JPH10172559A - Nickel active material for alkaline storage battery and manufacture thereof - Google Patents

Nickel active material for alkaline storage battery and manufacture thereof

Info

Publication number
JPH10172559A
JPH10172559A JP8330714A JP33071496A JPH10172559A JP H10172559 A JPH10172559 A JP H10172559A JP 8330714 A JP8330714 A JP 8330714A JP 33071496 A JP33071496 A JP 33071496A JP H10172559 A JPH10172559 A JP H10172559A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
nickel
active material
storage battery
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8330714A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ota
和宏 太田
Yukihiro Okada
行広 岡田
Hiromu Matsuda
宏夢 松田
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8330714A priority Critical patent/JPH10172559A/en
Publication of JPH10172559A publication Critical patent/JPH10172559A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the utilization factor of nickel hydroxide under atmosphere from normal temperature to high temperature by forming a nickel hydroxide active material with nickel hydroxide or aggregated particles of crystals of nickel hydroxide containing different elements in the form of solid solution, and containing a compound of at least one element selected from Ca, Sr or the like on the inside and the surface of the particle. SOLUTION: A nickel hydroxide active material consists of nickel hydroxide or aggregated particles of crystals of nickel hydroxide containing different elements in the form of solid solution. A compound of at least one element selected from the group comprising Ca, Sr, Ba, Cu, Ag, Cd, Y, and Yb is contained on the inside and the surface of the particle. The active material is manufactured by treating in hot alkali containing the compound powder of at least one element selected from the above elements. The nickel hydroxide or the nickel hydroxide containing the different element in the form of solid solution is obtained by continuously letting caustic alkali and ammonium act to an aqueous solution containing nickel ions and adjusting pH.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する従来分野】本発明は、アルカリ蓄電池用
ニッケル活物質、およびその製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel active material for an alkaline storage battery and an improvement in a method for producing the same.

【0002】[0002]

【従来の技術】近年、ポータブル機器の高付加価値化及
び小型軽量化に伴い高エネルギー密度の二次電池が切望
されている。また、電気自動車用の電源として、高エネ
ルギー密度の新しい二次電池の開発が要望されている。
このような要望に応えるために、ニッケルーカドミウム
電池の分野においては、従来の焼結式ニッケル正極を用
いた電池の高容量化が進み、また、これより30〜60
%高容量である発泡メタル式ニッケル正極を用いた高エ
ネルギー密度の電池が開発されている。さらに、負極に
水素吸蔵合金を用いたニッケル−水素蓄電池が開発され
ている。この電池は、焼結式ニッケル正極を用いたニッ
ケルーカドミウム電池の2倍以上の電池容量を有する。
これらの高容量アルカリ蓄電池は、正極のエネルギー密
度を向上させるために、焼結式ニッケル多孔体、あるい
は高多孔度(90%以上)の三次元発泡ニッケル多孔体
やニッケル繊維多孔体に水酸化ニッケル粉末を高密度に
充填している。その結果、従来の焼結式ニッケル正極の
エネルギー密度が400〜450mAh/cm3である
のに対して、最近の焼結式ニッケル正極については45
0〜500mAh/cm3まで向上し、発泡メタル式ニ
ッケル正極については550〜650mAh/cm3
ある。
2. Description of the Related Art In recent years, secondary batteries having a high energy density have been eagerly demanded as portable devices have become higher in added value and smaller and lighter. Further, there is a demand for the development of a new secondary battery having a high energy density as a power source for an electric vehicle.
In order to meet such demands, in the field of nickel-cadmium batteries, the capacity of conventional batteries using a sintered nickel positive electrode has been increased, and from 30 to 60
A high-energy density battery using a foamed metal nickel positive electrode having a high capacity of 0.1% has been developed. Furthermore, nickel-hydrogen storage batteries using a hydrogen storage alloy for the negative electrode have been developed. This battery has a battery capacity twice or more that of a nickel-cadmium battery using a sintered nickel positive electrode.
In order to improve the energy density of the positive electrode, these high-capacity alkaline storage batteries use a sintered nickel porous body or a three-dimensional foamed nickel porous body or a nickel fiber porous body having a high porosity (90% or more). The powder is densely packed. As a result, the energy density of the conventional sintered nickel positive electrode is 400 to 450 mAh / cm 3 , whereas the energy density of the recent sintered nickel positive electrode is 45
Improved to 0~500mAh / cm 3, a 550~650mAh / cm 3 for the foamed metal type nickel positive electrode.

【0003】焼結式ニッケル多孔体、発泡ニッケル多孔
体やニッケル繊維多孔体中に水酸化ニッケルを高密度に
充填した正極は、常温付近におけるエネルギー密度は高
いが、高温雰囲気下におけるエネルギー密度が低下する
という問題があった。この原因は、高温雰囲気下での充
電において、水酸化ニッケルがオキシ水酸化ニッケルに
充電される反応と同時に、酸素発生反応が起こりやすく
なるためである。すなわち、正極での酸素発生過電圧が
減少し、水酸化ニッケルがオキシ水酸化ニッケルに充分
に充電されず、水酸化ニッケルの利用率が低下すること
による。
A positive electrode in which nickel hydroxide is densely filled in a sintered nickel porous body, a foamed nickel porous body, or a nickel fiber porous body has a high energy density near room temperature, but has a low energy density in a high temperature atmosphere. There was a problem of doing. The reason for this is that, during charging in a high-temperature atmosphere, an oxygen generation reaction is likely to occur at the same time as a reaction in which nickel hydroxide is charged to nickel oxyhydroxide. That is, the oxygen generation overvoltage at the positive electrode decreases, the nickel hydroxide is not sufficiently charged to the nickel oxyhydroxide, and the utilization rate of the nickel hydroxide decreases.

【0004】この問題を解決するために、以下の方法が
提案されている。 (1)正極中に酸化カドミウム粉末や水酸化カドミウム
粉末を添加する方法、及び水酸化ニッケル粉末内部にカ
ドミウム酸化物を含有させる方法(特開昭61−104
565号公報)。 (2)正極中にイットリウム、インジウム、アンチモ
ン、バリウム、カルシウム及びベリリウムの化合物のう
ち少なくとも一種を添加する方法(特開平5−2899
2号公報)。 (3)正極中に結晶面間隔dを制御したカーボン粉末と
Ca、Sr、Ba、Cu、Ag及びYよりなる群から選
ばれる少なくとも一種の元素の化合物の粉末を含有させ
る方法。また、比表面積、平均粒径を制御したニッケル
粉末とCa、Sr、Ba、Cu、Ag及びYよりなる群
から選ばれる少なくとも一種の元素の化合物の粉末を含
有させる方法(特開平7−14578号公報)。
To solve this problem, the following method has been proposed. (1) A method in which cadmium oxide powder or cadmium hydroxide powder is added to the positive electrode, and a method in which cadmium oxide is contained inside nickel hydroxide powder (JP-A-61-104)
565). (2) A method in which at least one compound of yttrium, indium, antimony, barium, calcium and beryllium is added to the positive electrode (JP-A-5-2899)
No. 2). (3) A method in which a carbon powder having a controlled crystal plane spacing d and powder of a compound of at least one element selected from the group consisting of Ca, Sr, Ba, Cu, Ag and Y are contained in the positive electrode. In addition, a method of containing a nickel powder having a controlled specific surface area and an average particle diameter and a powder of a compound of at least one element selected from the group consisting of Ca, Sr, Ba, Cu, Ag and Y (Japanese Patent Application Laid-Open No. 7-14578) Gazette).

【0005】従来提案されている前記(1)の方法で
は、水酸化ニッケル粉末内部や水酸化ニッケル粉末とと
もにカドミウム酸化物を存在させることにより、高温雰
囲気下における水酸化ニッケルの利用率を向上させるも
のである。しかし、カドミウム酸化物を添加した場合に
おいても、高温雰囲気下における水酸化ニッケルの利用
率は80%程度である。高温雰囲気下における水酸化ニ
ッケルの利用率をさらに向上させるためには、水酸化ニ
ッケル内部やニッケル正極中へのカドミウム酸化物の添
加量を増大させる必要がある。しかし、カドミウム酸化
物の添加量を増大させることにより、高温雰囲気下にお
ける水酸化ニッケルの利用率は90%程度まで向上でき
るが、室温付近の利用率が低下する問題があった。
In the method (1) proposed so far, the utilization of nickel hydroxide in a high-temperature atmosphere is improved by the presence of cadmium oxide inside the nickel hydroxide powder or together with the nickel hydroxide powder. It is. However, even when cadmium oxide is added, the utilization of nickel hydroxide in a high-temperature atmosphere is about 80%. In order to further improve the utilization rate of nickel hydroxide in a high-temperature atmosphere, it is necessary to increase the amount of cadmium oxide added to the inside of the nickel hydroxide or the nickel positive electrode. However, by increasing the amount of cadmium oxide added, the utilization of nickel hydroxide in a high-temperature atmosphere can be improved to about 90%, but there is a problem that the utilization near room temperature decreases.

【0006】また、従来提案されている前記(2)の方
法では、添加されたイットリウムなどの化合物が活物質
である水酸化ニッケルの表面に吸着し、高温雰囲気下の
充電における水酸化ニッケルの利用率を向上させる。し
かし、この方法では、水酸化ニッケル表面に吸着するこ
れらの化合物の分布状態は不均一であるため、このニッ
ケル正極を用いて密閉型電池を構成した場合には、電池
特性がばらつくという問題があった。また、従来提案さ
れている前記(3)の方法では、高温雰囲気下の充電に
おける水酸化ニッケルの利用率を向上させるための、導
電性を付与するカーボン粉末、またはニッケル粉末を添
加することは、エネルギー密度の観点からは適切とは言
えない。
In the method (2) proposed above, the added compound such as yttrium is adsorbed on the surface of nickel hydroxide as an active material, and the nickel hydroxide is used for charging in a high-temperature atmosphere. Improve rate. However, in this method, the distribution of these compounds adsorbed on the surface of the nickel hydroxide is not uniform. Therefore, when a sealed battery is formed using this nickel positive electrode, there is a problem that the battery characteristics vary. Was. In addition, in the method (3) that has been conventionally proposed, in order to improve the utilization rate of nickel hydroxide in charging under a high-temperature atmosphere, the addition of a carbon powder or nickel powder that imparts conductivity is performed by: It is not appropriate in terms of energy density.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な問題を解決するもので、常温から高温までの雰囲気下
において、水酸化ニッケルの利用率に優れたアルカリ蓄
電池用活物質を提供することを目的とする。また、本発
明は、そのようなアルカリ蓄電池用活物質を製造する方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and provides an active material for an alkaline storage battery having excellent utilization of nickel hydroxide in an atmosphere from room temperature to high temperature. The purpose is to: Another object of the present invention is to provide a method for producing such an active material for an alkaline storage battery.

【0008】[0008]

【課題を解決するための手段】本発明の水酸化ニッケル
活物質は、水酸化ニッケルまたは異種元素を固溶した水
酸化ニッケルの結晶が集合した粒子からなり、前記粒子
内部および表層部に、Ca、Sr、Ba、Cu、Ag、
Cd、Y、およびYbからなる群より選ばれる少なくと
も1種の元素の化合物を含むことを特徴とする。このア
ルカリ蓄電池用ニッケル活物質は、水酸化ニッケルまた
は異種元素を固溶した水酸化ニッケル粉末を、Ca、S
r、Ba、Cu、Ag、Cd、Y、およびYbからなる
群より選ばれる少なくとも1種の元素の化合物粉末を含
む熱アルカリ中で処理することにより製造することがで
きる。
Means for Solving the Problems The nickel hydroxide active material of the present invention comprises particles in which crystals of nickel hydroxide or nickel hydroxide in which dissimilar elements are dissolved are aggregated. , Sr, Ba, Cu, Ag,
It is characterized by containing a compound of at least one element selected from the group consisting of Cd, Y, and Yb. This nickel active material for an alkaline storage battery includes nickel hydroxide or nickel hydroxide powder in which a dissimilar element is dissolved as Ca, S
r, Ba, Cu, Ag, Cd, Y, and Yb, and can be produced by treating in a hot alkali containing a compound powder of at least one element selected from the group consisting of r, Ba, Cu, Ag, Cd, Y, and Yb.

【0009】[0009]

【発明の実施の形態】水酸化ニッケルまたは異種元素を
固溶した水酸化ニッケルは、ニッケルイオンを含む水溶
液またはニッケルイオンと異種元素のイオンを含む水溶
液に、苛性アルカリとアンモニウムイオンを連続的に作
用させ、pHを制御しながら結晶成長を行う製造プロセ
スによって得られる。こうして合成された水酸化ニッケ
ルまたは異種元素を固溶した水酸化ニッケル粒子は、硫
酸根などの不純物を除去する目的で熱アルカリ処理され
る。本発明者らは、この熱アルカリ処理するプロセスに
おいて、Ca、Sr、Ba、Cu、Ag、Cd、Y、お
よびYbからなる群より選ばれる少なくとも1種の元素
の化合物を含有する熱アルカリ中で水酸化ニッケルまた
は異種元素を固溶した水酸化ニッケル粉末を攪拌混合す
ることにより、前記水酸化ニッケルの結晶からなる粒子
中に前記化合物が混入し、高温における利用率の優れた
活物質が得られることを見いだした。すなわち、本発明
の製造方法により、不純物除去に併せて、高温雰囲気下
での正極利用率を向上させる効果が得られる。ここで、
前記化合物としては、Ca(OH)2、CaO、Ca
2、CaS、CaSO4、CaSi25、CaC24
CaWO4、SrCO3、Sr(OH)2、BaO、Cu2
O、Ag2O、CdO、Y(OH)3、Y2(CO33
23、Yb23、及びYb(OH)3よりなる群から
選択されるものが好適に用いられる。また、これら化合
物の割合は、水酸化ニッケル100重量部に対して0.
1〜5重量部の範囲が好ましい。前記異種元素として
は、2族元素、特に亜鉛、カドミウムが好ましい。ま
た、前記熱アルカリ溶液としては、5〜50重量%のア
ルカリ塩を含んだ30〜120℃のアルカリ水溶液が好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Nickel hydroxide or nickel hydroxide in which a dissimilar element is dissolved is used to continuously react caustic alkali and ammonium ions on an aqueous solution containing nickel ions or an aqueous solution containing nickel ions and ions of different elements. And a crystal growth process while controlling the pH. The nickel hydroxide synthesized in this way or the nickel hydroxide particles in which a different element is dissolved is subjected to hot alkali treatment in order to remove impurities such as sulfate. In the process of performing the hot alkali treatment, the present inventors have conducted a hot alkali containing a compound of at least one element selected from the group consisting of Ca, Sr, Ba, Cu, Ag, Cd, Y, and Yb. By stirring and mixing nickel hydroxide or nickel hydroxide powder in which a dissimilar element is dissolved, the compound is mixed into particles made of the nickel hydroxide crystals, and an active material having excellent utilization at high temperatures can be obtained. I found something. That is, according to the manufacturing method of the present invention, the effect of improving the positive electrode utilization rate under a high-temperature atmosphere can be obtained in addition to the impurity removal. here,
The compounds include Ca (OH) 2 , CaO, Ca
F 2 , CaS, CaSO 4 , CaSi 2 O 5 , CaC 2 O 4 ,
CaWO 4 , SrCO 3 , Sr (OH) 2 , BaO, Cu 2
O, Ag 2 O, CdO, Y (OH) 3 , Y 2 (CO 3 ) 3 ,
Those selected from the group consisting of Y 2 O 3 , Yb 2 O 3 , and Yb (OH) 3 are preferably used. The ratio of these compounds is 0.1 to 100 parts by weight of nickel hydroxide.
A range of 1 to 5 parts by weight is preferred. As the different element, a Group 2 element, particularly, zinc or cadmium is preferable. Further, as the hot alkali solution, an alkali aqueous solution containing 30 to 120 ° C. containing 5 to 50% by weight of an alkali salt is preferable.

【0010】本発明の水酸化ニッケル活物質粒子は、粒
子内部および表層部に含まれる前記の化合物が酸素発生
電位を上昇させる効果がある。したがって、以下の式
(2)の高温雰囲気下の充電における競争反応である酸
素発生の過電圧は、酸素発生電位の上昇により一層増大
する。その結果、式(1)の水酸化ニッケルのオキシ水
酸化ニッケルへの充電反応が十分に行われ、さらなる高
温雰囲気下においても正極利用率が向上する。
In the nickel hydroxide active material particles of the present invention, the compound contained in the inside of the particles and in the surface layer has an effect of increasing the oxygen generation potential. Therefore, the overvoltage of oxygen generation, which is a competitive reaction in charging in a high-temperature atmosphere of the following formula (2), further increases due to an increase in the oxygen generation potential. As a result, the charging reaction of the nickel hydroxide of the formula (1) to the nickel oxyhydroxide is sufficiently performed, and the utilization rate of the positive electrode is improved even under a higher temperature atmosphere.

【0011】[0011]

【化1】 Embedded image

【0012】以上のように本発明により、高温雰囲気下
での充電受け入れ性に優れたニッケル活物質が得られ
る。この活物質を用いることにより、常温から高温まで
の幅広い温度雰囲気下で水酸化ニッケルの利用率が優れ
た正極が得られることとなる。
As described above, according to the present invention, a nickel active material having excellent charge acceptability in a high-temperature atmosphere can be obtained. By using this active material, a positive electrode having an excellent nickel hydroxide utilization rate under a wide temperature atmosphere from normal temperature to high temperature can be obtained.

【0013】[0013]

【実施例】以下、本発明をその実施例により説明する。 《実施例1》Znを固溶した水酸化ニッケル粉末と、フ
ッ化カルシウム粉末を所定の割合で混合し、これをKO
Hの濃度31重量%の80℃の熱アルカリ水溶液に投入
して24時間攪拌した。その後、水洗によりアルカリ分
を除去し、90℃で乾燥して活物質粉末a〜eを得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. << Example 1 >> A nickel hydroxide powder in which Zn was dissolved in solid and a calcium fluoride powder were mixed at a predetermined ratio, and this was mixed with KO.
It was poured into a hot alkaline aqueous solution at 80 ° C. having a H concentration of 31% by weight and stirred for 24 hours. Thereafter, the alkali content was removed by washing with water and dried at 90 ° C. to obtain active material powders a to e.

【0014】《比較例1》Znを固溶した水酸化ニッケ
ル粉末100重量部と、フッ化カルシウム粉末1重量部
を混合して、活物質粉末fを得た。
Comparative Example 1 An active material powder f was obtained by mixing 100 parts by weight of nickel hydroxide powder in which Zn was dissolved and 1 part by weight of calcium fluoride powder.

【0015】《比較例2》フッ化カルシウム粉末を混合
しないこと以外は実施例1と同様にして、活物質粉末g
を得た。
Comparative Example 2 An active material powder g was prepared in the same manner as in Example 1 except that the calcium fluoride powder was not mixed.
I got

【0016】《実施例2》硫酸ニッケル(II)水溶液、お
よび硫酸亜鉛(II)水溶液を金属イオンモル比でNi:Z
n=20:1の割合で混合した混合液を調製した。この
混合液と、水酸化ナトリウム水溶液とアンモニア水とを
定量ポンプを用いて、各々同一流量で反応槽に連続的に
供給し、反応槽内を連続的に撹拌した。そして、反応槽
からオーバーフローする活物質を含む懸濁液より活物質
粒子を分離した。得られた活物質粒子粉末を、酸化イッ
トリウム粉末を1重量%含有した80℃の31重量%K
OH水溶液に投入して24時間攪拌した。その後、水洗
によりアルカリ分を除去し、90℃で乾燥して活物質粉
末hを得た。
Example 2 A nickel (II) sulfate aqueous solution and a zinc (II) sulfate aqueous solution were mixed in a metal ion molar ratio of Ni: Z
A mixed solution was prepared by mixing at a ratio of n = 20: 1. The mixed solution, the aqueous sodium hydroxide solution, and the aqueous ammonia were continuously supplied to the reaction tank at the same flow rate using a metering pump, and the inside of the reaction tank was continuously stirred. Then, active material particles were separated from the suspension containing the active material overflowing from the reaction tank. The obtained active material particle powder was converted to 31% by weight K at 80 ° C. containing 1% by weight of yttrium oxide powder.
The mixture was poured into an aqueous OH solution and stirred for 24 hours. Thereafter, the alkali content was removed by washing with water and dried at 90 ° C. to obtain an active material powder h.

【0017】《比較例3》実施例2の硫酸ニッケルと硫
酸亜鉛の混合水溶液から得られた活物質粒子粉末を、酸
化イットリウム粉末を含有しない80℃の31重量%K
OH水溶液に投入して24時間攪拌した。その後、水洗
によりアルカリ分を除去し、90℃で乾燥して活物質粉
末iを得た。
Comparative Example 3 The active material particle powder obtained from the mixed aqueous solution of nickel sulfate and zinc sulfate of Example 2 was converted to 31% by weight of K at 80 ° C. containing no yttrium oxide powder.
The mixture was poured into an aqueous OH solution and stirred for 24 hours. Thereafter, the alkali content was removed by washing with water and dried at 90 ° C. to obtain an active material powder i.

【0018】こうして得られた水酸化ニッケル活物質粒
子a〜iの粉末に、それぞれ金属コバルト粉末と水酸化
コバルト粉末を重量比で100:7:5の割合で加えて
良く混合した後、それらの混合粉末に水を添加しペース
ト状にした。このペーストを支持体である厚さ1.6m
m、多孔度95%、面密度600g/m2の発泡ニッケ
ル基板中に充填し乾燥後、加圧成型し、フッ素樹脂粉末
の水分散液に浸漬した。この後、再度乾燥し、90×7
0mmに切断してそれぞれニッケル正極A〜Iを得た。
これらの正極1枚を正極よりも大きな理論容量を持つ公
知の水素吸蔵合金負極2枚ではさみ、比重1.30の水
酸化カリウム水溶液を電解液とした電池(フラッデッド
セル)を作製した。
To the thus obtained nickel hydroxide active material particles a to i, a metal cobalt powder and a cobalt hydroxide powder were added at a weight ratio of 100: 7: 5, and mixed well. Water was added to the mixed powder to form a paste. This paste is used as a support and has a thickness of 1.6 m.
m, a porosity of 95% and a surface density of 600 g / m 2 were filled in a foamed nickel substrate, dried, molded under pressure, and immersed in an aqueous dispersion of a fluororesin powder. After this, it is dried again and 90 × 7
The resultant was cut into 0 mm to obtain nickel positive electrodes A to I, respectively.
One of these positive electrodes was sandwiched between two known hydrogen storage alloy negative electrodes having a larger theoretical capacity than the positive electrode, and a battery (flooded cell) using an aqueous solution of potassium hydroxide having a specific gravity of 1.30 as an electrolyte was produced.

【0019】これらの電池について、各正極理論容量の
10時間率で15時間充電し、3時間休止の後、20℃
において5時間率で端子間電圧が1Vになるまで放電す
る試験を行った。なお、充電は20℃、45℃、および
55℃で行い、放電はすべて20℃で行った。表1に各
正極の20℃充電時の放電容量に対する45℃および5
5℃充電時の放電容量比率を示した。
These batteries were charged for 15 hours at a 10-hour rate based on the theoretical capacity of each positive electrode.
, A test was conducted at a rate of 5 hours until the voltage between terminals reached 1 V. Note that charging was performed at 20, 45, and 55 ° C, and discharging was all performed at 20 ° C. Table 1 shows the discharge capacity at 45 ° C. and 5 ° C.
The discharge capacity ratio at the time of charging at 5 ° C. is shown.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように、水酸化ニッケル
粉末100重量部に対してフッ化カルシウム粉末を0.
1から5重量部の割合で混合し、これをKOHの濃度3
1重量%の80℃の熱アルカリ水溶液にて処理した活物
質粒子a〜cを用いた正極A〜Cは、45℃および55
℃における充電効率が高いことがわかる。さらに、比較
例1、すなわち、特開平5−28992号公報の方法で
調製した正極Fについて、実際に高温充電効率を確認し
たところ、45℃までの容量比率は90%程度で良好で
あった。しかし、55℃での高温充電効率を確認したと
ころ、60%程度にまで低下していることがわかった。
このことから、本発明による31重量%のKOHを含む
80℃の熱アルカリ水溶液中にて、活物質粒子とフッ化
カルシウムを混合することにより、フッ化カルシウムを
単に添加するよりも非常に大きな改良が見られることが
わかった。また、合成した活物質粒子粉末を、酸化イッ
トリウム粉末が1重量%含有した80℃の31重量%K
OH水溶液にて処理した活物質粒子hを用いた正極H
は、45℃および55℃における充電効率が高いことが
わかった。
As is clear from Table 1, calcium fluoride powder was added in an amount of 0.1 part by weight to 100 parts by weight of nickel hydroxide powder.
Mix at a ratio of 1 to 5 parts by weight.
Positive electrodes A to C using active material particles a to c treated with 1% by weight of a hot alkaline aqueous solution at 80 ° C. were used at 45 ° C. and 55 ° C.
It can be seen that the charging efficiency at ℃ is high. Further, when the high-temperature charging efficiency of Comparative Example 1, that is, the positive electrode F prepared by the method of JP-A-5-28992 was actually confirmed, the capacity ratio up to 45 ° C. was as good as about 90%. However, when the high-temperature charging efficiency at 55 ° C. was confirmed, it was found that the efficiency was reduced to about 60%.
This suggests that by mixing the active material particles and calcium fluoride in a hot alkaline aqueous solution at 80 ° C. containing 31% by weight of KOH according to the present invention, a much greater improvement than simply adding calcium fluoride. Was found to be seen. Further, the synthesized active material particles were prepared by mixing 31% by weight of K at 80 ° C. with 1% by weight of yttrium oxide powder.
Positive electrode H using active material particles h treated with an aqueous OH solution
Was found to have high charging efficiency at 45 ° C. and 55 ° C.

【0022】上記の実施例では、熱アルカリ水溶液中に
て活物質粒子と混合する化合物としてフッ化カルシウム
(CaF2)、および酸化イットリウム(Y23)を用
いたが、この他Ca(OH)2、CaO、CaS、Ca
SO4、CaSi25、CaC24、CaWO4、SrC
3、Sr(OH)2、BaO、Cu2O、Ag2O、Cd
O、Y(OH)3、Y2(CO33、Yb23、及びYb
(OH)3を用いた正極について同様の試験をしたとこ
ろ、いずれも45℃および55℃における充電効率は、
フッ化カルシウムや酸化イットリウムを用いた場合と同
様の良好な結果が得られた。また、熱アルカリ溶液とし
ては、5〜50重量%のアルカリ塩を含んだ30〜12
0℃のアルカリ溶液であれば前記の効果が得られること
が確認された。また、上記の実施例では、Znを固溶し
た水酸化ニッケルを用いたが、Zn以外の2族元素を固
溶したもの、あるいはこれらを固溶しないものについて
も、フッ化カルシウムなどによる効果は変わらない。
In the above embodiment, calcium fluoride (CaF 2 ) and yttrium oxide (Y 2 O 3 ) were used as compounds to be mixed with active material particles in a hot alkaline aqueous solution. ) 2 , CaO, CaS, Ca
SO 4 , CaSi 2 O 5 , CaC 2 O 4 , CaWO 4 , SrC
O 3 , Sr (OH) 2 , BaO, Cu 2 O, Ag 2 O, Cd
O, Y (OH) 3 , Y 2 (CO 3 ) 3 , Yb 2 O 3 , and Yb
When the same test was performed on the positive electrode using (OH) 3 , the charging efficiency at 45 ° C. and 55 ° C. was as follows.
The same good results were obtained as when calcium fluoride or yttrium oxide was used. As the hot alkaline solution, 30 to 12% containing 5 to 50% by weight of an alkali salt is used.
It was confirmed that the above-mentioned effect was obtained with an alkaline solution at 0 ° C. Further, in the above-described embodiment, nickel hydroxide in which Zn is dissolved is used. However, the effect of calcium fluoride or the like is not limited to those in which a Group 2 element other than Zn is dissolved or those in which they are not dissolved. does not change.

【0023】[0023]

【発明の効果】以上のように本発明によれば、高温充電
効率に優れたアルカリ蓄電池用水酸化ニッケル活物質が
得られる。
As described above, according to the present invention, a nickel hydroxide active material for an alkaline storage battery having excellent high-temperature charging efficiency can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toyoguchi ▲ Yoshi ▼ Toku 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルまたは異種元素を固溶し
た水酸化ニッケルの結晶が集合した粒子からなり、前記
粒子内部および表層部に、Ca、Sr、Ba、Cu、A
g、Cd、Y、およびYbからなる群より選ばれる少な
くとも1種の元素の化合物を含むことを特徴とするアル
カリ蓄電池用ニッケル活物質。
1. Particles formed by aggregating nickel hydroxide or crystals of nickel hydroxide in which different elements are dissolved in solid form, wherein Ca, Sr, Ba, Cu, A
A nickel active material for an alkaline storage battery, comprising a compound of at least one element selected from the group consisting of g, Cd, Y, and Yb.
【請求項2】 前記化合物が、Ca(OH)2、CaO、
CaF2、CaS、CaSO4、CaSi25、CaC2
4、CaWO4、SrCO3、Sr(OH)2、BaO、C
2O、 Ag2O、CdO、Y(OH)3、Y2(CO3)3
23、Yb23、及びYb(OH)3よりなる群から選
択される請求項1記載のアルカリ蓄電池用ニッケル活物
質。
2. The method according to claim 1, wherein the compound is Ca (OH) 2 , CaO,
CaF 2 , CaS, CaSO 4 , CaSi 2 O 5 , CaC 2
O 4 , CaWO 4 , SrCO 3 , Sr (OH) 2 , BaO, C
u 2 O, Ag 2 O, CdO, Y (OH) 3 , Y 2 (CO 3 ) 3 ,
Y 2 O 3, Yb 2 O 3, and Yb (OH) nickel active material for an alkaline storage battery according to claim 1, which is selected from the group consisting of 3.
【請求項3】 前記化合物の割合が、水酸化ニッケル1
00重量部に対して0.1〜5重量部である請求項1記
載のアルカリ蓄電池用ニッケル活物質。
3. The method according to claim 1, wherein the proportion of the compound is nickel hydroxide 1
The nickel active material for an alkaline storage battery according to claim 1, wherein the amount is 0.1 to 5 parts by weight based on 00 parts by weight.
【請求項4】 前記異種元素が2族元素である請求項1
記載のアルカリ蓄電池用ニッケル活物質。
4. The method according to claim 1, wherein the different element is a Group 2 element.
The nickel active material for an alkaline storage battery according to the above.
【請求項5】 水酸化ニッケルまたは異種元素を固溶し
た水酸化ニッケル粉末を、Ca、Sr、Ba、Cu、A
g、Cd、Y、およびYbからなる群より選ばれる少な
くとも1種の元素の化合物粉末を含む熱アルカリ中で処
理することを特徴とするアルカリ蓄電池用ニッケル活物
質の製造方法。
5. Nickel hydroxide or nickel hydroxide powder in which dissimilar elements are dissolved in solid form are mixed with Ca, Sr, Ba, Cu, A
A method for producing a nickel active material for an alkaline storage battery, comprising treating in a hot alkali containing a compound powder of at least one element selected from the group consisting of g, Cd, Y, and Yb.
【請求項6】 前記熱アルカリ溶液が、5〜50重量%
のアルカリ塩を含んだ30〜120℃のアルカリ水溶液
である請求項5記載のアルカリ蓄電池用ニッケル活物質
の製造方法。
6. The method according to claim 6, wherein the hot alkaline solution is 5 to 50% by weight.
The method for producing a nickel active material for an alkaline storage battery according to claim 5, which is an aqueous alkaline solution at 30 to 120C containing the alkaline salt of (1).
JP8330714A 1996-12-11 1996-12-11 Nickel active material for alkaline storage battery and manufacture thereof Pending JPH10172559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8330714A JPH10172559A (en) 1996-12-11 1996-12-11 Nickel active material for alkaline storage battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8330714A JPH10172559A (en) 1996-12-11 1996-12-11 Nickel active material for alkaline storage battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10172559A true JPH10172559A (en) 1998-06-26

Family

ID=18235751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8330714A Pending JPH10172559A (en) 1996-12-11 1996-12-11 Nickel active material for alkaline storage battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10172559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075346A (en) * 2000-08-30 2002-03-15 Sanyo Electric Co Ltd Sintered nickel electrode and its manufacturing method
JP2008117725A (en) * 2006-11-08 2008-05-22 Matsushita Electric Ind Co Ltd Cylindrical nickel-hydrogen storage battery
JP2013084630A (en) * 2013-02-13 2013-05-09 Gs Yuasa Corp Method for manufacturing nickel electrode for alkaline storage battery and method for manufacturing alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075346A (en) * 2000-08-30 2002-03-15 Sanyo Electric Co Ltd Sintered nickel electrode and its manufacturing method
JP2008117725A (en) * 2006-11-08 2008-05-22 Matsushita Electric Ind Co Ltd Cylindrical nickel-hydrogen storage battery
JP2013084630A (en) * 2013-02-13 2013-05-09 Gs Yuasa Corp Method for manufacturing nickel electrode for alkaline storage battery and method for manufacturing alkaline storage battery

Similar Documents

Publication Publication Date Title
EP0523284B1 (en) Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
EP0353837B1 (en) A nickel electrode for an alkaline battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
EP0853346B1 (en) Nickel positive electrode for alkaline storage batteries and method for producing the same
JPH09237630A (en) Active material and positive electrode for alkali storage battery
JP4454052B2 (en) Method for producing nickel electrode active material for alkaline storage battery, and method for producing nickel positive electrode
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP3505953B2 (en) Active material for nickel electrode and nickel positive electrode for alkaline storage battery using the same
JP2005050762A (en) Oxy-cobalt hydroxide, its manufacturing method, and alkaline storage battery using it
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
JP4374247B2 (en) Alkaline secondary electrochemical power generator with zinc positive electrode
JP3808193B2 (en) Nickel positive electrode for alkaline storage battery and manufacturing method thereof
JPH11213998A (en) Positive electrode active material for alkaline storage battery
CN1337750A (en) Method for preparing active material of positive electrode of alkali accumulator and nickle and electrode and alkali accumulator
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
US6608465B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
US6881519B2 (en) Ni/metal hydride secondary element
JPH09180717A (en) Nickel electrode for alkaline storage battery
JP3204275B2 (en) Nickel electrode for alkaline storage battery