JPH1079471A - Semiconductor device, its manufacture and flexible card - Google Patents

Semiconductor device, its manufacture and flexible card

Info

Publication number
JPH1079471A
JPH1079471A JP23501696A JP23501696A JPH1079471A JP H1079471 A JPH1079471 A JP H1079471A JP 23501696 A JP23501696 A JP 23501696A JP 23501696 A JP23501696 A JP 23501696A JP H1079471 A JPH1079471 A JP H1079471A
Authority
JP
Japan
Prior art keywords
thickness
semiconductor device
layer
divided
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23501696A
Other languages
Japanese (ja)
Inventor
Masaru Miyazaki
勝 宮▲崎▼
Hiroto Oda
浩人 小田
Hiroshi Ota
博 太田
Mitsuo Usami
光雄 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP23501696A priority Critical patent/JPH1079471A/en
Publication of JPH1079471A publication Critical patent/JPH1079471A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase yield by dividing at least one of the layers forming a device on a semiconductor substrate having a thickness within a specific range and connecting the divided devices in parallel. SOLUTION: A cell structure is formed by dividing Ti-Pt lower electrode layer 43 and a BST high dielectric layer 44, and a Ti-Pt-Au upper electrode layer 45, formed on an SiO2 layer 2 on an Si monocrystal substrate 1, into cells. An MIM-type structure is formed on the entire wafer surface, and then the upper electrode layer 45 is removed and divided by ion milling with a photoresist layer as a mask. Next, an SiO2 insulating film 46 is formed on the surface, and then conduction holes connecting the upper electrode layer 45 to the lower electrode layer 43 are formed, and wiring layers 47 and 48 are formed. The divided cells are connected in parallel to each other with the wiring layers 47 and 48, thus constructing a large capacity capacitor. The Si is grind-removed from the rear surface side of the Si monocrystal substrate 1, and the substrate is etched with a chemical etchant to have a thickness of 1-100μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ICカード又はマ
ルチチップモジュール等に用いる半導体装置、その製造
方法及びフレキシブルカードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device used for an IC card or a multi-chip module, a method for manufacturing the same, and a flexible card.

【0002】[0002]

【従来の技術】ICカードに代表される薄型、軽量の高
機能電子装置は、その利便性のため需要が急増し応用分
野が拡大している。ICカードには電気信号や電源を接
触式で得る方式と非接触式で得る方式があり、特に後者
は高周波結合のためコンタクト部に係わる不良がなく、
静電気に強い特徴がある。従来のICカードの構造は、
「ICカード」第33頁(社団法人電子情報通信学会
編、オーム社発行、第1版、1990年5月25日発
行)に記載されており、薄いLSIを使用したICカー
ドについては特開平3−87299号公報や特開平7−
99267号公報に記載がある。
2. Description of the Related Art Thin and lightweight high-performance electronic devices represented by IC cards are rapidly increasing in demand due to their convenience, and their application fields are expanding. There are two types of IC cards: a method of obtaining electric signals and power by a contact method and a method of obtaining a non-contact method.
There is a feature that is strong against static electricity. The structure of a conventional IC card is
"IC Card" is described on page 33 (edited by the Institute of Electronics, Information and Communication Engineers, issued by Ohmsha, 1st edition, issued on May 25, 1990). -87299 and JP-A-7-
No. 99267 discloses this.

【0003】図8は従来のICカードの主要部分の構成
を示す断面構造図である。LSIチップ81とコンデン
サチップ82はワイヤ88によって接続され、これがI
Cカード全体を構成する樹脂フィルム83、87とコア
層85に接着層84、86によって固定されている。
FIG. 8 is a sectional structural view showing the structure of a main part of a conventional IC card. The LSI chip 81 and the capacitor chip 82 are connected by a wire 88.
It is fixed to resin films 83 and 87 and a core layer 85 constituting the entire C card by adhesive layers 84 and 86.

【0004】LSIチップの厚みが厚いと機械的変形に
強い反面、折れ曲がりに弱い傾向があり、カードを曲げ
たり、ねじったりしてもLSIが壊れない構造の検討が
続けられている。このような中で基板厚さが極めて薄い
LSIをカードの厚さ方向の中央である中立面に実装す
る構造が特開平7−99267号公報に記載されてお
り、この構造は曲げやねじりに強い特徴がある。そのた
め今後のICカードの技術はこれと電気信号や電源の非
接触方式を組合せた構成が主流になるものと考えられて
いる。この非接触式ICカードを以下フレキシブルIC
カード、略してFカードと呼ぶ。これには薄型LSIの
他に薄型コンデンサ及び薄型コイルのデバイスが必要で
ある。Fカードに用いるLSIやコンデンサ等のチップ
厚さは、100μm以下の薄型が要求され、また非接触
式ICカードには30nF程度の大容量コンデンサが使
われる。
When the thickness of the LSI chip is large, it is strong against mechanical deformation, but is liable to bend. Therefore, a structure in which the LSI is not broken even if the card is bent or twisted has been studied. Japanese Patent Laid-Open No. 7-99267 discloses a structure in which an LSI having an extremely thin substrate is mounted on a neutral surface at the center in the thickness direction of the card. There are strong features. For this reason, it is considered that the future technology of IC cards will be mainly composed of a combination of this and a non-contact method of an electric signal or a power supply. This non-contact IC card is referred to as a flexible IC
The card is called F card for short. This requires a thin capacitor and a thin coil device in addition to a thin LSI. Chips such as LSIs and capacitors used for F-cards are required to be as thin as 100 μm or less, and large-capacity capacitors of about 30 nF are used for non-contact IC cards.

【0005】[0005]

【発明が解決しようとする課題】従来、通常用いられて
いるICカードのLSIチップやコンデンサチップの基
板の厚さは図8のようにICカードの厚さよりも薄く、
チップの強度を保つために約200μm程度の厚さのも
のが使われている。一方、Fカード用のチップとして
は、基板厚さが100μm以下の薄いものを用いること
が好ましい。
Conventionally, the substrate of the LSI chip or the capacitor chip of the IC card which is usually used is thinner than the thickness of the IC card as shown in FIG.
A chip having a thickness of about 200 μm is used to maintain the strength of the chip. On the other hand, it is preferable to use a thin chip having a substrate thickness of 100 μm or less as an F card chip.

【0006】例えば、Si単結晶基板上に約300の比
誘電率を持つBST(BaTiO3とSrTiO3の混晶
体)誘電体薄膜を用いてコンデンサを形成したとする
と、Si単結晶基板の厚さが約200μmの構造ではウ
エーハの反りは小さいが、これを約50μmの基板厚さ
に加工するとSi単結晶基板上の成膜層によってウエー
ハの反りは非常に大きくなる。
For example, if a capacitor is formed on a Si single crystal substrate using a BST (BaTiO 3 and SrTiO 3 mixed crystal) dielectric thin film having a relative dielectric constant of about 300, the thickness of the Si single crystal substrate Although the warp of the wafer is small in a structure of about 200 μm, when the wafer is processed to a substrate thickness of about 50 μm, the warp of the wafer becomes extremely large due to the film formation layer on the Si single crystal substrate.

【0007】そのため上記のようなICカード用の積層
コンデンサが形成されたウエーハを薄くすると、製造プ
ロセスの途中やチップに加工するときにウエーハが割れ
やすく、チップの製造歩留まりが低いという問題があっ
た。さらに得られたチップをICカードに実装する際に
もチップの反りが大きいために取り扱いにくく、割れた
り、組立歩留まりが低いという問題があった。
Therefore, when the wafer on which the multilayer capacitor for an IC card is formed as described above is made thin, the wafer is liable to be broken during the manufacturing process or processing into a chip, resulting in a low chip manufacturing yield. . Further, when the obtained chip is mounted on an IC card, there is a problem that it is difficult to handle the chip due to a large warpage of the chip, cracks and a low assembly yield.

【0008】本発明の第1の目的は、大量生産に適し、
取り扱いやすく、組立歩留まりが良好な、基板の薄い半
導体装置を提供することにある。本発明の第2の目的
は、そのような半導体装置を容易に製造することのでき
る半導体装置の製造方法を提供することにある。本発明
の第3の目的は、そのような半導体装置を有するフレキ
シブルカードを提供することにある。
A first object of the present invention is suitable for mass production,
An object of the present invention is to provide a semiconductor device having a thin substrate, which is easy to handle and has a good assembly yield. A second object of the present invention is to provide a method of manufacturing a semiconductor device that can easily manufacture such a semiconductor device. A third object of the present invention is to provide a flexible card having such a semiconductor device.

【0009】[0009]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の半導体装置は、厚さが1μmから1
00μmの範囲にある半導体基板と、この半導体基板に
配置された素子を有し、この素子を構成する成膜層の内
の少なくとも一層を分割し、分割された各素子を並列に
接続するようにしたものである。
In order to achieve the first object, a semiconductor device according to the present invention has a thickness of 1 μm to 1 μm.
A semiconductor substrate in the range of 00 μm, and an element disposed on the semiconductor substrate, at least one of the film forming layers constituting the element is divided, and the divided elements are connected in parallel. It was done.

【0010】半導体基板は、Si単結晶基板であること
が好ましい。結晶欠陥の少ないSi単結晶基板は1μm
から100μmの厚さになっても強靭であり、極端に曲
げない限り割れない特徴があるためである。さらに強靭
な半導体基板であるためには、その厚さを10μmから
100μmの範囲とすることがより好ましい。
Preferably, the semiconductor substrate is a Si single crystal substrate. 1 μm Si single crystal substrate with few crystal defects
This is because it is tough even at a thickness of from 100 μm to 100 μm and does not crack unless it is extremely bent. For a tougher semiconductor substrate, the thickness is more preferably in the range of 10 μm to 100 μm.

【0011】また、上記第2の目的を達成するために、
本発明の半導体装置の製造方法は、半導体基板上に複数
の成膜層からなる素子を形成し、この素子を構成する成
膜層の内の少なくとも一層を分割し、分割された各素子
を並列に接続するための配線層の少なくとも一部を形成
し、半導体基板の裏面を研磨してその厚さを1μmから
100μm範囲の厚さとしたものである。
In order to achieve the second object,
In the method for manufacturing a semiconductor device according to the present invention, an element including a plurality of film layers is formed on a semiconductor substrate, at least one of the film layers forming the element is divided, and the divided elements are arranged in parallel. At least a part of a wiring layer for connection to the semiconductor substrate is formed, and the back surface of the semiconductor substrate is polished to a thickness in a range of 1 μm to 100 μm.

【0012】上記の半導体基板の裏面の研磨は、機械的
研磨を行って後に化学的研磨を行うことが好ましい。
In the polishing of the back surface of the semiconductor substrate, it is preferable to perform mechanical polishing and then to perform chemical polishing.

【0013】また、上記第3の目的を達成するために、
本発明のフレキシブルカードは、上記のいずれかの半導
体装置と、この半導体装置を内部に配置したフレキシブ
ルな構造材から構成するようにしたものである。
Further, in order to achieve the third object,
A flexible card according to the present invention includes any one of the above-described semiconductor devices and a flexible structural member having the semiconductor device disposed therein.

【0014】上記のように素子を分割したとき、ウエー
ハの反りが小さくなることを図2、図3にその一例を示
して説明する。図3は、素子が誘電体薄膜を金属で挟ん
だ構造のメタル−絶縁体−メタル型(MIM;Meta
l−Insulator−Metal型)コンデンサで
あるときのその主要部の断面構成図であり、図2はその
平面図である。Si単結晶基板1上のSiO2層2の上
に、下部電極層3、BSTの高誘電体層4、上部電極層
5が積層されたコンデンサ部21が設けられている。チ
ップ20の間に当たる位置にはスクライブ領域29があ
り、コンデンサ部21の実効面積(Lx×Ly)は約2
×2mm2である。コンデンサ部21は縦、横共に4個
に分割され、16個のセル26からなる。分割した1個
のセル26のサイズは約500×500μm2である。
分割の幅は5μmである。Si単結晶基板上の成膜層の
応力が分断し、基板厚さ(Tsn)を極めて薄くした厚
さ(Tst)としてもウエーハ上での応力が分散し、反
りが小さく抑えられる。
The fact that the warpage of the wafer is reduced when the element is divided as described above will be described with reference to FIGS. FIG. 3 shows a metal-insulator-metal type (MIM; Meta) structure in which an element has a dielectric thin film sandwiched between metals.
FIG. 2 is a cross-sectional configuration view of a main part when the capacitor is an (l-insulator-metal type) capacitor, and FIG. 2 is a plan view thereof. On the SiO 2 layer 2 on the Si single crystal substrate 1, there is provided a capacitor section 21 in which a lower electrode layer 3, a high dielectric layer 4 of BST, and an upper electrode layer 5 are laminated. A scribe region 29 is provided at a position between the chips 20, and an effective area (Lx × Ly) of the capacitor unit 21 is about 2
× 2 mm 2 . The capacitor unit 21 is divided into four in both the vertical and horizontal directions, and includes 16 cells 26. The size of one divided cell 26 is about 500 × 500 μm 2 .
The width of the division is 5 μm. The stress of the film formation layer on the Si single crystal substrate is divided, and even when the substrate thickness (Tsn) is made extremely thin (Tst), the stress on the wafer is dispersed, and the warpage is suppressed to be small.

【0015】基板厚さに対応した、好ましい分割の基準
を以下に示す。一般に、ウエーハの反り量Rは式(1)
の関係によって記述される。 R=K・Sf・Tf・D2/Ts2 (1) ここで、Sf:成膜の応力、Tf:成膜の厚さ、D:ウ
エーハの直径 Ts:基板の厚さ、K:常数、である。
Preferred division criteria corresponding to the substrate thickness are shown below. In general, the amount of wafer warpage R is given by the following equation (1).
Described by the relationship R = K · Sf · Tf · D 2 / Ts 2 (1) where, Sf: stress of film formation, Tf: thickness of film formation, D: diameter of wafer Ts: thickness of substrate, K: constant number, It is.

【0016】従来構造の基板厚さ(Tsn)のものを薄
型の厚さ(Tst)に仕上げるとウエーハの反り量Rは
式(1)の関係によって、ウエーハ直径の2乗と厚さの
1/2乗倍で大きくなる。ウエーハ直径が一定のとき、
素子サイズの面積が大きい程反りも大きい。このため薄
いウエーハで反りを小さくするためには、デバイスを構
成する成膜層からなる素子を細かく分割し応力の分散を
図るのが好ましい。薄型の厚さ(Tst)のウエーハの
反り量を従来構造の基板厚さ(Tsn)程度の反り量以
下にするためには、素子をいくつかのセルに分割し、そ
のセルの縦、横一辺の長さをいずれも半導体基板の厚さ
の1倍から20倍の範囲とすることが好ましい。分割し
たセルの形状は4角形でなくて、多角形や楕円形等でも
よい。このときの大きさは上記した最大の大きさより小
さく、最小の大きさより大きければよい。一辺の長さは
半導体基板の厚さの1倍未満であっても反り量は問題な
いが、より複雑な構成になるので1倍以上が好ましい。
When the substrate having the conventional structure (Tsn) is finished to a thin thickness (Tst), the amount of warpage R of the wafer is calculated by the relation of the equation (1), and the square of the wafer diameter and 1 / th of the thickness is obtained. It increases by the square. When the wafer diameter is constant,
The larger the area of the element size, the greater the warpage. For this reason, in order to reduce the warpage with a thin wafer, it is preferable to divide the element formed of the film forming layer constituting the device into small pieces to disperse the stress. In order to reduce the amount of warpage of a wafer having a thin thickness (Tst) to be equal to or less than the amount of warpage of the substrate thickness (Tsn) of the conventional structure, the element is divided into several cells, and one side of the cell is arranged vertically and horizontally. Is preferably in the range of 1 to 20 times the thickness of the semiconductor substrate. The shape of the divided cells is not limited to a quadrangle, but may be a polygon or an ellipse. The size at this time may be smaller than the above-described maximum size and larger than the minimum size. Even if the length of one side is less than one time the thickness of the semiconductor substrate, there is no problem in the amount of warpage, but since the structure becomes more complicated, it is preferably one time or more.

【0017】例えばコンデンサの実効面積(チップ面積
にほぼ同じ)が2mm×2mmの場合、半導体基板の厚
さを50μmとすれば、一辺が50μmから1000μ
mに分割すればよい。
For example, when the effective area of the capacitor (substantially the same as the chip area) is 2 mm × 2 mm, if the thickness of the semiconductor substrate is 50 μm, one side is 50 μm to 1000 μm.
m.

【0018】分割する成膜層は必ずしもSi単結晶基板
上に形成した全層である必要がなく応力の大きな層だけ
でもよい。Fカード用の薄型LSIチップや薄型コンデ
ンサチップは上記基準でパターンのレイアウトを行い、
従来の基板厚さの素子と同じ製造条件で製造できるので
プロセスの共通化が図れ、低コスト化できる。
The divided film layers need not necessarily be all layers formed on the Si single crystal substrate, but may be only layers having a large stress. For the thin LSI chip and thin capacitor chip for F card, the pattern layout is performed based on the above criteria.
Since the device can be manufactured under the same manufacturing conditions as the conventional device having a substrate thickness, the process can be shared and the cost can be reduced.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〈実施例1〉本発明の一実施例であるMIM型コンデン
サのチップ20の平面図と断面構造図を図2、図3に示
す。Si単結晶基板1上にSiO2層2を約500nm
の厚みに形成し、これに重ねてTi−Ptの下部電極層
3、BSTの高誘電体層4、Ti−Pt−Auの上部電
極層5を順次形成する。これらの膜厚はこの順番に約2
00、300、300nmである。チップ間にはスクラ
イブ領域29があり、コンデンサ部21の実効面積(L
x×Ly)は約2×2mm2である。
<Embodiment 1> FIGS. 2 and 3 are a plan view and a sectional structural view of a chip 20 of an MIM type capacitor according to an embodiment of the present invention. An SiO 2 layer 2 of about 500 nm is formed on a Si single crystal substrate 1.
The lower electrode layer 3 of Ti-Pt, the high dielectric layer 4 of BST, and the upper electrode layer 5 of Ti-Pt-Au are sequentially formed thereon. These film thicknesses are about 2 in this order.
00, 300, and 300 nm. There is a scribe area 29 between the chips, and the effective area (L
x × Ly) is about 2 × 2 mm 2 .

【0020】コンデンサ部21は縦、横共に4個に分割
され、16個のセル26からなる。分割した1個のセル
26のサイズは約500×500μm2である。分割の
幅は5μm以下で十分であり、チップ面積の変化にほと
んど影響を与えない。SiO2層2はセルとして分割し
なくてもよい。なお、コンデンサの引き出し電極やボン
デングパッド部は同図の記載から省略した。
The capacitor section 21 is divided into four cells both vertically and horizontally, and is composed of 16 cells 26. The size of one divided cell 26 is about 500 × 500 μm 2 . A division width of 5 μm or less is sufficient, and has little effect on changes in chip area. The SiO 2 layer 2 does not have to be divided as cells. The extraction electrodes and the bonding pad portion of the capacitor are omitted from the illustration in FIG.

【0021】分割した1個のセルの詳細を図4に示し、
分割の方法を説明する。Si単結晶基板1上のSiO2
層2上に形成されたTi−Ptの下部電極層43、BS
Tの高誘電体層44、Ti−Pt−Auの上部電極層4
5を以下の方法で分割してセルの構造を形成する。ウエ
ーハ全面にMIM型構造を形成した後、ホトレジスト層
をマスクにイオンミリングによって上部電極層45を除
去し、分割する。このとき上記のスクライブ領域29も
除去される。さらに順次同じ手法で高誘電体層44、下
部電極層43を除去する。
FIG. 4 shows the details of one divided cell.
The method of division will be described. SiO 2 on Si single crystal substrate 1
Ti-Pt lower electrode layer 43 formed on layer 2, BS
T high dielectric layer 44, Ti-Pt-Au upper electrode layer 4
5 is divided by the following method to form a cell structure. After the MIM type structure is formed on the entire surface of the wafer, the upper electrode layer 45 is removed by ion milling using the photoresist layer as a mask and divided. At this time, the scribe area 29 is also removed. Further, the high dielectric layer 44 and the lower electrode layer 43 are sequentially removed by the same method.

【0022】次ぎに表面にSiO2絶縁膜46を形成
し、上部電極層45と下部電極層43に達する導通孔を
加工し、配線層47、48を形成する。分割したセルは
下部電極用の配線層47と上部電極用の配線層48によ
って並列に接続され、全体で大容量のコンデンサとな
る。また、表面にはBSTの高誘電体層44を外部環境
から保護する目的でSiN膜とSiO2膜からなる保護
膜49を形成する。保護膜49はAlN又はAl23
らなる絶縁材料であってもよい。分割する成膜層はBS
Tの高誘電体層の応力が大きいので、これと上部電極だ
けであってもよい。
Next, a SiO 2 insulating film 46 is formed on the surface, and conduction holes reaching the upper electrode layer 45 and the lower electrode layer 43 are processed to form wiring layers 47 and 48. The divided cells are connected in parallel by a wiring layer 47 for the lower electrode and a wiring layer 48 for the upper electrode, and a large-capacity capacitor as a whole is obtained. On the surface, a protective film 49 made of a SiN film and a SiO 2 film is formed for the purpose of protecting the BST high dielectric layer 44 from the external environment. The protective film 49 may be an insulating material made of AlN or Al 2 O 3 . The divided film layer is BS
Since the stress of the high dielectric layer of T is large, only the high dielectric layer and the upper electrode may be used.

【0023】続いて約500μmの厚さのSi単結晶基
板1の裏面側から約180μmまでSiを研削除去し、
さらにHFとHNO3を主成分とした化学エッチング液
によってSiを溶解し、約40μmの基板厚さにする。
研削でSi単結晶内に生じた損傷は約40μm以上の量
の化学エッチングで完全に除去できる。これによって約
40μmの厚さのSi単結晶基板上にMIM型薄型コン
デンサが製造される。
Subsequently, Si is ground and removed to about 180 μm from the back side of the Si single crystal substrate 1 having a thickness of about 500 μm,
Further, Si is dissolved by a chemical etching solution containing HF and HNO 3 as main components, so that the substrate thickness is about 40 μm.
Damage caused in the Si single crystal by grinding can be completely removed by chemical etching of about 40 μm or more. As a result, an MIM type thin capacitor is manufactured on a Si single crystal substrate having a thickness of about 40 μm.

【0024】従来構造の分割しない一体面積のコンデン
サの場合、基板厚さ(Tsn)が約200μmでウエー
ハの反り量Rnは20μmであった。これを基板厚さ
(Tst)の40μmの薄型にするとウエーハの反り量
Rtは約500μmと大きな値になって取り扱い上問題
であった。本実施例では、従来と同じ容量値で40μm
の基板厚さ(Tst)のウエーハの反り量Rnが20μ
mの値を越えないようにするためには、従来構造のチッ
プ内の最大セルサイズ(Lx、Ly)を縦、横とも基板
の厚み(40μm)の20倍以下、1倍以上に分割する
とよい。本実施例では縦、横とも4個に分割し(分割
数;n=4)、1個のセル26のサイズ(Lx/n、L
y/n)は約500×500μm2とした。なお、セル
26のサイズとは、分割された各層の内の最も大きな層
のサイズ(本実施例では下部電極層43のサイズ)とす
る。この後、ウエーハからチップを切り出し、特性の揃
ったMIM型薄型コンデンサを大量に生産することがで
きる。
In the case of the conventional capacitor having an undivided integral area, the substrate thickness (Tsn) is about 200 μm and the amount of warpage Rn of the wafer is 20 μm. If this is made as thin as 40 μm of the substrate thickness (Tst), the warpage Rt of the wafer becomes a large value of about 500 μm, which is a problem in handling. In this embodiment, the same capacitance value as that of the related art
Wafer warpage Rn of substrate thickness (Tst) of 20 μm
In order not to exceed the value of m, the maximum cell size (Lx, Ly) in the chip having the conventional structure is preferably divided into 20 times or less and 1 or more times the thickness (40 μm) of the substrate in both the vertical and horizontal directions. . In the present embodiment, the cell is divided into four in both the vertical and horizontal directions (the number of divisions; n = 4), and the size (Lx / n, L
y / n) was about 500 × 500 μm 2 . The size of the cell 26 is the size of the largest layer among the divided layers (the size of the lower electrode layer 43 in this embodiment). Thereafter, chips are cut out from the wafer, and mass-produced MIM thin capacitors having uniform characteristics can be produced.

【0025】本実施例で得られたチップをFカードに実
装すると、チップの反り量が小さいため、従来構造の分
割しない一体面積のコンデンサを有するチップで基板厚
さの40μmのチップをFカードに実装する場合に比べ
て組立歩留まりが大幅に向上した。
When the chip obtained in this embodiment is mounted on an F card, since the amount of warpage of the chip is small, a chip having a capacitor of a conventional structure and having an integral area which is not divided and having a substrate thickness of 40 μm is mounted on the F card. The assembly yield has been greatly improved compared to mounting.

【0026】〈実施例2〉本発明の他の実施例であるセ
ルの構造断面図を図5に示す。これはホトマスク数を減
らして製造工程を簡略することを目的としたものでセル
の分割は実施例1で述べた主旨と同じである。図4と異
なる点だけを述べると1回のホトレジスト層をマスクに
イオンミリングによって高誘電体層54と下部電極層5
3を形成すること、下部電極用の配線層57は下部電極
層53の側面と主に接触して導通することである。
<Embodiment 2> FIG. 5 is a sectional view showing the structure of a cell according to another embodiment of the present invention. This is intended to simplify the manufacturing process by reducing the number of photomasks, and the division of the cells is the same as the purpose described in the first embodiment. The only difference from FIG. 4 is that the high dielectric layer 54 and the lower electrode layer 5 are formed by ion milling using one photoresist layer as a mask.
Forming 3 means that the lower electrode wiring layer 57 is mainly in contact with the side surface of the lower electrode layer 53 to conduct electricity.

【0027】〈実施例3〉本発明のさらに他の実施例で
あるセルの構造断面図を図6に示す。これは上部電極層
とホトマスク数を減らして製造工程を簡略することを目
的としたものでセルの分割は実施例1で述べた主旨と同
じである。図5とほとんどが同じであるが異なる点だけ
を述べると高誘電体層64の上には上部電極層を成膜せ
ず、高誘電体層64と直接接触する配線層68が上部電
極を兼ねる構成である。
<Embodiment 3> FIG. 6 is a sectional view showing the structure of a cell according to still another embodiment of the present invention. This is for the purpose of simplifying the manufacturing process by reducing the number of upper electrode layers and photomasks, and the cell division is the same as the purpose described in the first embodiment. 5 except that the upper electrode layer is not formed on the high dielectric layer 64, and the wiring layer 68 directly in contact with the high dielectric layer 64 also serves as the upper electrode. Configuration.

【0028】〈実施例4〉本発明のさらに他の実施例で
あるセルの構造断面図を図7に示す。これは実施例3で
述べたセルを更に簡略化した構造で図6とほとんどが同
じであるが異なる点だけを述べるとBSTの高誘電体層
44を外部環境から保護する目的のSiN膜とSiO2
膜からなる保護膜が配線層の絶縁膜76と兼ねているこ
とである。
<Embodiment 4> FIG. 7 is a sectional view showing the structure of a cell according to still another embodiment of the present invention. This is a further simplified structure of the cell described in the third embodiment, which is almost the same as FIG. 6 except for the difference. Only the difference is that the SiN film and the SiON film for protecting the high dielectric layer 44 of BST from the external environment are described. Two
That is, the protective film made of the film also serves as the insulating film 76 of the wiring layer.

【0029】〈実施例5〉本発明の一実施例であるSi
単結晶基板1上に作ったMIM型薄型コンデンサの製造
方法を図1と図4を参照して説明する。図1(a)に示
すように、約500μmの厚さのSi単結晶基板1上に
SiO2層2を約500nmの厚みに形成し、これに重
ねてTi−Ptの順番で下部電極層3をスパッタにより
成膜する。Tiの替わりにTa等の高融点金属でもよ
く、この厚さは約100nmである。続いてゾルゲル状
のBSTを溶液とし、この溶液を回転塗布し、約600
℃の温度の酸素雰囲気中で焼成し、高誘電体層4を約3
00nmの厚さに形成する。高誘電体層4はBSTに限
定されるものではなく、例えばSTO(SrTi
3)、PZT(Pb、ZrTiO3)等の材料でよく、
形成法はスパッタ又はCVD(化学気相成長法)であっ
てもよい。続いてTi−Pt−Auの順番に上部電極層
5を形成する。この金属材もこれに限定されるものでは
ない。
<Embodiment 5> Si as an embodiment of the present invention
A method for manufacturing a MIM type thin capacitor formed on a single crystal substrate 1 will be described with reference to FIGS. As shown in FIG. 1A, a SiO 2 layer 2 is formed to a thickness of about 500 nm on a Si single crystal substrate 1 having a thickness of about 500 μm, and a lower electrode layer 3 is formed on the SiO 2 layer 2 in the order of Ti—Pt. Is formed by sputtering. A high melting point metal such as Ta may be used instead of Ti, and its thickness is about 100 nm. Subsequently, a sol-gel-like BST was prepared as a solution, and this solution was spin-coated, and was applied for about 600
Sintering in an oxygen atmosphere at a temperature of about 3.degree.
It is formed to a thickness of 00 nm. The high dielectric layer 4 is not limited to BST, for example, STO (SrTi
O 3 ), PZT (Pb, ZrTiO 3 ), etc.
The formation method may be sputtering or CVD (chemical vapor deposition). Subsequently, the upper electrode layer 5 is formed in the order of Ti-Pt-Au. This metal material is not limited to this.

【0030】ウエーハ全面にMIM型構造を形成した
後、薄型コンデンサ用に設計されたパターンに対応した
ホトレジスト層を形成し、これをマスクにイオンミリン
グによって上部電極層45を加工し、順次同じ手法で高
誘電体層44、下部電極層43を加工し、分割する。こ
の工程でMIM型コンデンサは分割位置6で単位セル8
に分割されている。
After the MIM type structure is formed on the entire surface of the wafer, a photoresist layer corresponding to the pattern designed for the thin capacitor is formed, and the upper electrode layer 45 is processed by ion milling using the photoresist layer as a mask. The high dielectric layer 44 and the lower electrode layer 43 are processed and divided. In this step, the MIM type capacitor is placed in the unit cell 8 at the dividing position 6.
Is divided into

【0031】続いて図4に示すように、この表面にSi
2絶縁膜46を形成し、上部電極層45と下部電極層
43に達する導通孔を加工し、Ti−Pt−Auの順番
で成膜した配線金属を形成し、ホトレジスト層をマスク
にイオンミリングによって配線層47、48を加工す
る。これによって下部電極用の配線層47と上部電極用
の配線層48によってMIM型コンデンサの単位セルが
並列に接続され全体で大容量のコンデンサとなる。
Subsequently, as shown in FIG.
An O 2 insulating film 46 is formed, a conduction hole reaching the upper electrode layer 45 and the lower electrode layer 43 is processed, a wiring metal formed in the order of Ti—Pt—Au is formed, and ion milling is performed using the photoresist layer as a mask. The wiring layers 47 and 48 are processed by this. As a result, the unit cells of the MIM type capacitor are connected in parallel by the wiring layer 47 for the lower electrode and the wiring layer 48 for the upper electrode, so that the capacitor as a whole has a large capacity.

【0032】続いてこの表面にSiN膜とSiO2膜を
順番にそれぞれ100nmと600nmの厚さで成膜し
て保護膜49とし、これに外部取り出し用の窓を開け表
面側の工程が完了する。上記SiN膜は高誘電体層44
を外部環境から保護する目的で使われるもので、同様の
効果があるAlN又はAl23であってもよい。
Subsequently, a SiN film and a SiO 2 film are sequentially formed on this surface with a thickness of 100 nm and 600 nm, respectively, to form a protective film 49, a window for taking out the outside is opened, and the process on the front side is completed. . The SiN film is a high dielectric layer 44
AlN or Al 2 O 3 which has the same effect and may be used for the purpose of protecting the AlN from the external environment.

【0033】続いて図1(b)に示すように、約500
μmの厚さのSi単結晶基板1の裏面側から約180μ
mまでSiを研削除去し、HFとHNO3を主成分とし
た化学エッチング液によってSiを溶解し、約50μm
の基板厚さにする。この研削でSi単結晶内に生じた損
傷は約50μm以上の量の化学エッチングで完全に除去
できる。これによって約50μmの厚さのSi単結晶ウ
エーハ基板上にMIM型薄型コンデンサが製造され、ウ
エーハの反りは20μm以内になった。なお、図1
(b)は図1(a)に対応する部分のみを示したもの
で、実際の素子は図4に示した状態である。この後、ウ
エーハからチップを切り出し、特性の揃ったMIM型薄
型コンデンサを大量に生産することができた。
Subsequently, as shown in FIG.
about 180 μm from the back side of the Si single crystal substrate 1 having a thickness of μm.
m, and the Si was dissolved by a chemical etching solution containing HF and HNO 3 as main components, and about 50 μm
Substrate thickness. Damage caused in the Si single crystal by this grinding can be completely removed by chemical etching of about 50 μm or more. As a result, an MIM type thin capacitor was manufactured on a Si single crystal wafer substrate having a thickness of about 50 μm, and the warpage of the wafer was within 20 μm. FIG.
(B) shows only a portion corresponding to FIG. 1 (a), and the actual element is in the state shown in FIG. Thereafter, chips were cut out from the wafer, and mass-produced MIM type thin capacitors having uniform characteristics were able to be produced.

【0034】〈実施例6〉図9は薄型LSIチップ91
と上記実施例で形成された薄型コンデンサチップ92を
Fカードに実装した主要部分の構成を示す断面構造図で
ある。約20μmの薄型LSIチップ91と同じ厚さの
薄型コンデンサチップ92の各々の電極が配線層98に
導電性樹脂99によって接続され、これらの周囲の空間
を樹脂90で充填し、さらに20μm厚のスペーサ95
及び接着層94、96で囲んで同じ厚さの上層と下層の
樹脂フィルム93、96(約100μmの厚さ)で挟み
固定する。このFカードの厚さは約250μmと薄いに
も係わらず薄型LSIチップ91と薄型コンデンサチッ
プ92は図のようにFカードの厚み方向の中央(中立
面)に配置されるので、カードの曲げやねじれに対する
強度は図8の従来ICカード(約750μm厚)に比べ
一桁以上大きくなっている。
Embodiment 6 FIG. 9 shows a thin LSI chip 91.
FIG. 3 is a cross-sectional structural view showing a configuration of a main part in which the thin capacitor chip 92 formed in the above embodiment is mounted on an F card. Each electrode of the thin capacitor chip 92 having the same thickness as the thin LSI chip 91 having a thickness of about 20 μm is connected to the wiring layer 98 by a conductive resin 99, the space around these is filled with the resin 90, and a spacer having a thickness of 20 μm is further provided. 95
And, it is sandwiched and fixed between the upper and lower resin films 93 and 96 (thickness of about 100 μm) of the same thickness surrounded by the adhesive layers 94 and 96. Although the thickness of the F card is as thin as about 250 μm, the thin LSI chip 91 and the thin capacitor chip 92 are arranged at the center (neutral surface) in the thickness direction of the F card as shown in the figure, so that the card is bent. The strength against twisting and twisting is at least one digit greater than that of the conventional IC card (about 750 μm thick) in FIG.

【0035】図10は非接触方式ICカードであるFカ
ード100の全体構成図である。Fカード100は同調
用コイル101と薄型LSIチップ91、91’と薄型
コンデンサチップ92と配線層98を有する。図11は
この電気回路系統図である。薄型コンデンサチップはL
Cm同調回路と全波整流の平滑用コンデンサCpに使わ
れ、Fカードの特徴である効果を確認した。
FIG. 10 is an overall configuration diagram of an F card 100 which is a non-contact type IC card. The F card 100 includes a tuning coil 101, thin LSI chips 91 and 91 ', a thin capacitor chip 92, and a wiring layer 98. FIG. 11 is an electric circuit diagram. The thin capacitor chip is L
It was used for the Cm tuning circuit and the smoothing capacitor Cp for full-wave rectification, and confirmed the effects characteristic of the F card.

【0036】なお、薄型コンデンサの用途はFカードに
限定されるものではなく、厚さの薄い特徴を生かして、
携帯端末機器等の小型軽量の目的のためにマルチチップ
モジュール実装に適用される。さらに例えばDRAM等
の大型LSIの表面にこれを接着、接続して電源雑音を
低減する等の新しい応用分野が開拓できる。また、本発
明では薄型コンデンサチップの例を述べたが、同様の原
理でこれを薄型LSIチップ内にも適用できることは云
うに及ばない。
The use of the thin capacitor is not limited to the F card, and the thin capacitor is used to
It is applied to the mounting of a multi-chip module for the purpose of miniaturization and light weight of a portable terminal device or the like. Further, a new application field such as reducing the power supply noise by bonding and connecting this to the surface of a large LSI such as a DRAM can be developed. In the present invention, an example of a thin capacitor chip has been described, but it goes without saying that the same principle can be applied to a thin LSI chip.

【0037】[0037]

【発明の効果】以上述べたように、本発明の半導体装置
は、製造歩留まりが従来より向上し、大量生産に適し、
取り扱いやすく、また、組立歩留まりも良好であった。
また、このような半導体装置を容易に製造することがで
きた。また、曲げやねじりに対して強靭なフレキシブル
カードとすることができた。
As described above, according to the semiconductor device of the present invention, the production yield is improved as compared with the conventional one, and it is suitable for mass production.
It was easy to handle and the assembly yield was good.
Further, such a semiconductor device could be easily manufactured. In addition, a flexible card that is strong against bending and torsion could be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の一例の断面構造図。FIG. 1 is a sectional structural view of an example of a semiconductor device of the present invention.

【図2】本発明の実施例1の半導体装置の平面図。FIG. 2 is a plan view of the semiconductor device according to the first embodiment of the present invention.

【図3】本発明の実施例1の半導体装置の断面構造図。FIG. 3 is a sectional structural view of the semiconductor device according to the first embodiment of the present invention;

【図4】本発明の実施例1の半導体装置の単位セルの断
面構造図。
FIG. 4 is a sectional structural view of a unit cell of the semiconductor device according to the first embodiment of the present invention.

【図5】本発明の実施例2の半導体装置の単位セルの断
面構造図。
FIG. 5 is a sectional structural view of a unit cell of a semiconductor device according to a second embodiment of the present invention.

【図6】本発明の実施例3の半導体装置の単位セルの断
面構造図。
FIG. 6 is a sectional structural view of a unit cell of a semiconductor device according to a third embodiment of the present invention.

【図7】本発明の実施例4の半導体装置の単位セルの断
面構造図。
FIG. 7 is a sectional structural view of a unit cell of a semiconductor device according to a fourth embodiment of the present invention.

【図8】従来のICカードの主要部分の構成を示す断面
構造図。
FIG. 8 is a sectional structural view showing a configuration of a main part of a conventional IC card.

【図9】本発明の実施例6に示したFカードの主要部分
の構成を示す断面構造図。
FIG. 9 is a sectional structural view showing a configuration of a main part of an F card shown in Embodiment 6 of the present invention.

【図10】本発明の実施例6に示したFカードの全体構
成図。
FIG. 10 is an overall configuration diagram of an F card shown in Embodiment 6 of the present invention.

【図11】本発明の実施例6に示したFカードの電気回
路系統図。
FIG. 11 is an electric circuit diagram of an F card according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…Si単結晶基板 2…SiO2層 3、43、53、63、73…下部電極層 4、44、54、64、74…高誘電体層 5、45、55…上部電極層 6…分割位置 8…単位セル 20…チップ 21…コンデンサ部 26…セル 29…スクライプ領域 46、56、66、76…SiO2絶縁膜 47、48、57、58、67、68、77、78、9
8…配線層 49、59…保護膜層 76…絶縁膜 81…LSIチップ 82…コンデンサチップ 83、87、93、96…樹脂フィルム 84、86、94、96…接着層 85…コア層 88…ワイヤ 91、91’…薄型LSIチップ 92…薄型コンデンサチップ 95…スペーサ 99…導電性樹脂 100…Fカード 101…同調用コイル
1 ... Si single crystal substrate 2 ... SiO 2 layer 3,43,53,63,73 ... lower electrode layer 4,44,54,64,74 ... high dielectric layer 5,45,55 ... upper electrode layer 6 ... divided position 8 ... unit cell 20 ... chip 21 ... condenser 26 ... cell 29 ... Sukuraipu regions 46, 56, 66 and 76 ... SiO 2 insulating film 47,48,57,58,67,68,77,78,9
8 Wiring layer 49, 59 Protective film layer 76 Insulating film 81 LSI chip 82 Capacitor chip 83, 87, 93, 96 Resin film 84, 86, 94, 96 Adhesive layer 85 Core layer 88 Wire 91, 91 ': Thin LSI chip 92: Thin capacitor chip 95: Spacer 99: Conductive resin 100: F card 101: Tuning coil

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 25/18 (72)発明者 小田 浩人 東京都小平市上水本町5丁目20番1号 日 立超エル・エス・アイ・エンジニアリング 株式会社内 (72)発明者 太田 博 東京都小平市上水本町5丁目20番1号 日 立超エル・エス・アイ・エンジニアリング 株式会社内 (72)発明者 宇佐美 光雄 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H01L 25/18 (72) Inventor Hiroto Oda 5-2-1, Kamimizuhoncho, Kodaira-shi, Tokyo (72) Inventor Hiroshi Ota 5-20-1, Josuihoncho, Kodaira-shi, Tokyo In-house Hitachi, Ltd. (72) Invention Mitsuo Usami 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】厚さが1μmから100μmの範囲にある
半導体基板と該半導体基板に配置された素子からなる半
導体装置であり、該素子を構成する成膜層の内の少なく
とも一層が分割され、分割された各素子は、並列に接続
されたことを特徴とする半導体装置。
1. A semiconductor device comprising a semiconductor substrate having a thickness in a range of 1 μm to 100 μm and an element arranged on the semiconductor substrate, wherein at least one of film formation layers constituting the element is divided, A semiconductor device, wherein each of the divided elements is connected in parallel.
【請求項2】上記素子は、メタル−絶縁体−メタル構造
のコンデンサであることを特徴とする請求項1記載の半
導体装置。
2. The semiconductor device according to claim 1, wherein said element is a capacitor having a metal-insulator-metal structure.
【請求項3】上記分割された層は、上記素子を構成する
成膜層の内の最も応力が大きい層であることを特徴とす
る請求項1又は2記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the divided layer is a layer having the largest stress among the film forming layers constituting the element.
【請求項4】上記分割された層の内の平面的に最も大き
い層は、縦、横いずれも一辺の長さが上記半導体基板の
厚さの1倍から20倍の範囲であることを特徴とする請
求項1から3のいずれか一に記載の半導体装置。
4. The largest planar layer among the divided layers has a length of one side both in the vertical and horizontal directions in a range of 1 to 20 times the thickness of the semiconductor substrate. The semiconductor device according to claim 1, wherein:
【請求項5】上記半導体基板は、シリコン単結晶基板で
あることを特徴とする請求項1から4のいずれか一に記
載の半導体装置。
5. The semiconductor device according to claim 1, wherein said semiconductor substrate is a silicon single crystal substrate.
【請求項6】半導体基板上に複数の成膜層からなる素子
を形成する工程、該素子を構成する成膜層の内の少なく
とも一層を分割する工程、分割された各素子を並列に接
続するための配線層の少なくとも一部を形成する工程及
び上記半導体基板の裏面を研磨し、その厚さを1μmか
ら100μm範囲の厚さとする工程を有することを特徴
とする半導体装置の製造方法。
6. A step of forming an element composed of a plurality of film layers on a semiconductor substrate, a step of dividing at least one of the film layers constituting the element, and connecting the divided elements in parallel. Forming at least a part of a wiring layer for the semiconductor device, and polishing the back surface of the semiconductor substrate to reduce the thickness thereof to a thickness in a range of 1 μm to 100 μm.
【請求項7】上記半導体基板の裏面の研磨は、機械的研
磨を行って後に化学的研磨を行うことを特徴とする請求
項6記載の半導体装置の製造方法。
7. The method of manufacturing a semiconductor device according to claim 6, wherein the polishing of the back surface of the semiconductor substrate is performed by performing mechanical polishing and then performing chemical polishing.
【請求項8】上記素子は、メタル−絶縁体−メタル構造
のコンデンサであることを特徴とする請求項6又は7記
載の半導体装置の製造方法。
8. The method according to claim 6, wherein the element is a capacitor having a metal-insulator-metal structure.
【請求項9】請求項1から5のいずれか一に記載の半導
体装置と、該半導体装置を内部に配置したフレキシブル
な構造材からなることを特徴とするフレキシブルカー
ド。
9. A flexible card comprising: the semiconductor device according to claim 1; and a flexible structural member having the semiconductor device disposed therein.
【請求項10】上記フレキシブルカードは、非接触式カ
ードであることを特徴とする請求項9記載のフレキシブ
ルカード。
10. The flexible card according to claim 9, wherein said flexible card is a contactless card.
JP23501696A 1996-09-05 1996-09-05 Semiconductor device, its manufacture and flexible card Pending JPH1079471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23501696A JPH1079471A (en) 1996-09-05 1996-09-05 Semiconductor device, its manufacture and flexible card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23501696A JPH1079471A (en) 1996-09-05 1996-09-05 Semiconductor device, its manufacture and flexible card

Publications (1)

Publication Number Publication Date
JPH1079471A true JPH1079471A (en) 1998-03-24

Family

ID=16979834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23501696A Pending JPH1079471A (en) 1996-09-05 1996-09-05 Semiconductor device, its manufacture and flexible card

Country Status (1)

Country Link
JP (1) JPH1079471A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319765B1 (en) 1998-12-30 2001-11-20 Hyundai Electronics Industries Co., Ltd. Method for fabricating a memory device with a high dielectric capacitor
JP2005159259A (en) * 2003-10-31 2005-06-16 Univ Waseda Thin-film capacitor, high-density mounting board with built-in thin-film capacitor, and method of manufacturing thin-film capacitor
WO2005093647A1 (en) * 2004-03-26 2005-10-06 Semiconductor Energy Laboratory Co., Ltd. Thin semiconductor device and operation method of thin semiconductor device
JP2007528601A (en) * 2004-03-09 2007-10-11 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Reliable, cost effective and thermally strong AuSn die attach technology
JP2008072149A (en) * 2007-12-03 2008-03-27 Kansai Electric Power Co Inc:The Semiconductor device
JP2008271283A (en) * 2007-04-23 2008-11-06 Audio Technica Corp Condenser microphone

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319765B1 (en) 1998-12-30 2001-11-20 Hyundai Electronics Industries Co., Ltd. Method for fabricating a memory device with a high dielectric capacitor
JP2005159259A (en) * 2003-10-31 2005-06-16 Univ Waseda Thin-film capacitor, high-density mounting board with built-in thin-film capacitor, and method of manufacturing thin-film capacitor
JP4523299B2 (en) * 2003-10-31 2010-08-11 学校法人早稲田大学 Thin film capacitor manufacturing method
US7836567B2 (en) 2003-10-31 2010-11-23 Waseda University Thin film capacitor, high-density packaging substrate incorporating thin film capacitor, and method for manufacturing thin-film capacitor
JP2007528601A (en) * 2004-03-09 2007-10-11 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Reliable, cost effective and thermally strong AuSn die attach technology
JP4700681B2 (en) * 2004-03-09 2011-06-15 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Si circuit die, method of manufacturing Si circuit die, method of attaching Si circuit die to heat sink, circuit package and power module
WO2005093647A1 (en) * 2004-03-26 2005-10-06 Semiconductor Energy Laboratory Co., Ltd. Thin semiconductor device and operation method of thin semiconductor device
US9030298B2 (en) 2004-03-26 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Thin semiconductor device and operation method of thin semiconductor device
JP2008271283A (en) * 2007-04-23 2008-11-06 Audio Technica Corp Condenser microphone
JP2008072149A (en) * 2007-12-03 2008-03-27 Kansai Electric Power Co Inc:The Semiconductor device

Similar Documents

Publication Publication Date Title
US6324048B1 (en) Ultra-small capacitor array
TWI247563B (en) Interposer and method of making same
JP5133047B2 (en) Manufacturing method of electronic parts
CN100449738C (en) Semiconductor chip and circuit board, manufacturing method of same, and electronic equipment
DE112015007068T5 (en) ALTERNATIVE SURFACES FOR CONDUCTIVE CONTACT INLAYS OF SILICON BRIDGES FOR SEMICONDUCTOR HOUSINGS
US5134539A (en) Multichip module having integral decoupling capacitor
CN111769095B (en) Three-dimensional capacitance inductor based on high-functional-density silicon through hole structure and preparation method
US6525922B2 (en) High performance via capacitor and method for manufacturing same
JP2002530884A (en) Improved capacitor with high Q value
JPH1079471A (en) Semiconductor device, its manufacture and flexible card
JPH05251582A (en) Mounting device for broad-band microwave integrated circuit
US6737745B2 (en) Method for relieving bond stress in an under-bond-pad resistor
JP2846310B1 (en) Semiconductor device and manufacturing method thereof
JP2875777B2 (en) Semiconductor device
JP3419695B2 (en) Semiconductor element
JPH09213894A (en) Smoothing circuit element
JPH07202147A (en) Semiconductor device
JPH08181211A (en) Semiconductor element and manufacture thereof
JP2943511B2 (en) Semiconductor device
JP2001044778A (en) Composite electronic component
CN109711230A (en) A kind of semiconductor fingerprint sensor and preparation method thereof, electronic device
JPH0664379A (en) Ic card and manufacture thereof
Newell et al. The tunistor: A mechanical resonator for microcircuits
JP4457642B2 (en) Semiconductor device and manufacturing method thereof
TW541623B (en) Processing method to eliminate the internal stress of silicon layer