JP4400113B2 - Nickel-hydrogen battery manufacturing method - Google Patents

Nickel-hydrogen battery manufacturing method Download PDF

Info

Publication number
JP4400113B2
JP4400113B2 JP2003190137A JP2003190137A JP4400113B2 JP 4400113 B2 JP4400113 B2 JP 4400113B2 JP 2003190137 A JP2003190137 A JP 2003190137A JP 2003190137 A JP2003190137 A JP 2003190137A JP 4400113 B2 JP4400113 B2 JP 4400113B2
Authority
JP
Japan
Prior art keywords
battery
nickel
positive electrode
discharge
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003190137A
Other languages
Japanese (ja)
Other versions
JP2005026061A (en
Inventor
洋平 服部
誠二 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003190137A priority Critical patent/JP4400113B2/en
Publication of JP2005026061A publication Critical patent/JP2005026061A/en
Application granted granted Critical
Publication of JP4400113B2 publication Critical patent/JP4400113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高出力で長寿命な動力用ニッケル−水素蓄電池の製造法に関するものである。
【0002】
【従来の技術】
近年、電動工具や電動二輪車、あるいはハイブリッド型電気自動車(HEV)や電力回生型エレベーター等の駆動用電源として、実用的な高エネルギー密度を有し、高出力、長寿命、かつ環境適合性、安全性等にも優れた特長を持つニッケル−水素蓄電池の需要が高まってきている。これらは水酸化ニッケルを主体として構成した正極板と、水素を可逆的に吸蔵・放出可能な合金を主体とした負極板と、親水化処理を施した非アミド系樹脂製セパレータを巻回、あるいは積層して電極群を作成した後、適切な電気導出部を溶接し、アルカリ電解液を注入・密閉して電池を作成している。
【0003】
動力用途向けに大電力放電を可能とするには、電池の電圧を高めに設定し、電池パックシステムの動作下限電圧に対して余裕をとることが重要である。
【0004】
また特にHEVや電力回生型エレベーターのように電池SOC(State of Charge:充電状態量)の中間領域においてのみ充放電が繰り返されるような使われ方では、電池を過充電領域まで充電し、電池パック内の容量均等化を施すような処置が期待できないため、自己放電特性のばらつきや劣化の進行が、システムにとって致命的となる。
【0005】
ニッケル−水素蓄電池は、充放電サイクルの繰り返し、及び高温域での使用に伴い、セパレータ中の電解液の枯渇進行と並行して、正極板からはコバルト元素の溶出が進行する。該極板の膨張進行に伴ってセパレータが圧縮され、電解液を保持する有効な空隙が減少してゆくと、電解液中に溶解していた該当元素が過飽和となり、本質的には疎水性であるセパレータの繊維上に析出して正・負極間で導電性の短絡経路を形成し、動力用電源として実用上十分な出力が取り出せなくなる前に、自己放電特性の劣化とみられるような微小な内部短絡により、実使用上の寿命となってしまう事が懸念された。
【0006】
この問題に対して、電池を組立てて封口し、少なくとも1回の充放電を行なった後に、該電池を充電状態で放置するという比較的煩雑ではない製造法によって、初期から低温下においても大電流放電を可能とし、また正極に添加されているコバルト、亜鉛等の元素が正極主活物質である水酸化ニッケルの結晶格子中で固溶体を形成するために、これら元素の溶解−析出反応が抑制され、微小な内部短絡状態である自己放電現象も抑制させる方法等が提案されている(例えば特許文献1参照)。
【0007】
しかしながら動力用の高出力型電池においては、大電力放電を可能とせしめるため、正・負極間の反応面積を多くとるよう、両者を隔絶するセパレータも薄く長くなる設計とする傾向にあり、また電池パックシステムから要求される自己放電、すなわち微小な内部短絡状態の許容水準も厳しく、また、より大電力での放電を可能とするため、高い電池電圧を実現する上でも、上述の手段では、ニッケル−水素蓄電池の初期化成条件としては、なお不十分であり、期待する効果を得るのは困難であった。
【0008】
【特許文献1】
特開平8−50919号公報(第1頁)
【0009】
【発明が解決しようとする課題】
本発明は、大電力での充放電を繰り返す用途に対して、実用上十分な水準の高率放電性能を確保し、また微小な内部短絡の発生が抑制されて充放電サイクル寿命の向上をも図ることができる動力用電源に好適なニッケル−水素蓄電池を提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明に係る密閉式ニッケル−水素蓄電池は、水酸化ニッケルを主体とした正極板と、水素吸蔵合金を主体とした負極板を、親水化処理が施されたポリオレフィン系セパレータを介して巻回、あるいは積層して構成され、適当な電気導出部を備え、アルカリ電解液が含浸された電極群を密閉封口した構成である。動力用電源として実用上十分な大電力での放電を可能とし、かつ長期間にわたり、微小な内部短絡発生の不具合を来さないためには、該電池を組立てた後、5サイクル以上、18サイクル以内の充放電を施した後、60℃以上、70℃以下の温度下で、電池の充電状態を30%以上、90%以下の状態にして放置するものである。
【0011】
さらに、該電池の正極板は、燒結式基板に活物質を含浸して作成されるものであって、該正極に添加されるコバルトの含有量は1cm2辺り、0.5〜4.5mgの範囲であることが好ましい。
【0012】
【発明の実施の形態】
ニッケル−水素蓄電池では、水酸化ニッケルを主体とする正極活物質には、低SOC領域においても導電性を保ち正極活物質の電極反応を円滑に行わせるための助剤として、少量のコバルトが添加されている。一方でアルカリ電解液中における正極電位は、このコバルト添加剤量により顕著に影響をうけ、電池電圧を左右する。特に所定の電力値で機器の駆動が設計されている動力用用途においては、電池電圧の低下は電流値の増大を招き、実使用上において取り出せる電力量が大きく目減りしてしまうため、適切な正極電位を発現するように保つ事は、極めて重要である。
【0013】
一方、高温状態や低いSOC状態に電池が晒され続けた場合、正極中のコバルト添加物の一部は電解液中へ溶出してしまう。また電池組立後の化成充放電の条件が適切でない場合には、この溶出が加速される傾向にある。充放電サイクルの進行に伴い徐々に膨潤してゆく極板の影響によってセパレータの圧潰が進行し、電極群中のセパレータに保持された電解液量が斬減してゆくが、この電解液量の減少に伴い、液中に飽和状態まで溶解しているコバルト等の元素が過飽和状態になり、本質的には疎水性であるセパレータの樹脂繊維上への析出が始まり、やがて正・負極間の内部短絡状態を引き起こす。
【0014】
本発明により製造されるニッケル−水素蓄電池においては、電池を組み立てて封口した後、5サイクル以上、18サイクル以内の充放電を施した後、60℃以上、70℃以下の温度下で、電池の充電状態を30%以上、90%以下の状態にして放置する。また巻回或いは積層して構成した電極群中の焼結式正極板の反応面積1cm2辺りのコバルト含有量は、0.5〜4.5mgの範囲の設定で構成される。
【0015】
初期の充放電サイクル数が少ない場合、電池内において十分な極板の化成が困難となり、正極に添加したコバルトと、主活物質である水酸化ニッケルとの固溶体形成が不十分なままであるため、後の充放電サイクルもしくは高温放置の際、電解液中へ溶出しやすくなり、微小な内部短絡の形成を促進してしまう恐れがあった。
【0016】
一方、充放電サイクル数が過大である場合には、コバルト添加物の正極主活物質への固溶が進行しすぎるため、化成終了後に正極中に含まれるコバルトの含有量が狙い値を上回るため、正極の平衡電位すなわち電池電圧の低下を来たし、大電力放電において十分な出力を発揮することが困難となる。
【0017】
更に電池の出荷初期段階から大電力放電を可能せしめるためには、ニッケル−水素蓄電池の、特に負極の電気化学的活性を高めるために高温に放置する処置が有効であるが、その際、電池の充電状態量が低い場合には正極のコバルト溶出を過大に進行させる恐れがあり、反対に満充電状態で高温に放置した場合は急激な自己放電を誘発して電池の温度上昇を招く恐れがあるため、高温放置時の電池SOC量は、少なくとも30%以上、90%以下に設定するのが望ましい。
【0018】
また高温放置時の温度は、60℃を下回る環境下では負極の活性化の進行が十分でなく、反対に70℃を超える高温下では水素吸蔵合金の平衡圧に近づくため、やはり急激な自己放電反応が起こることから好ましくない。
【0019】
本発明は、正極の処方に関しては、焼結式ニッケル基板をニッケル等の硝酸塩に含浸し、次いでアルカリ溶液に浸して活物質に転化せしめる極板製造方式において特に有用である。焼結式正極では、ペースト式正極のようにコバルトの添加量を任意に制御することが困難であるため、電池組立後の化成充放電と高温放置を適切に制御することで、微小な内部短絡形成の不具合を回避して長寿命な電池とすることができ、また正極電位が適切に設定され、大電力放電が可能となる電池を提供できることが判明した。また化成終了状態において正極中に含有されるコバルト量は、1cm2辺り0.5〜4.5mgの範囲にあることが、実使用上十分な大電力放電を行うのに好適である。
【0020】
本発明の実施例を以下に詳述する。
【0021】
以上のような効果を確認するために、標準容量6Ah前後の円筒形ニッケル−水素蓄電池を作成し、条件を変えて、寿命試験、保存試験を行った後の電池特性の評価を行った。
【0022】
(1)作製
先ず、ニッケルメッキを施したパンチング鉄製シートからなる芯材の両面に、ニッケル粉末ペーストを塗布したのち焼結して、平均厚みが0.42mmのニッケル焼結基板を得た。
【0023】
次いで前記焼結基板を、ニッケル、コバルト、イットリウム硝酸塩を任意の比率で混合して80℃に維持した溶液(pH1.5)に含浸し、続いて水酸化ナトリウムの溶液に含浸して水洗・乾燥する工程を複数回繰り返し、所定量の前記金属の混合水酸化物が焼結基板の細孔に充填された極板を得た。前記充填済み極板は、水酸化ナトリウム溶液中で活性化のための充放電を行い、水洗・乾燥した後、所定寸法に切断することによって焼結式ニッケル正極板が得られた。
【0024】
なお、後述する比較例では、含浸に用いた溶液のコバルト添加濃度を調整することにより、正極板単位面積辺りに含浸されるコバルト量を任意に調整した。
【0025】
負極板用のスラリーは、平均粒径が25μmに粉砕された水素吸蔵合金粉末(組成:MmNi3.55Co0.75Al0.3Mn0.4)を適量の水、増粘剤、結着剤とを混合することによって得られ、次いで負極板は、ニッケルメッキを施したパンチングメタルからなる芯材の両面に、任意量の前記スラリーを塗着し、乾燥・圧延の後に、所定寸法に切断することによって得られた。
【0026】
ニッケル−水素蓄電池は、上記のように作製された正極板、及び負極板を、目付重量66g/m2ポリエチレン/ポリプロピレン芯鞘構造の不織布に湿式のスルホン化親水処理を施したセパレータを介して渦巻状電極体を巻回形成し、前記渦巻状電極体の上下に集電部品を溶接接合した後、外装缶に収納し、KOH、NaOH、LiOHの三成分から成る電解液を注入して、封口板で封口することによって、任意の容量のDサイズ密閉式電池を作製した。
【0027】
上述のように作製されたニッケル−水素蓄電池は、以下に示すような条件で化成充放電を任意の回数行った後、任意の充電状態量、環境温度に24時間放置するエージング処理を行う活性化処理を施し、評価用電池とした。
【0028】
(活性化処理条件)
充電:0.5It×5時間(25℃環境)、休止:1時間
放電:0.5It、終止電圧(1.0V)、休止:1時間
電池性能評価としては、以下に示す条件にて、出力特性と自己放電特性を比較した。
【0029】
(出力特性)
SOC50%状態、25℃環境下、定電力放電にて10秒間で、終止電圧1Vまで放電可能な最大電力値を比較した。
【0030】
(自己放電特性)
SOC50%状態より、45℃環境下で、14日間放置した後の容量保持率を比較した。
(実験1)
正極板中のコバルト添加量を3mgに調整した極板より構成した電池を用いて、高温放置処理を施す前に充放電サイクル数の影響を評価した。この場合、高温放置環境温度は65℃、高温放置時のSOCは50%とした。
【0031】
図1に示すように、高温放置前の充放電サイクル数が5サイクル未満の場合、自己放電後の容量保持率が大きく低下した。該電池を分解したところ、セパレータには、正極から溶出したと考えられるコバルトに起因する析出物が多量に付着しており、微小な内部短絡を形成したために自己放電性能が大きく劣化したものと推察された。一方、高温放置前に充放電サイクルを18サイクルを超えて実施した場合、最大放電電力値が低下する傾向が認められた。各電池の内部抵抗には顕著な変化は見られなかったが、充放電サイクルを18サイクルを超えて施すにしたがい電池電圧の低下が進行しており、機器の下限電圧に至るまでに取り出せる電力値の低下を来たしたものと考えられる。
【0032】
高温放置前の充放電サイクル数が少ない場合には、正極に添加したコバルト元素が、正極主活物質である水酸化ニッケルと十分な固溶体を形成することができずに溶出が加速され微小な内部短絡を形成してしまうが、反対に初期の充放電サイクル数が過大である場合には、添加したコバルト量が極板中に多量に残留するため、電解液中における正極の平衡電位の低下を来たし、放電可能な電力値の低下を招くと考えられる。
【0033】
以上の結果、自己放電性能と放電性能を適切な状態に保つには、高温放置処理前の充放電サイクル数は、5サイクル以上18サイクル以下に設定することが望ましい事が分かる。
【0034】
(実験2)
正極添加コバルト量と高温放置温度は実験1と同条件とし、放置前の充放電サイクル数は10サイクルとし、高温放置時のSOCの影響を評価した。
【0035】
図2に示すように、高温放置前のSOC設定が30%に満たない場合、自己放電特性の劣化が認められた。この場合も電池を分解解析したところ、セパレータには正極由来と考えられるコバルトが多量に析出して微小な内部短絡状態を形成していた。またSOCが90%を超える場合には、高温放置の際、電池自身の発熱により放置環境温度を超える温度まで上昇する現象が見られた。
【0036】
以上の結果、高温放置時のSOCは、30%以上、90%以下の状態が適切であることが分かる。
【0037】
(実験3)
正極添加コバルト量と高温放置時のSOCは実験1と同一とし、放置前の充放電サイクル数は10サイクルとして、高温放置時の環境温度の影響を評価した。
【0038】
図3に示すように、高温放置温度が70℃を超えた領域では、自己放電特性の悪化が認められた。これは適切と考えられるSOC、充放電サイクルが施された状態であっても、環境温度が高すぎる場合には、正極添加されたバルト元素の溶出を完全に要請する事は難しいことを示唆している。また放置環境温度が60℃に満たない場合は、最大放電電力値が低下している。これは、負極を構成する水素吸蔵合金の電気化学的な活性化が十分に進行していないため、放電特性が十分な水準まで確保できていない状態であることを示している。
【0039】
以上の結果、電池の活性化を確保しつつ自己放電特性の悪化を来たさないためには、高温放置温度は、60℃から70℃の間に制御するのが好適であることが分かる。
【0040】
(実験4)
最後に、高温放置時のSOCと温度は実験1と同条件とし、放置前の充放電サイクル数は10サイクルとして、焼結式の正極に含浸添加するコバルトの、極板単位面積辺りの含有量の影響を評価した。
【0041】
図4に示されるとおり、正極中に添加したコバルトの含有率が、0.5mgを下回る場合には若干の放電特性の低下が認められる。また4.5mgを越える場合には、自己放電特性、出力特性ともに低下が見られた。これは、正極中のコバルト含有量が過少である場合には円滑な充放電反応を維持することが困難であるために放電特性が低下し、一方、含有量が過大である場合には、活性化条件が適切であってもコバルトの電解液への溶出が多くなってしまうために自己放電特性の悪化を来たし、また正極の平衡電位も低下させてしまうために出力特性の低下も引き起こしてしまうと考えられる。
【0042】
以上の結果を考慮して、正極に添加させるコバルトの含有率は、単位面積辺り0.5から4.5mgの範囲に制御することが望ましいことが分かる。
【0043】
【発明の効果】
以上、述べたように、本発明による製造法に従って製造されたニッケル−水素蓄電池では、大電力での充放電を繰り返す動力用電源等の用途に対して、実用上十分な大電力放電を可能としつつ、自己放電特性に見られるような微小な内部短絡の発生が抑制されて、長期にわたる信頼性を有するニッケル−水素蓄電池を提供することができる。
【図面の簡単な説明】
【図1】高温放置前充放電サイクル数と、自己放電特性、出力特性との関係をあらわす図
【図2】高温放置時のSOCと、自己放電特性との関係あらわす図
【図3】高温放置温度と、自己放電特性、出力特性との関係をあらわす図
【図4】正極中のコバルト含有率と、自己放電特性、出力特性との関係をあらわす図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a nickel-hydrogen battery for power use having a high output and a long life.
[0002]
[Prior art]
In recent years, it has practical high energy density, high output, long life, environmental compatibility and safety as a power source for driving electric tools, electric motorcycles, hybrid electric vehicles (HEV), electric power regenerative elevators, etc. There is an increasing demand for nickel-hydrogen storage batteries having excellent characteristics. These are wound with a positive electrode plate mainly composed of nickel hydroxide, a negative electrode plate mainly composed of an alloy capable of reversibly absorbing and desorbing hydrogen, and a non-amide resin separator subjected to a hydrophilic treatment, or After creating an electrode group by stacking, an appropriate electrical lead-out part is welded, and an alkaline electrolyte is injected and sealed to create a battery.
[0003]
In order to enable high power discharge for power applications, it is important to set the battery voltage higher and to have a margin for the lower limit voltage of the battery pack system.
[0004]
In particular, when the battery is charged / discharged only in the middle region of the battery SOC (State of Charge), such as HEV or electric power regenerative elevator, the battery is charged to the overcharge region and the battery pack is charged. Since it is not possible to expect a measure to equalize the internal capacity, the variation in self-discharge characteristics and the progress of deterioration become fatal to the system.
[0005]
In the nickel-hydrogen storage battery, elution of cobalt element proceeds from the positive electrode plate in parallel with the progress of depletion of the electrolyte in the separator with repeated charge / discharge cycles and use in a high temperature range. When the separator is compressed as the electrode plate expands and the effective voids holding the electrolyte solution decrease, the corresponding element dissolved in the electrolyte solution becomes supersaturated, which is essentially hydrophobic. A small internal area that appears to be a deterioration of self-discharge characteristics before forming a conductive short circuit path between the positive and negative electrodes on a separator fiber and failing to obtain a practically sufficient output as a power source for power. There was a concern that a short circuit could lead to a practical life.
[0006]
To solve this problem, the battery is assembled and sealed, and after charging and discharging at least once, the battery is left in a charged state. Since discharge is possible and elements such as cobalt and zinc added to the positive electrode form a solid solution in the crystal lattice of nickel hydroxide, which is the main active material of the positive electrode, the dissolution-precipitation reaction of these elements is suppressed. For example, a method for suppressing a self-discharge phenomenon that is a minute internal short-circuit state has been proposed (see, for example, Patent Document 1).
[0007]
However, high power batteries for power use tend to be designed to make the separator separating the two thin and long so that the reaction area between the positive and negative electrodes can be increased in order to enable high power discharge. In order to achieve a high battery voltage in order to achieve a high battery voltage, the self-discharge required from the pack system, that is, the allowable level of a minute internal short-circuit state is strict and discharge with higher power is possible. -It was still inadequate as the initialization conditions of a hydrogen storage battery, and it was difficult to obtain the expected effect.
[0008]
[Patent Document 1]
JP-A-8-50919 (first page)
[0009]
[Problems to be solved by the invention]
The present invention ensures high-rate discharge performance at a practically sufficient level for applications that repeatedly charge and discharge at high power, and also improves the charge / discharge cycle life by suppressing the occurrence of minute internal short circuits. An object of the present invention is to provide a nickel-hydrogen storage battery suitable for a power source that can be realized.
[0010]
[Means for Solving the Problems]
The sealed nickel-hydrogen storage battery according to the present invention comprises a positive electrode plate mainly composed of nickel hydroxide and a negative electrode plate mainly composed of a hydrogen storage alloy, wound through a polyolefin-based separator subjected to a hydrophilic treatment, Or it is the structure which laminated | stacked, was equipped with the appropriate electrical derivation | leading-out part, and sealed and sealed the electrode group impregnated with alkaline electrolyte. In order to enable discharge with a sufficiently large power as a power source for motive power and to prevent the occurrence of a minute internal short circuit over a long period of time, 5 cycles or more and 18 cycles after assembling the battery The battery is left in a state of 30% or more and 90% or less at a temperature of 60 ° C. or higher and 70 ° C. or lower .
[0011]
Furthermore, the positive electrode plate of the battery is prepared by impregnating a sintered substrate with an active material, and the content of cobalt added to the positive electrode is about 1 to 2 cm, 0.5 to 4.5 mg. A range is preferable.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In a nickel-hydrogen storage battery, a small amount of cobalt is added to the positive electrode active material mainly composed of nickel hydroxide as an auxiliary agent for maintaining the conductivity even in the low SOC region and facilitating the electrode reaction of the positive electrode active material. Has been. On the other hand, the positive electrode potential in the alkaline electrolyte is significantly affected by the amount of the cobalt additive and affects the battery voltage. Especially in power applications where the drive of equipment is designed with a predetermined power value, a decrease in battery voltage will lead to an increase in current value, and the amount of power that can be extracted in actual use will be greatly reduced. It is extremely important to keep the potential developed.
[0013]
On the other hand, when the battery is continuously exposed to a high temperature state or a low SOC state, a part of the cobalt additive in the positive electrode is eluted into the electrolytic solution. Moreover, when the conditions of chemical charging / discharging after battery assembly are not appropriate, this elution tends to be accelerated. Due to the influence of the electrode plate that gradually swells as the charge / discharge cycle progresses, the crushing of the separator proceeds, and the amount of electrolyte retained in the separator in the electrode group is reduced. Along with the decrease, elements such as cobalt dissolved to saturation in the liquid become supersaturated, starting to deposit on the resin fiber of the separator that is essentially hydrophobic, and eventually the inside between the positive and negative electrodes Causes a short circuit condition.
[0014]
In the nickel-hydrogen storage battery manufactured according to the present invention, after assembling and sealing the battery, charging and discharging within 5 cycles or more and 18 cycles or less, and then at a temperature of 60 ° C. or more and 70 ° C. or less, The state of charge is 30% or more and 90% or less. Moreover, the cobalt content per reaction area of 1 cm 2 of the sintered positive electrode plate in the electrode group constituted by winding or stacking is configured in a range of 0.5 to 4.5 mg.
[0015]
When the number of initial charge / discharge cycles is small, it is difficult to form a sufficient electrode plate in the battery, and solid solution formation between cobalt added to the positive electrode and nickel hydroxide as the main active material remains insufficient. In the subsequent charge / discharge cycle or when left at high temperature, elution into the electrolytic solution tends to occur, which may promote the formation of a minute internal short circuit.
[0016]
On the other hand, when the number of charge / discharge cycles is excessive, since the solid solution of the cobalt additive in the positive electrode main active material proceeds excessively, the content of cobalt contained in the positive electrode after the end of conversion exceeds the target value. As a result, the equilibrium potential of the positive electrode, that is, the battery voltage is lowered, and it is difficult to exert a sufficient output in the large power discharge.
[0017]
Furthermore, in order to enable high power discharge from the initial stage of battery shipment, it is effective to treat the nickel-hydrogen storage battery at a high temperature in order to increase the electrochemical activity of the negative electrode. If the amount of state of charge is low, the cobalt elution of the positive electrode may be excessively advanced. Conversely, if it is left at a high temperature in a fully charged state, it may induce a rapid self-discharge and increase the temperature of the battery. Therefore, it is desirable to set the battery SOC amount when left at high temperature to at least 30% and 90% or less.
[0018]
Also, when the temperature at high temperature is less than 60 ° C., the activation of the negative electrode is not sufficiently advanced, and on the contrary, the temperature close to 70 ° C. approaches the equilibrium pressure of the hydrogen storage alloy. It is not preferable because the reaction occurs.
[0019]
The present invention is particularly useful for a positive electrode formulation in an electrode plate manufacturing system in which a sintered nickel substrate is impregnated with a nitrate such as nickel and then immersed in an alkaline solution to be converted into an active material. Sintered positive electrodes are difficult to arbitrarily control the amount of cobalt added, as with paste-type positive electrodes. It has been found that it is possible to provide a battery having a long life by avoiding formation defects, and capable of providing a high-power discharge by appropriately setting the positive electrode potential. In addition, the amount of cobalt contained in the positive electrode in the chemical conversion completed state is in the range of 0.5 to 4.5 mg per 1 cm 2 , which is suitable for performing high power discharge sufficient for practical use.
[0020]
Examples of the present invention are described in detail below.
[0021]
In order to confirm the above effects, a cylindrical nickel-hydrogen storage battery having a standard capacity of about 6 Ah was prepared, and the battery characteristics were evaluated after performing a life test and a storage test under different conditions.
[0022]
(1) Production First, a nickel powder paste was applied to both surfaces of a core material made of a punched iron sheet plated with nickel, followed by sintering to obtain a nickel sintered substrate having an average thickness of 0.42 mm.
[0023]
Next, the sintered substrate is impregnated with a solution (pH 1.5) in which nickel, cobalt, and yttrium nitrate are mixed at an arbitrary ratio and maintained at 80 ° C., and then impregnated with a solution of sodium hydroxide, washed with water and dried. The electrode plate in which a predetermined amount of the mixed hydroxide of the metal was filled in the pores of the sintered substrate was obtained by repeating the above step. The filled electrode plate was charged and discharged for activation in a sodium hydroxide solution, washed with water and dried, and then cut to a predetermined size to obtain a sintered nickel positive electrode plate.
[0024]
In the comparative example described later, the amount of cobalt impregnated per unit area of the positive electrode plate was arbitrarily adjusted by adjusting the cobalt addition concentration of the solution used for impregnation.
[0025]
The slurry for the negative electrode plate is obtained by mixing hydrogen storage alloy powder (composition: MmNi 3.55 Co 0.75 Al 0.3 Mn 0.4 ) pulverized to an average particle size of 25 μm with appropriate amounts of water, a thickener, and a binder. Then, the negative electrode plate was obtained by applying an arbitrary amount of the slurry to both surfaces of a core material made of nickel-plated punching metal, and cutting it to a predetermined size after drying and rolling.
[0026]
The nickel-hydrogen storage battery is obtained by swirling the positive electrode plate and the negative electrode plate manufactured as described above through a separator obtained by subjecting a nonwoven fabric having a weight per unit area of 66 g / m 2 polyethylene / polypropylene core sheath to a wet sulfonated hydrophilic treatment. A cylindrical electrode body is formed, and current collecting parts are welded and joined to the upper and lower sides of the spiral electrode body, then housed in an outer can, and injected with an electrolyte comprising three components of KOH, NaOH, and LiOH, and sealed Sealing with a plate produced a D-size sealed battery having an arbitrary capacity.
[0027]
The nickel-hydrogen storage battery manufactured as described above is activated by performing aging treatment that is allowed to stand for 24 hours at an arbitrary charge state amount and environmental temperature after performing chemical conversion charge / discharge under the following conditions. The battery was subjected to treatment to be an evaluation battery.
[0028]
(Activation processing conditions)
Charging: 0.5 It × 5 hours (25 ° C. environment), pause: 1 hour Discharge: 0.5 It, final voltage (1.0 V), pause: 1 hour Battery performance evaluation is performed under the conditions shown below. The characteristics and self-discharge characteristics were compared.
[0029]
(Output characteristics)
The maximum power values that can be discharged to a final voltage of 1 V in 10 seconds of constant power discharge in an SOC 50% state at 25 ° C. were compared.
[0030]
(Self-discharge characteristics)
From the SOC 50% state, the capacity retention after being left for 14 days in a 45 ° C. environment was compared .
(Experiment 1)
Using a battery composed of an electrode plate in which the amount of cobalt added in the positive electrode plate was adjusted to 3 mg , the influence of the number of charge / discharge cycles was evaluated before the high temperature standing treatment was performed. In this case, the high temperature storage environment temperature was 65 ° C., and the SOC during high temperature storage was 50%.
[0031]
As shown in FIG. 1, when the number of charge / discharge cycles before standing at high temperature was less than 5 cycles, the capacity retention after self-discharge was greatly reduced. When the battery was disassembled, the separator was found to have a large amount of deposits attributed to cobalt that was thought to have eluted from the positive electrode, and the self-discharge performance was greatly deteriorated due to the formation of minute internal short circuits. It was done. On the other hand, when the charge / discharge cycle was carried out for more than 18 cycles before being left at high temperature, the maximum discharge power value tended to decrease. Although no significant change was observed in the internal resistance of each battery, the battery voltage decreased as the charging / discharging cycle exceeded 18 cycles, and the power value that could be extracted before reaching the lower limit voltage of the device. It is thought that the decline was caused.
[0032]
If the number of charge / discharge cycles before standing at high temperature is small, the cobalt element added to the positive electrode cannot form a sufficient solid solution with nickel hydroxide, which is the main active material of the positive electrode, and elution is accelerated and a minute internal On the contrary, if the initial number of charge / discharge cycles is excessive, the amount of added cobalt remains in the electrode plate, so that the equilibrium potential of the positive electrode in the electrolyte decreases. It is thought that the power value that can be discharged is lowered.
[0033]
From the above results, it can be seen that, in order to keep the self-discharge performance and the discharge performance in an appropriate state, it is desirable to set the number of charge / discharge cycles before the high temperature standing treatment to 5 cycles or more and 18 cycles or less.
[0034]
(Experiment 2)
The amount of cobalt added to the positive electrode and the high temperature standing temperature were the same as those in Experiment 1, the number of charge / discharge cycles before standing was 10 cycles, and the influence of SOC during high temperature standing was evaluated.
[0035]
As shown in FIG. 2, when the SOC setting before standing at high temperature is less than 30%, deterioration of the self-discharge characteristics was recognized. In this case as well, when the battery was disassembled and analyzed, a large amount of cobalt, which was thought to be derived from the positive electrode, was deposited on the separator to form a minute internal short circuit state. When the SOC exceeded 90%, a phenomenon was observed in which the temperature of the battery itself rose to a temperature exceeding the ambient environment temperature due to heat generation during the high temperature storage.
[0036]
As a result of the above, it is understood that the SOC when left at a high temperature is suitably 30% or more and 90% or less.
[0037]
(Experiment 3)
The amount of cobalt added to the positive electrode and the SOC when left at high temperature were the same as those in Experiment 1, and the number of charge / discharge cycles before being left as 10 was evaluated.
[0038]
As shown in FIG. 3, in a region where high temperature exposure temperature exceeds 70 ° C., deterioration of the self-discharge characteristic was observed. This is considered appropriate SOC, even if the charge and discharge cycle is performed, when the ambient temperature is too high, suggesting that it is difficult to completely requesting the elution of the positive electrode the added cobalt element is doing. Further, when the standing environment temperature is less than 60 ° C., the maximum discharge power value is lowered. This indicates that since the electrochemical activation of the hydrogen storage alloy constituting the negative electrode is not sufficiently advanced, the discharge characteristics cannot be secured to a sufficient level.
[0039]
From the above results, it can be seen that the high temperature standing temperature is preferably controlled between 60 ° C. and 70 ° C. in order to prevent the deterioration of the self-discharge characteristics while ensuring the activation of the battery.
[0040]
(Experiment 4)
Finally, the SOC and temperature at the time of standing at high temperature are the same conditions as in Experiment 1, the number of charge / discharge cycles before standing is 10 cycles, and the content of cobalt impregnated and added to the sintered positive electrode per unit area of the electrode plate The impact of.
[0041]
As shown in FIG. 4, when the content of cobalt added in the positive electrode is less than 0.5 mg , a slight decrease in discharge characteristics is observed. On the other hand, when it exceeded 4.5 mg , both self-discharge characteristics and output characteristics decreased. This is because, when the cobalt content in the positive electrode is too low, it is difficult to maintain a smooth charge / discharge reaction, so that the discharge characteristics are deteriorated. On the other hand, when the content is too high, Even if the crystallization conditions are appropriate, the dissolution of cobalt into the electrolyte increases, resulting in a deterioration in self-discharge characteristics, and the equilibrium potential of the positive electrode is also reduced, resulting in a decrease in output characteristics. it is conceivable that.
[0042]
Considering the above results, it can be seen that the content of cobalt added to the positive electrode is desirably controlled in the range of 0.5 to 4.5 mg per unit area.
[0043]
【The invention's effect】
As described above, the nickel-hydrogen storage battery manufactured according to the manufacturing method according to the present invention enables practically sufficient high power discharge for applications such as a power source that repeatedly charges and discharges with high power. On the other hand, it is possible to provide a nickel-hydrogen storage battery having long-term reliability by suppressing the occurrence of a minute internal short circuit as seen in the self-discharge characteristics.
[Brief description of the drawings]
[Fig. 1] A graph showing the relationship between the number of charge / discharge cycles before standing at high temperature, self-discharge characteristics, and output characteristics [Fig. 2] A diagram showing the relationship between SOC during high-temperature standing and self-discharging characteristics [Fig. 3] Fig. 4 shows the relationship between temperature, self-discharge characteristics and output characteristics. Fig. 4 shows the relationship between cobalt content in the positive electrode and self-discharge characteristics and output characteristics.

Claims (1)

水酸化ニッケルを主体とした正極板と、水素吸蔵合金を主体とした負極板を、親水化処理が施されたポリオレフィン系セパレータを介して巻回、あるいは積層して構成され、アルカリ電解液が含浸された電極群を具備した密閉式ニッケル−水素蓄電池であって、電池を組み立てて封口した後、5サイクル以上、18サイクル以内の充放電を施した後、60℃以上、70℃以下の温度下で、電池の充電状態を30%以上、90%以下の状態にして放置するニッケル−水素蓄電池の製造法であって、
前記電池の正極板は、燒結式基板に活物質を含浸して作成されるものであって、該正極に添加されるコバルトの含有量は、1cm 2 辺り0.5〜4.5mgの範囲であることを特徴とするニッケル−水素蓄電池の製造法。
Constructed by winding or laminating a positive electrode plate mainly composed of nickel hydroxide and a negative electrode plate mainly composed of a hydrogen storage alloy via a polyolefin-based separator that has been subjected to a hydrophilic treatment, and impregnated with an alkaline electrolyte. A sealed nickel-hydrogen storage battery equipped with an electrode group, which is assembled and sealed, charged and discharged within 5 cycles and within 18 cycles, and then at a temperature of 60 ° C. or higher and 70 ° C. or lower. A method for producing a nickel-hydrogen storage battery in which the state of charge of the battery is left in a state of 30% or more and 90% or less ,
The positive electrode plate of the battery is prepared by impregnating a sintered substrate with an active material, and the content of cobalt added to the positive electrode is in the range of 0.5 to 4.5 mg per 1 cm 2. A method for producing a nickel-hydrogen storage battery, comprising:
JP2003190137A 2003-07-02 2003-07-02 Nickel-hydrogen battery manufacturing method Expired - Fee Related JP4400113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190137A JP4400113B2 (en) 2003-07-02 2003-07-02 Nickel-hydrogen battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190137A JP4400113B2 (en) 2003-07-02 2003-07-02 Nickel-hydrogen battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2005026061A JP2005026061A (en) 2005-01-27
JP4400113B2 true JP4400113B2 (en) 2010-01-20

Family

ID=34188114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190137A Expired - Fee Related JP4400113B2 (en) 2003-07-02 2003-07-02 Nickel-hydrogen battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4400113B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140054B2 (en) * 2019-05-31 2022-09-21 株式会社豊田自動織機 nickel metal hydride battery

Also Published As

Publication number Publication date
JP2005026061A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US5863676A (en) Calcium-zincate electrode for alkaline batteries and method for making same
US8043748B2 (en) Pasted nickel hydroxide electrode for rechargeable nickel-zinc batteries
KR101550326B1 (en) Positive electrode for alkaline storage battery, production method for same, and alkaline storage battery
JP4307020B2 (en) Alkaline storage battery
Renuka et al. Improved cycle life performance of Zn/NiOOH cells using a stabilized zinc electrode
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JP7128482B2 (en) lead acid battery
JPH0787102B2 (en) Sealed nickel-zinc battery
JP4626130B2 (en) Nickel-hydrogen storage battery
JP2001522132A (en) Metal hydride batteries for high speed / low temperature characteristics
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2926732B2 (en) Alkaline secondary battery
JP2884570B2 (en) Sealed alkaline secondary battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
US20130122352A1 (en) Sintered nickel positive electrode, method for manufacturing the same, and alkaline storage battery including the sintered nickel positive electrode
JP3456217B2 (en) Nickel-based secondary battery
JPH09199119A (en) Alkaline storage battery
JPH11191410A (en) Sealed alkaline storage battery
JP4441191B2 (en) Alkaline storage battery and method for manufacturing the same
JP4567990B2 (en) Secondary battery
JP4999309B2 (en) Alkaline storage battery
Coates et al. Development of a long cycle life sealed nickel-zinc battery for high energy-density applications
JP3070081B2 (en) Sealed alkaline storage battery
JPH09219214A (en) Alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees