JPH1074536A - Sealed nickel-hydrogen storage battery - Google Patents

Sealed nickel-hydrogen storage battery

Info

Publication number
JPH1074536A
JPH1074536A JP8229820A JP22982096A JPH1074536A JP H1074536 A JPH1074536 A JP H1074536A JP 8229820 A JP8229820 A JP 8229820A JP 22982096 A JP22982096 A JP 22982096A JP H1074536 A JPH1074536 A JP H1074536A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage battery
sealed nickel
battery according
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8229820A
Other languages
Japanese (ja)
Other versions
JP3846602B2 (en
Inventor
Yuichi Matsumura
勇一 松村
Toshiki Tanaka
俊樹 田中
Minoru Kurokuzuhara
実 黒葛原
Atsushi Tani
篤 谷
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP22982096A priority Critical patent/JP3846602B2/en
Publication of JPH1074536A publication Critical patent/JPH1074536A/en
Application granted granted Critical
Publication of JP3846602B2 publication Critical patent/JP3846602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sealed nickel-hydrogen storage battery with high capacity and excellent charging efficiency specially under a high temperature, internal pressure characteristic, high-efficiency discharge characteristic, self-discharge characteristic and charge/discharge cycle characteristic. SOLUTION: A sealed nickel-hydrogen storage battery has generating elements, consisting of a positive electrode formed mainly of nickel hydroxide to which metal cobalt and/or cobalt compound and at least one type of rare earth compound, alkali earth metal compound and zinc oxide are added, a negative electrode formed mainly of hydrogen storage alloy to which anticorrosive agent is added to grant water-repellency to at least part of the surface of the electrode. alkali electrolyte and a separator formed of a woven or non- woven cloth to electrically insulate the positive electrode from the negative electrode and hold the electrolyte as required for charge discharge reaction for a long time. Part of the negative electrode in electrode groups is put in direct contact with a sealed case and the positive electrode is connected to a cover via a lead. The generating elements are stored in the sealed case which is sealed with the cover having a safety valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型ニッケル−
水素蓄電池に関するもので、さらに詳しく言えば、高容
量で、とくに高温下での充電効率に優れ、内圧特性や高
率放電特性、自己放電特性、充放電サイクル特性に優れ
た密閉型ニッケル−水素蓄電池に関するものである。
[0001] The present invention relates to a sealed nickel alloy.
More specifically, it is a sealed nickel-hydrogen battery with high capacity, excellent charge efficiency especially at high temperatures, excellent internal pressure characteristics, high rate discharge characteristics, self-discharge characteristics, and charge / discharge cycle characteristics. It is about.

【0002】[0002]

【従来の技術】密閉型ニッケル−水素蓄電池は、従来の
密閉型ニッケル−カドミウム蓄電池に比べて高いエネル
ギー密度を有し、カドミウムなどを含まず無公害である
ことから、携帯電話やノートパソコンをはじめとするポ
ータブル機器用電源として広く用いられ、これらの機器
の普及とともに近年、その需要は飛躍的に増大してい
る。
2. Description of the Related Art A sealed nickel-hydrogen battery has a higher energy density than a conventional sealed nickel-cadmium battery and is free from cadmium and the like. It is widely used as a power source for portable equipment, and the demand for such equipment has been dramatically increased in recent years with the spread of these equipment.

【0003】これらのポータブル機器は小型化、軽量化
が進み、これに伴って電源である電池には設置スペース
上の制約から、より高いエネルギー密度を有するものが
要求されるようになっている。しかも、機器の多機能化
に伴う消費電力の増大や発熱素子の高密度実装などによ
って電池の使用環境である機器内部は高温になることが
多い。そのため、電池には優れたサイクル寿命が要求さ
れることはいうまでもなく、高温環境下でも諸特性への
影響が少ないものが要求されるようになっている。
[0003] These portable devices are becoming smaller and lighter, and as a result, batteries having a higher energy density are required for batteries, which are power sources, due to restrictions on installation space. In addition, the inside of the device, which is the environment in which the battery is used, often becomes hot due to an increase in power consumption accompanying multifunctionality of the device and a high-density mounting of heating elements. Therefore, needless to say, batteries are required to have an excellent cycle life, and are required to have little influence on various characteristics even in a high temperature environment.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記したよ
うな高温下で密閉型ニッケル−水素蓄電池を充電した場
合、充電効率の低下が生じることが知られている。これ
は、正極活物質である水酸化ニッケルは酸素過電圧が小
さく、とりわけ高温下では充電反応と酸素ガス発生反応
との競合が生じるためである。そこで、この問題を解決
する手段として、電解液として用いられる水酸化カリウ
ム水溶液に水酸化リチウムを添加する方法や、水酸化ニ
ッケルの結晶中にコバルトを固溶状態で添加する方法な
どが提案されているが、電解液中への水酸化リチウムの
添加は、放電電圧や低温時の放電容量を低下させるとい
う欠点があり、水酸化ニッケルの結晶中へのコバルトの
固溶体添加は、ニッケル電極の充電電位をより卑な電位
にするが、放電電位もまた卑な電位になるため、電池の
出力低下を来たすという問題があった。
However, it is known that when a sealed nickel-metal hydride storage battery is charged at such a high temperature as described above, the charging efficiency is reduced. This is because nickel hydroxide, which is a positive electrode active material, has a small oxygen overvoltage, and competition between a charging reaction and an oxygen gas generating reaction occurs particularly at high temperatures. Therefore, as means for solving this problem, a method of adding lithium hydroxide to an aqueous solution of potassium hydroxide used as an electrolytic solution, a method of adding cobalt in a solid solution state to crystals of nickel hydroxide, and the like have been proposed. However, the addition of lithium hydroxide to the electrolytic solution has the disadvantage of lowering the discharge voltage and the discharge capacity at low temperatures, and the addition of a solid solution of cobalt into the nickel hydroxide crystals has the disadvantage that the charge potential of the nickel electrode is reduced. Has a lower potential, but the discharge potential also has a lower potential, which causes a problem of lowering the output of the battery.

【0005】また、上記した高温環境下では、満充電状
態で電池を放置したときの容量保持性が著しく低下する
という問題も有している。従来のポリアミド系樹脂から
なる不織布をセパレータとして用いた電池の自己放電
は、その分解生成物である硝酸イオンや亜硝酸イオンが
正負極間で互いに酸化、還元を繰り返すこと(シャトル
効果)によって生じることが知られているが、とくに密
閉型ニッケル−水素蓄電池の場合は、上記したメカニズ
ムによる自己放電のほか、負極に用いている水素吸蔵合
金から水素が放出され、これがセパレータ中を移動して
ニッケル電極で酸化され、自己放電を生じると言われて
いる。
[0005] In addition, in the above-mentioned high temperature environment, there is also a problem that the capacity retention when the battery is left in a fully charged state is significantly reduced. The self-discharge of a battery using a conventional non-woven fabric made of polyamide resin as a separator is caused by the repeated oxidation and reduction of the decomposition products, nitrate and nitrite, between the positive and negative electrodes (shuttle effect). In particular, in the case of a sealed nickel-hydrogen storage battery, in addition to self-discharge by the above-described mechanism, hydrogen is released from the hydrogen storage alloy used for the negative electrode, which moves in the separator to form a nickel electrode. It is said that it is oxidized by, causing self-discharge.

【0006】一方、水素吸蔵合金は、充放電サイクルの
繰り返しによって導電性の低下を引き起こし、負極活物
質の利用率低下の原因となることが知られている。これ
は、水素吸蔵合金の主構成材料である希土類元素が溶解
析出することにより、水酸化物などからなる針状生成物
となって負極表面を覆うことが原因の一つであることが
わかっている。このような水素吸蔵合金の腐食は、合金
中に含まれるLa量と密接な関係にあることが知られて
いる。そこで、この問題を解決する手段として、水素吸
蔵合金中のLa量を減少させ、これよりも腐食を受けに
くいNdの量を増加させる方法が提案されているが、こ
の方法では防食効果は必ずしも十分でないという問題が
あった。
On the other hand, it is known that the hydrogen storage alloy causes a decrease in conductivity due to repetition of a charge / discharge cycle, which causes a reduction in the utilization rate of a negative electrode active material. This is one of the causes of the fact that the rare earth element, which is the main constituent material of the hydrogen storage alloy, is dissolved and precipitated to form needle-like products such as hydroxides and covers the negative electrode surface. I have. It is known that such corrosion of the hydrogen storage alloy is closely related to the amount of La contained in the alloy. In order to solve this problem, a method has been proposed in which the amount of La in the hydrogen storage alloy is reduced and the amount of Nd which is less susceptible to corrosion is increased. There was a problem that was not.

【0007】また、上記した水素吸蔵合金の腐食が進行
すると、負極のガス吸収性能や充電効率が低下する。ガ
ス吸収性能の低下は充電末期の酸素ガス発生による電池
内圧の上昇を来たし、充電効率の低下は充電末期に負極
から水素ガス発生が起こる原因となり、充放電の繰り返
しとともに電池内圧の上昇をさらに加速させる。その結
果、金属製蓋体に備えた安全弁の開弁によって電解液が
損失し、内部抵抗が上昇して電池寿命が低下するという
問題も有していた。
Further, as the corrosion of the hydrogen storage alloy proceeds, the gas absorption performance and charging efficiency of the negative electrode decrease. A decrease in gas absorption performance caused an increase in the internal pressure of the battery due to the generation of oxygen gas at the end of charging, and a decrease in charging efficiency caused the generation of hydrogen gas from the negative electrode at the end of charging, further accelerating the increase in the internal pressure of the battery with repeated charging and discharging. Let it. As a result, there is also a problem that the electrolyte is lost due to the opening of the safety valve provided on the metal lid, the internal resistance increases, and the battery life is shortened.

【0008】そして、密閉型ニッケル−水素蓄電池は、
密閉型ニッケル−カドミウム蓄電池に比べて高率放電特
性が劣り、ポータブル機器の中でも電動工具のような高
出力密度が要求される用途においてはこれを解決するこ
とが重要な課題であった。密閉型ニッケル−水素蓄電池
の高率放電特性が劣るのは主として水素吸蔵合金に起因
するものであり、その改良が望まれていた。
[0008] The sealed nickel-hydrogen storage battery is
High-rate discharge characteristics are inferior to sealed nickel-cadmium storage batteries, and it has been an important issue to solve this problem in portable equipment that requires a high output density such as an electric power tool. The inferior high-rate discharge characteristics of the sealed nickel-hydrogen storage battery are mainly due to the hydrogen storage alloy, and its improvement has been desired.

【0009】さらに、従来セパレータとして用いられて
いたポリアミド系樹脂からなる不織布は、上述の通り、
高温環境下で分解されやすいという問題を有することか
ら、耐酸化性に優れたポリオレフィン系樹脂からなる不
織布に種々の方法で親水性を付与したセパレータが提案
されている。たとえば、コロナ放電処理を施す方法やフ
ッ素ガスを含む反応ガスと接触反応させる方法、熱濃硫
酸や発煙硫酸を用いてスルホン酸基を導入する方法など
がそれである。これらのセパレータは、いずれも上記し
た高温下での使用に十分耐え得る耐酸化性を有している
が、反面電解液保持性が必ずしも十分でなく、充放電サ
イクルの繰り返しに伴うニッケル電極の膨潤によってセ
パレータ中の電解液がニッケル電極側に移行し、やがて
セパレータ層が枯渇化して寿命に至っていた。これは、
上記したセパレータはいずれも繊度1〜3デニールの太
い繊維で構成されているために表面積が小さく、しか
も、親水基が付与されているのは繊維表面部のみに限定
されるためである。
Further, as described above, a nonwoven fabric made of a polyamide resin, which has been conventionally used as a separator,
Since there is a problem that it is easily decomposed in a high-temperature environment, separators have been proposed in which a nonwoven fabric made of a polyolefin-based resin having excellent oxidation resistance is imparted with hydrophilicity by various methods. Examples of the method include a method of performing corona discharge treatment, a method of causing a contact reaction with a reactive gas containing fluorine gas, and a method of introducing a sulfonic acid group using hot concentrated sulfuric acid or fuming sulfuric acid. Each of these separators has oxidation resistance enough to withstand the use under the above-mentioned high temperature, but does not always have sufficient electrolyte retention, and swelling of the nickel electrode due to repeated charge / discharge cycles. As a result, the electrolyte in the separator migrated to the nickel electrode side, and eventually the separator layer was depleted, leading to its life. this is,
Each of the above-mentioned separators is made of a thick fiber having a fineness of 1 to 3 deniers, so that the surface area is small, and the reason that the hydrophilic group is provided is limited only to the fiber surface portion.

【0010】また、上記したような太い繊維で構成され
たセパレータの場合、目付を下げようとすると電解液保
持性が著しく低下したり、抄紙ムラが大きくなって短絡
の原因になるなどの不具合を生じ、高容量化の妨げとな
っていた。
Further, in the case of the separator composed of the above-mentioned thick fiber, when the weight per unit area is reduced, problems such as a remarkable decrease in electrolyte retention and an increase in unevenness of papermaking to cause a short circuit. This has hindered an increase in capacity.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明の密閉型ニッケル−水素蓄電池は、水酸化ニ
ッケルを主構成材料とし、これに金属コバルトおよび/
またはコバルト化合物と、希土類化合物またはアルカリ
土類金属化合物または酸化亜鉛のうち少なくとも1種を
添加してなる正極を用いることを特徴とするものであ
る。そして、前記水酸化ニッケルは、結晶中にCo、Z
n、Cu、Mg、Baのうち少なくとも1種を固溶状態
で含有させたものであることを特徴とするものである。
また、前記コバルト化合物は、一酸化コバルト、水酸化
コバルトのいずれか、もしくはこれらを組み合わせたも
のであることを特徴とし、その粒子径は、1μm以下で
あることを特徴とするものである。また、前記コバルト
化合物は、水酸化コバルトであって、これが前記水酸化
ニッケルの粒子表面を被覆していることを特徴とするも
のである。さらに、前記希土類化合物は、Yb、Er、
Lu、Ho、Tm、Yの酸化物、水酸化物のいずれか、
もしくはこれらを組み合わせたものであることを特徴と
し、前記アルカリ土類金属化合物は、Mg、Ca、S
r、Baの酸化物、水酸化物、フッ化物、炭酸化物のい
ずれか、もしくはこれらを組み合わせたものであること
を特徴とするものである。
In order to solve the above-mentioned problems, a sealed nickel-hydrogen storage battery according to the present invention comprises nickel hydroxide as a main constituent material and contains metallic cobalt and / or metallic cobalt.
Alternatively, a positive electrode obtained by adding at least one of a cobalt compound, a rare earth compound, an alkaline earth metal compound, and zinc oxide is used. The nickel hydroxide contains Co, Z in the crystal.
It is characterized in that at least one of n, Cu, Mg, and Ba is contained in a solid solution state.
Further, the cobalt compound is one of cobalt monoxide and cobalt hydroxide, or a combination thereof, and has a particle diameter of 1 μm or less. Further, the cobalt compound is cobalt hydroxide, which coats the surface of the nickel hydroxide particles. Further, the rare earth compound is Yb, Er,
Lu, Ho, Tm, any of oxides and hydroxides of Y,
Or a combination thereof, wherein the alkaline earth metal compound is Mg, Ca, S
An oxide, hydroxide, fluoride, or carbonate of r or Ba, or a combination thereof.

【0012】希土類化合物やアルカリ土類金属化合物お
よび酸化亜鉛は、ニッケル電極の酸素発生電位を貴にす
る作用を有しており、少量のCoを固溶体添加した水酸
化ニッケルとの組み合わせにおいても、大きな酸素過電
圧を得ることが可能となる。その結果、放電電圧や放電
容量などの電池性能を大きく低下させることなく、高温
下での充電効率を向上させることが可能となる。
Rare earth compounds, alkaline earth metal compounds, and zinc oxide have the effect of making the oxygen generation potential of the nickel electrode noble, and even in combination with nickel hydroxide to which a small amount of Co is added as a solid solution, a large amount of zinc oxide can be obtained. An oxygen overvoltage can be obtained. As a result, it is possible to improve the charging efficiency at a high temperature without significantly lowering the battery performance such as the discharge voltage and the discharge capacity.

【0013】また、水酸化ニッケルにZn、Cu、M
g、Baを固溶添加した場合は、上記した効果の他に、
γ−NiOOHの生成を抑制する効果も得ることができ
る。ニッケル電極の膨潤は、充電末期に生成する低密度
のγ−NiOOHによることが知られており、これを抑
制することで電解液のニッケル電極側への偏在が緩和さ
れ、充放電サイクル特性の向上が期待できる。
Further, Zn, Cu, M
When g and Ba are added as a solid solution, in addition to the effects described above,
The effect of suppressing the generation of γ-NiOOH can also be obtained. It is known that the swelling of the nickel electrode is caused by low-density γ-NiOOH generated at the end of charging. By suppressing this, uneven distribution of the electrolytic solution to the nickel electrode side is reduced, and the charge / discharge cycle characteristics are improved. Can be expected.

【0014】そして、導電補助剤として添加するコバル
ト化合物は、その粒子径を1μm以下にすることで、1
サイクル目の充電によって効果的に導電性のCoOOH
に酸化され、活物質間における緻密な導電性ネットワー
クの形成が可能となり、高率放電性能の向上に寄与する
ことができる。また、これにより添加量を低減すること
ができるので、高容量化にも寄与することができる。
The cobalt compound to be added as a conductive auxiliary is made to have a particle diameter of 1 μm or less, and
Effective charging of CoOOH by charging in the cycle
And a dense conductive network can be formed between the active materials, which can contribute to an improvement in high-rate discharge performance. In addition, since the amount of addition can be reduced, this can contribute to an increase in capacity.

【0015】さらに、導電補助剤としてのコバルト化合
物が水酸化コバルトであって、水酸化ニッケルの粒子表
面を前記水酸化コバルトで被覆した場合は、導電性ネッ
トワークの形成が極めて容易となり、電池組立後の放置
時間を短縮することができる。しかも、少量の水酸化コ
バルトでも強固な導電性ネットワークを形成させること
ができるので、高容量化にも寄与することができる。
Further, when the cobalt compound as a conductive auxiliary is cobalt hydroxide and the surface of nickel hydroxide particles is coated with the cobalt hydroxide, formation of a conductive network becomes extremely easy, and Can be shortened. Moreover, since a strong conductive network can be formed even with a small amount of cobalt hydroxide, it is possible to contribute to an increase in capacity.

【0016】また、本発明の密閉型ニッケル−水素蓄電
池は、水素吸蔵合金を主構成材料とし、これに防食剤を
添加し、かつ少なくとも電極表面の一部にはっ水性を付
与してなる負極を用いることを特徴とするものである。
そして、前記水素吸蔵合金は、少なくともニッケルを含
むCaCu5 型構造を有するAB5 系水素吸蔵合金であ
って、A側元素がLa、Ce、Pr、Ndのうち少なく
とも1種を含んだ希土類元素の単体または複合体であ
り、かつB側元素がNi、Al、Co、Mnのうち少な
くとも1種を含んだものであることを特徴とし、その表
面には、バルク組成よりも明らかにNi量が多いNiリ
ッチ層を有することを特徴とするものである。そして、
前記Niリッチ層の形成は、水素吸蔵合金粉末を酸性溶
液中に浸漬して行うことを特徴とし、酸性溶液は、pH
を2〜6に調整した弱酸水溶液であり、弱酸水溶液は、
酢酸−酢酸塩緩衝溶液であることを特徴とするものであ
る。また、前記Niリッチ層の形成は、水素吸蔵合金粉
末を高温アルカリ水溶液中に浸漬して行うことを特徴と
し、アルカリ水溶液は、pHを14以上に調整した強ア
ルカリ水溶液であり、強アルカリ水溶液は、KOHとL
iOHおよび/またはNaOHの混合水溶液であること
を特徴とするものである。そして、水素吸蔵合金は、合
金作製時の冷却速度が1000℃/sec以上であるこ
とを特徴とするものである。さらに、前記防食剤は、Y
b、Er、Lu、Yの単体、酸化物、水酸化物のいずれ
か、もしくはこれらを組み合わせたものであり、負極の
少なくとも表面の一部は、フッ素、炭素、酸素で構成さ
れるはっ水効果を持つ樹脂で被覆されていることを特徴
とし、はっ水効果を持つ樹脂はポリパーフルオロブテニ
ルビニルエーテルであることを特徴とするものである。
Further, the sealed nickel-hydrogen storage battery of the present invention has a negative electrode comprising a hydrogen storage alloy as a main constituent material, an anticorrosive agent added thereto, and water repellency imparted to at least a part of the electrode surface. Is used.
The hydrogen storage alloy is an AB 5 -based hydrogen storage alloy having a CaCu 5 type structure containing at least nickel, wherein the A-side element is a rare earth element containing at least one of La, Ce, Pr, and Nd. It is a simple substance or a composite, and the B-side element contains at least one of Ni, Al, Co, and Mn. On the surface thereof, the amount of Ni is clearly larger than the bulk composition. It has a Ni-rich layer. And
The formation of the Ni-rich layer is characterized in that the hydrogen storage alloy powder is immersed in an acidic solution, and the acidic solution has a pH
Is a weak acid aqueous solution adjusted to 2-6, the weak acid aqueous solution,
It is an acetic acid-acetate buffer solution. Further, the formation of the Ni-rich layer is characterized in that the hydrogen storage alloy powder is immersed in a high-temperature alkaline aqueous solution, and the alkaline aqueous solution is a strong alkaline aqueous solution whose pH is adjusted to 14 or more. , KOH and L
It is a mixed aqueous solution of iOH and / or NaOH. The hydrogen storage alloy is characterized in that the cooling rate during the production of the alloy is 1000 ° C./sec or more. Further, the anticorrosive agent is Y
a simple substance of b, Er, Lu, Y, an oxide, a hydroxide, or a combination thereof, and at least a part of the surface of the negative electrode is water repellent composed of fluorine, carbon, and oxygen. It is characterized by being coated with a resin having an effect, and the resin having a water-repellent effect is polyperfluorobutenyl vinyl ether.

【0017】水素吸蔵合金を酸性溶液やアルカリ水溶液
で処理すると、合金表面に濃縮されている希土類元素が
溶解し、ニッケルを主成分とするNiリッチ層が形成さ
れる。Niリッチ層は、合金粒子間の導電性を向上させ
る働きと、電極反応の触媒的役割を果たしている。これ
により、負極の初期活性化を極めて容易にすることがで
きる。ここで、処理液に強酸を用いることは、希土類元
素とともにニッケルまで浸食されるので好ましくない。
これに対し、弱酸水溶液は特定pH領域で水素吸蔵合金
表面の希土類元素を選択的に溶解するので、絶縁性物質
を生成することなく、合金表面に容易にNiリッチ層を
形成することを可能とする。とくに、酢酸−酢酸塩緩衝
溶液はpHコントロールが容易であり、好適に用いられ
る。一方、アルカリ水溶液中で処理すると、一般に合金
表面から絶縁性の希土類水酸化物の針状生成物が析出す
ることが知られているが、処理液に電池に使用する電解
液と同組成のKOHとLiOHの混合水溶液を用いた場
合には、希土類水酸化物の生成を抑制できることがわか
った。
When the hydrogen storage alloy is treated with an acidic solution or an aqueous alkali solution, the concentrated rare earth element is dissolved on the surface of the alloy, and a Ni-rich layer containing nickel as a main component is formed. The Ni-rich layer functions to improve the conductivity between the alloy particles and plays a catalytic role in the electrode reaction. Thereby, the initial activation of the negative electrode can be extremely facilitated. Here, it is not preferable to use a strong acid for the treatment liquid, because nickel is eroded together with the rare earth element.
On the other hand, a weak acid aqueous solution selectively dissolves rare earth elements on the surface of a hydrogen storage alloy in a specific pH range, so that it is possible to easily form a Ni-rich layer on the alloy surface without generating an insulating substance. I do. In particular, an acetic acid-acetate buffer solution is easily used for pH control and is preferably used. On the other hand, it is known that when treated in an alkaline aqueous solution, acicular products of an insulating rare earth hydroxide are generally precipitated from the surface of the alloy. However, KOH having the same composition as the electrolytic solution used for the battery is used as the treating solution. It was found that when a mixed aqueous solution of LiOH and LiOH was used, the formation of rare earth hydroxides could be suppressed.

【0018】また、合金作製時に1000℃/sec以
上の速度で急冷すると、合金粒子内でのA側およびB側
元素の偏析を防止することができ、組成の均質化が図れ
る。これにより、放電時に合金粒子内でのH原子の拡散
が容易になり、上記した表面処理効果との組み合わせに
よって高率放電性能を向上させることができる。
If the alloy is rapidly cooled at a rate of 1000 ° C./sec or more during the production of the alloy, segregation of the A-side and B-side elements in the alloy particles can be prevented, and the composition can be homogenized. This facilitates the diffusion of H atoms in the alloy particles at the time of discharge, and improves the high-rate discharge performance in combination with the above-described surface treatment effect.

【0019】そして、水素吸蔵合金に希土類元素の単体
や化合物を添加すると、これが電解液中に一旦溶解した
後、数十Åの緻密な不働態被膜となって合金表面を覆う
ため、合金の腐食を抑制することができる。しかも、前
記不働態被膜は、充放電の繰り返しに伴う合金の亀裂に
際して現れる新しい金属表面にも随時形成されるため、
充電効率の低下を抑制することができ、水素ガス発生に
よる電池内圧の上昇を防止することができるとともに、
充放電サイクル特性を向上させることができる。
When a simple substance or a compound of a rare earth element is added to the hydrogen storage alloy, the rare earth element is once dissolved in an electrolytic solution, and then becomes a dense passive film covering several tens of mm, covering the alloy surface. Can be suppressed. Moreover, since the passive film is formed as needed on a new metal surface that appears when the alloy is cracked due to repeated charge and discharge,
A reduction in charging efficiency can be suppressed, and an increase in battery internal pressure due to hydrogen gas generation can be prevented.
Charge / discharge cycle characteristics can be improved.

【0020】さらに、負極の少なくとも表面の一部には
っ水効果を持つ樹脂による被覆部を設けることで、負極
表面には気−液−固の三相界面が広く形成され、充電末
期に正極から発生する酸素ガスや急速充電時に発生する
水素ガスを速やかに吸収させることができるので、電池
内圧の上昇を抑制することができる。
Further, by providing at least a part of the surface of the negative electrode with a coating portion made of a resin having a water-repellent effect, a gas-liquid-solid three-phase interface is formed widely on the surface of the negative electrode. Since the oxygen gas generated from the battery and the hydrogen gas generated during rapid charging can be rapidly absorbed, an increase in battery internal pressure can be suppressed.

【0021】また、本発明の密閉型ニッケル−水素蓄電
池は、材質の異なる第1成分と第2成分とが交互に隣接
するように複合紡糸された分割性複合繊維が各構成成分
ごとに分割された繊度0.3デニール以下の微細繊維を
主成分とする織布または不織布であって、前記第1成分
と第2成分の少なくとも一方が親水性を有しているセパ
レータを用いることを特徴とするものである。そして、
前記第1成分はポリオレフィン系樹脂からなり、第2成
分はエチレン−ビニルアルコール共重合体からなること
を特徴とする。また、前記第1成分と第2成分はそれぞ
れ異なるポリオレフィン系樹脂からなり、第1成分と第
2成分の少なくとも一方にはスチレンがグラフト重合さ
れており、側鎖であるポリスチレンのベンゼン核にはス
ルホン酸基が付加されていることを特徴とする。さら
に、織布または不織布の重量に対するグラフト重合され
るスチレンの重量比率(グラフト率)は50%以上であ
り、ポリスチレンの単量体換算モル数に対する付加され
るスルホン酸基のモル比率(スルホン化率)は50%以
下であることを特徴とし、ポリスチレンのベンゼン核に
付加されたスルホン酸基は、KまたはNaと塩を形成し
ていることを特徴とする。
Further, in the sealed nickel-hydrogen storage battery of the present invention, the splittable conjugate fiber spun such that the first component and the second component having different materials are alternately adjacent to each other is divided for each component. A woven or non-woven fabric containing fine fibers having a fineness of 0.3 denier or less as a main component, wherein at least one of the first component and the second component has a hydrophilic property. Things. And
The first component is made of a polyolefin resin, and the second component is made of an ethylene-vinyl alcohol copolymer. The first component and the second component are made of different polyolefin resins, respectively, and styrene is graft-polymerized on at least one of the first component and the second component. It is characterized in that an acid group is added. Further, the weight ratio (graft ratio) of styrene to be graft-polymerized to the weight of the woven or nonwoven fabric is 50% or more, and the molar ratio of sulfonic acid groups added to the polystyrene monomer equivalent mole (sulfonation ratio) ) Is not more than 50%, and the sulfonic acid group added to the benzene nucleus of polystyrene forms a salt with K or Na.

【0022】上記したセパレータのうち、ポリオレフィ
ン系樹脂とエチレン−ビニルアルコール共重合体からな
る分割性複合繊維を用いたものは、エチレン−ビニルア
ルコール共重合体が高い親水性を有し、しかも微細繊維
化によって非常に大きな表面積を有しているため、優れ
た電解液保持性が得られる。したがって、このセパレー
タを用いた電池は、セパレータ層の電解液の枯渇化を抑
制することができ、充放電サイクル特性を向上させるこ
とができる。また、このセパレータは非常に緻密な構造
を有し、目付を低くした場合でも短絡が起こりにくいの
で、高容量化を図ることもできる。
Among the above separators, those using splittable conjugate fibers composed of a polyolefin-based resin and an ethylene-vinyl alcohol copolymer are those in which the ethylene-vinyl alcohol copolymer has high hydrophilicity, As a result, the electrolyte has a very large surface area, so that excellent electrolyte retention can be obtained. Therefore, in the battery using the separator, the electrolyte in the separator layer can be prevented from being depleted, and the charge / discharge cycle characteristics can be improved. In addition, this separator has a very dense structure, and short circuit hardly occurs even when the basis weight is low, so that a high capacity can be achieved.

【0023】また、上記したセパレータのうち、構成成
分がともにポリオレフィン系樹脂からなる分割性複合繊
維を用い、前記構成成分の少なくとも一方にスチレンモ
ノマーをグラフト重合させ、側鎖であるポリスチレンの
ベンゼン核にスルホン酸基を付加させたものは、三次元
的に配された親水基の効果によって、さらに高い電解液
保持性を有し、しかも、ポリスチレンがポリオレフィン
系樹脂と同等の優れた耐酸化性を有し、そのベンゼン核
に付加されたスルホン酸基もまたベンゼン核との共鳴効
果によって非常に安定であるので、これを長期間持続す
ることができる。
Further, among the above-mentioned separators, a splittable conjugate fiber composed of a polyolefin resin is used, and a styrene monomer is graft-polymerized on at least one of the above-mentioned components to form a benzene nucleus of polystyrene as a side chain. The sulfonic acid group-added product has a higher electrolyte retention property due to the effect of the three-dimensionally arranged hydrophilic group, and polystyrene has excellent oxidation resistance equivalent to that of polyolefin resin. However, the sulfonic acid group added to the benzene nucleus is also very stable due to the resonance effect with the benzene nucleus, and can be maintained for a long time.

【0024】さらに、スルホン酸基は、高温環境下での
水素吸蔵合金からの水素ガスの放出を抑制するとされて
いるが、上記したグラフト鎖であるポリスチレンにスル
ホン酸基を付加させたセパレータにおいては、種々検討
した結果、グラフト率を50%以上とし、スルホン化率
を50%以下とすることで、顕著な効果が得られること
を見出した。これにより、自己放電特性を向上させるこ
とができた。
Further, the sulfonic acid group is said to suppress the release of hydrogen gas from the hydrogen storage alloy in a high-temperature environment. However, in a separator in which a sulfonic acid group is added to polystyrene as a graft chain as described above, As a result of various studies, it has been found that a remarkable effect can be obtained by setting the graft ratio to 50% or more and the sulfonation ratio to 50% or less. As a result, the self-discharge characteristics could be improved.

【0025】なお、ポリスチレンのベンゼン核に付加さ
れたスルホン酸基に中和処理を施し、KまたはNaと塩
を形成させることにより、さらに高い親水性を得ること
ができる。
Further, a higher hydrophilicity can be obtained by subjecting the sulfonic acid group added to the benzene nucleus of the polystyrene to a neutralization treatment to form a salt with K or Na.

【0026】[0026]

【発明の実施の形態】以下に、本発明をその実施形態に
基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on its embodiments.

【0027】本発明の密閉型ニッケル−水素蓄電池A
は、次のようにして作製した。
The sealed nickel-hydrogen storage battery A of the present invention
Was manufactured as follows.

【0028】硝酸ニッケル94重量部に硝酸コバルト1
重量部と硝酸亜鉛5重量部とを加え、これを溶解させた
水溶液に水酸化ナトリウム水溶液を滴下してpHを11
〜14の範囲に保ちながら撹拌し、CoとZnが固溶し
た水酸化ニッケル粒子を析出させた。これを水洗し、乾
燥して水酸化ニッケル粉末とした。次いで、この水酸化
ニッケル粉末88重量部に、粒子径0.8μmの一酸化
コバルト10重量部と酸化イッテルビウム2重量部を混
合し、さらに増粘剤を溶解した水溶液を加えてペースト
状にしたものをニッケル繊維で構成された不織布基板に
充填して乾燥した後、所定の厚さにプレスして正極板と
した。
Cobalt nitrate 1 was added to 94 parts by weight of nickel nitrate.
Parts by weight and 5 parts by weight of zinc nitrate were added, and an aqueous solution of sodium hydroxide was added dropwise to the aqueous solution in which the solution was dissolved to adjust the pH to 11 parts by weight.
The mixture was stirred while being kept in the range of ~ 14 to precipitate nickel hydroxide particles in which Co and Zn were dissolved. This was washed with water and dried to obtain nickel hydroxide powder. Next, 10 parts by weight of cobalt monoxide and 2 parts by weight of ytterbium oxide were mixed with 88 parts by weight of the nickel hydroxide powder, and an aqueous solution in which a thickener was dissolved was added to form a paste. Was filled in a nonwoven fabric substrate made of nickel fiber, dried, and then pressed to a predetermined thickness to obtain a positive electrode plate.

【0029】MmNi3.8 Al0.3 Co0.7 Mn
0.2 (Mmはミッシュメタルであり、La30%、Ce
50%、Pr5%、Nd15%からなる混合物であ
る。)の組成となるように各金属を秤量してこれを溶解
させ、単ロール法により溶融合金を冷却速度約1500
℃/secで急冷した。こうして得られた板状の合金を
900℃でアニール処理した後、75μm以下の大きさ
に粉砕して水素吸蔵合金粉末とした。この水素吸蔵合金
粉末を、pHを3.6に調整した温度60℃の酢酸−酢
酸ナトリウム緩衝溶液中に浸漬して撹拌した後、水洗
し、乾燥した。次いで、この水素吸蔵合金粉末99.5
重量部に酸化イッテルビウム0.5重量部を混合し、さ
らに増粘剤を溶解した水溶液を加えてペースト状にした
ものをニッケル多孔板の両面に塗着して乾燥した後、所
定の厚さにプレスして負極板とした。さらに、この負極
板表面には、ポリパーフルオロブテニルビニルエーテル
を0.08mg/m2 の密度で均一に塗布した。
MmNi 3.8 Al 0.3 Co 0.7 Mn
0.2 (Mm is misch metal, La 30%, Ce
It is a mixture composed of 50%, Pr5%, and Nd15%. ), Each metal is weighed to dissolve it, and the molten alloy is cooled by a single roll method at a cooling rate of about 1500.
It was quenched at ℃ / sec. The plate-like alloy thus obtained was annealed at 900 ° C., and then pulverized to a size of 75 μm or less to obtain a hydrogen storage alloy powder. This hydrogen storage alloy powder was immersed in an acetic acid-sodium acetate buffer solution at a temperature of 60 ° C. adjusted to pH 3.6 and stirred, washed with water and dried. Next, this hydrogen storage alloy powder 99.5
0.5 part by weight of ytterbium oxide was added to the parts by weight, and an aqueous solution in which a thickener was dissolved was further added to form a paste. The paste was applied to both sides of a nickel porous plate and dried. It was pressed to obtain a negative electrode plate. Further, polyperfluorobutenyl vinyl ether was uniformly applied to the surface of the negative electrode plate at a density of 0.08 mg / m 2 .

【0030】ポリプロピレンとエチレン−ビニルアルコ
ール共重合体との重量比が50:50で、それぞれが繊
維断面において交互に隣接するように複合紡糸された繊
度3デニールの分割性複合繊維60重量部と、ポリプロ
ピレンを芯成分、ポリエチレンを鞘成分とする繊度2デ
ニールの芯鞘複合繊維40重量部とを用いて目付45g
/m2 になるように湿式抄紙した後、これに高圧水流を
噴射して繊維を交絡させると同時に分割性複合繊維を分
割し、分割後の繊度が0.2デニールの不織布を得た。
これを0.12mmに厚み調整してセパレータとした。
60 parts by weight of a splittable conjugate fiber having a denier of 3 denier, wherein the weight ratio of the polypropylene and the ethylene-vinyl alcohol copolymer is 50:50, and each of which is conjugated and spun so as to be alternately adjacent in the fiber cross section; 45 g of basis weight using 40 parts by weight of a core-sheath composite fiber having a fineness of 2 denier having polypropylene as a core component and polyethylene as a sheath component
/ M 2 , and a high-pressure water jet was jetted onto the paper to entangle the fibers and simultaneously split the splittable conjugate fibers to obtain a nonwoven fabric having a fineness of 0.2 denier after splitting.
This was adjusted to a thickness of 0.12 mm to obtain a separator.

【0031】前記正極板と、正極容量に対し1.6倍の
容量を有する前記負極板とを準備し、この間に前記セパ
レータを介し、渦巻状に捲回して電極群を作製した。こ
の電極群を、側面の肉厚が0.18mmの円筒状金属ケ
ースに収納し、7NのKOHと1NのLiOHからなる
電解液を、正極容量1Ah当たり1.4ml注液した
後、安全弁を備えた金属製蓋体で封口してAAサイズの
円筒型ニッケル−水素蓄電池を作製し、本発明電池Aと
した。
The positive electrode plate and the negative electrode plate having 1.6 times the capacity of the positive electrode were prepared, and spirally wound therebetween with the separator interposed therebetween to prepare an electrode group. This electrode group was housed in a cylindrical metal case having a side wall thickness of 0.18 mm, and an electrolyte consisting of 7N KOH and 1N LiOH was injected at a rate of 1.4 ml per 1 Ah of positive electrode capacity, and a safety valve was provided. The battery was sealed with a metal cover to produce an AA-size cylindrical nickel-hydrogen storage battery, which was designated as Battery A of the present invention.

【0032】本発明の密閉型ニッケル−水素蓄電池B
は、次のようにして作製した。
The sealed nickel-hydrogen storage battery B of the present invention
Was manufactured as follows.

【0033】本発明電池Aに用いたものと同じ水酸化ニ
ッケル粉末を硫酸アンモニウムと水酸化ナトリウムから
なる水溶液中に投入し、これに硫酸コバルト及び水酸化
ナトリウム水溶液を攪拌しながら、且つpH8〜13に
制御しながら滴下した。所定のpHにて1時間保持した
後、これを水洗し、乾燥してコバルト水酸化物で被覆さ
れた水酸化ニッケル粉末を得た。こうして得られた水酸
化ニッケル粉末中の水酸化コバルトの含有量は5%であ
った。次いで、この水酸化ニッケル粉末98重量部に水
酸化カルシウム2重量部を混合し、本発明電池Aと同様
にして正極板を作製した。
The same nickel hydroxide powder as that used for the battery A of the present invention was put into an aqueous solution comprising ammonium sulfate and sodium hydroxide, and the aqueous solution of cobalt sulfate and sodium hydroxide was stirred and adjusted to pH 8 to 13. It was dripped while controlling. After maintaining at a predetermined pH for 1 hour, the resultant was washed with water and dried to obtain a nickel hydroxide powder coated with cobalt hydroxide. The content of cobalt hydroxide in the nickel hydroxide powder thus obtained was 5%. Next, 98 parts by weight of the nickel hydroxide powder and 2 parts by weight of calcium hydroxide were mixed, and a positive electrode plate was prepared in the same manner as the battery A of the present invention.

【0034】温度60℃の酢酸−酢酸ナトリウム緩衝溶
液の代わりに温度110℃の7NのKOHと1NのLi
OHからなる混合水溶液を用いて処理したこと以外は、
本発明電池Aとすべて同様にして負極板を作製し、本発
明電池Aと同様のはっ水処理を施した。
Instead of the acetic acid-sodium acetate buffer solution at a temperature of 60 ° C., 7N KOH and 1N Li at a temperature of 110 ° C.
Except for treating with a mixed aqueous solution consisting of OH,
A negative electrode plate was prepared in the same manner as the battery A of the present invention, and subjected to the same water repellency treatment as that of the battery A of the present invention.

【0035】ポリプロピレンとポリメチルペンテンとの
重量比が50:50で、それぞれが繊維断面において交
互に隣接するように複合紡糸された繊度3デニールの分
割性複合繊維70重量部と、ポリプロピレンを芯成分、
ポリエチレンを鞘成分とする繊度2デニールの芯鞘複合
繊維30重量部とを用いて目付26g/m2 になるよう
に湿式抄紙した後、これに高圧水流を噴射して繊維を交
絡させると同時に分割性複合繊維を分割し、分割後の繊
度が0.2デニールの不織布とした。次いで、この不織
布に電子線加速装置により加速電圧を300kV、ビー
ム電流を10mAとした電子線を50kGy(キログレ
イ)照射した後、あらかじめ窒素によって脱酸素された
スチレン30重量部、エチルアルコール70重量部から
なる温度30℃の反応液中に1時間浸漬してグラフト重
合を行い、目付43g/m2 の不織布を得た。さらに、
この不織布をクロロスルホン酸10重量部、ジクロロエ
タン90重量部からなる温度10℃の処理液中に0.5
分浸漬してスルホン酸基を付加し、目付46g/m2
不織布を得た。これを0.12mmに厚み調整してセパ
レータとした。目付の変化から、グラフト率は65%、
スルホン化率は23%と算出される。
A weight ratio of polypropylene to polymethylpentene is 50:50, and 70 parts by weight of a splittable composite fiber having a fineness of 3 denier, which is composite-spun so that each is alternately adjacent in the fiber cross section, and polypropylene as a core component ,
After wet-making the paper so as to have a basis weight of 26 g / m 2 using 30 parts by weight of a core-sheath composite fiber having a denier of 2 denier having polyethylene as a sheath component, a high-pressure water stream is jetted onto the paper to entangle the fibers and simultaneously separate the fibers. The conjugate composite fiber was divided into a nonwoven fabric having a fineness of 0.2 denier after the division. Next, the non-woven fabric was irradiated with 50 kGy (kilo gray) of an electron beam having an acceleration voltage of 300 kV and a beam current of 10 mA by an electron beam accelerator, and then 30 parts by weight of styrene and 70 parts by weight of ethyl alcohol previously deoxygenated with nitrogen. Graft polymerization was performed by immersion in a reaction solution at a temperature of 30 ° C. for 1 hour to obtain a nonwoven fabric having a basis weight of 43 g / m 2 . further,
This nonwoven fabric was placed in a treatment solution containing 10 parts by weight of chlorosulfonic acid and 90 parts by weight of dichloroethane at a temperature of 10 ° C. for 0.5 part
By immersion for a minute, sulfonic acid groups were added to obtain a nonwoven fabric having a basis weight of 46 g / m 2 . This was adjusted to a thickness of 0.12 mm to obtain a separator. From the change in the basis weight, the graft ratio was 65%,
The sulfonation rate is calculated to be 23%.

【0036】前記正極板と前記負極板と前記セパレータ
とを用い、それ以外は本発明電池Aとすべて同様にして
AAサイズの円筒型ニッケル−水素蓄電池を作製し、本
発明電池Bとした。
Using the positive electrode plate, the negative electrode plate, and the separator, a cylindrical nickel-hydrogen storage battery of AA size was manufactured in the same manner as the battery A of the present invention except for the above, and the battery B of the present invention was obtained.

【0037】従来の密閉型ニッケル−水素蓄電池Cは、
次のようにして作製した。
The conventional sealed nickel-hydrogen storage battery C is
It was produced as follows.

【0038】従来のCoとZnを固溶体添加した水酸化
ニッケル粉末90重量部と粒度調整をしていない一酸化
コバルト10重量部を混合し、さらに増粘剤を溶解した
水溶液を加えてペースト状にしたものをニッケル繊維で
構成された不織布基板に充填して乾燥した後、所定の厚
さにプレスして正極板とした。
90 parts by weight of a conventional nickel hydroxide powder to which a solid solution of Co and Zn has been added and 10 parts by weight of cobalt monoxide whose particle size has not been adjusted are mixed, and an aqueous solution in which a thickener is dissolved is added to form a paste. The resultant was filled in a nonwoven fabric substrate composed of nickel fibers, dried, and then pressed to a predetermined thickness to obtain a positive electrode plate.

【0039】従来の高周波溶解炉によって徐冷したMm
Ni3.8 Al0.3 Co0.7 Mn0.2(Mm:La30
%、Ce50%、Pr5%、Nd15%)の組成の合金
を1000℃でアニール処理した後、75μm以下の大
きさに粉砕して水素吸蔵合金粉末とした。この水素吸蔵
合金粉末に増粘剤を溶解した水溶液を加えてペースト状
にしたものをニッケル繊維で構成された不織布基板に充
填して乾燥した後、所定の厚さにプレスして負極板とし
た。さらに、この負極板表面には、ポリパーフルオロブ
テニルビニルエーテルを0.08mg/m2 の密度で均
一に塗布した。
Mm gradually cooled by a conventional high-frequency melting furnace
Ni 3.8 Al 0.3 Co 0.7 Mn 0.2 (Mm: La30
%, 50% of Ce, 5% of Pr, and 15% of Nd) were annealed at 1000 ° C., and then pulverized to a size of 75 μm or less to obtain a hydrogen storage alloy powder. A paste obtained by adding an aqueous solution in which a thickener was dissolved to the hydrogen storage alloy powder was filled in a nonwoven fabric substrate composed of nickel fibers, dried, and then pressed to a predetermined thickness to form a negative electrode plate. . Further, polyperfluorobutenyl vinyl ether was uniformly applied to the surface of the negative electrode plate at a density of 0.08 mg / m 2 .

【0040】従来のポリアミド系樹脂からなる繊度2デ
ニールの単一繊維を用い、カード法によって目付65g
/m2 の乾式不織布を得た。これを0.18mmに厚み
調整してセパレータとした。
Using a single fiber made of a conventional polyamide resin and having a fineness of 2 denier, the card weight is 65 g.
/ M 2 of a dry nonwoven fabric. This was adjusted to a thickness of 0.18 mm to obtain a separator.

【0041】前記正極板と、正極容量に対し1.6倍の
容量を有する前記負極板とを準備し、この間に前記セパ
レータを介し、渦巻状に捲回して電極群を作製した。こ
の電極群を、側面の肉厚が0.25mmの円筒状金属ケ
ースに収納し、7NのKOHと1NのLiOHからなる
電解液を、正極容量1Ah当たり2.1ml注液した
後、安全弁を備えた金属製蓋体で封口してAAサイズの
円筒型ニッケル−水素蓄電池を作製し、従来電池Cとし
た。
The positive electrode plate and the negative electrode plate having a capacity 1.6 times the capacity of the positive electrode were prepared, and spirally wound therebetween with the separator interposed therebetween to prepare an electrode group. This electrode group was housed in a cylindrical metal case having a side wall thickness of 0.25 mm, and 2.1 ml of an electrolyte composed of 7N KOH and 1N LiOH was injected per 1 Ah of positive electrode capacity, and a safety valve was provided. The battery was sealed with a metal cover to produce an AA-size cylindrical nickel-hydrogen storage battery.

【0042】こうして得られた本発明電池AおよびB、
従来電池Cについて、20℃の温度下、充電電流0.1
Cで15時間充電し、1時間休止した後、放電電流0.
2Cで、終始電圧を1.0Vとして放電を行い、これを
5サイクル繰り返した後、6サイクル目の放電容量を調
べたところ、図1に示す結果が得られた。図1から明ら
かなように、本発明電池AおよびBは、従来電池Cに比
べて放電容量を約40%向上させることができた。
The batteries A and B of the present invention thus obtained,
For the conventional battery C, the charging current was 0.1 at a temperature of 20 ° C.
C for 15 hours, rest for 1 hour, and then discharge current 0.
The discharge was performed at 2C with the voltage being 1.0 V throughout, and after repeating this for 5 cycles, the discharge capacity at the 6th cycle was examined. The result shown in FIG. 1 was obtained. As is clear from FIG. 1, the batteries A and B of the present invention were able to improve the discharge capacity by about 40% as compared with the conventional battery C.

【0043】比較のため、上述のCoとZnを固溶添加
した水酸化ニッケル粉末90重量部と一酸化コバルト1
0重量部からなる正極板を用いたこと以外は、本発明電
池Aとすべて同様にして比較電池Dを作製した。
For comparison, 90 parts by weight of the above-mentioned nickel hydroxide powder to which Co and Zn were added as solid solution and cobalt monoxide 1
Comparative Battery D was prepared in the same manner as Battery A of the present invention except that a positive electrode plate consisting of 0 parts by weight was used.

【0044】また、CoやZnなどを固溶添加していな
い水酸化ニッケル粉末90重量部と一酸化コバルト10
重量部からなる正極板を用いたこと以外は、本発明電池
Aとすべて同様にして比較電池Eを作製した。
Further, 90 parts by weight of nickel hydroxide powder containing no solid solution such as Co or Zn and cobalt monoxide 10
A comparative battery E was produced in the same manner as the battery A of the present invention except that a positive electrode plate consisting of parts by weight was used.

【0045】こうして得られた本発明電池AおよびB、
比較電池DおよびEについて、高温環境下における充電
効率を調べたところ、図2に示す結果が得られた。な
お、充電は45℃の温度下、充電電流0.1Cで行い、
放電は20℃に降温後、放電電流0.2Cで、終始電圧
を1.0Vとして行った。図2から、水酸化ニッケル結
晶中へのCoとZnの固溶添加や、酸化イッテルビウ
ム、水酸化カルシウムなどの添加を行わなかった比較電
池Eは、充電効率が著しく劣るのに対し、これらをとも
に添加した本発明電池AおよびBは、いずれも充電効率
が向上していることがわかる。これに対し、水酸化ニッ
ケル結晶中へのCoとZnの固溶添加のみを行った比較
電池Dは、比較電池Eと比べると改善が見られるもの
の、本発明電池AおよびBと比べると明らかに劣るもの
であった。これは、本発明電池AおよびBにおいては、
固溶添加されたCoによる充電電位を卑にする作用と酸
化イッテルビウムや水酸化カルシウムによる酸素過電圧
を上昇させる作用との相乗効果により、水酸化ニッケル
の充電反応と酸素ガス発生反応との電位差をより大きく
することができるためと考えられる。
The batteries A and B of the present invention thus obtained,
When the charging efficiency of the comparative batteries D and E in a high-temperature environment was examined, the results shown in FIG. 2 were obtained. The charging was performed at a temperature of 45 ° C. and a charging current of 0.1 C.
The discharge was performed at a temperature of 20 ° C., a discharge current of 0.2 C, and a voltage of 1.0 V throughout. FIG. 2 shows that the comparative battery E in which the solid solution addition of Co and Zn in the nickel hydroxide crystal and the addition of ytterbium oxide, calcium hydroxide, and the like were not significantly inferior in charging efficiency was compared with the comparative battery E. It can be seen that both of the batteries A and B of the present invention added have improved charging efficiency. On the other hand, the comparative battery D in which only the solid solution addition of Co and Zn in the nickel hydroxide crystal was performed showed an improvement as compared with the comparative battery E, but was clearly compared with the batteries A and B of the present invention. It was inferior. This is because in the batteries A and B of the present invention,
The synergistic effect of the action of lowering the charging potential by the solid solution-added Co and the action of increasing the oxygen overpotential by ytterbium oxide or calcium hydroxide further increases the potential difference between the nickel hydroxide charging reaction and the oxygen gas generation reaction. It is considered that it can be made larger.

【0046】次に、酢酸−酢酸ナトリウム緩衝溶液中へ
の浸漬による表面処理を行わない水素吸蔵合金粉末を用
いた以外は、本発明電池Aとすべて同様にして比較電池
Fを作製した。
Next, a comparative battery F was prepared in the same manner as the battery A of the present invention except that a hydrogen storage alloy powder not subjected to surface treatment by immersion in an acetic acid-sodium acetate buffer solution was used.

【0047】本発明電池AおよびB、比較電池Fについ
て、充放電を10サイクル繰り返して初期の容量推移を
調査したところ、図3に示す結果が得られた。なお、充
電は充電電流0.1Cで15時間、放電は放電電流0.
2Cで終始電圧を1.0Vとし、20℃の温度下で行っ
た。図3から明らかなように、表面処理を行っていない
比較電池Fは、初期活性化が遅いのに対し、表面処理を
行った本発明電池AおよびBは、いずれも初期活性化が
早く、しかも高容量であった。これは、表面処理によっ
て負極の充電効率が向上し、正負極の容量バランスがく
ずれるといった不具合を防止できるためと考えられる。
For the batteries A and B of the present invention and the comparative battery F, charge / discharge was repeated 10 cycles to examine the initial capacity transition. The results shown in FIG. 3 were obtained. The charging was performed at a charging current of 0.1 C for 15 hours, and the discharging was performed at a discharge current of 0.1 C.
The voltage was set to 1.0 V throughout at 2C, and the test was performed at a temperature of 20 ° C. As is clear from FIG. 3, the comparative battery F not subjected to the surface treatment has a slow initial activation, whereas the batteries A and B of the present invention subjected to the surface treatment both have a fast initial activation, and High capacity. This is presumably because the surface treatment improves the charging efficiency of the negative electrode and prevents a problem that the capacity balance between the positive and negative electrodes is lost.

【0048】次に、従来の高周波溶解炉によって徐冷
し、1000℃でアニール処理して作製した水素吸蔵合
金粉末を用いたこと以外は、本発明電池Aとすべて同様
にして比較電池Gを作製した。
Next, a comparative battery G was fabricated in the same manner as the battery A of the present invention except that the hydrogen-absorbing alloy powder produced by annealing slowly at 1000 ° C. in a conventional high-frequency melting furnace was used. did.

【0049】本発明電池AおよびB、比較電池Fおよび
Gについて、20℃の温度下、充電電流0.1Cで15
時間の充電を行った後、放電電流0.2C、1.0C、
3.0Cにおけるそれぞれの放電容量を調査したとこ
ろ、図4に示す結果が得られた。図4から、表面処理を
行っていない比較電池Fや、急冷による合金組成の均質
化を行っていない比較電池Gと比べると、急冷と表面処
理をともに行った本発明電池AおよびBは、いずれも高
率放電特性が優れていることがわかる。これは、表面処
理によって放電初期の分極が抑えられるとともに、急冷
による合金組成の均質化によって合金粒子内でのH原子
の拡散が容易になるためと考えられる。
The batteries A and B of the present invention and the comparative batteries F and G were charged at a temperature of 20.degree.
After charging for a time, the discharge current is 0.2C, 1.0C,
When the respective discharge capacities at 3.0 C were examined, the results shown in FIG. 4 were obtained. FIG. 4 shows that the batteries A and B of the present invention, both of which were quenched and the surface treated, were compared with the comparative battery F without the surface treatment and the comparative battery G without homogenizing the alloy composition by quenching. It can also be seen that the high rate discharge characteristics are excellent. This is considered to be because the surface treatment suppresses the polarization at the initial stage of the discharge, and the homogenization of the alloy composition by rapid cooling facilitates the diffusion of H atoms in the alloy particles.

【0050】次に、酸化イッテルビウムを添加していな
い負極板を用いたこと以外は、本発明電池Aとすべて同
様にして比較電池Hを作製した。
Next, a comparative battery H was prepared in the same manner as the battery A of the present invention except that a negative electrode plate to which ytterbium oxide was not added was used.

【0051】本発明電池AおよびB、比較電池Fおよび
Hにそれぞれ内圧測定用の圧力センサーを取り付け、充
放電を行って電池内圧の変化を調査したところ、図5に
示す結果を得た。なお、充電は20℃の温度下、充電電
流1.0Cで1.2時間行った。図5から明らかなよう
に、酸化イッテルビウムを添加していない比較電池Hは
サイクルとともに内圧が上昇する傾向を示すが、酸化イ
ッテルビウムを添加した本発明電池AおよびBは、いず
れも内圧の上昇はほとんど認められなかった。これらの
電池を解体し、水素吸蔵合金を取り出してX線回折を行
ったところ、希土類水酸化物のピークの差から、本発明
電池AおよびBは比較電池Hに比べて希土類水酸化物の
生成量は少なく、合金の腐食が抑制されるいることがわ
かった。また、表面処理を行っていない比較電池Fは、
酸化イッテルビウムを添加しているにもかかわらず著し
い内圧上昇を示した。これは、初期活性化の遅い合金表
面に形成されたイッテルビウムの不働態被膜が、活性化
をさらに遅らせたためと考えられる。
The batteries A and B of the present invention and the comparative batteries F and H were each equipped with a pressure sensor for measuring the internal pressure, and charged and discharged to investigate changes in the internal pressure of the batteries. The results shown in FIG. 5 were obtained. The charging was performed at a temperature of 20 ° C. and a charging current of 1.0 C for 1.2 hours. As is clear from FIG. 5, the comparative battery H to which ytterbium oxide was not added showed a tendency that the internal pressure increased with the cycle. However, the batteries A and B of the present invention to which ytterbium oxide was added showed almost no increase in the internal pressure. I was not able to admit. When these batteries were disassembled and the hydrogen storage alloy was taken out and subjected to X-ray diffraction, the difference between the peaks of the rare earth hydroxides indicated that the batteries A and B of the present invention produced rare earth hydroxides better than the comparative battery H. The amount was small, indicating that corrosion of the alloy was suppressed. In addition, the comparative battery F not subjected to the surface treatment is:
The internal pressure increased remarkably despite the addition of ytterbium oxide. This is presumably because the passivation film of ytterbium formed on the alloy surface with the slow initial activation further delayed the activation.

【0052】次に、従来のポリアミド系樹脂からなる繊
度2デニールの繊維を用いた目付65g/m2 、厚さ
0.18mmの乾式不織布をセパレータとして用いたこ
と以外は、本発明電池Aとすべて同様にして比較電池I
を作製した。
Next, except that a dry nonwoven fabric having a basis weight of 65 g / m 2 and a thickness of 0.18 mm using fibers of a conventional polyamide resin having a denier of 2 denier and a thickness of 0.18 mm was used as the separator, all of the batteries of the present invention were the same as the battery A. Similarly, comparative battery I
Was prepared.

【0053】また、従来のポリオレフィン系樹脂からな
る繊度2デニールの繊維を用いた乾式不織布に発煙硫酸
を作用させ、スルホン酸基を付加して親水性を付与した
目付65g/m2 、厚さ0.18mmのセパレータを用
いたこと以外は、本発明電池Aとすべて同様にして比較
電池Jを作製した。
Further, fuming sulfuric acid is allowed to act on a dry nonwoven fabric using fibers of a denier of 2 denier made of a conventional polyolefin resin to add a sulfonic acid group to impart a hydrophilicity of 65 g / m 2 and a thickness of 0 g / m 2 . A comparative battery J was prepared in the same manner as the battery A of the present invention except that a .18 mm separator was used.

【0054】本発明電池AおよびB、比較電池Iおよび
Jについて、充放電サイクル試験を行ったところ、図6
に示す結果を得た。なお、充電は充電電流0.5Cで3
時間、放電は放電電流0.5Cで終始電圧を1.0Vと
し、20℃の温度下で行った。図6から、本発明電池A
およびBは、比較電池IおよびJに比べて充放電サイク
ル特性に優れていることがわかる。500サイクル経過
した時点でこれらの電池を解体し、電解液分布を調査し
たところ、比較電池IおよびJは、いずれもセパレータ
中の電解液量が著しく減少し、そのほとんどがニッケル
電極側に吸収されていることがわかった。そして、比較
電池Iに用いたセパレータには重量減が見られ、電解液
中の炭酸根量と硝酸根量が著しく増加していた。これに
対し、本発明電池AおよびBに用いたセパレータ中の電
解液量は、いずれも初期に保持していた電解液量とほと
んど変化していなかった。
The batteries A and B of the present invention and the comparative batteries I and J were subjected to a charge / discharge cycle test.
Were obtained. In addition, charging is performed at a charging current of 0.5 C for 3
The discharge was performed at a temperature of 20 ° C. with a discharge current of 0.5 C and a voltage of 1.0 V throughout. FIG. 6 shows that the battery A of the present invention
It can be seen that B and B have better charge / discharge cycle characteristics than the comparative batteries I and J. When 500 cycles had elapsed, these batteries were disassembled and the distribution of the electrolyte was examined. In Comparative Batteries I and J, the amount of the electrolyte in the separator was significantly reduced, and most of them were absorbed on the nickel electrode side. I understood that. The weight of the separator used in Comparative Battery I was reduced, and the amounts of carbonate and nitrate in the electrolytic solution were significantly increased. On the other hand, the amount of the electrolyte in the separators used in the batteries A and B of the present invention hardly changed from the amount of the electrolyte initially held.

【0055】また、本発明電池AおよびB、比較電池I
およびJを、充電電流0.1Cで15時間充電した後、
20℃の温度下で保存し、保存日数と容量保持率の関係
を調査したところ、図7に示す結果を得た。なお、放電
は放電電流0.2で行い、終始電圧は1.0Vとした。
図7から、本発明電池Bは比較電池Jと同等の優れた容
量保持特性を有しているのに対し、本発明電池Aおよび
比較電池Iはいずれも自己放電を抑制する機能を有して
いないことがわかる。
The batteries A and B of the present invention and the comparative battery I
And J were charged at a charging current of 0.1 C for 15 hours,
When stored at a temperature of 20 ° C. and the relationship between the storage days and the capacity retention was investigated, the results shown in FIG. 7 were obtained. The discharge was performed at a discharge current of 0.2, and the voltage from start to finish was 1.0 V.
7 shows that the battery B of the present invention has excellent capacity retention characteristics equivalent to that of the comparative battery J, whereas the batteries A of the present invention and the comparative battery I both have a function of suppressing self-discharge. It turns out there is no.

【0056】本発明電池Bにおける自己放電抑制能につ
いてさらに詳しく調査したところ、自己放電特性はセパ
レータ中に含まれるポリスチレン量に依存することがわ
かった。すなわち、グラフト率と自己放電特性との関係
を調査した結果、比較電池Jと同程度の特性を得るため
にはグラフト率を50%以上にする必要があることがわ
かった。また、グラフト率を50%以上にした場合で
も、ベンゼン核に付加されるスルホン酸基の量が多くな
り過ぎると顕著な改善効果が得られなくなることがわか
った。すなわち、スルホン化率と自己放電特性との関係
を調査した結果、比較電池Jと同程度の特性を得るため
にはスルホン化率を50%以下にする必要があることが
わかった。
Further investigation of the self-discharge suppressing ability of the battery B of the present invention revealed that the self-discharge characteristics depended on the amount of polystyrene contained in the separator. That is, as a result of investigating the relationship between the graft ratio and the self-discharge characteristics, it was found that the graft ratio needs to be 50% or more in order to obtain the same characteristics as the comparative battery J. In addition, even when the graft ratio was set to 50% or more, it was found that a remarkable improvement effect could not be obtained when the amount of the sulfonic acid group added to the benzene nucleus was too large. That is, as a result of investigating the relationship between the sulfonation ratio and the self-discharge characteristics, it was found that the sulfonation ratio had to be 50% or less in order to obtain the same characteristics as Comparative Battery J.

【0057】本発明電池Aと本発明電池Bとを比較する
と、自己放電特性では本発明電池Bの方が優れている
が、本発明電池Bはセパレータの製造工程が繁雑である
ことから、コストの点では本発明電池Aの方が有利であ
る。その他の性能では両者に大きな差異は見られず、用
途に応じてこれらを使い分けることが好ましい。
Comparing the battery A of the present invention with the battery B of the present invention, the battery B of the present invention is superior in self-discharge characteristics. However, the battery B of the present invention has a cost reduction due to the complicated manufacturing process of the separator. In this respect, the battery A of the present invention is more advantageous. In other performances, there is no significant difference between the two, and it is preferable to use these depending on the application.

【0058】なお、上記した実施形態では、正極の高温
下での充電効率を改善するための添加剤として酸化イッ
テルビウムおよび水酸化カルシウムを用いたが、他の希
土類元素の酸化物や水酸化物、および他のアルカリ土類
金属の酸化物、水酸化物、フッ素化物、炭酸化物などを
用いても同様の効果が得られる。そして、他の希土類元
素としては、Er、Lu、Ho、Tm、Yが好適に用い
られ、他のアルカリ土類金属としては、Mg、Sr、B
aが好適に用いられる。
In the above embodiment, ytterbium oxide and calcium hydroxide are used as additives for improving the charging efficiency of the positive electrode at high temperatures. However, oxides and hydroxides of other rare earth elements, Similar effects can be obtained by using oxides, hydroxides, fluorides, and carbonates of other alkaline earth metals. Er, Lu, Ho, Tm, and Y are preferably used as other rare earth elements, and Mg, Sr, and B are used as other alkaline earth metals.
a is preferably used.

【0059】また、上記した実施形態では、負極に添加
する防食剤として酸化イッテルビウムを用いたが、イッ
テルビウムの単体や水酸化物などを用いても同様の効果
が得られ、他の希土類元素の単体や酸化物、水酸化物な
どを用いても同様の効果が得られる。そして、他の希土
類元素としてはEr、Lu、Yが好適に用いられる。
In the above-described embodiment, ytterbium oxide is used as a corrosion inhibitor to be added to the negative electrode. However, the same effect can be obtained by using ytterbium alone or a hydroxide. The same effect can be obtained by using an oxide, a hydroxide, or the like. Er, Lu, and Y are preferably used as other rare earth elements.

【0060】[0060]

【発明の効果】上記した通りであるから、本発明による
と、高容量で、特に高温下での充電効率に優れ、内圧特
性や高率放電特性、自己放電特性、充放電サイクル特性
に優れた密閉型ニッケル−水素蓄電池を得ることがで
き、その工業的価値は甚大である。
As described above, according to the present invention, according to the present invention, a high capacity, particularly excellent charging efficiency at high temperatures, and excellent internal pressure characteristics, high rate discharge characteristics, self-discharge characteristics, and charge / discharge cycle characteristics are obtained. A sealed nickel-hydrogen storage battery can be obtained, and its industrial value is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】密閉型ニッケル−水素蓄電池の放電容量を比較
した図である。
FIG. 1 is a diagram comparing discharge capacities of sealed nickel-hydrogen storage batteries.

【図2】密閉型ニッケル−水素蓄電池の充電効率を比較
した図である。
FIG. 2 is a diagram comparing charging efficiency of sealed nickel-hydrogen storage batteries.

【図3】密閉型ニッケル−水素蓄電池のサイクル数と放
電容量の関係を示した図である。
FIG. 3 is a diagram showing the relationship between the number of cycles and the discharge capacity of a sealed nickel-metal hydride storage battery.

【図4】密閉型ニッケル−水素蓄電池の放電電流と放電
容量の関係を示した図である。
FIG. 4 is a diagram showing the relationship between discharge current and discharge capacity of a sealed nickel-metal hydride storage battery.

【図5】密閉型ニッケル−水素蓄電池のサイクル数と電
池内圧の関係を示した図である。
FIG. 5 is a diagram showing a relationship between the number of cycles of the sealed nickel-hydrogen storage battery and the internal pressure of the battery.

【図6】密閉型ニッケル−水素蓄電池の充放電サイクル
特性を比較した図である。
FIG. 6 is a diagram comparing charge / discharge cycle characteristics of a sealed nickel-hydrogen storage battery.

【図7】密閉型ニッケル−水素蓄電池の自己放電特性を
比較した図である。
FIG. 7 is a diagram comparing self-discharge characteristics of sealed nickel-hydrogen storage batteries.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷 篤 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 (72)発明者 綿田 正治 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsushi Tani 6-6 Josaicho, Takatsuki-shi, Osaka Inside Yu Asa Corporation (72) Inventor Masaharu Watada 6-6 Josaicho, Takatsuki-shi, Osaka Yu Co., Ltd. Inside Asa Corporation (72) Inventor Masahiko Oshiya 6-6 Josaicho, Takatsuki City, Osaka Prefecture Inside Yu Asa Corporation

Claims (35)

【特許請求の範囲】[Claims] 【請求項1】 電槽ケースに発電要素を収納し、安全弁
を備えた蓋体で前記ケースを封口した密閉型ニッケル−
水素蓄電池であって、(a)水酸化ニッケルを主構成材
料とし、これに金属コバルトおよび/またはコバルト化
合物と、希土類化合物またはアルカリ土類金属化合物ま
たは酸化亜鉛のうち少なくとも1種を添加してなる正
極、(b)水素吸蔵合金を主構成材料とし、これに防食
剤を添加し、かつ少なくとも電極表面の一部にはっ水性
を付与してなる負極、(c)アルカリ電解液、および、
(d)前記正極と前記負極とを電気的に絶縁し、充放電
反応に必要な前記電解液を保持することができ、かつこ
れを長期間持続することができる織布または不織布から
なるセパレータ、からなる発電要素を有し、電極群の負
極の一部は電槽ケースと直接接触し、正極はリードを介
して蓋体に接続していることを特徴とする密閉型ニッケ
ル−水素蓄電池。
1. A sealed nickel battery in which a power generation element is housed in a battery case and the case is sealed with a lid provided with a safety valve.
A hydrogen storage battery comprising: (a) nickel hydroxide as a main constituent material, to which metal cobalt and / or a cobalt compound and at least one of a rare earth compound or an alkaline earth metal compound and zinc oxide are added. A positive electrode, (b) a negative electrode having a hydrogen storage alloy as a main constituent material, an anticorrosive added thereto, and imparting water repellency to at least a part of the electrode surface, (c) an alkaline electrolyte, and
(D) a separator made of a woven or nonwoven fabric that can electrically insulate the positive electrode and the negative electrode, hold the electrolytic solution necessary for a charge / discharge reaction, and maintain the electrolyte for a long time; And a part of the negative electrode of the electrode group is in direct contact with the battery case, and the positive electrode is connected to the lid via a lead.
【請求項2】 前記水酸化ニッケルが、結晶中にCo、
Zn、Cu、Mg、Baのうち少なくとも1種を固溶状
態で含有させたものである請求項1記載の密閉型ニッケ
ル−水素蓄電池。
2. The method according to claim 1, wherein the nickel hydroxide contains Co,
The sealed nickel-hydrogen storage battery according to claim 1, wherein at least one of Zn, Cu, Mg, and Ba is contained in a solid solution state.
【請求項3】 前記コバルト化合物が、一酸化コバル
ト、水酸化コバルトのいずれか、もしくはこれらを組み
合わせたものである請求項1記載の密閉型ニッケル−水
素蓄電池。
3. The sealed nickel-hydrogen storage battery according to claim 1, wherein the cobalt compound is one of cobalt monoxide and cobalt hydroxide, or a combination thereof.
【請求項4】 前記コバルト化合物の粒子径が、1μm
以下である請求項3記載の密閉型ニッケル−水素蓄電
池。
4. The particle diameter of the cobalt compound is 1 μm.
The sealed nickel-metal hydride storage battery according to claim 3, which is as follows.
【請求項5】 前記コバルト化合物が、水酸化コバルト
であり、前記水酸化ニッケルの粒子表面を被覆させたも
のである請求項1記載の密閉型ニッケル−水素蓄電池。
5. The sealed nickel-hydrogen storage battery according to claim 1, wherein the cobalt compound is cobalt hydroxide, and the surface of the nickel hydroxide particles is coated.
【請求項6】 前記希土類化合物が、Yb、Er、L
u、Ho、Tm、Yの酸化物、水酸化物のいずれか、も
しくはこれらを組み合わせたものである請求項1記載の
密閉型ニッケル−水素蓄電池。
6. The method according to claim 1, wherein the rare earth compound is Yb, Er, L
The sealed nickel-metal hydride storage battery according to claim 1, wherein the battery is one of an oxide, a hydroxide of u, Ho, Tm, and Y, or a combination thereof.
【請求項7】 前記アルカリ土類金属化合物が、Mg、
Ca、Sr、Baの酸化物、水酸化物、フッ化物、炭酸
化物のいずれか、もしくはこれらを組み合わせたもので
ある請求項1記載の密閉型ニッケル−水素蓄電池。
7. The method according to claim 7, wherein the alkaline earth metal compound is Mg,
The sealed nickel-hydrogen storage battery according to claim 1, wherein the sealed nickel-hydrogen storage battery is any one of oxides, hydroxides, fluorides, and carbonates of Ca, Sr, and Ba, or a combination thereof.
【請求項8】 前記正極が、水酸化ニッケル粉末を三次
元網状金属多孔体に充填するか、あるいは金属多孔板の
片面または両面に塗着して形成されている請求項1記載
の密閉型ニッケル−水素蓄電池。
8. The sealed nickel according to claim 1, wherein the positive electrode is formed by filling nickel hydroxide powder into a three-dimensional reticulated metal porous body or applying it to one or both sides of a metal porous plate. A hydrogen storage battery.
【請求項9】 前記三次元網状金属多孔体が、発泡状金
属多孔体または金属繊維で構成された不織布である請求
項8記載の密閉型ニッケル−水素蓄電池。
9. The sealed nickel-metal hydride storage battery according to claim 8, wherein the three-dimensional mesh-like porous metal body is a non-woven fabric made of a foamed porous metal body or a metal fiber.
【請求項10】 前記水素吸蔵合金が、少なくともニッ
ケルを含むCaCu5型構造を有するAB5 系水素吸蔵
合金であって、A側元素がLa、Ce、Pr、Ndのう
ち少なくとも1種を含んだ希土類元素の単体または複合
体であり、かつB側元素がNi、Al、Co、Mnのう
ち少なくとも1種を含んでいる請求項1記載の密閉型ニ
ッケル−水素蓄電池。
10. The hydrogen storage alloy is an AB 5 -based hydrogen storage alloy having a CaCu 5 type structure containing at least nickel, wherein the A-side element contains at least one of La, Ce, Pr, and Nd. The sealed nickel-metal hydride storage battery according to claim 1, which is a single element or a composite of a rare earth element, and wherein the B-side element contains at least one of Ni, Al, Co, and Mn.
【請求項11】 前記水素吸蔵合金が、その表面にバル
ク組成よりも明らかにNi量が多いNiリッチ層を有し
ている請求項10記載の密閉型ニッケル−水素蓄電池。
11. The sealed nickel-metal hydride storage battery according to claim 10, wherein said hydrogen storage alloy has a Ni-rich layer on its surface where the Ni content is clearly larger than the bulk composition.
【請求項12】 前記Niリッチ層が、表面処理により
設けられた請求項11記載の密閉型ニッケル−水素蓄電
池。
12. The sealed nickel-hydrogen storage battery according to claim 11, wherein the Ni-rich layer is provided by a surface treatment.
【請求項13】 前記表面処理が、水素吸蔵合金粉末を
酸性溶液中に浸漬して行う請求項12記載の密閉型ニッ
ケル−水素蓄電池。
13. The sealed nickel-hydrogen storage battery according to claim 12, wherein the surface treatment is performed by immersing the hydrogen storage alloy powder in an acidic solution.
【請求項14】 前記酸性溶液が、pHを2〜6に調整
した弱酸水溶液である請求項13記載の密閉型ニッケル
−水素蓄電池。
14. The sealed nickel-hydrogen storage battery according to claim 13, wherein the acidic solution is a weak acid aqueous solution whose pH is adjusted to 2 to 6.
【請求項15】 前記弱酸水溶液が、酢酸−酢酸塩緩衝
溶液である請求項14記載の密閉型ニッケル−水素蓄電
池。
15. The sealed nickel-hydrogen storage battery according to claim 14, wherein the weak acid aqueous solution is an acetic acid-acetate buffer solution.
【請求項16】 前記表面処理が、水素吸蔵合金粉末を
高温アルカリ水溶液中に浸漬して行う請求項12記載の
密閉型ニッケル−水素蓄電池。
16. The sealed nickel-hydrogen storage battery according to claim 12, wherein the surface treatment is performed by immersing the hydrogen storage alloy powder in a high-temperature alkaline aqueous solution.
【請求項17】 前記アルカリ水溶液が、pHを14以
上に調整した強アルカリ水溶液である請求項16記載の
密閉型ニッケル−水素蓄電池。
17. The sealed nickel-hydrogen storage battery according to claim 16, wherein the alkaline aqueous solution is a strong alkaline aqueous solution whose pH is adjusted to 14 or more.
【請求項18】 前記強アルカリ水溶液が、KOHとL
iOHおよび/またはNaOHの混合水溶液である請求
項17記載の密閉型ニッケル−水素蓄電池。
18. The method according to claim 18, wherein the strong alkaline aqueous solution comprises KOH and L
The sealed nickel-hydrogen storage battery according to claim 17, which is a mixed aqueous solution of iOH and / or NaOH.
【請求項19】 前記水素吸蔵合金が、合金作製時の冷
却速度が1000℃/sec以上である請求項10記載
の密閉型ニッケル−水素蓄電池。
19. The sealed nickel-hydrogen storage battery according to claim 10, wherein the hydrogen storage alloy has a cooling rate of 1000 ° C./sec or more at the time of manufacturing the alloy.
【請求項20】 前記防食剤が、Yb、Er、Lu、Y
の単体、酸化物、水酸化物のいずれか、もしくはこれら
を組み合わせたものである請求項1記載の密閉型ニッケ
ル−水素蓄電池。
20. The anticorrosion agent is Yb, Er, Lu, Y
The sealed nickel-hydrogen storage battery according to claim 1, wherein the sealed nickel-hydrogen storage battery is any one of a simple substance, an oxide, a hydroxide, or a combination thereof.
【請求項21】 前記負極の少なくとも表面の一部が、
フッ素、炭素、酸素で構成されるはっ水効果を持つ樹脂
で被覆されている請求項1記載の密閉型ニッケル−水素
蓄電池。
21. At least a part of the surface of the negative electrode,
2. The sealed nickel-hydrogen storage battery according to claim 1, wherein the sealed nickel-hydrogen storage battery is coated with a resin having a water repellent effect composed of fluorine, carbon, and oxygen.
【請求項22】 前記はっ水効果を持つ樹脂が、ポリパ
ーフルオロブテニルビニルエーテルである請求項21記
載の密閉型ニッケル−水素蓄電池。
22. The sealed nickel-hydrogen storage battery according to claim 21, wherein the resin having a water-repellent effect is polyperfluorobutenyl vinyl ether.
【請求項23】 前記負極が、水素吸蔵合金粉末を三次
元網状金属多孔体に充填するか、あるいは金属多孔板の
片面または両面に塗着した構造である請求項1記載の密
閉型ニッケル−水素蓄電池。
23. The sealed nickel-hydrogen according to claim 1, wherein the negative electrode has a structure in which a hydrogen-absorbing alloy powder is filled in a three-dimensional mesh-like porous metal body, or is coated on one or both sides of a porous metal plate. Storage battery.
【請求項24】 前記三次元網状金属多孔体が、発泡状
金属多孔体または金属繊維で構成された不織布である請
求項23記載の密閉型ニッケル−水素蓄電池。
24. The sealed nickel-metal hydride storage battery according to claim 23, wherein the three-dimensional mesh-like porous metal body is a non-woven fabric made of a foamed porous metal body or a metal fiber.
【請求項25】 前記アルカリ電解液が、KOH水溶液
を主構成材料とし、正極容量1Ah当たり0.9〜1.
5ml注液されている請求項1記載の密閉型ニッケル−
水素蓄電池。
25. An alkaline electrolyte comprising a KOH aqueous solution as a main constituent material and 0.9 to 1.
The sealed nickel according to claim 1, wherein 5 ml of the liquid is injected.
Hydrogen storage battery.
【請求項26】 前記アルカリ電解液には、LiOHお
よび/またはNaOHが添加されている請求項25記載
の密閉型ニッケル−水素蓄電池。
26. The sealed nickel-hydrogen storage battery according to claim 25, wherein LiOH and / or NaOH is added to the alkaline electrolyte.
【請求項27】 前記セパレータが、材質の異なる第1
成分と第2成分とが交互に隣接するように複合紡糸され
た分割性複合繊維が各構成成分ごとに分割された繊度
0.3デニール以下の微細繊維を主成分とする織布また
は不織布からなり、前記第1成分と第2成分の少なくと
も一方は親水性を有している請求項1記載の密閉型ニッ
ケル−水素蓄電池。
27. The first separator made of a different material.
The splittable conjugate fiber spun such that the component and the second component are alternately adjacent to each other are made of a woven or nonwoven fabric mainly composed of fine fibers having a fineness of 0.3 denier or less divided for each component. 2. The sealed nickel-metal hydride battery according to claim 1, wherein at least one of the first component and the second component has hydrophilicity.
【請求項28】 前記第1成分が、ポリオレフィン系樹
脂からなり、第2成分が、親水性樹脂からなる請求項2
7記載の密閉型ニッケル−水素蓄電池。
28. The first component comprises a polyolefin resin, and the second component comprises a hydrophilic resin.
7. The sealed nickel-hydrogen storage battery according to 7.
【請求項29】 前記親性樹脂が、エチレン−ビニルア
ルコール共重合体である請求項28記載の密閉型ニッケ
ル−水素蓄電池。
29. The sealed nickel-hydrogen storage battery according to claim 28, wherein the affinity resin is an ethylene-vinyl alcohol copolymer.
【請求項30】 前記第1成分と第2成分が、それぞれ
異なるポリオレフィン系樹脂からなり、第1成分と第2
成分の少なくとも一方には親水基を有するビニルモノマ
ーまたは二次的に親水基を導入することができるビニル
モノマーがグラフト重合されている請求項27記載の密
閉型ニッケル−水素蓄電池。
30. The first component and the second component each comprising a different polyolefin-based resin, and the first component and the second component.
28. The sealed nickel-metal hydride storage battery according to claim 27, wherein at least one of the components is graft-polymerized with a vinyl monomer having a hydrophilic group or a vinyl monomer capable of secondary introduction of a hydrophilic group.
【請求項31】 前記ビニルモノマーが、スチレンであ
り、側鎖であるポリスチレンのベンゼン核にはスルホン
酸基が付加されている請求項30記載の密閉型ニッケル
−水素蓄電池。
31. The sealed nickel-metal hydride storage battery according to claim 30, wherein the vinyl monomer is styrene, and a sulfonic acid group is added to a benzene nucleus of polystyrene as a side chain.
【請求項32】 前記織布または不織布の重量に対する
グラフト重合されるスチレンの重量比率(グラフト率)
が、50%以上であり、ポリスチレンの単量体換算モル
数に対する付加されるスルホン酸基のモル比率(スルホ
ン化率)は50%以下である請求項31記載の密閉型ニ
ッケル−水素蓄電池。
32. The weight ratio of styrene to be graft-polymerized to the weight of the woven or nonwoven fabric (graft ratio)
32. The sealed nickel-hydrogen storage battery according to claim 31, wherein the content is 50% or more, and the molar ratio of the added sulfonic acid group (sulfonation ratio) to the number of moles in terms of monomer of polystyrene is 50% or less.
【請求項33】 前記ポリスチレンのベンゼン核に付加
されたスルホン酸基が、KまたはNaと塩を形成してい
る請求項31記載の密閉型ニッケル−水素蓄電池。
33. The sealed nickel-hydrogen storage battery according to claim 31, wherein the sulfonic acid group added to the benzene nucleus of the polystyrene forms a salt with K or Na.
【請求項34】 前記電槽ケース及び蓋体が、金属製で
ある請求項1記載の密閉型ニッケル−水素蓄電池。
34. The sealed nickel-hydrogen storage battery according to claim 1, wherein the battery case and the lid are made of metal.
【請求項35】 前記電槽ケースが、円筒形状を有し、
側面の肉厚が0.18mm以下である請求項34記載の
密閉型ニッケル−水素蓄電池。
35. The battery case has a cylindrical shape,
35. The sealed nickel-metal hydride storage battery according to claim 34, wherein the thickness of the side surface is 0.18 mm or less.
JP22982096A 1996-08-30 1996-08-30 Sealed nickel-hydrogen storage battery Expired - Lifetime JP3846602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22982096A JP3846602B2 (en) 1996-08-30 1996-08-30 Sealed nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22982096A JP3846602B2 (en) 1996-08-30 1996-08-30 Sealed nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH1074536A true JPH1074536A (en) 1998-03-17
JP3846602B2 JP3846602B2 (en) 2006-11-15

Family

ID=16898187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22982096A Expired - Lifetime JP3846602B2 (en) 1996-08-30 1996-08-30 Sealed nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP3846602B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051593A (en) * 1999-11-12 2001-06-25 모리시타 요이찌 Nickel-metal hydride storage battery
JP2002279993A (en) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd Alkaline storage battery
JP2004319429A (en) * 2003-03-31 2004-11-11 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2006508518A (en) * 2002-11-29 2006-03-09 ナイラー インターナショナル アーベー Bipolar battery and manufacturing method thereof
JP2006147327A (en) * 2004-11-19 2006-06-08 Gs Yuasa Corporation:Kk Sealed nickel-hydrogen secondary battery
JP2011040205A (en) * 2009-08-07 2011-02-24 Daikin Industries Ltd Hydrogen storage alloy electrode and nickel-hydrogen battery
WO2014030230A1 (en) * 2012-08-22 2014-02-27 日新電機 株式会社 Energy storage battery
US8877372B2 (en) 2011-01-11 2014-11-04 Gs Yuasa International Ltd. Alkaline secondary battery
US8883349B2 (en) 2010-08-05 2014-11-11 Gs Yuasa International Ltd. Alkaline secondary battery and method for manufacturing positive electrode material for alkaline secondary battery
US9269952B2 (en) 2011-01-11 2016-02-23 Gs Yuasa International Ltd. Positive active material for alkaline secondary battery, method for manufacturing the same and alkaline secondary battery
CN108054328A (en) * 2018-01-05 2018-05-18 泉州劲鑫电子有限公司 A kind of high temperature fast charge Ni-MH power cell and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051593A (en) * 1999-11-12 2001-06-25 모리시타 요이찌 Nickel-metal hydride storage battery
JP2002279993A (en) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd Alkaline storage battery
JP2006508518A (en) * 2002-11-29 2006-03-09 ナイラー インターナショナル アーベー Bipolar battery and manufacturing method thereof
JP2004319429A (en) * 2003-03-31 2004-11-11 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2006147327A (en) * 2004-11-19 2006-06-08 Gs Yuasa Corporation:Kk Sealed nickel-hydrogen secondary battery
JP2011040205A (en) * 2009-08-07 2011-02-24 Daikin Industries Ltd Hydrogen storage alloy electrode and nickel-hydrogen battery
US8883349B2 (en) 2010-08-05 2014-11-11 Gs Yuasa International Ltd. Alkaline secondary battery and method for manufacturing positive electrode material for alkaline secondary battery
US9269952B2 (en) 2011-01-11 2016-02-23 Gs Yuasa International Ltd. Positive active material for alkaline secondary battery, method for manufacturing the same and alkaline secondary battery
US8877372B2 (en) 2011-01-11 2014-11-04 Gs Yuasa International Ltd. Alkaline secondary battery
WO2014030230A1 (en) * 2012-08-22 2014-02-27 日新電機 株式会社 Energy storage battery
JP5920470B2 (en) * 2012-08-22 2016-05-18 日新電機株式会社 Power storage battery
US9680176B2 (en) 2012-08-22 2017-06-13 Nissin Electric Co., Ltd. Energy storage battery
CN108054328A (en) * 2018-01-05 2018-05-18 泉州劲鑫电子有限公司 A kind of high temperature fast charge Ni-MH power cell and preparation method thereof
CN108054328B (en) * 2018-01-05 2023-11-07 泉州劲鑫电子有限公司 High-temperature quick-charging nickel-hydrogen power battery and preparation method thereof

Also Published As

Publication number Publication date
JP3846602B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US4837119A (en) Sealed storage battery and method for making its electrode
US5455125A (en) Medium or large scale sealed metal oxide/metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3846602B2 (en) Sealed nickel-hydrogen storage battery
JPH0521064A (en) Nickel hydroxide4 active material powder and nickel positive electrode and alkaline storage battery using this
CN106463786A (en) Nickel hydrogen secondary battery
JPH10270042A (en) Active material for nickel electrode and nickel positive electrode for alkaline storage battery using it
JP2001076730A (en) Nickel-hydrogen secondary battery
JP2733227B2 (en) Nickel-metal hydride battery
US5547784A (en) Alkaline storage battery and method for producing the same
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP4432285B2 (en) Nickel electrode active material for alkaline storage battery, nickel electrode for alkaline storage battery and alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP4385522B2 (en) Negative electrode active material for nickel-hydrogen storage battery, negative electrode for nickel-hydrogen storage battery, and nickel-hydrogen storage battery
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH04188561A (en) Alkaline storage battery
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH03285270A (en) Alkaline storage battery
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2000021400A (en) Sealed nickel-hydrogen storage battery
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JPH09180753A (en) Nickel-metal hydride battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

EXPY Cancellation because of completion of term