JPH1082321A - Method and device for utilizing energy conservation cycle internal combustion engine - Google Patents

Method and device for utilizing energy conservation cycle internal combustion engine

Info

Publication number
JPH1082321A
JPH1082321A JP9103790A JP10379097A JPH1082321A JP H1082321 A JPH1082321 A JP H1082321A JP 9103790 A JP9103790 A JP 9103790A JP 10379097 A JP10379097 A JP 10379097A JP H1082321 A JPH1082321 A JP H1082321A
Authority
JP
Japan
Prior art keywords
diameter
reduced
combustion chamber
piston
main combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9103790A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9103790A priority Critical patent/JPH1082321A/en
Publication of JPH1082321A publication Critical patent/JPH1082321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance energy convertion efficiency and achieve low environmental pollution by communicating a diameter contracted main combustion chamber and a diameter enlarged combustion chamber with each other for a predetermined period before and after the top dead center of a diameter enlarged piston in which a diameter contracted piston is arranged, in a heating process out of piston cycles having a compressive process, the heating process, an expansion process and an exhaust process. SOLUTION: A parallel railway 31 is arranged in the intermediate part of a pendulum arm which swings to the right and left, and a crank pin 9 is slidably engaged with the parallel railway 31, and also a direct acting bearing 36 slidably fitted in the center part of a double-end diameter enlarged piston, is pivoted at the end part of the anti-pivoting side of the pendulum arm. Then, the pendulum arm is swung to the right and left by the reciprocating movement of the double-end diameter enlarged piston, and a crankshaft is rotated, thereby power is taken out. In the double-end diameter enlarged piston, a diameter contracted piston having a taper peripheral part 32 is projected in the center part of both end surfaces. This diameter contracted piston is reciprocated in a diameter contracted main combustion chamber formed in a cylinder head, and the diameter contracted main combustion chamber is formed to be communicated with a diameter enlarged combustion chamber for a predetermined period before and after a top dead center in a heating process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通常及び特殊なピ
ストン往復運動を、回転動力に変換するピストンサイク
ルのエネルギ変換効率を高めるため、力学的エネルギ保
存の第3の法則を利用して、死点近傍でのエネルギ使用
量を僅少として、大部分の熱エネルギは保存貯金増大し
ておき、死点後クランク角度で30゜以後に隔離燃焼解
除する、先の出願のエネルギ保存サイクル機関の利用方
法及び利用装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes the third law of mechanical energy conservation to increase the energy conversion efficiency of a piston cycle that converts normal and special piston reciprocating motion into rotational power. The use of the energy conservation cycle engine of the earlier application, in which the energy consumption near the point is small, most of the heat energy is saved and the isolated combustion is released after 30 ° of the crank angle after the dead point. And a utilization device.

【0002】[0002]

【従来の技術】従来の技術としては、通常の定容サイク
ル機関や定圧サイクル機関があり、船舶及び車両及び農
業機械や各種機械の駆動用又は熱と電気の併給用等に使
用されており、2酸化炭素の低減を含む公害の低減が急
務となっております。
2. Description of the Related Art As conventional techniques, there are ordinary constant volume cycle engines and constant pressure cycle engines, which are used for driving ships and vehicles, agricultural machines and various machines, or for supplying heat and electricity together. There is an urgent need to reduce pollution, including the reduction of carbon dioxide.

【0003】[0003]

【発明が解決しようとする課題】上述の如く2酸化炭素
の低減を含む公害の低減が急務となっており、この発明
はピストンの往復運動を回転動力に変換する、ピストン
サイクルのエネルギ変換効率を高めて、公害の大低減を
図る、先の出願の各種エネルギ保存サイクル機関の、利
用方法及び利用装置を提供することを主目的とする。本
発明の目的は、各種エネルギ保存サイクル機関により、
各種船舶を駆動して、2酸化炭素の低減を含む公害の大
低減を図ることである。本発明の目的は、各種エネルギ
保存サイクル機関により、各種車両を駆動して、2酸化
炭素の低減を含む公害の大低減を図ることである。本発
明の目的は、各種エネルギ保存サイクル機関により、熱
と電気を併給する設備を提供して、2酸化炭素の低減を
含む公害の大低減を図ることである。 本発明の目的
は、各種エネルギ保存サイクル機関により、各種農業機
械を駆動して、2酸化炭素の低減を含む公害の大低減を
図ることである。本発明の目的は、各種エネルギ保存サ
イクル機関により、各種機械を駆動して2酸化炭素の低
減を含む公害の大低減を図ることである。
As described above, there is an urgent need to reduce pollution including reduction of carbon dioxide, and the present invention reduces the energy conversion efficiency of the piston cycle, which converts the reciprocating motion of the piston into rotational power. It is an object of the present invention to provide a method and an apparatus for utilizing various energy storage cycle engines of the prior application, which aims to greatly reduce pollution by increasing the pollution. An object of the present invention is to provide various energy storage cycle engines with:
It is to drive various ships to greatly reduce pollution including reduction of carbon dioxide. It is an object of the present invention to drive various vehicles by various energy storage cycle engines to greatly reduce pollution including reduction of carbon dioxide. An object of the present invention is to provide a facility for supplying both heat and electricity by various energy storage cycle engines, and to greatly reduce pollution including reduction of carbon dioxide. An object of the present invention is to drive various agricultural machines by various energy storage cycle engines to greatly reduce pollution including reduction of carbon dioxide. It is an object of the present invention to drive various machines by various energy storage cycle engines to greatly reduce pollution including reduction of carbon dioxide.

【0004】[0004]

【課題を解決するための手段】本発明は以上の課題に鑑
み、2酸化炭素の低減を含む公害の低減が困難な、通常
の定容サイクル機関及び定圧サイクル機関に換えて、各
種エネルギ保存サイクル機関の利用方法及び利用装置を
提供することである。即ち、通常の定容サイクル機関や
定圧サイクル機関と各種エネルギ保存サイクル機関は、
共にピストンの往復運動によりクランク軸を回転させる
構成のため、利用方法や利用装置も殆ど同じにできる大
きな利点があり、各種エネルギ保存サイクル機関によ
り、容易に2酸化炭素及び公害の低減が可能ですが、動
力伝達装置に、図3・図4に示す先の出願の磁気摩擦動
力伝達装置を含めることにより、歯車式動力伝達装置の
滑り歯面による摩擦熱損失を、磁石の吸引力により、歯
車の噛み合い高さを0側に近づけて、ころがり接触によ
る磁気摩擦動力伝達装置として、摩擦熱損失の大低減を
図る、2酸化炭素の排出量低減を含めて、熱効率の大幅
な上昇を図ります。従って、図1及び図2のディーゼル
機関圧力線図を私達が自転車ペタルを垂直に踏み下げ
て、効率良く自転車を前進させる場合と比較して、各種
エネルギ保存サイクル内燃機関を説明すると、私達は自
然法則を経験則より熟知しているため、自転車ペタルに
加わる力は、摩擦損失が最大で回転動力変換効率が最悪
の上死点付近では、エネルギ放出量(ペタルに加わる垂
直力)を最少最適にして、回転動力変換効率が最良の上
死点後90゜に向けて、次第にエネルギ放出量(ペタル
に加わる力)が増大しますが、図1・図2の定圧サイク
ルでは、回転動力変換効率が最悪で摩擦損失が最大の上
死点乃至上死点後30゜までに、最大の熱エネルギの全
部を含む大部分の熱エネルギ(80%前後)を放出消費
(定容サイクルでは更に放出割合が増大するため熱効率
が40%以上大低下する)するため、回転動力変換効率
が最良となり、摩擦損失が最少となり単位時間の仕事量
が最大となって、最大の熱エネルギ放出量を必要とする
上死点後90゜には、熱エネルギ(エネルギ放出量)が
略14分の1(10%以下)に大低減するため、30%
を越える大損失も予想されます。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides various energy storage cycles in place of ordinary constant-volume cycle engines and constant-pressure cycle engines in which it is difficult to reduce pollution including reduction of carbon dioxide. An object of the present invention is to provide a method and a device for using the institution. That is, a normal constant volume cycle engine, a constant pressure cycle engine, and various energy storage cycle engines are:
Both have a great advantage that the usage method and equipment can be almost the same because of the configuration in which the crankshaft is rotated by the reciprocating motion of the piston, and various energy storage cycle engines can easily reduce carbon dioxide and pollution. By incorporating the magnetic friction power transmission device of the prior application shown in FIGS. 3 and 4 into the power transmission device, friction heat loss due to the sliding tooth surface of the gear type power transmission device is reduced by the attraction force of the magnet. By bringing the meshing height closer to the zero side, as a magnetic friction power transmission device by rolling contact, the thermal efficiency is greatly increased, including the reduction of carbon dioxide emission, which greatly reduces frictional heat loss. Therefore, comparing the diesel engine pressure diagrams of FIGS. 1 and 2 with the case where we step down the bicycle petal vertically and efficiently advance the bicycle, we explain various energy conservation cycle internal combustion engines. Is familiar with the laws of nature from experience, so the force applied to a bicycle petal minimizes the amount of energy released (vertical force applied to the petal) near top dead center where friction loss is the largest and rotational power conversion efficiency is the worst. Optimally, the rotational power conversion efficiency is the best. The energy release (the force applied to the petal) gradually increases toward 90 ° after the top dead center. However, in the constant pressure cycle shown in FIGS. Most heat energy (about 80%) including all of the maximum heat energy is released by the worst efficiency and the highest frictional loss from top dead center to 30 ° after top dead center. Percentage increase Thermal efficiency is greatly reduced by 40% or more), so that the rotational power conversion efficiency is the best, the friction loss is minimized, the work per unit time is maximized, and the top heat that requires the maximum amount of heat energy release is required. At 90 ° after the point, the thermal energy (energy release amount) is greatly reduced to approximately one-fourth (10% or less).
Large losses beyond the expected are also expected.

【0005】即ち、エネルギ保存サイクルは、私達が自
転車ペタルを垂直に踏み下げて、効率良く自転車を前進
させる場合と同様に、回転動力変換効率が最悪の、上死
点乃至上死点後30゜までは、熱エネルギの放出量を最
少最適化して保存貯金増大しておき、回転動力変換効率
が最良になるように、熱エネルギの放出時期及び放出量
を最適化して、熱効率50〜70%に大上昇を図るもの
です。図1・図2を参照して更に別の説明をすると、定
容サイクルや定圧サイクルでは、回転動力変換効率が最
悪の上死点乃至上死点後30゜までに、最大の熱エネル
ギの全部を含む大部分の熱エネルギを放出しますが、損
失要因が最大であるため、仕事量(ピストンの行程容
積)は非常に僅少であり、損失要因が最小となって単位
時間の仕事量が最大となり、最も大量に熱エネルギの放
出が必要な上死点後90゜付近の絶好機には、放出する
熱エネルギが略14分の1に殆ど無くなり、熱効率が大
低下するため、最大の熱エネルギの放出時期を損失要因
最大側から損失要因最小側に移動した、各種エネルギ保
存サイクル内燃機関を採用して、あらゆる動力機械の熱
効率の大上昇を図ります。
[0005] In other words, the energy conservation cycle is the same as when we step down the bicycle petal vertically and efficiently advance the bicycle. Until ゜, the amount of heat energy released is minimized and the savings are increased, and the time and amount of heat energy release are optimized so that the rotational power conversion efficiency becomes the best. To make a great rise. Referring to FIGS. 1 and 2, a further explanation will be given. In a constant volume cycle or a constant pressure cycle, the maximum thermal energy is completely reduced by the worst TDC or 30 ° after the top dead center. Most of the heat energy is released, but the loss factor is the largest, so the work (piston stroke volume) is very small, and the loss factor is the smallest, and the work per unit time is the largest. In the best opportunity around 90 ° after top dead center, where the largest amount of heat energy needs to be released, the heat energy to be released is almost one-fourth of the amount, and the thermal efficiency is greatly reduced. The energy release cycle has been shifted from the maximum loss factor to the minimum loss factor, and various energy storage cycle internal combustion engines have been adopted to greatly increase the thermal efficiency of all power machines.

【0006】図1・図2を参照して更に別の説明をする
と、実際の定容サイクルや定圧サイクルでは、燃焼室は
シリンダヘッド内面とピストン上面との間に形成され、
燃焼に際して通常クランク角度で40゜乃至60゜程度
の燃焼期間(熱発生期間)を要する。従って、ピストン
が上死点から下降し始めると、ピストン下降に伴って燃
焼室容積は急激に増大する、燃焼室がシリンダ内と連通
した状態での燃焼を余儀なくされ、その結果極度の非定
容燃焼となり、燃焼圧力及び燃焼温度が急激に低下し
て、最悪の燃焼条件に急移行するため、NOx低減燃焼
にすると未燃分が大増大し、未燃分低減燃焼にするとN
Oxが大増大する通常の公害増大燃焼になるため、定容
燃焼に大接近した隔離撹拌燃焼及び大圧力差による超高
速撹拌混合燃焼を含む、公害の低減燃焼が強く待望され
ます。そこでこの発明は、例えば燃焼室断面積を25分
の1に縮径して、実際の定容サイクルや定圧サイクルよ
り、25倍近く定容燃焼に大接近させた隔離撹拌燃焼及
び、隔離解除時の大圧力差による高速度撹拌混合燃焼に
より、1燃焼で2回も燃焼条件を極限まで良くして公害
の大低減を図る、各種エネルギ保存サイクル機関によ
り、あらゆる機械を駆動して公害の大低減を図ります。
Referring to FIGS. 1 and 2, the combustion chamber is formed between the inner surface of the cylinder head and the upper surface of the piston in an actual constant volume cycle or constant pressure cycle.
During combustion, a combustion period (heat generation period) of about 40 ° to 60 ° is usually required at a crank angle. Therefore, when the piston starts to descend from the top dead center, the volume of the combustion chamber rapidly increases as the piston descends, and the combustion in the state where the combustion chamber communicates with the inside of the cylinder is inevitable, resulting in an extremely non-constant volume. Combustion occurs, and the combustion pressure and combustion temperature drop sharply, causing a sudden shift to the worst combustion conditions. Therefore, if NOx-reduced combustion is performed, the unburned content greatly increases.
Since the combustion becomes a normal pollution-increasing combustion with a large increase in Ox, there is a strong expectation for reduced-pollution combustion, including isolated agitation combustion that is very close to constant-volume combustion and ultra-high-speed agitation mixed combustion due to a large pressure difference. Accordingly, the present invention provides a method for reducing the cross-sectional area of the combustion chamber to one-fifth of that in the case of isolated agitation combustion and release of isolation, in which the constant-volume combustion and the constant-pressure cycle are nearly 25 times closer to the constant-volume combustion than the actual constant-volume cycle or constant-pressure cycle. High-speed agitation mixed combustion with a large pressure difference to improve the combustion conditions to the limit twice in one combustion and greatly reduce pollution. Various energy storage cycle engines drive all machines to greatly reduce pollution. Plan.

【0007】[0007]

【発明の実施の形態】発明の実施の形態の主要部を実施
例に基づき図面を参照して説明するが、実施例と既説明
とその構成が略同じ部分には、同一名称又は符号を付し
て、その重複説明は省略し、特徴的な部分や説明不足部
分は順次説明する。又、発明の意図及び予想を明快に具
体的に説明するため、数字で説明しておりますが、数字
に限定するものではありません。又、本発明は往復機関
の種類を問わずに燃焼法の大改善及び回転力の大増大及
び出力当たりの比重量の大低減を図る先の出願の発明を
利用するものであるため、燃料の種類及び燃料点火方式
及びサイクル数及び掃気方式及び機関の型式を基本的に
は問いませんが、運動エネルギの減少損失が少ない構造
が簡単な2サイクルの各種エネルギ保存サイクル内燃機
関で説明します。又、エネルギ保存サイクル機関の主要
部は、基本的には略同じのため、説明不足部分について
順次説明し、型式等の相違点を主として説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The main parts of the embodiments of the present invention will be described with reference to the drawings based on the embodiments, and portions having substantially the same structures as those in the embodiments will be given the same names or reference numerals. The overlapping description will be omitted, and the characteristic portion and the lack of description will be described sequentially. In addition, to clearly and specifically explain the intention and expectation of the invention, the explanation is made with numbers, but is not limited to the numbers. Further, the present invention utilizes the invention of the earlier application which aims to greatly improve the combustion method, greatly increase the rotational force and greatly reduce the specific weight per output regardless of the type of reciprocating engine, and Regardless of the type, fuel ignition system, cycle number, scavenging system, and engine type, basically, two-cycle energy-storing cycle internal combustion engines with a simple structure with little loss of kinetic energy will be described. Further, since the main parts of the energy storage cycle engine are basically the same, the parts that are not sufficiently described will be described in order, and the differences between the types and the like will be mainly described.

【0008】先の出願のA型エネルギ保存サイクル機関
は、図1の(b)(c)に示すように、通常のクランク
機関をエネルギ保存サイクルとして、傾斜掃気穴33及
び傾斜排気穴34により通常道りに掃気及び排気するも
のです。即ち、通常のピストンを拡径ピストンとして、
該頂面テーパ外周部32を有する適宜の凹部1の略中央
より適宜に縮径してテーパ根部2を有する縮径ピストン
を突出し、シリンダの上部にシリンダヘッドを設けて、
拡径ピストンとの間に拡径燃焼室を形成させて、シリン
ダヘッドには、縮径ピストンを挿入れて隔離燃焼が可能
な、テーパ縮径部7を有する縮径主燃焼室を構成させ
て、上死点前後の所定期間に亘って該縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にする、逆止弁3を含む一方向空気流路4を少な
くとも1組以上設けて、燃料噴射手段5より燃料噴射・
圧縮点火燃焼又は、火花点火燃焼の他多様な燃焼を可能
として、一定容積以上の縮径主燃焼室内隔離撹拌燃焼で
は水噴射手段23の追加によるNOx大低減燃焼も可能
にして、蒸気・内燃合体機関として、縮径ピストンの外
周に多段に設けた鍔状凹凸6により、多段に減圧して漏
洩量を最適に制定しながら、定容大接近隔離撹拌燃焼及
び隔離解除時高速度撹拌混合燃焼として、1燃焼で2回
も燃焼条件を最良にして公害大低減燃焼にする一方で、
損失要因最大側で無駄に消費されていた熱エネルギを、
損失要因最小側に移動して、特に悪い自動車用ガソリン
機関において30%以上50%に近い熱効率の大上昇を
図るものです。従って、図1のA型エネルギ保存サイク
ル機関(熱効率55%乃至60%を目標)を含めて各種
エネルギ保存サイクル機関(熱効率70%目標を含む)
により、先の出願の各種磁気摩擦動力伝達装置又は公知
の各種動力伝達装置を介して、あらゆる機械を駆動して
COを含む公害の大低減を図ります。
As shown in FIGS. 1 (b) and 1 (c), the A-type energy conservation cycle engine of the prior application uses a normal crank engine as an energy conservation cycle, and generally includes a sloped scavenging hole 33 and a sloped exhaust hole 34. Scavenging and exhausting on the way. In other words, a normal piston is used as an expanded piston,
A diameter-reducing piston having a tapered root portion 2 is appropriately projected from a substantially central portion of an appropriate concave portion 1 having the top tapered outer peripheral portion 32, and a cylinder head is provided at an upper portion of the cylinder.
A large-diameter combustion chamber is formed between the large-diameter piston and a large-diameter main combustion chamber having a tapered small-diameter portion 7 capable of performing isolated combustion by inserting a small-diameter piston in a cylinder head. A one-way, including a check valve 3, which communicates the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber for a predetermined period before and after the top dead center to allow only the flow toward the reduced-diameter main combustion chamber. At least one pair of air passages 4 is provided, and the fuel injection means 5
Compression ignition combustion or spark ignition combustion as well as various other combustions are enabled, and in the isolated stirring combustion in the reduced diameter main combustion chamber having a certain volume or more, the NOx large reduction combustion by adding the water injection means 23 is also enabled, and the steam / internal combustion combined As an engine, with the flange-shaped irregularities 6 provided in multiple stages on the outer circumference of the reduced-diameter piston, the pressure is reduced in multiple stages and the leakage amount is optimally established, while the constant-volume large close-separated stirring combustion and high-speed stirring mixed combustion when the separation is released are performed. While the combustion conditions are optimized twice for one combustion to reduce pollution,
The heat energy wasted on the maximum side of the loss factor is
By moving to the lowest factor of the loss factor, especially for bad gasoline engines for automobiles, the thermal efficiency is to be greatly increased to 30% or more and close to 50%. Accordingly, various energy storage cycle engines (including a 70% thermal efficiency target) including the A type energy storage cycle engine (target thermal efficiency of 55% to 60%) of FIG.
Through the various magnetic friction power transmission devices of the previous application or various known power transmission devices, all machines are driven to greatly reduce pollution including CO 2 .

【0009】図3・図4を参照して磁気摩擦動力伝達装
置を説明すると、通常の変速や逆転を含む各種動力伝達
装置は主として歯車装置を使用しているため、その歯面
には大きな荷重を含む滑り歯面を必須とするため、潤滑
油を必要とするのに加えて摩擦熱損失も大きく、高速回
転を含む大動力伝達装置には不向きという問題があり、
ころがり接触による超高速大動力伝達装置が必須となり
ます。従って、超高速大動力伝達方法及びその装置を可
能にすると共に、潤滑油も不用にするためには、歯車装
置の滑り歯面を皆無に近づけた、ころがり接触による動
力伝達装置を必須とするため、図3・図4のように、歯
車のかみあい高さを限りなく縮小することも必須とな
り、先の出願の磁石の強い吸引力を利用した磁性材料を
含む、各種磁気摩擦動力伝達装置の利用も必須となりま
す。即ち、磁石の強い吸引力を利用して、歯車のかみあ
い高さを限りなく0側に縮小して、転がり接触に近づけ
ることにより、摩擦熱損失を皆無に近づけて、超高速動
力伝達装置及び、潤滑油に換えて無害の水冷却を可能に
するものです。即ち、各種歯車に換えて各種着磁摩擦車
又は磁着摩擦車を使用し、動力伝達面には、例えば平歯
車に換えて平凹凸車を、ハスバ歯車に換えてハスバ凹凸
車を、ヤマバ歯車に換えてヤマバ凹凸車を設けて、着磁
摩擦車及び着磁摩擦車装置(磁気摩擦動力伝達装置)と
して、公知の各種歯車式動力伝達装置と同様に、磁気摩
擦動力減速装置及び磁気摩擦動力逆転装置及び磁気摩擦
変速装置を含めた、各種磁気摩擦動力伝達装置を構成さ
せて使用するものです。
Referring to FIGS. 3 and 4, a description will be given of a magnetic friction power transmission device. Since various power transmission devices including normal speed change and reverse rotation mainly use a gear device, a large load is applied to the tooth surface thereof. In addition to the need for lubricating oil, frictional heat loss is large in addition to the need for lubrication oil, and there is a problem that it is not suitable for large power transmission devices including high-speed rotation.
An ultra-high-speed large power transmission device by rolling contact is essential. Therefore, in order to enable an ultra-high-speed and large-power transmission method and device, and to eliminate the need for lubricating oil, a power transmission device with rolling contact, which has almost no sliding tooth surface of the gear device, is essential. As shown in FIGS. 3 and 4, it is necessary to reduce the meshing height of the gears as much as possible, and use of various magnetic friction power transmission devices including a magnetic material utilizing the strong attraction force of the magnet of the previous application. Is also required. In other words, by utilizing the strong attraction force of the magnet, the meshing height of the gear is reduced to zero as much as possible, and by approaching rolling contact, frictional heat loss is reduced to almost zero, an ultra-high-speed power transmission device, It enables harmless water cooling instead of lubricating oil. That is, various magnetized friction wheels or magnetized friction wheels are used in place of various gears, and on the power transmission surface, for example, flat uneven wheels are replaced with spur gears, helical uneven wheels are replaced with helical gears, and Yamaha gears are used. A magnetic friction power reduction device and a magnetic friction power are provided as a magnetized friction wheel and a magnetized friction wheel device (magnetic friction power transmission device) in the same manner as known various gear type power transmission devices. Various magnetic friction power transmission devices, including reversing devices and magnetic friction transmissions, are configured and used.

【0010】図5・図6を参照してB型エネルギ保存サ
イクル内燃機関の第1実施例を説明すると、B型エネル
ギ保存サイクル機関の主要部は図1の前記A型エネルギ
保存サイクル機関と略同様のまま横形として、両頭拡径
ピストンの夫夫の拡径ピストンとシリンダヘッドとの間
にエネルギ保存サイクルを構成させたため、説明を省略
して振り子ピストンクランク機構と説明不足部分を説明
すると、振り子腕が左右に振り子運動容易に、シリンダ
穴16を設けたシリンダの左死点と右死点との間で往復
運動する両頭拡径ピストンの、円筒部略中央には振り子
腕を挿入れるピストン穴8を設けて、該半径方向に振り
子側直動軸受36を挿入れ維持する平行軌道12・12
を設けて往復自在に該挿入れ維持し、両頭拡径ピストン
の往復運動により振り子腕が左右に揺動して、平行軌道
12・12の間を振り子側カム10又は振り子側直動軸
受36が上下に往復容易に振り子腕を設けて、該振り子
腕の上部を本体側13に振り子運動容易に吊り下げて、
振り子腕の揺動によりクランク軸及びはずみ車が回転可
能に、振り子腕に上下動容易に振り子側平行軌道31・
31に枢支されたクランク軸側直動軸受9又はクランク
軸側カム11に、クランク軸を回転自在に枢支して、両
頭拡径ピストンの往復運動により振り子腕を振り子運動
させて、該振り子運動によりクランク軸を回転させて回
転動力を得る、振り子ピストンクランク機構とします。
縮径主燃焼室の内径を例えば5分の1に縮径して隔離燃
焼にすると、高圧縮径主燃焼室の肉厚を略5分の1とし
て大軽量が可能になり、従来技術より25倍も定容燃焼
に近づけた撹拌燃焼及び、隔離解除時の大圧力差による
高速噴射撹拌燃焼により、1回の燃焼期間で燃焼条件を
2回も極限まで良くするため、燃焼が大改善されて、水
噴射手段23より水噴射する蒸気・内燃合体機関による
断熱無冷却機関を含めて、NOxと未撚分を同時に皆無
に近づけることが1燃焼期間で2度も可能になり、加え
て最大燃焼圧力による摩擦最大荷重や軸受最大荷重を2
5分の1として振動要因を大低減できる一方で、大増大
した水蒸気質量容積を含む高圧燃焼ガスの、速度形質量
エネルギ+容積形エネルギを適宜の凹部1に高速噴射し
て、衝動+反動+圧力により、両頭拡径ピストンを強力
に後退させて大回転力を発生させると共に、過早点火や
異状燃焼の影響も25分の1になるため、過早点火や異
状燃焼を有効利用した早期完全燃焼終了技術が可能にな
り、拡径燃焼室は大幅に低圧低温の薄肉燃焼室として、
機関全体を大軽量化して単位重量当たりの比出力を大増
大しながら、COを含む公害の大低減を図るものが各
種エネルギ保存サイクル内燃機関であり、そのうち両頭
拡径ピストンの往復運動により、振り子腕を振り子運動
させて、該振り子運動によりはずみ車を含むクランク軸
を回転させて、回転動力とするものがB型エネルギ保存
サイクル内燃機関となります。
A first embodiment of a B-type energy storage cycle internal combustion engine will be described with reference to FIGS. 5 and 6. The main part of the B-type energy storage cycle engine is substantially the same as the A-type energy storage cycle engine of FIG. The energy storage cycle was configured between the enlarged piston and the cylinder head of each of the double-head enlarged pistons in the same horizontal shape, so that the explanation was omitted and the pendulum piston crank mechanism and the lack of explanation were described. A double-ended piston with a reciprocating motion between the left dead center and the right dead center of the cylinder provided with the cylinder hole 16 with the arm easily pendulum to the left and right. 8 and the parallel orbits 12 for inserting and maintaining the pendulum side linear bearing 36 in the radial direction.
The pendulum arm swings left and right by the reciprocating motion of the double-headed piston, so that the pendulum-side cam 10 or the pendulum-side linear bearing 36 moves between the parallel tracks 12. A pendulum arm is provided to easily reciprocate up and down, and the upper part of the pendulum arm is easily suspended from the main body side 13 for pendulum movement.
The swing of the pendulum arm allows the crankshaft and flywheel to rotate, and the pendulum arm easily moves up and down easily.
The crankshaft is rotatably supported by the crankshaft-side linear motion bearing 9 or the crankshaft-side cam 11 pivotally supported by 31 and the pendulum arm is pendulum-moved by reciprocating motion of the double-headed piston. A pendulum piston crank mechanism that obtains rotational power by rotating the crankshaft by motion.
When isolated combustion is performed by reducing the inner diameter of the reduced diameter main combustion chamber to, for example, one-fifth, the thickness of the high compression diameter main combustion chamber can be reduced to approximately one-fifth to achieve a large and light weight. The combustion has been greatly improved because the combustion conditions have been improved to the limit twice in one combustion period by the agitation combustion twice as close to the constant volume combustion and the high-speed injection agitation combustion due to the large pressure difference when the isolation is released. Including the adiabatic non-cooled engine by the steam / internal combustion engine that injects water from the water injection means 23, it is possible to make NOx and untwisted components almost simultaneously at all twice in one combustion period, and in addition, the maximum combustion Maximum load of friction and maximum load of bearing by 2
While the vibration factor can be greatly reduced as one fifth, the velocity type mass energy + volume type energy of the high pressure combustion gas containing the greatly increased water vapor mass volume is injected at high speed into an appropriate concave portion 1 to generate an impulse + reaction + The pressure causes the double-headed piston to retreat vigorously to generate a large rotating force, and the effect of premature ignition and abnormal combustion is reduced by a factor of 25. Therefore, early complete combustion using premature ignition and abnormal combustion is effectively used. Termination technology becomes possible, and the expanded diameter combustion chamber is significantly reduced pressure and low temperature as a thin-walled combustion chamber.
Various energy storage cycle internal combustion engines are designed to greatly reduce pollution including CO 2 while increasing the specific power per unit weight by increasing the weight of the entire engine and reducing the specific power per unit weight. The B-type energy-conserving cycle internal combustion engine uses the pendulum arm to perform a pendulum motion, rotates the crankshaft including the flywheel by the pendulum motion, and generates rotational power.

【0011】図6を参照して、C型エネルギ保存サイク
ル内燃機関の第1実施例を説明すると、C型エネルギ保
存サイクル機関の主要部も振り子ピストンクランク機構
も図5の前記B型エネルギ保存サイクル機関の第1実施
例と殆ど同じのため、対向振り子ピストンクランク機構
と説明不足部分を説明すると、図5の前記B型エネルギ
保存サイクル機関を夫夫対向に結合して、両頭拡径ピス
トンの対向往復運動を、夫夫の振り子腕及びクランク軸
及び噛み合い同期手段17により同期させて振動を大低
減して、超大型のC型エネルギ保存サイクル機関を可能
にするもので、クランク軸より適宜に回転動力を得るも
のです。適宜の凹部1の名称について説明すると、拡径
ピストンの頂面形状については先の出願で多数の形状を
開示しているためその全部を含めるため適宜の凹部とし
たものです。深い凹部にするとテーパ縮径部7より高速
噴射された燃焼ガスを捕捉し易く、シリンダの熱負荷を
低減できますが、掃気効率が大きく悪化するため、掃気
効率を重要とするときはテーパ外周部32による掃気効
率の上昇以外として、凹部が次第に浅くなり略平面形状
も含めるもので、従って適宜の凸部24にも略平面形状
が含まれます。又、縮径主燃焼室を例えば5分の1に縮
径して隔離燃焼とすると、最大燃焼圧力による最大軸受
荷重が25分の1に大低減するため、最大軸受荷重も最
大圧縮圧力に大低減して、最大圧縮圧力を大上昇した最
大燃焼圧力の大上昇によるCOの低減も可能になり、
時計の振り子のように運動エネルギの減少損失の非常に
少ない2サイクル両頭拡径ピストンの往復運動により、
振り子腕を介して噛み合い同期手段17を含むクランク
軸を回転させて回転動力とするC型エネルギ保存サイク
ル内燃機関とします。
Referring to FIG. 6, a first embodiment of the C-type energy storage cycle internal combustion engine will be described. The main part of the C-type energy storage cycle engine and the pendulum piston crank mechanism are both the B-type energy storage cycle of FIG. Since the engine is almost the same as the first embodiment, the opposed pendulum piston crank mechanism and the lack of explanation will be described. The B-type energy storage cycle engine shown in FIG. The reciprocating motion is synchronized by the respective pendulum arms, the crankshaft, and the meshing synchronizing means 17 to greatly reduce the vibration, thereby enabling an ultra-large C-type energy storage cycle engine. Power. Explaining the name of the appropriate concave portion 1, the top surface shape of the enlarged diameter piston is an appropriate concave portion so as to include all the shapes since many shapes are disclosed in the earlier application. The deep recess makes it easier to catch the combustion gas injected at high speed from the tapered diameter reducing portion 7 and can reduce the thermal load on the cylinder. However, the scavenging efficiency is greatly deteriorated. In addition to the increase in the scavenging efficiency due to 32, the concave portion gradually becomes shallower and includes a substantially planar shape. Therefore, the appropriate convex portion 24 also includes a substantially planar shape. If the reduced-diameter main combustion chamber is reduced to one-fifth, for example, for isolated combustion, the maximum bearing load due to the maximum combustion pressure is greatly reduced to one-fifth, so that the maximum bearing load is also increased to the maximum compression pressure. It is possible to reduce CO 2 by a large increase in the maximum combustion pressure, which greatly increases the maximum compression pressure.
Due to the reciprocating motion of the two-cycle double-ended piston with very little loss of kinetic energy like a pendulum of a watch,
A C-type energy conservation cycle internal combustion engine is used, which rotates the crankshaft including the meshing and synchronizing means 17 via the pendulum arm to generate rotational power.

【0012】図7・図8のD型エネルギ保存サイクル内
燃機関の第1実施例を説明すると、前記B型エネルギ保
存サイクル機関の振り子腕を除去して、主要部をそのま
ま使用したものです。即ち、両頭拡径ピストンの左右夫
夫の拡径ピストンのテーパ外周部32を有する適宜の凹
部1の略中央より、テーパ根部2を有する縮径ピストン
を突出して、該両頭拡径ピストンがシリンダ内を左死点
と右死点との間で往復運動容易として、左右の死点前後
に亘って通常の排気及び掃気を傾斜掃気穴33及び傾斜
排気穴34により行う、2サイクルD型エネルギ保存サ
イクル機関において、掃気後の圧縮過程に、テーパ根部
2及び鍔状凹凸6及び先端の幅広凸部の外周に後端を適
宜に残して運動方向に平行又は斜めに延びる複数の騒音
低減溝15を設けた縮径ピストンにより、テーパ縮径部
7を有する縮径主燃焼室の隔離が始まり、次いで拡径燃
焼室で圧縮された空気が、拡径燃焼室側から挿入れ固着
された逆止弁3を含む一方向空気流路4を通って、複数
の斜め空気流路14より縮径主燃焼室内の斜め横方向に
噴射され、燃料噴射手段5から噴射された燃料と撹拌混
合して、縮径主燃焼室内定容大接近隔離燃焼として、一
定容積以上の縮径主燃焼室では水噴射手段23による水
噴射を可能にして蒸気・内燃合体機関とします。両頭拡
径ピストンが後退を始めると拡径燃焼室内圧力が低下を
始めるため、縮径ピストンの外周に多段に設けた鍔状凹
凸6により、多段に減圧して燃焼ガスの漏洩量を最適に
制定します。更に拡径ピストンが後退すると縮径主燃焼
室内隔離燃焼解除しますが、先ず縮径ピストンの騒音低
減溝15により燃焼ガスの噴射方向を制定すると共に、
騒音の低減を図り、次にテーパ縮径部7が末広ノズルを
構成して、燃焼ガスを適宜の凹部1に正確に高速噴射し
て回転力の大増大を図る一方で、高速噴射の過程で大圧
力差による高速噴射撹拌燃焼として、未燃分の再度皆無
を図ると共に、拡径ピストンを速度形質量エネルギ+容
積形エネルギにより、衝動+反動+圧力により強力に後
退させて、大回転力を発生させて、熱効率の大上昇と公
害の大低減を図り、通常の排気及び掃気に移行します
が、傾斜掃気穴33がテーパ外周部32のテーパ角度に
合わせて傾斜していて、掃気を適宜の凹部1の底面に正
確に噴射し、傾斜排気穴34は主として該逆方向傾斜と
して掃気効率の上昇を図る2サイクルD型エネルギ保存
サイクル内燃機関の第1実施例とします。
A first embodiment of the D-type energy storage cycle internal combustion engine shown in FIGS. 7 and 8 will be described. The pendulum arm of the B-type energy storage cycle engine is removed and the main part is used as it is. That is, the reduced diameter piston having the tapered root portion 2 protrudes from substantially the center of the appropriate concave portion 1 having the tapered outer peripheral portion 32 of each of the left and right enlarged diameter pistons. , A two-cycle D-type energy conservation cycle in which normal exhaust and scavenging are performed by the inclined scavenging holes 33 and the inclined exhaust holes 34 before and after the left and right dead centers. In the engine, in the compression process after scavenging, a plurality of noise reduction grooves 15 extending parallel or oblique to the direction of motion are provided on the outer periphery of the tapered root portion 2, the flange-shaped unevenness 6, and the wide convex portion at the tip, appropriately leaving the rear end. The reduced-diameter piston starts to isolate the reduced-diameter main combustion chamber having the tapered reduced-diameter portion 7, and then the air compressed in the increased-diameter combustion chamber is inserted and fixed from the enlarged-diameter combustion chamber side to the check valve 3. One-way air flow path 4 including The fuel is injected obliquely laterally in the reduced-diameter main combustion chamber from the plurality of oblique air passages 14, and is mixed with the fuel injected from the fuel injection means 5 in a stir-mixing manner. In a reduced-diameter main combustion chamber with a certain volume or more, water injection by the water injection means 23 is enabled to form a steam-internal combustion engine. When the double-ended piston starts to retract, the pressure in the enlarged combustion chamber starts to decrease. Therefore, the flange-shaped unevenness 6 provided on the outer periphery of the reduced-diameter piston reduces the pressure in multiple stages to optimally establish the amount of combustion gas leakage. To do. When the diameter-extending piston further retreats, the isolated combustion is released from the diameter-reduced main combustion chamber. First, the injection direction of the combustion gas is determined by the noise reduction groove 15 of the diameter-reduced piston.
The noise is reduced, and the tapered portion 7 forms a divergent nozzle. The combustion gas is accurately injected at a high speed into the appropriate recess 1 to increase the rotational force. As high-speed injection and agitation combustion due to a large pressure difference, the unburned portion is eliminated again, and the large-diameter piston is strongly retracted by impulse + reaction + pressure by speed-type mass energy + volume-type energy to generate large rotational force. By doing so, thermal efficiency is greatly increased and pollution is greatly reduced, and normal exhaust and scavenging are performed. However, the inclined scavenging holes 33 are inclined according to the taper angle of the tapered outer peripheral portion 32, and scavenging is performed appropriately. The first embodiment of a two-cycle D-type energy storage cycle internal combustion engine that accurately injects fuel into the bottom surface of the concave portion 1 and in which the inclined exhaust holes 34 are mainly inclined in the reverse direction to increase the scavenging efficiency.

【0013】図7・図8を参照して別の説明をすると、
円筒形のシリンダの左右中央よりには、夫夫傾斜掃気穴
33及び傾斜排気穴34を適宜に設けて、左右に固着し
たシリンダヘッドと両頭拡径ピストンの夫夫の拡径ピス
トンとの間に拡径燃焼室を形成させて、シリンダヘッド
の略中心には縮径主燃焼室を夫夫設けて、燃料噴射燃焼
が可能に夫夫燃料噴射手段5を具備して、該燃焼をNO
x大低減燃焼とするための水噴射手段23を夫夫に追加
具備して、該縮径主燃焼室及び拡径燃焼室から冷却損失
を排除するため、該縮径主燃焼室及びテーパ縮径部7及
び適宜の凸部24を含めて及び/前記縮径ピストン及び
テーパ根部2及び適宜の凹部1を含めて、夫夫を耐熱耐
蝕材21及び断熱材22により耐熱耐蝕断熱構造とし、
縮径主燃焼室の耐熱耐蝕材21には複数の斜め空気流路
14を設けます。又、エネルギ保存サイクル機関は燃焼
ガスの噴射速度による衝動が中核のため、短行程機関乃
至超短行程機関が好ましく、従って、前記シリンダの略
中央半径方向十文字状にシリンダ穴16とシリンダ側平
行軌道組立穴35を設け、両頭拡径ピストンの略中央半
径方向十文字状には、ピストン穴8とピストン側平行軌
道組立穴35を設けて、該往復運動により軸受ユニット
30・30に軸支されたクランク軸を回転させるための
平行軌道12・12を平行に具備して、該クランク軸に
回転自在に外嵌枢支したクランク軸側直動軸受9を、平
行軌道12・12の間に往復自在に挿入れ維持して、両
頭拡径ピストンの往復運動により直接はずみ車を含むク
ランク軸を回転させて、回転動力とする2サイクルD型
エネルギ保存サイクル内燃機関の第1実施例とします。
Another explanation will be given with reference to FIGS. 7 and 8.
An inclined scavenging hole 33 and an inclined exhaust hole 34 are provided appropriately from the left and right centers of the cylindrical cylinder, respectively, between the cylinder head fixed to the left and right and each of the double-head enlarged pistons. A large-diameter combustion chamber is formed, and a reduced-diameter main combustion chamber is provided substantially at the center of the cylinder head, and a fuel injection means 5 is provided to enable fuel injection combustion.
In order to eliminate cooling loss from the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber, a water-injection unit 23 for x-reduced combustion is additionally provided. Each including a portion 7 and an appropriate convex portion 24 and / or including the diameter-reduced piston and the tapered root portion 2 and an appropriate concave portion 1, each having a heat and corrosion resistant heat insulating material 21 and a heat insulating material 22,
A plurality of oblique air passages 14 are provided in the heat-resistant and corrosion-resistant material 21 of the reduced diameter main combustion chamber. In addition, since the energy saving cycle engine is mainly driven by the injection speed of the combustion gas, a short-stroke engine or an ultra-short-stroke engine is preferable. An assembling hole 35 is provided, and a piston hole 8 and a piston-side parallel orbit assembling hole 35 are provided substantially in the center in the radial direction crosswise of the double-headed enlarged piston, and the reciprocating motion allows the crank supported by the bearing units 30 and 30. A parallel track 12 for rotating the shaft is provided in parallel, and a crankshaft side linear motion bearing 9 rotatably fitted on the crankshaft is reciprocated between the parallel tracks 12. The two-stroke D-type energy-saving cycle internal combustion engine, in which the crankshaft including the flywheel is directly rotated by the reciprocating motion of the double-headed enlarged piston while being inserted and maintained, and the rotational power is used. And as in Example.

【0014】図9を参照してE型エネルギ保存サイクル
内燃機関の第1実施例を説明すると、図7・図8のD型
エネルギ保存サイクル内燃機関の第1実施例を、対向に
連結して噛み合い同期手段17により、夫夫の両頭拡径
ピストンの対向往復運動を同期させて振動を大低減し
て、超大型のE型エネルギ保存サイクル内燃機関を可能
にするもので、主要部が共通の発明として説明するもの
です。即ち、対向に設けた夫夫のシリンダの左右に夫夫
シリンダヘットを固着して対向に連結し、夫夫のシリン
ダの左右中央寄りには、夫夫傾斜掃気穴33及び傾斜排
気穴34を適宜に設けて、夫夫左右に固着したシリンダ
ヘットと拡径ピストンとの間に拡径燃焼室を形成させ
て、夫夫のシリンダヘットの略中心には夫夫テーパ縮径
部7を有する縮径主燃焼室を形成させて、夫夫燃料噴射
燃焼が可能に夫夫に燃料噴射手段5を具備して、該燃焼
をNOx大低減燃焼とするための水噴射手段23を夫夫
追加具備して、該縮径主燃焼室及び拡径燃焼室から冷却
損失を排除するため、該縮径主燃焼室及びテーパ縮径部
7及び適宜の凸部24を含めて及び/前記夫夫の縮径ピ
ストン及びテーパ根部2及び適宜の凹部1を含めて、夫
夫を耐熱耐蝕材21及び断熱材22により耐熱耐蝕断熱
構造とします。又、前述のようにエネルギ保存サイクル
機関は短行程機関乃至超短行程機関が好ましいため、圧
縮点火機関とする場合は無駄容積を縮小するため、前記
耐熱耐蝕材21を適宜の弾力性を含めたものにしてもよ
い。夫夫の両頭拡径ピストンの略中央半径方向には、該
往復運動によりクランク軸を回転させるための平行軌道
12・12を夫夫に平行に具備して、該クランク軸に回
転自在に外嵌枢支したクランク軸側カム11・11又は
夫夫のクランク軸側直動軸受9・9を、夫夫の平行軌道
12・12の間に夫夫往復自在に挿入れ維持して、夫夫
の両頭拡径ピストンの対向往復運動により、直接噛み合
い同期手段17を含む夫夫のクランク軸を回転させて回
転動力とする、2サイクルE型エネルギ保存サイクル内
燃機関の第1実施例とします。
Referring to FIG. 9, a first embodiment of the E-type energy storage cycle internal combustion engine will be described. The first embodiment of the D-type energy storage cycle internal combustion engine shown in FIGS. The meshing and synchronizing means 17 synchronizes the opposing reciprocating motions of the double-headed pistons with each other to greatly reduce vibration, thereby enabling an ultra-large E-type energy storage cycle internal combustion engine. It is described as an invention. That is, the respective cylinder heads are fixedly attached to the left and right sides of the respective opposed cylinders and connected to each other, and the inclined scavenging holes 33 and the inclined exhaust holes 34 are appropriately provided near the left and right centers of the respective cylinders. And a large-diameter combustion chamber is formed between the cylinder head fixed to the left and right and the large-diameter piston, and each of the cylinder heads has a tapered diameter-reducing portion 7 substantially at the center thereof. A main combustion chamber is formed, each is provided with a fuel injection means 5 so as to enable fuel injection combustion, and a water injection means 23 for making the combustion a large NOx reduction combustion is additionally provided. The reduced-diameter main combustion chamber and the reduced-diameter piston include the reduced-diameter main combustion chamber and the tapered reduced-diameter portion 7 and an appropriate convex portion 24 in order to eliminate cooling loss from the expanded-diameter combustion chamber. , Including the tapered root 2 and the appropriate recess 1, The timber 22 and the heat-resistant corrosion-resistant thermal insulation structure. As described above, since the energy storage cycle engine is preferably a short-stroke engine or an ultra-short-stroke engine, when the compression ignition engine is used, the heat-resistant and corrosion-resistant material 21 is made to have an appropriate elasticity in order to reduce a waste volume. It may be something. In the approximate center radial direction of each of the double-headed pistons, parallel orbits 12 and 12 for rotating the crankshaft by the reciprocating motion are provided in parallel with each other, and are rotatably fitted to the crankshafts. The pivotally supported crankshaft side cams 11 and the respective crankshaft side linear bearings 9 and 9 are inserted and maintained between the respective parallel orbits 12 and 12 so as to be reciprocally movable. A first embodiment of a two-cycle E-type energy-saving cycle internal combustion engine is provided in which both crankshafts including the direct meshing synchronizing means 17 are rotated by opposing reciprocating motions of double-headed pistons to generate rotational power.

【0015】図10のF型エネルギ保存サイクル内燃機
関の第1実施例を説明すると、図9のE型エネルギ保存
サイクル内燃機関の外側の主要部をそのまま使用して、
両頭拡径ピストンの夫夫の内側を過給ピストン27・2
7として、夫夫リード弁を含む給気弁28及び送気弁2
9を設けてピストン過給機を構成させて、超超高過給を
可能にしたものです。即ち、対向に設けた夫夫の円筒形
のシリンダの左右中央寄りには、夫夫傾斜噴口を形成し
た傾斜掃気穴33及び傾斜排気穴34を互いに反対方向
に傾斜して設けて、左右に固着したシリンダヘッドと両
頭拡径ピストンの夫夫の拡径ピストンとの間に拡径燃焼
室を、夫夫の過給ピストン27・27の間にピストン過
給機を形成させて、シリンダヘッドの略中心には縮径主
燃焼室を夫夫設けて、燃料噴射燃焼が可能に夫夫燃料噴
射手段5を具備して、該燃焼をNOx大低減燃焼とする
ための水噴射手段23を夫夫に追加具備して、該縮径主
燃焼室及び拡径燃焼室から冷却損失を排除するため、該
縮径主燃焼室及びテーパ縮径部7及び適宜の凸部24を
含めておよび/前記縮径ピストン及びテーパ根部2及び
適宜の凹部1を含めて、夫夫を耐熱耐蝕材21及び断熱
材22により耐熱耐蝕断熱構造とし、適宜の凹部1の外
周部は掃気効率の向上を図る傾斜掃気穴33の傾斜に合
わせたテーパ外周部32とします。又、前述のようにエ
ネルギ保存サイクル機関は圧縮比の大上昇が困難な短行
程機関乃至超短行程機関が好ましいため、中央には超高
過給により圧縮比を大上昇可能にするピストン過給機
を、過給ピストン27・27及び給気弁28及び送気弁
29により構成させて、給気弁28をターボ過給機側
に、送気弁29を傾斜掃気穴33に連絡して、圧縮比の
大上昇に移行可能として、夫夫の両頭拡径ピストンの略
中央半径方向には、該対向往復運動によりクランク軸を
回転させる平行軌道12・12を平行に具備して、該ク
ランク軸に回転自在に外嵌枢支したクランク軸側カム1
1又はクランク軸側直動軸受9(スライドウェイを含
む)を平行軌道12・12の間に往復自在に挿入れ維持
して、両頭拡径ピストンの対向往復運動により直接噛み
合い同期手段17を含む夫夫のクランク軸を回転させ
て、回転動力とする2サイクルF型エネルギ保存サイク
ル内燃機関の第1実施例とします。
A first embodiment of the F-type energy storage cycle internal combustion engine shown in FIG. 10 will be described.
Supercharged piston 27.2 inside husband and wife of double-headed enlarged piston
7, the air supply valve 28 including the husband and wife reed valve and the air supply valve 2
The supercharged supercharger is made possible by constructing a piston supercharger with 9 units. In other words, the inclined scavenging holes 33 and the inclined exhaust holes 34, each having an inclined injection port, are provided at the center of the right and left centers of the respective cylindrical cylinders provided opposite to each other, and are inclined in opposite directions to each other and fixed to the left and right. An enlarged combustion chamber is formed between the expanded cylinder head and the enlarged piston of each of the double-head enlarged pistons, and a piston supercharger is formed between the supercharged pistons 27. A reduced-diameter main combustion chamber is provided at each center, and a fuel injection means 5 is provided for enabling fuel injection combustion, and a water injection means 23 for making the combustion NOx large reduction combustion is provided. In addition, to reduce the cooling loss from the reduced diameter main combustion chamber and the expanded diameter combustion chamber, the reduced diameter main combustion chamber and the tapered reduced diameter portion 7 and an appropriate convex portion 24 are included and / or the reduced diameter is reduced. Both the piston and the tapered root 2 and the appropriate recess 1 are heat and corrosion resistant. And heat corrosion heat insulating structure by 21 and the heat insulating member 22, the outer peripheral portion of the appropriate recess 1 is a tapered outer circumferential portion 32 to match the inclination of the inclined scavenging holes 33 to improve the scavenging efficiency. Further, as described above, since the energy saving cycle engine is preferably a short stroke engine or an ultra short stroke engine in which a large increase in the compression ratio is difficult, a piston supercharger that enables a large increase in the compression ratio by an ultra high supercharger is provided in the center. The machine is constituted by the supercharging pistons 27, 27, the air supply valve 28, and the air supply valve 29, the air supply valve 28 is connected to the turbocharger side, and the air supply valve 29 is connected to the inclined scavenging hole 33, In order to be able to shift to a large increase in the compression ratio, parallel orbits 12 and 12 for rotating the crankshaft by the opposed reciprocating motion are provided in parallel in substantially the center radial direction of each of the double-headed enlarged pistons. Crankshaft side cam 1 rotatably fitted to the outside
1 or a crankshaft side linear bearing 9 (including a slide way) is inserted and maintained reciprocally between the parallel raceways 12, 12, and includes a direct meshing synchronization means 17 by the opposed reciprocating motion of the double-head enlarged piston. The first embodiment of a two-cycle F-type energy-storing cycle internal combustion engine that rotates the crankshaft of her husband and uses it as rotational power.

【0016】図11のG型エネルギ保存サイクル内燃機
関の第1実施例を説明すると、図9のE型エネルギ保存
サイクル内燃機関の内側の主要部をそのまま使用して、
対向に設けた夫夫の両頭拡径ピストンの夫夫内側の拡径
ピストンのテーパ外周部32を有する適宜の凹部1の略
中央より、テーパ根部2を有する縮径ピストンを突出し
て、該夫夫の外側を過給ピストン27・27として、該
両頭拡径ピストンがシリンダ内を外死点と内死点との間
で対向往復運動容易として、夫夫の外死点前後に亘っ
て、夫夫通常の排気及び掃気を傾斜掃気穴33及び傾斜
排気穴34により行う、2サイクルG型エネルギ保存サ
イクル機関において、掃気後の圧縮過程に、夫夫テーパ
根部2及び鍔状凹凸6及び先端の幅広凸部の外周に後端
を適宜に残して、運動方向に平行又は斜めに延びる複数
の騒音低減溝15を設けた縮径ピストンにより、夫夫テ
ーパ縮径部7を有する縮径主燃焼室の隔離が始まり、次
いで夫夫の拡径燃焼室で圧縮された空気が、拡径燃焼室
側から挿入れ固着された夫夫の逆止弁3を含む一方向空
気流路4を通って、夫夫複数の斜め空気流路14より縮
径主燃焼室内の斜め横方向に噴射され、夫夫の燃料噴射
手段5から噴射された燃料と撹拌混合して、夫夫の縮径
主燃焼室内定容大接近隔離燃焼として、一定容積以上の
縮径主燃焼室では水噴射手段23の追加を可能にして蒸
気・内燃合体機関とします。夫夫の両頭拡径ピストンが
後退を始めると拡径燃焼室内圧力が低下を始めるため、
夫夫の縮径ピストンの外周に多段に設けた鍔状凹凸6に
より、多段に減圧して燃焼ガスの漏洩量を最適に制定し
ます。更に拡径ピストンが夫夫後退すると縮径主燃焼室
内隔離燃焼解除しますが、先ず夫夫の縮径ピストンの騒
音低減溝15により燃焼ガスの噴射方向を制定すると共
に、騒音の低減を図り、次に夫夫のテーパ縮径部7が末
広ノズルを構成して、燃焼ガスを夫夫の適宜の凹部1に
正確に高速噴射して回転力の大増大を図る一方で、高速
噴射の過程で大圧力差による高速噴射撹拌燃焼として未
燃分の再度皆無を図ると共に、夫夫の拡径ピストンを速
度形質量エネルギ+容積形エネルギにより、衝動+反動
+圧力により強力に後退させて、大回転力を発生させ
て、熱効率の大上昇と公害の大低減を図り、夫夫通常の
排気及び掃気に移行しますが、傾斜掃気穴33がテーパ
外周部32のテーパ角度に合わせて傾斜していて、掃気
を適宜の凹部1の底面に噴射し、傾斜排気穴34は主と
して該逆方向傾斜として掃気効率の上昇を図る、対向往
復運動2サイクルG型エネルギ保存サイクル内燃機関の
第1実施例とします。
A first embodiment of the G-type energy storage cycle internal combustion engine shown in FIG. 11 will be described. The main part inside the E-type energy storage cycle internal combustion engine shown in FIG.
A reduced-diameter piston having a tapered root portion 2 protrudes from substantially the center of an appropriate concave portion 1 having a tapered outer peripheral portion 32 of a radially enlarged piston inside each of the opposed double-headed radially enlarged pistons. The outer side of the cylinder is a supercharging piston 27, and the double-headed enlarged piston facilitates opposing reciprocating movement between the outer dead center and the inner dead center in the cylinder. In a two-cycle G-type energy storage cycle engine in which normal exhaust and scavenging are performed by the inclined scavenging holes 33 and the inclined exhaust holes 34, in the compression process after scavenging, the tapered root portion 2 and the flange-shaped unevenness 6 and the wide convex portion at the tip are respectively provided during the compression process after scavenging. Isolation of the reduced-diameter main combustion chamber, each having a tapered reduced-diameter portion 7, by a reduced-diameter piston provided with a plurality of noise reduction grooves 15 extending parallel or oblique to the direction of movement while appropriately leaving a rear end on the outer periphery of the portion. Begins, then husband and wife expand combustion The compressed air passes through the one-way air flow path 4 including the respective check valves 3 inserted and fixed from the expanded-diameter combustion chamber side, and is reduced in diameter by the plurality of oblique air flow paths 14. The fuel is injected obliquely laterally in the combustion chamber, mixed with the fuel injected from the respective fuel injection means 5 and mixed with the fuel in the reduced-diameter main combustion chamber to achieve a constant-volume, close-separation combustion of a predetermined volume or more. In the main combustion chamber, it is possible to add a water injection means 23 to use a steam-internal combustion engine. When the husband and wife's double-headed expanding piston starts to retract, the pressure in the expanding combustion chamber begins to decrease,
Multi-stage flanges 6 provided on the outer circumference of each of the reduced-diameter pistons reduce pressure in multiple stages to optimize the amount of combustion gas leakage. When the diameter-expanding piston retreats further, the isolated combustion is released from the reduced-diameter main combustion chamber. First, the combustion gas injection direction is established by the noise reduction groove 15 of each diameter-reduced piston, and noise is reduced. Next, each of the tapered diameter reducing portions 7 constitutes a divergent nozzle, and the combustion gas is accurately injected at a high speed into each of the appropriate concave portions 1 to achieve a large increase in the rotational force. The high-pressure injection agitation combustion due to the large pressure difference aims to eliminate the unburned portion again, and at the same time, the large diameter piston is strongly retracted by the impulse + reaction + pressure by the speed type mass energy + volume type energy, and the large torque To achieve a large increase in thermal efficiency and a large reduction in pollution, and each shifts to normal exhaust and scavenging, but the inclined scavenging holes 33 are inclined according to the taper angle of the tapered outer peripheral part 32, Inject scavenging gas into the bottom of the appropriate recess 1 And, tilting the exhaust hole 34 is achieved an increase in scavenging efficiency primarily as the reverse direction inclined to the first embodiment of facing reciprocating two cycle G type energy storage cycle internal combustion engine.

【0017】図11を参照して別の説明をすると、夫夫
のシリンダを内側シリンダヘッドにより対向に連結し
て、噛合い同期手段17により夫夫の両頭拡径ピストン
の対向往復運動を同期させて振動を大低減して、可変圧
縮比を大上昇可能な超大型のG型エネルギ保存サイクル
内燃機関を可能にするものです。即ち、対向に設けた夫
夫のシリンダの左右に夫夫シリンダヘッドを固着して対
向に連結し、該夫夫のシリンダの内側中央寄りには、夫
夫掃気効率上昇を図るテーパ外周部32を設けて掃気を
適宜の凹部1の底面に噴射する傾斜掃気穴33及び該逆
方向に傾斜した傾斜排気穴34を適宜に設けて、夫夫左
右に固着したシリンダヘッドと両頭拡径ピストンとの間
の内側に拡径燃焼室を、外側にはピストン過給機を夫夫
形成させて、夫夫の内側シリンダヘッドの略中心には夫
夫縮径主燃焼室を形成連通させて、夫夫の外側シリンダ
ヘッドにリード弁を含む給気弁28及び送気弁29を設
けて、夫夫図外のターボ過給機側よりピストン過給機に
給気が可能に給気弁28、及び傾斜掃気穴33に送気が
可能に送気弁29を連絡し、夫夫燃料噴射燃焼が可能に
夫夫の縮径主燃焼室に燃料噴射手段5を具備して、該燃
焼をNOx大低減燃焼とするための水噴射手段23を夫
夫追加具備可能として、該縮径主燃焼室及び拡径燃焼室
から冷却損失を排除するため、該縮径主燃焼室及びテー
パ縮径部7及び適宜の凸部24を含めて及び/前記夫夫
の縮径ピストン及びテーパ根部2及び適宜の凹部1を含
めて夫夫を耐熱耐蝕材21及び断熱材22により耐熱耐
蝕断熱構造とします。又、前述のようにエネルギ保存サ
イクル機関は短行程機関乃至超短行程機関が好ましいの
ですが、超短行程機関にすると圧縮比の大上昇が困難な
ため、前記ピストン過給機によりターボ過給機を含めて
超高過給を可能にするものです。夫夫の両頭拡径ピスト
ンの外側略中央半径方向には、該往復運動によりクラン
ク軸を回転させるための平行軌道12・12を夫夫に平
行に具備して、該クランク軸に回転自在に外嵌枢支した
クランク軸側カム11・11又はクランク軸側直動軸受
9・9を、夫夫の平行軌道12・12の間に夫夫往復自
在に挿入れ維持して、夫夫の両頭拡径ピストンの対向往
復運動により、噛み合い同期手段17を含む夫夫のクラ
ンク軸を直接回転させて回転動力とする、2サイクルG
型エネルギ保存サイクル内燃機関の第1実施例としま
す。
Another explanation will be given with reference to FIG. 11. The respective cylinders are opposed to each other by an inner cylinder head, and the opposed reciprocating motions of the two-headed enlarged pistons are synchronized by the meshing synchronization means 17. This enables a very large G-type energy conservation cycle internal combustion engine that can greatly reduce vibration and greatly increase the variable compression ratio. That is, the respective cylinder heads are fixedly attached to the left and right sides of the respective opposed cylinders and connected in opposition, and tapered outer peripheral portions 32 for increasing the scavenging efficiency are provided near the inner center of the respective cylinders. An inclined scavenging hole 33 for injecting scavenging gas to the bottom surface of the appropriate concave portion 1 and an inclined exhaust hole 34 inclined in the opposite direction are appropriately provided to provide a clearance between the cylinder head fixed to the left and right and the double-headed enlarged piston. The inner combustion head is formed inside and the piston supercharger is formed outside, and the reduced diameter main combustion chamber is formed and communicated at the approximate center of each inner cylinder head. The outer cylinder head is provided with an air supply valve 28 including a reed valve and an air supply valve 29 so that air can be supplied to the piston supercharger from a turbocharger side (not shown). The air supply valve 29 is connected so that air can be supplied to the hole 33, and fuel injection and combustion can be performed. The fuel injection means 5 is provided in each of the reduced diameter main combustion chambers, and the water injection means 23 for making the combustion NOx large reduction combustion can be additionally provided. In order to eliminate cooling loss from the radial combustion chamber, the diameter-reduced main combustion chamber and the tapered diameter-reduced portion 7 and the appropriate convex portion 24 are included and / or the diameter-reduced piston and the tapered root portion 2 and the appropriate concave portion 1 are included. The heat-resistant, corrosion-resistant and heat-insulating material 21 and the heat-insulating material 22 are used for the husband and wife. Also, as described above, the energy saving cycle engine is preferably a short-stroke engine or an ultra-short-stroke engine, but it is difficult to greatly increase the compression ratio with an ultra-short-stroke engine. It enables super-high supercharging including machines. In the radial direction approximately at the center of the outside of each of the double-headed enlarged pistons, parallel orbits 12 and 12 for rotating the crankshaft by the reciprocating motion are provided in parallel with each other so as to be rotatably mounted on the crankshaft. The crankshaft-side cams 11, 11 or the crankshaft-side linear motion bearings 9, 9, which are fitted and supported, are inserted and maintained between the respective parallel orbits 12, 12 so as to freely reciprocate. The two-cycle G is obtained by directly rotating the respective crankshafts including the meshing and synchronizing means 17 by the reciprocating motion of the radial pistons to generate rotational power.
Example of the first type of energy saving cycle internal combustion engine.

【0018】図12の第1の実施形態は、各種エネルギ
保存サイクル内燃機関により、図3・図4の着磁摩擦車
乃至着磁摩擦車装置を含む各種磁気摩擦動力伝達装置又
は、公知の各種動力伝達装置を介して、舶用各種推進装
置例えば、スクリュウプロペラ又は、空中プロペラ又
は、ウォータージェットポンプ又は、シュナイダープロ
ペラ又は、ノズルプロペラを駆動して、水を噴射移動し
て、各種船舶の駆動に利用します。図13の第2の実施
形態は、各種エネルギ保存サイクル内燃機関により、図
3・図4の着磁摩擦車乃至着磁摩擦車装置を含む各種磁
気摩擦動力伝達装置又は、公知の各種動力伝達装置を介
して、各種車両駆動装置を回転させて、各種車両の駆動
に利用します。図14の第3の実施形態は、各種エネル
ギ保存サイクル内燃機関により、図3・図4の着磁摩擦
車乃至着磁摩擦車装置を含む各種磁気摩擦動力伝達装置
又は、公知の各種動力伝達装置を介して、発電機を回転
して、熱と電気の併給に利用します。図15の第4の実
施形態は、各種エネルギ保存サイクル内燃機関により、
図3・図4の着磁摩擦車乃至着磁摩擦車装置を含む各種
磁気摩擦動力伝達装置又は、公知の各種動力伝達装置を
回転させて、各種農業機械の駆動に利用します。図16
の第5の実施形態は、各種エネルギ保存サイクル内燃機
関により、図3・図4の着磁摩擦車乃至着磁摩擦車装置
を含む各種磁気摩擦動力伝達装置又は、公知の各種動力
伝達装置を回転させて、各種機械の駆動に利用します。
The first embodiment shown in FIG. 12 uses various types of energy-storing cycle internal combustion engines to generate various types of magnetic friction power transmission devices including the magnetized friction wheel or the magnetized friction wheel device shown in FIGS. Through a power transmission device, various marine propulsion devices, for example, screw propellers, air propellers, water jet pumps, Schneider propellers, or nozzle propellers are driven to jet water to drive various boats. To do. A second embodiment shown in FIG. 13 uses various energy-storing cycle internal combustion engines to perform various types of magnetic friction power transmission devices including the magnetized friction wheel or the magnetized friction wheel device of FIGS. 3 and 4 or various known power transmission devices. The various vehicle drive devices are rotated via the, and are used to drive various vehicles. In the third embodiment shown in FIG. 14, various types of magnetic friction power transmission devices including the magnetized friction wheels or the magnetized friction wheel devices of FIGS. The generator is rotated through and used for combined heat and electricity. The fourth embodiment of FIG. 15 uses various energy storage cycle internal combustion engines,
Various magnetic friction power transmission devices including the magnetized friction wheel or the magnetized friction wheel device of FIGS. 3 and 4 or various known power transmission devices are rotated and used for driving various agricultural machines. FIG.
In the fifth embodiment, various kinds of magnetic friction power transmission devices including the magnetized friction wheel or the magnetized friction wheel device of FIGS. 3 and 4 or various known power transmission devices are rotated by various energy storage cycle internal combustion engines. Then use it to drive various machines.

【0019】[0019]

【発明の効果】一方向空気流路を設けて隔離燃焼とする
ことにより、例えば5分の1に縮径した縮径主燃焼室内
定容大接近隔離燃焼にする、各種エネルギ保存サイクル
内燃機関により、あらゆる機械を駆動すると、 (1)隔離期間中の撹拌燃焼を従来技術の25倍も定容
燃焼に近づけられるため、NOxや未燃分を皆無にする
ための水噴射を含む各種燃焼法により、特に自動車公害
を大低減可能にする大きな効果があります。 (2)高圧燃焼室を小径円筒型として、容易に断熱無冷
却高温燃焼として、水噴射を追加した蒸気・内燃合体機
関が可能になり、NOxや未燃分を皆無に近づけられる
のに加えて、圧縮容易な水により速度形質量エネルギの
大増大及び/540カロリーの気化潜熱により1700
倍(大気圧)に大増大する容積形速度エネルギの大増大
によりCOを低減する大きな効果があります。 (3)隔離燃焼解除時に高圧の燃焼ガス噴流を、拡径ピ
ストンの頂部に噴射して回転力を大増大する一方で、大
圧力差による高速噴射撹拌燃焼により未燃分を再度皆無
に近づけるためCOを含む公害の低減に大きな効果が
あります。 (4)最大燃焼圧力及び最大摩擦圧力及び異状燃焼の影
響が25分の1になる一方で振動が低減するのに加え
て、従来技術の最大軸受荷重も25分の1になるため、
最大軸受荷重が最大燃焼圧力から最大圧縮圧力に大低減
するため、最大燃焼圧力を大上昇してCOを大低減す
るために大きな効果があります。 (5)高圧燃焼室が5分の1に縮径した隔離燃焼となる
ため、縮径主燃焼室の肉厚を略5分の1に薄肉軽量化し
た高圧燃焼室とする一方で、拡径燃焼室が大幅に低圧低
温の薄肉燃焼室となるため、出力当たりの比重量を従来
の軽量化技術より更に大幅に軽量化できる大きな効果が
あります。 (6)本発明は燃焼法の大改善及び回転力の大増大及び
出力当たりの比重量の大低減を図る発明であるため、燃
料の種類及び点火方式及びサイクル数及び掃気方式及び
機関の型式を問わずに、COを含む公害の大低減を図
るために大きな効果があります。 (7)本発明には、両頭拡径ピストンの往復運動により
直接クランク軸を回転して回転動力とする構成を含むた
め、部品数を大低減して構造を簡単にすると共に、小型
軽量大出力低燃費にする大きな効果があります。
According to various energy storage cycle internal combustion engines, by providing a one-way air flow path and performing isolated combustion, for example, to perform constant-close large-capacity isolated combustion in a reduced diameter main combustion chamber whose diameter is reduced to one fifth. When all machines are driven, (1) Since the agitation combustion during the isolation period can be made 25 times closer to the constant volume combustion than the conventional technology, various combustion methods including water injection for eliminating NOx and unburned components are used. In particular, it has a great effect that can greatly reduce automobile pollution. (2) A small-diameter cylindrical high-pressure combustion chamber makes it easy to perform adiabatic non-cooled high-temperature combustion, enabling a steam-internal-combined engine with water injection added. A large increase in velocity type mass energy with water that is easy to compress and 1700 with latent heat of vaporization of / 540 calories
Times by the large increase in volume-type speed energy which large increases (atmospheric pressure) there is a large effect of reducing the CO 2. (3) In order to greatly increase the rotational force by injecting a high-pressure combustion gas jet to the top of the diameter-expanding piston when the isolated combustion is released, to reduce the unburned portion to zero again by high-speed injection stirring combustion due to the large pressure difference. It has a great effect on reducing pollution including CO 2 . (4) In addition to reducing vibration while reducing the effect of maximum combustion pressure and friction pressure and abnormal combustion by a factor of 25, the maximum bearing load of the prior art is also reduced by a factor of 25.
Since the maximum bearing load is large reduction in the maximum compression pressure from the maximum combustion pressure and a large effect to a large reduction of CO 2 and atmospheric increase the maximum combustion pressure. (5) Since the high-pressure combustion chamber performs isolated combustion with a diameter reduced to one-fifth, the diameter of the reduced-diameter main combustion chamber is reduced to approximately one-fifth and the thickness is reduced while the high-pressure combustion chamber is reduced in thickness. Since the combustion chamber is a low-pressure, low-temperature, thin-walled combustion chamber, the specific weight per output has a great effect that it can be much more reduced than conventional lightweight technologies. (6) Since the present invention aims to greatly improve the combustion method, greatly increase the rotational force, and greatly reduce the specific weight per output, the type of fuel, the ignition method, the number of cycles, the scavenging method, and the model of the engine are changed. Regardless, it has a great effect to greatly reduce pollution including CO 2 . (7) The present invention includes a configuration in which the crankshaft is directly rotated by the reciprocating motion of the double-ended piston to generate rotational power, so that the number of parts is greatly reduced, the structure is simplified, and the size, weight and output are reduced. It has a great effect on low fuel consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】A型エネルギ保存サイクル内燃機関の実施例を
従来技術と比較して説明するための一部断面図。
FIG. 1 is a partial cross-sectional view for explaining an embodiment of an A-type energy storage cycle internal combustion engine in comparison with a conventional technique.

【図2】各種エネルギ保存サイクル内燃機関のクランク
角度に対する燃焼圧力の変化を従来技術と比較説明する
ための概略グラフである。
FIG. 2 is a schematic graph for comparing a change in combustion pressure with respect to a crank angle of a various energy storage cycle internal combustion engine with a conventional technique.

【図3】本発明で利用する着磁摩擦車の3例を示す概略
図。
FIG. 3 is a schematic diagram showing three examples of a magnetized friction wheel used in the present invention.

【図4】本発明で利用する着磁摩擦車装置の1例を示す
概略図。
FIG. 4 is a schematic view showing an example of a magnetized friction wheel device used in the present invention.

【図5】本発明で利用するB型エネルギ保存サイクル内
燃機関の一部断面図。
FIG. 5 is a partial sectional view of a B-type energy storage cycle internal combustion engine used in the present invention.

【図6】本発明で利用するC型エネルギ保存サイクル内
燃機関の一部断面図。
FIG. 6 is a partial sectional view of a C-type energy storage cycle internal combustion engine used in the present invention.

【図7】本発明で利用するD型エネルギ保存サイクル内
燃機関の一部断面図。
FIG. 7 is a partial sectional view of a D-type energy storage cycle internal combustion engine used in the present invention.

【図8】本発明で利用するD型エネルギ保存サイクル内
燃機関の平面の一部断面図。
FIG. 8 is a partial cross-sectional plan view of a D-type energy storage cycle internal combustion engine used in the present invention.

【図9】本発明で利用するE型エネルギ保存サイクル内
燃機関の一部断面図。
FIG. 9 is a partial sectional view of an E-type energy storage cycle internal combustion engine used in the present invention.

【図10】本発明で利用するF型エネルギ保存サイクル
内燃機関の一部断面図。
FIG. 10 is a partial sectional view of an F-type energy storage cycle internal combustion engine used in the present invention.

【図11】本発明で利用するG型エネルギ保存サイクル
内燃機関の一部断面図。
FIG. 11 is a partial sectional view of a G-type energy storage cycle internal combustion engine used in the present invention.

【図12】本発明の第1の実施形態を示す全体構成図。FIG. 12 is an overall configuration diagram showing the first embodiment of the present invention.

【図13】本発明の第2の実施形態を示す全体構成図。FIG. 13 is an overall configuration diagram showing a second embodiment of the present invention.

【図14】本発明の第3の実施形態を示す全体構成図。FIG. 14 is an overall configuration diagram showing a third embodiment of the present invention.

【図15】本発明の第4の実施形態を示す全体構成図。FIG. 15 is an overall configuration diagram showing a fourth embodiment of the present invention.

【図16】本発明の第5の実施形態を示す全体構成図。FIG. 16 is an overall configuration diagram showing a fifth embodiment of the present invention.

【符号の説明】 1:適宜の凹部 2:テーパ根部 3:逆止弁
4:一方向空気流路 5:燃料噴射手段 6:鍔状凹凸 7:テーパ縮径
部 8:ピストン穴 9:クランク軸側直動軸受 10:振り子側カム
11:クランク軸側カム 12:平行軌道 13:
本体側 14:斜め空気流路 15:騒音低減溝
16:シリンダ穴 17:噛み合い同期手段 1
8:排気部熱交換手段 19:縮径部熱交換手段
20:燃焼部熱交換手段 21:耐熱耐蝕材 2
2:断熱材 23:水噴射手段 24:適宜の凸部
27:過給ピストン 28:給気弁 29:送
気弁 30:軸受ユニット 31:振り子側平行軌道 32:テーパ外周部 3
3:傾斜掃気穴 34:傾斜排気穴 35:平行軌
道組立穴 36:振り子側直動軸受
[Description of Signs] 1: Appropriate recess 2: Tapered root 3: Check valve
4: One-way air flow path 5: Fuel injection means 6: Collar-like unevenness 7: Tapered reduced diameter portion 8: Piston hole 9: Crankshaft side linear bearing 10: Pendulum side cam
11: Crankshaft side cam 12: Parallel track 13:
Main unit side 14: Diagonal air flow path 15: Noise reduction groove
16: Cylinder hole 17: Meshing synchronization means 1
8: Exhaust part heat exchange means 19: Reduced diameter part heat exchange means
20: Combustion section heat exchange means 21: Heat and corrosion resistant material 2
2: Insulation material 23: Water injection means 24: Appropriate projection 27: Supercharging piston 28: Air supply valve 29: Air supply valve 30: Bearing unit 31: Pendulum side parallel orbit 32: Tapered outer periphery 3
3: Inclined scavenging hole 34: Inclined exhaust hole 35: Parallel track assembly hole 36: Pendulum side linear motion bearing

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02F 3/00 F02F 3/00 E 3/28 3/28 Z F02M 25/022 F16J 1/00 F16J 1/00 F02M 25/02 H Continued on the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location F02F 3/00 F02F 3/00 E 3/28 3/28 Z F02M 25/022 F16J 1/00 F16J 1/00 F02M 25/02 H

Claims (85)

【特許請求の範囲】[Claims] 【請求項1】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径された縮径ピストンを、テー
パ外周部(32)を有する適宜の凹部(1)の略中央よ
り突出した拡径ピストンの、上死点前後の所定期間に亘
って、縮径主燃焼室と拡径燃焼室を連通して、該縮径主
燃焼室に向かう流れだけを可能にした一方向空気流路を
設けて、該縮径主燃焼室内隔離燃焼させるA型エネルギ
保存サイクル機関に、動力伝達装置を設けて船舶を駆動
させる方法。
1. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, an appropriately reduced diameter piston has a tapered outer peripheral portion (32). For a predetermined period before and after the top dead center of the expanded piston protruding from the approximate center of the appropriate concave portion (1), the reduced-diameter main combustion chamber communicates with the expanded-diameter combustion chamber for a predetermined period. A method in which a power transmission device is provided in an A-type energy storage cycle engine that provides a one-way air flow path that allows only a heading flow and performs isolated combustion in the reduced-diameter main combustion chamber to drive a ship.
【請求項2】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径された縮径ピストンを、テー
パ外周部(32)を有する適宜の凹部(1)の略中央よ
り突出した拡径ピストンの上死点前後の所定期間に亘っ
て、縮径主燃焼室と拡径燃焼を連通して、該縮径主燃焼
室に向かう流れだけを可能にした一方向空気流路を設け
て、該縮径主燃焼室内隔離燃焼させるA型エネルギ保存
サイクル機関に、動力伝達装置を設けて車両を駆動させ
る方法。
2. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein a diameter-reducing piston appropriately reduced in the heating step has a tapered outer peripheral portion (32). Flow toward the reduced-diameter main combustion chamber through the reduced-diameter main combustion chamber and the expanded-diameter combustion for a predetermined period before and after the top dead center of the expanded piston protruding from the approximate center of the appropriate concave portion (1). A method for driving a vehicle by providing a power transmission device in an A-type energy storage cycle engine that provides a one-way air flow path that enables only the air flow and performs isolated combustion in the reduced diameter main combustion chamber.
【請求項3】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって該加熱過
程において、適宜に縮径された縮径ピストンを、テーパ
外周部(32)を有する適宜の凹部(1)の略中央より
突出した拡径ピストンの、上死点前後の所定期間に亘っ
て、縮径主燃焼室と拡径燃焼室を連通して、該縮径主燃
焼室に向かう流れだけを可能にした一方向空気流路を設
けて、該縮径主燃焼室内隔離燃焼させるA型エネルギ保
存サイクル機関に、動力伝達装置を設けて発電機を駆動
させる方法。
3. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step. In the heating step, a diameter-reduced piston having an appropriately reduced diameter has a tapered outer peripheral portion (32). The enlarged piston protruding from the approximate center of the concave portion (1) communicates between the reduced diameter main combustion chamber and the expanded diameter combustion chamber for a predetermined period before and after top dead center, and heads toward the reduced diameter main combustion chamber. A method in which a power transmission device is provided to drive a generator in an A-type energy storage cycle engine in which a unidirectional air flow path allowing only flow is provided and the isolated main combustion chamber in which combustion is performed is performed.
【請求項4】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径された縮径ピストンを、テー
パ外周部(32)を有する適宜の凹部(1)の略中央よ
り突出した拡径ピストンの、上死点前後の所定期間に亘
って縮径主燃焼室と拡径燃焼室を連通して、該縮径主燃
焼室に向かう流れだけを可能にした一方向空気流路を設
けて、該縮径主燃焼室内隔離燃焼させるA型エネルギ保
存サイクル機関に、動力伝達装置を設けて農業機械を駆
動させる方法。
4. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein a diameter-reducing piston appropriately reduced in the heating step has a tapered outer peripheral portion (32). The enlarged piston protruding from the approximate center of the appropriate recess (1) communicates with the reduced-diameter main combustion chamber and the expanded-diameter combustion chamber for a predetermined period before and after top dead center, and heads toward the reduced-diameter main combustion chamber. A method of providing a one-way air flow path that allows only flow and providing a power transmission device to an A-type energy storage cycle engine that performs isolated combustion in the reduced diameter main combustion chamber to drive an agricultural machine.
【請求項5】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、適宜に縮径された縮径ピストンを、テー
パ外周部(32)を有する適宜の凹部(1)の略中央よ
り突出した拡径ピストンの、上死点前後の所定期間に亘
って、縮径主燃焼室と拡径燃焼室を連通して、該縮径主
燃焼室に向かう流れだけを可能にした一方向空気流路を
設けて、該縮径主燃焼室内隔離燃焼させるA型エネルギ
保存サイクル機関に、動力伝達装置を設けて各種機械を
駆動させる方法。
5. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an evacuation step, wherein in the heating step, a suitably reduced diameter piston has a tapered outer peripheral portion (32). For a predetermined period before and after the top dead center of the expanded piston protruding from the approximate center of the appropriate concave portion (1), the reduced-diameter main combustion chamber communicates with the expanded-diameter combustion chamber for a predetermined period. A method of driving a variety of machines by providing a power transmission device in an A-type energy storage cycle engine that provides a one-way air flow path that allows only a heading flow and performs isolated combustion in the reduced diameter main combustion chamber.
【請求項6】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、夫夫適宜に縮径された縮径ピストンを、
テーパ外周部(32)を有する適宜の凹部(1)の略中
央より突出した両頭拡径ピストンの、左側死点前後の所
定期間に亘って及び/右側死点前後の所定期間に亘っ
て、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮径
主燃焼室に向かう流れだけを可能にした一方向空気流路
を夫夫に設けて、夫夫該縮径主燃焼室内隔離燃焼させる
B型エネルギ保存サイクル機関に、動力伝達装置を設け
て船舶を駆動させる方法。
6. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reduced piston, each of which is appropriately reduced, is used.
The double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a tapered outer peripheral portion (32) over a predetermined period before and after a left dead center and / or over a predetermined period before and after a right dead center. The reduced-diameter main combustion chamber and the expanded-diameter combustion chamber communicate with each other, and a unidirectional air flow path is provided for each of them, which allows only the flow toward the reduced-diameter main combustion chamber. A method for driving a ship by providing a power transmission device in a B-type energy storage cycle engine that performs isolated combustion.
【請求項7】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、夫夫適宜に縮径された縮径ピストンを、
テーパ外周部(32)を有する適宜の凹部(1)の略中
央より突出した両頭拡径ピストンの、左側死点前後の所
定期間に亘って及び/右側死点前後の所定期間に亘っ
て、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮径
主燃焼室に向かう流れだけを可能にした一方向空気流路
を夫夫に設けて、夫夫該縮径主燃焼室内隔離燃焼させる
B型エネルギ保存サイクル機関に、動力伝達装置を設け
て車両を駆動させる方法。
7. A reciprocating piston cycle comprising a compression process, a heating process, an expansion process, and an exhaust process, wherein in the heating process, a diameter-reduced piston, each of which is appropriately reduced in diameter, is provided.
The double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a tapered outer peripheral portion (32) over a predetermined period before and after a left dead center and / or over a predetermined period before and after a right dead center. The reduced-diameter main combustion chamber and the expanded-diameter combustion chamber communicate with each other, and a unidirectional air flow path is provided for each of them, which allows only the flow toward the reduced-diameter main combustion chamber. A method of driving a vehicle by providing a power transmission device in a B-type energy storage cycle engine that performs isolated combustion.
【請求項8】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、夫夫適宜に縮径された縮径ピストンを、
テーパ外周部(32)を有する適宜の凹部(1)の略中
央より突出した両頭拡径ピストンの、左側死点前後の所
定期間に亘って及び/右側死点前後の所定期間に亘っ
て、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮径
主燃焼室に向かう流れだけを可能にした一方向空気流路
を夫夫に設けて、夫夫該縮径主燃焼室内隔離燃焼させる
B型エネルギ保存サイクル機関に、動力伝達装置を設け
て発電機を駆動させる方法。
8. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston which is appropriately reduced in diameter is used.
The double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a tapered outer peripheral portion (32) over a predetermined period before and after a left dead center and / or over a predetermined period before and after a right dead center. The reduced-diameter main combustion chamber and the expanded-diameter combustion chamber communicate with each other, and a unidirectional air flow path is provided for each of them, which allows only the flow toward the reduced-diameter main combustion chamber. A method for driving a generator by providing a power transmission device in a B-type energy storage cycle engine that performs isolated combustion.
【請求項9】 圧縮過程、加熱過程、膨張過程、排気過
程からなる往復運動ピストンサイクルであって、該加熱
過程において、夫夫適宜に縮径された縮径ピストンを、
テーパ外周部(32)を有する適宜の凹部(1)の略中
央より突出した両頭拡径ピストンの、左側死点前後の所
定期間に亘って及び/右側死点前後の所定期間に亘っ
て、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮径
主燃焼室に向かう流れだけを可能にした一方向空気流路
を夫夫に設けて、夫夫該縮径主燃焼室内隔離燃焼させる
B型エネルギ保存サイクル機関に、動力伝達装置を設け
て農業機械を駆動させる方法。
9. A reciprocating piston cycle including a compression process, a heating process, an expansion process, and an exhaust process, wherein in the heating process, a diameter-reduced piston, which is appropriately reduced in diameter, is used.
The double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a tapered outer peripheral portion (32) over a predetermined period before and after a left dead center and / or over a predetermined period before and after a right dead center. The reduced-diameter main combustion chamber and the expanded-diameter combustion chamber communicate with each other, and a unidirectional air flow path is provided for each of them, which allows only the flow toward the reduced-diameter main combustion chamber. A method for driving an agricultural machine by providing a power transmission device in a B-type energy storage cycle engine that performs isolated combustion.
【請求項10】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、夫夫適宜に縮径された縮径ピストン
を、テーパ外周部(32)を有する適宜の凹部(1)の
略中央より突出した両頭拡径ピストンの、左側死点前後
の所定期間に亘って及び/右側死点前後の所定期間に亘
って、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮
径主燃焼室に向かう流れだけを可能にした一方向空気流
路を夫夫に設けて、夫夫該縮径主燃焼室内隔離燃焼させ
るB型エネルギ保存サイクル機関に、動力伝達装置を設
けて各種機械を駆動させる方法。
10. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reduced piston, which is appropriately reduced in diameter, is connected to a tapered outer peripheral portion (32). The diameter of the main combustion chamber is reduced over a predetermined period before and after the left dead center and / or over a predetermined period before and after the right dead center of the double-headed enlarged piston protruding from the approximate center of the appropriate concave portion (1). B-type energies, each of which is provided with a one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber and communicates with the expanded-diameter combustion chamber, and performs isolated combustion in the reduced-diameter main combustion chamber, respectively. A method for driving various machines by providing a power transmission device in a storage cycle engine.
【請求項11】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、夫夫該縮径主燃焼室内隔
離燃焼させるC型エネルギ保存サイクル機関に、動力伝
達装置を設けて船舶を駆動させる方法。
11. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided for each of the diameter main combustion chambers and the expanded diameter combustion chambers, and allows only the flow toward the reduced diameter main combustion chambers. A method for driving a ship by providing a power transmission device in a C-type energy storage cycle engine to be driven.
【請求項12】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、夫夫該縮径主燃焼室内隔
離燃焼させるC型エネルギ保存サイクル機関に、動力伝
達装置を設けて車両を駆動させる方法。
12. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is formed into a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided for each of the diameter main combustion chambers and the expanded diameter combustion chambers, and allows only the flow toward the reduced diameter main combustion chambers. A method for driving a vehicle by providing a power transmission device in a C-type energy storage cycle engine to be driven.
【請求項13】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、夫夫該縮径主燃焼室内隔
離燃焼させるC型エネルギ保存サイクル機関に、動力伝
達装置を設けて発電機を駆動させる方法。
13. A reciprocating piston cycle comprising a compression process, a heating process, an expansion process, and an exhaust process, wherein in the heating process, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is formed by a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided for each of the diameter main combustion chambers and the expanded diameter combustion chambers, and allows only the flow toward the reduced diameter main combustion chambers. A method of driving a generator by providing a power transmission device in a C-type energy storage cycle engine to be driven.
【請求項14】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、夫夫該縮径主燃焼室内隔
離燃焼させるC型エネルギ保存サイクル機関に、動力伝
達装置を設けて農業機械を駆動させる方法。
14. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reducing piston, which is provided to face each other and appropriately reduced in diameter, is connected to a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided for each of the diameter main combustion chambers and the expanded diameter combustion chambers, and allows only the flow toward the reduced diameter main combustion chambers. A method for driving an agricultural machine by providing a power transmission device in a C-type energy storage cycle engine to be driven.
【請求項15】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、夫夫該縮径主燃焼室内隔
離燃焼させるC型エネルギ保存サイクル機関に、動力伝
達装置を設けて各種機械を駆動させる方法。
15. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided for each of the diameter main combustion chambers and the expanded diameter combustion chambers, and allows only the flow toward the reduced diameter main combustion chambers. A method for driving various machines by providing a power transmission device in a C-type energy storage cycle engine to be operated.
【請求項16】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、夫夫適宜に縮径された縮径ピストン
を、テーパ外周部(32)を有する適宜の凹部(1)の
略中央より突出した両頭拡径ピストンの、左側死点前後
の所定期間に亘って及び/右側死点前後の所定期間に亘
って、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮
径主燃焼室に向かう流れだけを可能にした一方向空気流
路を夫夫に設けて、該夫夫の縮径主燃焼室内隔離燃焼さ
せるD型エネルギ保存サイクル機関に、動力伝達装置を
設けて船舶を駆動させる方法。
16. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reduced piston, which is appropriately reduced in diameter, is connected to a tapered outer peripheral portion (32). The diameter of the main combustion chamber is reduced over a predetermined period before and after the left dead center and / or over a predetermined period before and after the right dead center of the double-headed enlarged piston protruding from the approximate center of the appropriate concave portion (1). A one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber by communicating with the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chambers A method for driving a ship by providing a power transmission device in an energy conservation cycle engine.
【請求項17】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、夫夫適宜に縮径された縮径ピストン
を、テーパ外周部(32)を有する適宜の凹部(1)の
略中央より突出した両頭拡径ピストンの、左側死点前後
の所定期間に亘って及び/右側死点前後の所定期間に亘
って、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮
径主燃焼室に向かう流れだけを可能にした一方向空気流
路を夫夫に設けて、該夫夫の縮径主燃焼室内隔離燃焼さ
せるD型エネルギ保存サイクル機関に、動力伝達装置を
設けて車両を駆動させる方法。
17. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein, in the heating step, a diameter-reduced piston which is appropriately reduced in diameter is connected to a tapered outer peripheral portion (32). The diameter of the main combustion chamber is reduced over a predetermined period before and after the left dead center and / or over a predetermined period before and after the right dead center of the double-headed enlarged piston protruding from the approximate center of the appropriate concave portion (1). A one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber by communicating with the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chambers A method for driving a vehicle by providing a power transmission device in an energy conservation cycle engine.
【請求項18】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、夫夫適宜に縮径された縮径ピストン
を、テーパ外周部(32)を有する適宜の凹部(1)の
略中央より突出した両頭拡径ピストンの、左側死点前後
の所定期間に亘って及び/右側死点前後の所定期間に亘
って、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮
径主燃焼室に向かう流れだけを可能にした一方向空気流
路を夫夫に設けて、該夫夫の縮径主燃焼室内隔離燃焼さ
せるD型エネルギ保存サイクル機関に、動力伝達装置を
設けて発電機を駆動させる方法。
18. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, the diameter-reduced piston, which is appropriately reduced in diameter, is connected to a tapered outer peripheral portion (32). The diameter of the main combustion chamber is reduced over a predetermined period before and after the left dead center and / or over a predetermined period before and after the right dead center of the double-headed enlarged piston protruding from the approximate center of the appropriate concave portion (1). A one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber by communicating with the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chambers A method for driving a generator by providing a power transmission device in an energy conservation cycle engine.
【請求項19】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、夫夫適宜に縮径された縮径ピストン
を、テーパ外周部(32)を有する適宜の凹部(1)の
略中央より突出した両頭拡径ピストンの、左側死点前後
の所定期間に亘って及び/右側死点前後の所定期間に亘
って、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮
径主燃焼室に向かう流れだけを可能にした一方向空気流
路を夫夫に設けて、該夫夫の縮径主燃焼室内隔離燃焼さ
せるD型エネルギ保存サイクル機関に、動力伝達装置を
設けて農業機械を駆動させる方法。
19. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, the diameter-reduced piston, which is appropriately reduced in diameter, is connected to a tapered outer peripheral portion (32). The diameter of the main combustion chamber is reduced over a predetermined period before and after the left dead center and / or over a predetermined period before and after the right dead center of the double-headed enlarged piston protruding from the approximate center of the appropriate concave portion (1). A one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber by communicating with the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chambers A method for driving an agricultural machine by providing a power transmission device in an energy conservation cycle engine.
【請求項20】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、夫夫適宜に縮径された縮径ピストン
を、テーパ外周部(32)を有する適宜の凹部(1)の
略中央より突出した両頭拡径ピストンの、左側死点前後
の所定期間に亘って及び/右側死点前後の所定期間に亘
って、夫夫縮径主燃焼室と拡径燃焼室を連通して、該縮
径主燃焼室に向かう流れだけを可能にした一方向空気流
路を夫夫に設けて、該夫夫の縮径主燃焼室内隔離燃焼さ
せるD型エネルギ保存サイクル機関に、動力伝達装置を
設けて各種機械を駆動させる方法。
20. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, the diameter-reduced piston, which is appropriately reduced in diameter, is connected to a tapered outer peripheral portion (32). The diameter of the main combustion chamber is reduced over a predetermined period before and after the left dead center and / or over a predetermined period before and after the right dead center of the double-headed enlarged piston protruding from the approximate center of the appropriate concave portion (1). A one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber by communicating with the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chambers A method for driving various machines by providing a power transmission device in an energy conservation cycle engine.
【請求項21】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、該夫夫の縮径主燃焼室内
隔離燃焼させるE型エネルギ保存サイクル機関に、動力
伝達装置を設けて船舶を駆動させる方法。
21. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an evacuation step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is formed into a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided in each of the diameter main combustion chambers and the expansion combustion chambers, which allows only the flow toward the reduced diameter main combustion chambers. A method for driving a ship by providing a power transmission device in an E-type energy storage cycle engine to be burned.
【請求項22】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、該夫夫の縮径主燃焼室内
隔離燃焼させるE型エネルギ保存サイクル機関に、動力
伝達装置を設けて車両を駆動させる方法。
22. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is formed into a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided in each of the diameter main combustion chambers and the expansion combustion chambers, which allows only the flow toward the reduced diameter main combustion chambers. A method of driving a vehicle by providing a power transmission device in an E-type energy storage cycle engine to be burned.
【請求項23】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、該夫夫の縮径主燃焼室内
隔離燃焼させるE型エネルギ保存サイクル機関に、動力
伝達装置を設けて発電機を駆動させる方法。
23. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided in each of the diameter main combustion chambers and the expansion combustion chambers, which allows only the flow toward the reduced diameter main combustion chambers. A method for driving a generator by providing a power transmission device in an E-type energy storage cycle engine to be burned.
【請求項24】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、該夫夫の縮径主燃焼室内
隔離燃焼させるE型エネルギ保存サイクル機関に、動力
伝達装置を設けて農業機械を駆動させる方法。
24. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is formed into a tapered outer periphery. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided in each of the diameter main combustion chambers and the expansion combustion chambers, which allows only the flow toward the reduced diameter main combustion chambers. A method for driving an agricultural machine by providing a power transmission device in an E-type energy storage cycle engine to be burned.
【請求項25】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って及び/外側死点前後の所
定期間に亘って、夫夫縮径主燃焼室と拡径燃焼室を連通
して、該縮径主燃焼室に向かう流れだけを可能にした一
方向空気流路を夫夫に設けて、該夫夫の縮径主燃焼室内
隔離燃焼させるE型エネルギ保存サイクル機関に、動力
伝達装置を設けて各種機械を駆動させる方法。
25. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is tapered to an outer circumference. The double-headed enlarged-diameter piston protruding from the approximate center of the appropriate concave portion (1) having the portion (32) is shrunk over a predetermined period before and after the inside dead center and / or over a predetermined period before and after the outside dead center. A one-way air flow path is provided in each of the diameter main combustion chambers and the expansion combustion chambers, which allows only the flow toward the reduced diameter main combustion chambers. A method of driving various machines by providing a power transmission device in an E-type energy storage cycle engine to be burned.
【請求項26】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、外
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるF型エネルギ保存サイク
ル機関に、動力伝達装置を設けて船舶を駆動させる方
法。
26. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. A double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the outer dead center. Power is transmitted to an F-type energy storage cycle engine that provides a one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chamber. A method of driving a ship by providing a device.
【請求項27】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、外
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるF型エネルギ保存サイク
ル機関に、動力伝達装置を設けて車両を駆動させる方
法。
27. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. A double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the outer dead center. Power is transmitted to an F-type energy storage cycle engine that provides a one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chamber. A method for driving a vehicle by providing a device.
【請求項28】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、外
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるF型エネルギ保存サイク
ル機関に、動力伝達装置を設けて発電機を駆動させる方
法。
28. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. A double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the outer dead center. Power is transmitted to an F-type energy storage cycle engine that provides a one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chamber. A method of driving a generator by providing a device.
【請求項29】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、外
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるF型エネルギ保存サイク
ル機関に、動力伝達装置を設けて農業機械を駆動させる
方法。
29. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an evacuation step. In the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is formed by a tapered outer periphery. A double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the outer dead center. Power is transmitted to an F-type energy storage cycle engine that provides a one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chamber. A method of driving an agricultural machine by providing a device.
【請求項30】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、外
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるF型エネルギ保存サイク
ル機関に、動力伝達装置を設けて各種機械を駆動させる
方法。
30. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an evacuation step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. A double-headed enlarged-diameter piston projecting from the approximate center of an appropriate concave portion (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the outer dead center. Power is transmitted to an F-type energy storage cycle engine that provides a one-way air flow path that allows only the flow toward the reduced-diameter main combustion chamber and performs isolated combustion in the respective reduced-diameter main combustion chamber. A method of driving various machines by providing a device.
【請求項31】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるG型エネルギ保存サイク
ル機関に、動力伝達装置を設けて船舶を駆動させる方
法。
31. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an evacuation step. A double-headed enlarged piston protruding from the approximate center of an appropriate recess (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the inner dead center. Power transmission is provided to each of the G-type energy preservation cycle engines, which respectively provide a one-way air flow path that allows only the flow toward the reduced diameter main combustion chamber and perform the isolated combustion in the reduced diameter main combustion chamber. A method of driving a ship by providing a device.
【請求項32】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるG型エネルギ保存サイク
ル機関に、動力伝達装置を設けて車両を駆動させる方
法。
32. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaustion step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is formed by a tapered outer periphery. A double-headed enlarged piston protruding from the approximate center of an appropriate recess (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the inner dead center. Power transmission is provided to each of the G-type energy preservation cycle engines, which respectively provide a one-way air flow path that allows only the flow toward the reduced diameter main combustion chamber and perform the isolated combustion in the reduced diameter main combustion chamber. A method for driving a vehicle by providing a device.
【請求項33】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるG型エネルギ保存サイク
ル機関に、動力伝達装置を設けて発電機を駆動させる方
法。
33. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an evacuation step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. A double-headed enlarged piston protruding from the approximate center of an appropriate recess (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the inner dead center. Power transmission is provided to each of the G-type energy preservation cycle engines, which respectively provide a one-way air flow path that allows only the flow toward the reduced diameter main combustion chamber and perform the isolated combustion in the reduced diameter main combustion chamber. A method of driving a generator by providing a device.
【請求項34】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるG型エネルギ保存サイク
ル機関に、動力伝達装置を設けて農業機械を駆動させる
方法。
34. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an exhaust step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. A double-headed enlarged piston protruding from the approximate center of an appropriate recess (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the inner dead center. Power transmission is provided to each of the G-type energy preservation cycle engines, which respectively provide a one-way air flow path that allows only the flow toward the reduced diameter main combustion chamber and perform the isolated combustion in the reduced diameter main combustion chamber. A method of driving an agricultural machine by providing a device.
【請求項35】 圧縮過程、加熱過程、膨張過程、排気
過程からなる往復運動ピストンサイクルであって、該加
熱過程において、対向に設けて夫夫適宜に縮径された縮
径ピストンを、テーパ外周部(32)を有する適宜の凹
部(1)の略中央より突出した両頭拡径ピストンの、内
側死点前後の所定期間に亘って、夫夫縮径主燃焼室と拡
径燃焼室を連通して、該縮径主燃焼室に向かう流れだけ
を可能にした一方向空気流路を夫夫に設けて、該夫夫の
縮径主燃焼室内隔離燃焼させるG型エネルギ保存サイク
ル機関に、動力伝達装置を設けて各種機械を駆動させる
方法。
35. A reciprocating piston cycle comprising a compression step, a heating step, an expansion step, and an evacuation step, wherein in the heating step, a diameter-reduced piston provided opposite to each other and appropriately reduced in diameter is connected to a tapered outer periphery. A double-headed enlarged piston protruding from the approximate center of an appropriate recess (1) having a portion (32) communicates the reduced-diameter main combustion chamber with the enlarged-diameter combustion chamber for a predetermined period before and after the inner dead center. Power transmission is provided to each of the G-type energy preservation cycle engines, which respectively provide a one-way air flow path that allows only the flow toward the reduced diameter main combustion chamber and perform the isolated combustion in the reduced diameter main combustion chamber. A method of driving various machines by providing a device.
【請求項36】 前記動力伝達装置を磁気動力伝達装置
とした請求項1乃至請求項35のいずれか1項に記載の
方法。
36. The method according to claim 1, wherein the power transmission device is a magnetic power transmission device.
【請求項37】 前記動力伝達装置を歯車式動力伝達装
置とした請求項1乃至請求項35のいずれか1項に記載
の方法。
37. The method according to claim 1, wherein the power transmission device is a gear type power transmission device.
【請求項38】 前記動力伝達装置を直結式動力伝達装
置とした請求項1乃至請求項35のいずれか1項に記載
の方法。
38. The method according to claim 1, wherein the power transmission device is a direct-coupled power transmission device.
【請求項39】 前記動力伝達装置にクラッチを含めた
請求項1乃至請求項38のいずれか1項に記載の方法。
39. The method according to claim 1, wherein the power transmission includes a clutch.
【請求項40】 前記動力伝達装置に変速装置を含めた
請求項1乃至請求項39のいずれか1項に記載の方法。
40. The method according to claim 1, wherein the transmission includes a transmission.
【請求項41】 前記動力伝達装置に逆転装置を含めた
請求項1乃至請求項40のいずれか1項に記載の方法。
41. The method according to claim 1, wherein the power transmission device includes a reversing device.
【請求項42】 前記エネルギ保存サイクル機関を1セ
ットとして、動力伝達装置により結合する請求項1乃至
請求項41のいずれか1項に記載の方法。
42. The method according to any one of claims 1 to 41, wherein the energy storage cycle engines are combined as a set and connected by a power transmission device.
【請求項43】 シリンダ内の上死点と下死点との間で
往復運動する拡径ピストンの頂面の、テーパ外周部(3
2)を有する適宜の凹部(1)の略中央より、適宜に縮
径した縮径ピストンを突出し、 前記シリンダの上部にはシリンダヘッドを設けて、前記
縮径ピストンを収容して隔離燃焼が可能に最適に縮径し
た縮径主燃焼室を形成させて、 前記上死点前後の所定期間に亘って 前記縮径主燃焼室
と拡径燃焼室を連通し、該縮径主燃焼室に向かう流れだ
けを可能にする一方向空気流路を少なくとも1組以上具
備して、 前記縮径主燃焼室内隔離燃焼及び該隔離解除
により拡径ピストンが往復運動して、クランク軸を回転
させるA型エネルギ保存サイクル機関に、動力伝達装置
を具備することにより、各種船舶推進装置を駆動して、
水を適宜な方向に噴射を含めて移動して、各種船舶を駆
動させる装置。
43. A tapered outer peripheral portion (3) of a top surface of a diameter-expanding piston reciprocating between a top dead center and a bottom dead center in a cylinder.
From the approximate center of the appropriate concave portion (1) having 2), an appropriately reduced diameter piston is projected, and a cylinder head is provided at the upper part of the cylinder to accommodate the reduced diameter piston and perform isolated combustion. The reduced diameter main combustion chamber is optimally reduced in diameter, and the reduced diameter main combustion chamber communicates with the enlarged diameter combustion chamber for a predetermined period before and after the top dead center, toward the reduced diameter main combustion chamber. A-type energy having at least one set of one-way air flow passages that allow only a flow, wherein the expanded piston reciprocates by the isolated combustion in the reduced-diameter main combustion chamber and the release of the isolation to rotate the crankshaft. By installing a power transmission device in the preservation cycle engine, driving various ship propulsion devices,
A device that drives various boats by moving water, including jets, in appropriate directions.
【請求項44】 シリンダ内の左死点と右死点との間で
往復運動する両頭拡径ピストンの夫夫の、テーパ外周部
(32)を有する適宜の凹部(1)の略中央より、適宜
に縮径した縮径ピストンを突出し、 前記シリンダの左右には夫夫シリンダヘッドを設けて、
前記縮径ピストンを収容して隔離燃焼可能に最適に縮径
した縮径主燃焼室を夫夫形成させて、 前記左右の死点前後の所定期間に亘って前記縮径主燃焼
室と拡径燃焼室を連通し、該縮径主燃焼室に向かう流れ
だけを可能にする一方向空気流路を夫夫に少なくとも1
組以上具備して、 前記縮径主燃焼室内隔離燃焼及び該隔離解除により前記
両頭拡径ピストンが往復運動して、クランク軸を回転さ
せて動力を得るB型エネルギ保存サイクル機関に、動力
伝達装置を具備することにより、各種船舶推進装置を駆
動して、水を適宜な方向に噴射を含めて移動して、各種
船舶を駆動する装置。
44. From the approximate center of an appropriate concave portion (1) having a tapered outer peripheral portion (32) of each of the double-head enlarged pistons reciprocating between a left dead center and a right dead center in a cylinder. Protruding a diameter-reduced piston appropriately reduced in diameter, providing a cylinder head on each side of the cylinder,
A reduced-diameter main combustion chamber is formed to accommodate the reduced-diameter piston and optimally reduced in diameter so as to enable isolated combustion, and the reduced-diameter main combustion chamber is expanded with the reduced-diameter main combustion chamber for a predetermined period before and after the left and right dead centers. At least one one-way air passage communicating with the combustion chamber and allowing only flow toward the reduced diameter main combustion chamber is provided.
A power transmission device for a B-type energy storage cycle engine that reciprocates the double-headed diameter piston by the isolated combustion and the release of the isolation in the reduced diameter main combustion chamber and rotates the crankshaft to obtain power. A device that drives various ship propulsion devices to move water in an appropriate direction, including jetting, to drive various ships.
【請求項45】 対向に設けたシリンダ内の外死点と内
死点との間で対向往復運動する夫夫の両頭拡径ピストン
の、夫夫のテーパ外周部(32)を有する適宜の凹部
(1)の略中央より適宜に縮径した縮径ピストンを突出
させて、 前記対向に設けたシリンダには夫夫シリンダヘッドを設
けて、夫夫前記縮径ピストンを収容して隔離燃焼可能に
最適に縮径した縮径主燃焼室を形成させて、 内死点前後の所定期間に亘って及び/外死点前後の所定
期間に亘って前記夫夫の縮径主燃焼室と拡径燃焼室を連
通し、該縮径主燃焼室に向かう流れだけを可能にする一
方向空気流路を夫夫に少なくとも1組以上具備して、 前記夫夫の縮径主燃焼室内隔離燃焼及び該隔離解除によ
り夫夫の両頭拡径ピストンが対向往復運動して、夫夫の
クランク軸を回転させて動力を得るC型エネルギ保存サ
イクル機関に、動力伝達装置を具備して各種船舶推進装
置を駆動して、水を噴射を含めて移動させて各種船舶を
駆動する装置。
45. Appropriate recesses having respective tapered outer peripheral portions (32) of respective double-head enlarged pistons reciprocating between an outer dead center and an inner dead center in opposed cylinders. A diameter-reducing piston appropriately reduced in diameter is projected from substantially the center of (1), and cylinders provided opposite to each other are provided with cylinder heads, respectively, for accommodating the diameter-reduced pistons and enabling isolated combustion. An optimized diameter-reduced main combustion chamber is formed, and the reduced-diameter main combustion chamber and the expanded combustion are provided for a predetermined period before and after the inner dead center and / or for a predetermined period before and after the outer dead center. And at least one pair of unidirectional air passages communicating with the chambers and allowing only the flow toward the reduced diameter main combustion chamber. By releasing, the double-headed pistons of both husbands reciprocate in opposite directions, rotating their crankshafts. A C-type energy storage cycle engine that obtains power, includes a power transmission device, drives various ship propulsion devices, and moves water including injection to drive various ships.
【請求項46】 シリンダ内の左死点と右死点との間で
往復運動する両頭拡径ピストンの、夫夫のテーパ外周部
(32)を有する適宜の凹部(1)の略中央より適宜に
縮径した縮径ピストンを突出し、 前記シリンダの左右には夫夫シリンダヘッドを設けて、
前記縮径ピストンを収容して隔離燃焼可能に最適に縮径
した縮径主燃焼室を夫夫に形成させて、 前記左右の死点前後の所定期間に亘って前記縮径主燃焼
室と拡径燃焼室を連通し、該縮径主燃焼室に向かう流れ
だけを可能にする一方向空気流路を夫夫に少なくとも1
組以上具備して、 前記縮径主燃焼室内隔離燃焼及び該隔離解除により前記
両頭拡径ピストンが往復運動して、クランク軸を回転さ
せて動力を得るD型エネルギ保存サイクル機関に、動力
伝達装置を具備することにより、各種船舶推進装置を駆
動して、水を適宜な方向に噴射を含めて移動して、各種
船舶を駆動する装置。
46. A double-headed enlarged piston reciprocating between a left dead center and a right dead center in a cylinder, which is suitably located substantially at the center of a suitable concave portion (1) having a tapered outer peripheral portion (32). Projecting a reduced-diameter piston, the cylinder head is provided on each of the left and right sides of the cylinder,
A reduced-diameter main combustion chamber which accommodates the reduced-diameter piston and is optimally reduced in diameter so as to be able to perform isolated combustion is formed respectively, and is expanded with the reduced-diameter main combustion chamber for a predetermined period before and after the left and right dead centers. At least one one-way air passage communicating with the radial combustion chamber and allowing only flow toward the reduced diameter main combustion chamber.
A power transmission device for a D-type energy storage cycle engine that reciprocates the double-headed diameter piston by the isolated combustion and the release of the isolation in the reduced-diameter main combustion chamber and rotates the crankshaft to obtain power. A device that drives various ship propulsion devices to move water in an appropriate direction, including jetting, to drive various ships.
【請求項47】 対向に設けたシリンダ内の外死点と内
死点との間で対向往復運動する夫夫の両頭拡径ピストン
の、夫夫のテーパ外周部(32)を有する適宜の凹部
(1)の略中央より適宜に縮径した縮径ピストンを突出
させて、 前記対向に設けたシリンダには夫夫シリンダヘッドを設
けて、夫夫前記縮径ピストンを収容して隔離燃焼可能に
最適に縮径した縮径主燃焼室を形成させて、 内死点前後の所定期間に亘って及び/外死点前後の所定
期間に亘って前記夫夫の縮径主燃焼室と拡径燃焼室を連
通し、該縮径主燃焼室に向かう流れだけを可能にする一
方向空気流路を夫夫に少なくとも1組以上具備して、 前記夫夫の縮径主燃焼室内隔離燃焼及び該隔離解除によ
り夫夫の両頭拡径ピストンが対向往復運動して、夫夫の
クランク軸を回転させて動力を得るE型エネルギ保存サ
イクル機関に、動力伝達装置を具備して各種船舶推進装
置を駆動して、水を噴射を含めて移動させて各種船舶を
駆動する装置。
47. Appropriate concave portions having respective tapered outer peripheral portions (32) of respective double-headed enlarged pistons reciprocating between an outer dead center and an inner dead center in opposed cylinders. A diameter-reducing piston appropriately reduced in diameter is projected from substantially the center of (1), and cylinders provided opposite to each other are provided with cylinder heads, respectively, for accommodating the diameter-reduced pistons and enabling isolated combustion. An optimized diameter-reduced main combustion chamber is formed, and the reduced-diameter main combustion chamber and the expanded combustion are provided for a predetermined period before and after the inner dead center and / or for a predetermined period before and after the outer dead center. And at least one pair of unidirectional air passages communicating with the chambers and allowing only the flow toward the reduced diameter main combustion chamber. By releasing, the double-headed pistons of both husbands reciprocate in opposite directions, rotating their crankshafts. A device that drives a variety of ship propulsion devices by providing a power transmission device to an E-type energy storage cycle engine that obtains power, and moves water including injection to drive a variety of ships.
【請求項48】 対向に設けたシリンダ内の外死点と内
死点との間で対向往復運動する夫夫の両頭拡径ピストン
の、夫夫外側のテーパ外周部(32)を有する適宜の凹
部(1)の略中央より適宜に縮径した縮径ピストンを突
出し、 前記対向に設けたシリンダには夫夫シリンダヘッドを設
けて、夫夫前記縮径ピストンを収容して隔離燃焼可能に
最適に縮径した縮径主燃焼室を形成させて、外死点前後
の所定期間に亘って前記夫夫の縮径主燃焼室と拡径燃焼
室を連通し、該縮径主燃焼室に向かう流れだけを可能に
する一方向空気流路を夫夫に少なくとも1組以上具備し
て、 前記夫夫の縮径主燃焼室内隔離燃焼及び該隔離解除によ
り夫夫の両頭拡径ピストンが対向往復運動して、夫夫の
クランク軸を回転させて動力を得るF型エネルギ保存サ
イクル機関に、動力伝達装置を具備して各種船舶推進装
置を駆動して、水を噴射を含めて移動させて各種船舶を
駆動する装置。
48. A suitable double-sided widened piston having a tapered outer peripheral portion (32) on the outer side of each piston reciprocating between an outer dead center and an inner dead center in an opposed cylinder. A reduced-diameter piston appropriately reduced in diameter is projected from substantially the center of the concave portion (1), and a cylinder head is provided in each of the opposed cylinders so that each of the cylinders accommodates the reduced-diameter piston and is optimally capable of isolated combustion. A reduced diameter main combustion chamber is formed, and the reduced diameter main combustion chamber and the enlarged diameter combustion chamber are communicated with each other for a predetermined period before and after the outer dead center, and head toward the reduced diameter main combustion chamber. At least one set of one-way air flow passages that allow only flow is provided for each of the two-headed enlarged pistons in opposite reciprocating motions by the isolated combustion in the reduced-diameter main combustion chamber and the release of the isolation. F-type energy storage cycle that obtains power by rotating each crankshaft Seki, comprises a power transmission device to drive various boat propulsion apparatus, water is moved, including the injection driving various marine device.
【請求項49】 対向に設けたシリンダ内の外死点と内
死点との間で対向往復運動する夫夫の両頭拡径ピストン
の、夫夫内側のテーパ外周部(32)を有する適宜の凹
部(1)の略中央より適宜に縮径した縮径ピストンを突
出し、 前記対向に設けたシリンダには夫夫シリンダヘッドを設
けて、夫夫前記縮径ピストンを収容して隔離燃焼可能に
最適に縮径した縮径主燃焼室を形成させて、 内死点前後の所定期間に亘って前記夫夫の縮径主燃焼室
と拡径燃焼室を連通し、該縮径主燃焼室に向かう流れだ
けを可能にする一方向空気流路を夫夫に少なくとも1組
以上具備して、 前記夫夫の縮径主燃焼室内隔離燃焼及び該隔離解除によ
り夫夫の両頭拡径ピストンが対向往復運動して、夫夫の
クランク軸を回転させて動力を得るG型エネルギ保存サ
イクル機関に、動力伝達装置を具備して各種船舶推進装
置を駆動して、水を噴射を含めて移動させて各種船舶を
駆動する装置。
49. A suitable double-sided widened piston having a tapered outer peripheral portion (32) inside each of the two-head enlarged pistons reciprocating between an outer dead center and an inner dead center in opposed cylinders. A reduced-diameter piston appropriately reduced in diameter is projected from substantially the center of the concave portion (1), and a cylinder head is provided in each of the opposed cylinders so that each of the cylinders accommodates the reduced-diameter piston and is optimally capable of isolated combustion. A reduced diameter main combustion chamber is formed, and the reduced diameter main combustion chamber and the enlarged diameter combustion chamber are communicated with each other for a predetermined period before and after the inner dead center, and head toward the reduced diameter main combustion chamber. At least one set of one-way air flow passages that allow only flow is provided for each of the two-headed enlarged pistons in opposite reciprocating motions by the isolated combustion in the reduced-diameter main combustion chamber and the release of the isolation. G-type energy storage cycle that obtains power by rotating the crankshafts A device for driving a variety of ships by driving a variety of ship propulsion devices with an engine equipped with a power transmission device to move water including injection.
【請求項50】 前記A型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種車両を駆動させる装
置。
50. An apparatus for driving various vehicles by including a power transmission device in the A-type energy storage cycle engine.
【請求項51】 前記A型エネルギ保存サイクル機関
に、動力伝達装置を具備して熱と電気を併給する装置。
51. An apparatus for supplying heat and electricity to the A-type energy storage cycle engine, comprising a power transmission device.
【請求項52】 前記A型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種農業機械を駆動させる
装置。
52. An apparatus for driving a variety of agricultural machines by including a power transmission device in the A-type energy storage cycle engine.
【請求項53】 前記A型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種機械を駆動させる装
置。
53. An apparatus for driving various machines by including a power transmission device in the A-type energy storage cycle engine.
【請求項54】 前記B型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種車両を駆動させる装
置。
54. An apparatus for driving various vehicles by including a power transmission device in the B-type energy storage cycle engine.
【請求項55】 前記B型エネルギ保存サイクル機関
に、動力伝達装置を具備して熱と電気を併給する装置。
55. An apparatus for supplying heat and electricity to said B-type energy storage cycle engine, comprising a power transmission device.
【請求項56】 前記B型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種農業機械を駆動させる
装置。
56. An apparatus for driving a variety of agricultural machines by including a power transmission device in the B-type energy storage cycle engine.
【請求項57】 前記B型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種機械を駆動させる装
置。
57. An apparatus for driving various machines by including a power transmission device in the B-type energy storage cycle engine.
【請求項58】 前記C型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種車両を駆動させる装
置。
58. An apparatus for driving various vehicles by including a power transmission device in the C-type energy storage cycle engine.
【請求項59】 前記C型エネルギ保存サイクル機関
に、動力伝達装置を具備して熱と電気を併給する装置。
59. An apparatus for providing both heat and electricity to the C-type energy storage cycle engine, comprising a power transmission device.
【請求項60】 前記C型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種農業機械を駆動させる
装置。
60. An apparatus for driving various agricultural machines by including a power transmission device in the C-type energy storage cycle engine.
【請求項61】 前記C型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種機械を駆動させる装
置。
61. An apparatus for driving various machines by including a power transmission device in the C-type energy storage cycle engine.
【請求項62】 前記D型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種車両を駆動させる装
置。
62. An apparatus for driving various vehicles by including a power transmission device in the D-type energy storage cycle engine.
【請求項63】 前記D型エネルギ保存サイクル機関
に、動力伝達装置を具備して熱と電気を併給する装置。
63. An apparatus for supplying heat and electricity to the D-type energy storage cycle engine, comprising a power transmission device.
【請求項64】 前記D型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種農業機械を駆動させる
装置。
64. A device for driving a variety of agricultural machines by including a power transmission device in the D-type energy storage cycle engine.
【請求項65】 前記D型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種機械を駆動させる装
置。
65. A device for driving various machines by including a power transmission device in the D-type energy storage cycle engine.
【請求項66】 前記E型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種車両を駆動させる装
置。
66. An apparatus for driving various vehicles by including a power transmission device in the E-type energy storage cycle engine.
【請求項67】 前記E型エネルギ保存サイクル機関
に、動力伝達装置を具備して熱と電気を併給する装置。
67. An apparatus for supplying heat and electricity to the E-type energy storage cycle engine, comprising a power transmission device.
【請求項68】 前記E型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種農業機械を駆動させる
装置。
68. An apparatus for driving a variety of agricultural machines by including a power transmission device in the E-type energy storage cycle engine.
【請求項69】 前記E型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種機械を駆動させる装
置。
69. An apparatus for driving various machines including a power transmission device in the E-type energy storage cycle engine.
【請求項70】 前記F型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種車両を駆動させる装
置。
70. An apparatus for driving various vehicles by including a power transmission device in the F-type energy storage cycle engine.
【請求項71】 前記F型エネルギ保存サイクル機関
に、動力伝達装置を具備して熱と電気を併給する装置。
71. An apparatus for providing both heat and electricity to the F-type energy storage cycle engine, comprising a power transmission device.
【請求項72】 前記F型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種農業機械を駆動させる
装置。
72. An apparatus for driving various agricultural machines by including a power transmission device in the F-type energy storage cycle engine.
【請求項73】 前記F型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種機械を駆動させる装
置。
73. An apparatus for driving various machines by including a power transmission device in the F-type energy storage cycle engine.
【請求項74】 前記G型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種車両を駆動させる装
置。
74. An apparatus for driving various vehicles including a power transmission device in the G-type energy storage cycle engine.
【請求項75】 前記G型エネルギ保存サイクル機関
に、動力伝達装置を具備して熱と電気を併給する装置。
75. An apparatus for supplying heat and electricity to the G-type energy storage cycle engine by providing a power transmission device.
【請求項76】 前記G型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種農業機械を駆動させる
装置。
76. An apparatus for driving various agricultural machines by including a power transmission device in the G-type energy storage cycle engine.
【請求項77】 前記G型エネルギ保存サイクル機関
に、動力伝達装置を具備して各種機械を駆動させる装
置。
77. An apparatus for driving various machines by including a power transmission device in the G-type energy storage cycle engine.
【請求項78】 前記動力伝達装置に磁気摩擦動力伝達
装置を含めた請求項43乃至請求項77のいずれか1項
に記載の装置。
78. Apparatus according to any one of claims 43 to 77, wherein said power transmission includes a magnetic friction power transmission.
【請求項79】 前記動力伝達装置を磁気摩擦動力伝達
装置として、磁気クラッチ及び磁気摩擦動力減速装置及
び磁気摩擦動力逆転装置を含めた請求項43乃至請求項
77のいずれか1項に記載の装置。
79. The apparatus according to claim 43, wherein the power transmission device is a magnetic friction power transmission device, and includes a magnetic clutch, a magnetic friction power reduction device, and a magnetic friction power reversing device. .
【請求項80】 前記動力伝達装置を磁気摩擦動力伝達
装置とした請求項43乃至請求項77のいずれか1項に
記載の装置。
80. The apparatus according to claim 43, wherein said power transmission device is a magnetic friction power transmission device.
【請求項81】 前記動力伝達装置を通常の歯車式動力
伝達装置とした請求項43乃至請求項77のいずれか1
項に記載の装置。
81. The power transmission device according to claim 43, wherein the power transmission device is a normal gear type power transmission device.
The device according to item.
【請求項82】 前記動力伝達装置を通常の直結式動力
伝達装置とした請求項43乃至請求項77のいずれか1
項に記載の装置。
82. The power transmission device according to claim 43, wherein the power transmission device is a normal direct-coupled power transmission device.
The device according to item.
【請求項83】 前記動力伝達装置に通常のクラッチを
含めた請求項43乃至請求項82のいずれか1項に記載
の装置。
83. Apparatus according to any one of claims 43 to 82, wherein said power transmission includes a normal clutch.
【請求項84】 前記動力伝達装置に変速装置を含めた
請求項43乃至請求項83のいずれか1項に記載の装
置。
84. The apparatus according to claim 43, wherein a transmission is included in the power transmission device.
【請求項85】 前記動力伝達装置に通常の逆転装置を
含めた請求項43乃至請求項84のいずれか1項に記載
の装置。
85. Apparatus according to any one of claims 43 to 84, wherein said power transmission includes a normal reversing device.
JP9103790A 1996-05-28 1997-03-17 Method and device for utilizing energy conservation cycle internal combustion engine Pending JPH1082321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9103790A JPH1082321A (en) 1996-05-28 1997-03-17 Method and device for utilizing energy conservation cycle internal combustion engine

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8-172752 1996-05-28
JP17275296 1996-05-28
JP8-204049 1996-06-28
JP20404996 1996-06-28
JP9103790A JPH1082321A (en) 1996-05-28 1997-03-17 Method and device for utilizing energy conservation cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH1082321A true JPH1082321A (en) 1998-03-31

Family

ID=27310073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9103790A Pending JPH1082321A (en) 1996-05-28 1997-03-17 Method and device for utilizing energy conservation cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH1082321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108590865A (en) * 2018-04-26 2018-09-28 福州大学 Variable volume diesel engine based on worm gear mechanism and its working method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108590865A (en) * 2018-04-26 2018-09-28 福州大学 Variable volume diesel engine based on worm gear mechanism and its working method
CN108590865B (en) * 2018-04-26 2020-05-08 福州大学 Variable volume diesel engine and working method thereof

Similar Documents

Publication Publication Date Title
US4791787A (en) Regenerative thermal engine
JP3016485B2 (en) Reciprocating 2-cycle internal combustion engine without crank
JP2009516801A (en) Free piston type 4-stroke engine
JP5595476B2 (en) Internal combustion engine
US6119650A (en) Energy conservation cycle engine
JPH1082321A (en) Method and device for utilizing energy conservation cycle internal combustion engine
WO2016110073A1 (en) Internal combustion engine
CN2270120Y (en) One-stroke opposition-explosion free piston engine
US4557232A (en) Swash plate engine
JPH1089074A (en) Energy preserving cycle internal combustion engine
AU595795B2 (en) Regenerative thermal engine
US11831225B2 (en) Free piston generator based on rigid synchronous transmission system
RU2761695C1 (en) ”normas” no. 30 internal combustion engine
JPH03149319A (en) Crankless engine
CN111441865B (en) Rotary piston gas turbine engine
JPH1047075A (en) D-type/e-type energy preservation cycle internal combustion engine
JPH1047062A (en) Various kinds of energy preservation cycle internal combustion engines
CN109306899B (en) Piston type tangent line driving straight shaft internal combustion engine and control method thereof
JPH1047001A (en) Method for using pendulum piston as energy conservation cycle and device therefor
US4644752A (en) Engine system for ships
WO2003058043A1 (en) A kind of structures of a reciprocating internal combustion engine
CN101408131A (en) Double-humped double-rollaway nest cam of internal combustion engine
JPH1047063A (en) F-type/g-type energy preservation cycle internal combustion engine
US20060130803A1 (en) Multiple-power engine device
CN112196670A (en) Inertia electric-driving piston lever efficient engine