaft is rotatably fitted on the crankshaft in a substantially central radial direction inside the double-headed enlarged piston. 31. The energy storage cycle internal combustion engine according to claim 29 or claim 30, wherein parallel orbits (12) for inserting and maintaining the dynamic bearing in a reciprocating manner are provided opposite to each other.
【請求項33】 前記両頭拡径ピストンの往復運動によ
りクランク軸を回転させるため、該両頭拡径ピストンの
内部略中央には、振り子側カム(10)を挿入れ維持す
る平行軌道(12)を対向に設けて振り子側カム(1
0)を挿入れ維持して、該振り子腕が振り子運動容易に
その上端を本体側に支持して、両頭拡径ピストンの左右
の往復運動により、本体側(13)に吊り下げた振り子
腕が振り子運動して、振り子腕の平行軌道(12)に往
復自在に枢支したクランク軸側カム(11)が上下に往
復運動すると共に、クランク軸側カム(11)に回転自
在に軸支されたクランク軸が回転して回転動力を得る請
求項29又は請求項30に記載のエネルギ保存サイクル
内燃機関。
33. A parallel trajectory (12) for inserting and maintaining a pendulum side cam (10) at substantially the center of the inside of the double-headed enlarged piston in order to rotate the crankshaft by reciprocating motion of the double-headed enlarged piston. The pendulum cam (1
0) is inserted and maintained, and the pendulum arm easily supports the upper end of the pendulum motion on the main body side, and the pendulum arm suspended on the main body side (13) by the left and right reciprocating motion of the double-head enlarged piston. The crankshaft-side cam (11) pivotally supported reciprocally on the parallel orbit (12) of the pendulum arm in a pendulum motion, reciprocates up and down, and is rotatably supported by the crankshaft-side cam (11). The energy storage cycle internal combustion engine according to claim 29 or claim 30, wherein the crankshaft rotates to obtain rotational power.
【請求項34】 前記両頭拡径ピストンの往復運動によ
りクランク軸を回転させるため、該両頭拡径ピストンの
内部略中央半径方向には、振り子側直動軸受を挿入れ維
持する平行軌道(12)を対向に設けて、振り子側直動
軸受を挿入れ維持して、両頭拡径ピストンの往復運動に
より、本体側(13)に吊り下げた振り子腕が左右に振
り子運動して、振り子腕の平行軌道(12)に往復自在
に枢支されたクランク軸側直動軸受に、回転自在に枢支
されたクランク軸が回転して回転動力を得る請求項29
又は請求項30に記載のエネルギ保存サイクル内燃機
関。
34. A parallel orbit (12) for inserting and maintaining a pendulum-side linear motion bearing in a substantially central radial direction inside the double-headed enlarged piston in order to rotate a crankshaft by reciprocating motion of the double-headed enlarged piston. The pendulum arm suspended on the main body side (13) swings right and left by the reciprocating motion of the double-headed piston with the pendulum-side linear motion bearing inserted and maintained. A crankshaft-side linear motion bearing rotatably supported on a track (12) so that a rotatably supported crankshaft rotates to obtain rotational power.
31. An energy storage cycle internal combustion engine according to claim 30.
【請求項35】 前記クランク軸を回転させるため、拡
径燃焼室を含む気筒数を、2気筒刻みで2気筒・4気筒
・6気筒と増加して限りなく多気筒とする請求項29に
記載のエネルギ保存サイクル内燃機関。
35. The cylinder according to claim 29, wherein the number of cylinders including the expanded combustion chamber is increased to two, four, and six cylinders in two-cylinder increments to rotate the crankshaft so that the number of cylinders is as many as possible. Energy conservation cycle internal combustion engine.
【請求項36】 前記夫夫のクランク軸を回転させるた
め、拡径燃焼室を含む気筒数を、4気筒刻みで4気筒・
8気筒・12気筒と増加して限りなく多気筒とする請求
項30に記載のエネルギ保存サイクル内燃機関。
36. In order to rotate the respective crankshafts, the number of cylinders including the expanded combustion chamber is increased by four cylinders in four-cylinder increments.
31. The energy conservation cycle internal combustion engine according to claim 30, wherein the number of cylinders is increased to eight cylinders and twelve cylinders to increase the number of cylinders.
【請求項37】 前記両頭拡径ピストンの対向往復運動
を同期させる噛み合い同期手段(17)を、夫夫のクラ
ンク軸に設けて、両頭拡径ピストンの対向往復運動を同
期させる請求項30乃至請求項36のいずれか1項に記
載のエネルギ保存サイクル内燃機関。
37. An interlocking synchronizing means (17) for synchronizing the opposed reciprocating motion of the double-headed enlarged piston is provided on each of the crankshafts to synchronize the opposed reciprocating motion of the double-headed enlarged piston. Item 37. The energy storage cycle internal combustion engine according to any one of items 36.
【請求項38】 前記両頭拡径ピストンの対向往復運動
を同期させる噛み合い同期手段(17)を、機械式過給
機としても兼用する請求項30乃至請求項37のいずれ
か1項に記載のエネルギ保存サイクル内燃機関。
38. The energy according to claim 30, wherein the meshing synchronizing means (17) for synchronizing the opposed reciprocating motion of the double-headed enlarged piston also serves as a mechanical supercharger. Save cycle internal combustion engine.
【請求項39】 前記縮径ピストンの外周には鍔状凹凸
(6)を多段に設けて、その先端の幅広凸部外周面に凸
部の後部を適宜に残して、前記両頭拡径ピストンの運動
方向に対して斜めに延びる複数の騒音低減溝(15)を
設けた請求項28乃至請求項38のいずれか1項に記載
のエネルギ保存サイクル内燃機関。
39. A flange-shaped unevenness (6) is provided in multiple stages on the outer periphery of the reduced diameter piston, and a rear portion of the convex portion is appropriately left on the outer peripheral surface of the wide convex portion at the tip thereof to form the double-headed enlarged piston. 39. An internal combustion engine according to any one of claims 28 to 38, comprising a plurality of noise reduction grooves (15) extending obliquely to the direction of movement.
【請求項40】 前記縮径主燃焼室近傍を耐熱耐蝕材
(21)及び断熱材(22)により耐熱耐蝕断熱構造と
して、耐熱耐蝕材(21)に一方向空気流路(4)の斜
め空気流路(14)を適数設けた請求項28乃至請求項
39のいずれか1項に記載のエネルギ保存サイクル内燃
機関。
40. A heat-resistant and corrosion-resistant heat insulating material (21) and a heat insulating material (22) in the vicinity of the reduced diameter main combustion chamber, and a heat-resistant and corrosion-resistant material (21) is provided in the one-way air flow path (4). The energy storage cycle internal combustion engine according to any one of claims 28 to 39, wherein an appropriate number of flow paths (14) are provided.
【請求項41】 前記縮径主燃焼室に燃料を噴射する燃
料噴射手段(5)を設け、該噴射燃料が前記斜め空気流
路(14)を通って流入する空気と乱れを形成する請求
項28乃至請求項40のいずれか1項に記載のエネルギ
保存サイクル内燃機関。
41. A fuel injection means (5) for injecting fuel into the reduced diameter main combustion chamber, wherein the injected fuel forms turbulence with air flowing through the oblique air flow path (14). The energy storage cycle internal combustion engine according to any one of claims 28 to 40.
【請求項42】 前記縮径ピストン及び適宜の凹部
(1)を耐熱耐蝕材(21)及び断熱材(22)により
耐熱耐蝕断熱構造とした請求項28乃至請求項41のい
ずれか1項に記載のエネルギ保存サイクル内燃機関。
42. A heat-resistant, corrosion-resistant, heat-insulating structure in which the reduced-diameter piston and an appropriate recess (1) are made of a heat-resistant, corrosion-resistant material (21) and a heat-insulating material (22). Energy conservation cycle internal combustion engine.
【請求項43】 前記縮径ピストンは、前記縮径主燃焼
室内に挿入れ維持されて、死点前後の所定期間に亘って
前記縮径主燃焼室内隔離燃焼の隔離期間を形成した請求
項28乃至請求項42のいずれか1項に記載のエネルギ
保存サイクル内燃機関。
43. The reduced-diameter piston is inserted and maintained in the reduced-diameter main combustion chamber to form an isolated period of the isolated combustion in the reduced-diameter main combustion chamber for a predetermined period before and after a dead center. 43. The energy storage cycle internal combustion engine according to any one of claims 42 to 42.
【請求項44】 前記シリンダヘッド内面を、前記拡径
ピストンの頂部形状に合わせて、拡径燃焼室側に突出さ
せた請求項28乃至請求項43のいずれか1項に記載の
エネルギ保存サイクル内燃機関。
44. The internal combustion engine according to claim 28, wherein the inner surface of the cylinder head is projected toward the expanded combustion chamber in accordance with the shape of the top of the expanded piston. organ.
【請求項45】 前記一方向空気流路(4)を、前記拡
径ピストンの頂部形状に合わせてシリンダヘッドを拡径
燃焼室側に突出させた突出部に、拡径燃焼室側から挿入
固着した逆止弁(3)を含めて少なくとも1組以上設け
た請求項28乃至請求項44のいずれか1項に記載のエ
ネルギ保存サイクル内燃機関。
45. The one-way air flow passage (4) is inserted and fixed from the side of the enlarged diameter combustion chamber to a projection where a cylinder head is projected to the side of the enlarged diameter combustion chamber in accordance with the shape of the top of the enlarged diameter piston. The energy storage cycle internal combustion engine according to any one of claims 28 to 44, wherein at least one or more sets including the check valve (3) are provided.
【請求項46】 前記シリンダヘッドの内部に、該肩部
の外周を残して前記拡径ピストンの頂部形状に合わせて
拡径燃焼室側に突出させた突出部に、少なくとも1箇以
上の排気弁を設けた請求項28乃至請求項45のいずれ
か1項に記載のエネルギ保存サイクル内燃機関。
46. At least one or more exhaust valves are provided on a protruding portion of the cylinder head that protrudes toward the enlarged combustion chamber according to the shape of the top of the enlarged piston while leaving the outer periphery of the shoulder portion inside the cylinder head. The energy storage cycle internal combustion engine according to any one of claims 28 to 45, further comprising:
【請求項47】 前記縮径された縮径主燃焼室内隔離燃
焼を最適時に解除することで、振動及び最大軸受荷重を
大低減する一方で、高圧の縮径主燃焼室を小径として薄
肉軽量化すると共に、拡径燃焼室は大幅に低圧低温の薄
肉燃焼室として軽量化した請求項28乃至請求項46の
いずれか1項に記載のエネルギ保存サイクル内燃機関。
47. When the isolated combustion in the reduced diameter reduced main combustion chamber is released at an optimum time, vibration and the maximum bearing load are greatly reduced, and the high pressure reduced diameter main combustion chamber is reduced in diameter to reduce the thickness and weight. 47. The energy storage cycle internal combustion engine according to any one of claims 28 to 46, wherein the diameter expansion combustion chamber is reduced in weight as a low pressure and low temperature thin combustion chamber.
【請求項48】 前記縮径主燃焼室内隔離燃焼に、水噴
射手段(23)を追加して、該水を予加熱する排気部熱
交換手段(18)及び縮径部熱交換手段(19)及び燃
焼部熱交換手段(20)のうち、少なくとも1手段以上
を設けた請求項28乃至請求項47のいずれか1項に記
載のエネルギ保存サイクル内燃機関。
48. An exhaust heat exchange means (18) and a reduced diameter heat exchange means (19) for preheating the water by adding a water injection means (23) to the isolated combustion in the reduced diameter main combustion chamber. 48. The energy storage cycle internal combustion engine according to any one of claims 28 to 47, wherein at least one or more of the combustion unit heat exchange means (20) is provided.
【請求項49】 前記シリンダヘッドの内部を、前記拡
径ピストンの頂部形状に合わせて拡径燃焼室側に突出さ
せて、該突出部を耐熱耐蝕材(21)及び断熱材(2
2)により耐熱耐蝕断熱構造とした請求項28乃至請求
項48のいずれか1項に記載のエネルギ保存サイクル内
燃機関。
49. The inside of the cylinder head is made to protrude toward the large-diameter combustion chamber in accordance with the shape of the top of the large-diameter piston.
49. The energy storage cycle internal combustion engine according to any one of claims 28 to 48, wherein a heat-resistant, corrosion-resistant, and heat-insulating structure is provided according to 2).
【請求項50】 前記燃料は、ガソリン及び軽油及び重
油及びプロパン及び水素及び天然ガス及びメタノールの
うち、少なくとも1種類以上である請求項28乃至請求
項49のいずれか1項に記載のエネルギ保存サイクル内
燃機関。
50. The energy storage cycle according to claim 28, wherein the fuel is at least one of gasoline, light oil, heavy oil, propane, hydrogen, natural gas, and methanol. Internal combustion engine.
JP9063719A 1996-05-28 1997-02-10 Various kinds of energy preservation cycle internal combustion engines Pending JPH1047062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9063719A JPH1047062A (en) 1996-05-28 1997-02-10 Various kinds of energy preservation cycle internal combustion engines

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-172752 1996-05-28
JP17275296 1996-05-28
JP9063719A JPH1047062A (en) 1996-05-28 1997-02-10 Various kinds of energy preservation cycle internal combustion engines

Publications (1)

Publication Number Publication Date
JPH1047062A true JPH1047062A (en) 1998-02-17

Family

ID=26404849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9063719A Pending JPH1047062A (en) 1996-05-28 1997-02-10 Various kinds of energy preservation cycle internal combustion engines

Country Status (1)

Country Link
JP (1) JPH1047062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902175A1 (en) * 1996-05-28 1999-03-17 Hiroyasu Tanigawa Energy conservation cycle engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902175A1 (en) * 1996-05-28 1999-03-17 Hiroyasu Tanigawa Energy conservation cycle engine
EP0902175A4 (en) * 1996-05-28 2000-05-31 Hiroyasu Tanigawa Energy conservation cycle engine

Similar Documents

Publication Publication Date Title
US5228415A (en) Engines featuring modified dwell
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
WO1997045629A1 (en) Energy conservation cycle engine
US5431130A (en) Internal combustion engine with stroke specialized cylinders
NZ553719A (en) Two-cycle swash plate internal combustion engine
CN101135266A (en) Hybrid power engine
KR20030053596A (en) Piston compressed turbine engine and its control method
US7677210B2 (en) Rotating barrel type internal combustion engine
WO2011044748A1 (en) Built-in internal combustion engine with two links and two cranks on each cylinder
CN102518513B (en) Hydraulic-control engine with movable pistons
JPH1089074A (en) Energy preserving cycle internal combustion engine
JPH1047062A (en) Various kinds of energy preservation cycle internal combustion engines
JPH1047075A (en) D-type/e-type energy preservation cycle internal combustion engine
CN110043363A (en) A kind of reciprocating-piston two-stroke internal combustion engine
WO2005083246A1 (en) A novel internal combustion torroidal engine
JPH1047063A (en) F-type/g-type energy preservation cycle internal combustion engine
JPH1089075A (en) Device and method for making pendulum piston to serve as energy preserving cycle
JPH1047001A (en) Method for using pendulum piston as energy conservation cycle and device therefor
JPH1089001A (en) Energy conservation cycle engine
JPH1082321A (en) Method and device for utilizing energy conservation cycle internal combustion engine
CN209990543U (en) Two-stroke engine with independent combustion chamber, special piston and synchronous supercharging
RU2435975C2 (en) Menshov internal combustion engine
RU2800634C1 (en) Turbine piston internal combustion engine
JPH09242558A (en) Internal combustion engine having diameter-contracted combustion chamber
CN2192732Y (en) Double-acceleration combustion device for internal-combustion engine