JPH1072752A - Nonwoven fabric base material for printed circuit board and prepreg using the same - Google Patents

Nonwoven fabric base material for printed circuit board and prepreg using the same

Info

Publication number
JPH1072752A
JPH1072752A JP9123654A JP12365497A JPH1072752A JP H1072752 A JPH1072752 A JP H1072752A JP 9123654 A JP9123654 A JP 9123654A JP 12365497 A JP12365497 A JP 12365497A JP H1072752 A JPH1072752 A JP H1072752A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
prepreg
treatment
fabric substrate
aromatic polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9123654A
Other languages
Japanese (ja)
Inventor
Masayuki Sakai
政行 界
Hideo Hatanaka
秀夫 畠中
Katsuhide Tsukamoto
勝秀 塚本
Seiichi Nakatani
誠一 中谷
Yuko Okano
祐幸 岡野
Tamao Kojima
環生 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9123654A priority Critical patent/JPH1072752A/en
Publication of JPH1072752A publication Critical patent/JPH1072752A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a nonwoven fabric base material for printed circuit boards capable of reducing mechanical deformation, enhancing insulation reliance and useful for electronic devices, etc., by forming the base material from aromatic polyamide fibers and making a ratio of storage elastic modulus and a peak value of loss tangent predetermined values respectively. SOLUTION: This nonwoven fabric base material for printed circuit boards consists of aromatic polyamide fibers such as para and meta-based aramid fibers having 0.5-6.0 denier and 2-15mm fiber length, has 0.7-1.0 ratio of storage elastic modulus [E'(250 deg.C)/E'(30 deg.C)], <=0.05 peak value of loss tangent (Tanδ) in that temperature range, 30-120g/m<2> METSUKE (weight) and 50-300μm thickness. This nonwoven fabric base material for printed circuit boards is preferably heat treated at 250-400 deg.C and immersed to be treated in an alcohol based solvent in a state of the nonwoven fabric. A prepreg 4 is obtained by impregnating a resin varnish such as an epoxy resin into the nonwoven fabric base material and drying the base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種電子機器に用
いられるプリント配線板に関するものであり、絶縁信頼
性に優れた芳香族ポリアミド不織布基材を用いたプリン
ト配線板用不織布基材とその製造方法及びプリプレグと
その製造方法並びにプリント配線基板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed wiring board used for various electronic devices, and a nonwoven fabric substrate for a printed wiring board using an aromatic polyamide nonwoven base material having excellent insulation reliability and its production. The present invention relates to a method, a prepreg, a method for manufacturing the same, and a printed wiring board.

【0002】[0002]

【従来の技術】近年、電子機器の高性能化が急速に進む
につれ、プリント配線板は益々高度な特性、機能及び経
済性が要求されている。基板材料としてはこれまで、電
気絶縁性、強度、コスト等に優れたガラス繊維とエポキ
シ樹脂の組合せがほとんどを占めてきていたが、最近の
配線の高密度化やチップ実装の進展にともない、ガラス
繊維基材では対応できない局面が顕在化し、芳香族ポリ
アミド繊維不織布を基材とする銅張積層基板(以下アラ
ミド基板と呼ぶ)を作る試みが提案されている(例えば
特開昭60−52937号公報、特開昭61−1605
00号公報、特開昭62−261190号公報、特開昭
62−273792号公報、特開昭62−274688
号公報、特開昭62−274689号公報等、米国特許
第4,729,921号明細書)。
2. Description of the Related Art In recent years, as electronic devices have been rapidly improved in performance, printed wiring boards have been required to have increasingly higher characteristics, functions, and economy. Until now, the combination of glass fiber and epoxy resin, which are excellent in electrical insulation, strength, cost, etc., has occupied most of the substrate material, but with the recent increase in wiring density and chip mounting, glass An aspect which cannot be dealt with by a fiber base material has become apparent, and an attempt to produce a copper-clad laminate substrate (hereinafter referred to as an aramid substrate) using an aromatic polyamide fiber nonwoven fabric as a base material has been proposed (for example, Japanese Patent Application Laid-Open No. 60-52937). JP-A-61-1605
No. 00, JP-A-62-261190, JP-A-62-273792, JP-A-62-274688
And U.S. Pat. No. 4,729,921).

【0003】これらの基板は、低膨張、低誘電率、軽量
であるといった特徴を生かして、民生用電子機器をはじ
め産業用や軍需用などの用途に検討されている。
[0003] These substrates are being studied for applications such as consumer electronic equipment, industrial use, and military use, taking advantage of their features such as low expansion, low dielectric constant, and light weight.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
アラミド基板は、不純物イオンや吸水率が大きいこと、
さらには不織布基材と含浸樹脂との接着性が小さいこと
等に起因する絶縁信頼性等の問題を抱えている。また、
前記のアラミド基板はソリ、ネジレ等の機械的変形が大
きいという問題もある。これらの改善については、芳香
族ポリアミド繊維不織布基材を構成する芳香族ポリアミ
ド繊維や、前記芳香族ポリアミド繊維の結合剤として使
用されるバインダー等の改良および不織布基材の表面改
質、さらには地合の改善(抄紙時の分散剤)あるいは含
浸樹脂の開発が検討されているが、充分な結果が得られ
ていないのが実状である。
However, the above-mentioned aramid substrate has a large impurity ion and a high water absorption,
Furthermore, there is a problem of insulation reliability and the like due to the small adhesiveness between the nonwoven fabric substrate and the impregnated resin. Also,
The aramid substrate also has a problem in that the mechanical deformation such as warping and twisting is large. Regarding these improvements, improvement of the aromatic polyamide fiber constituting the aromatic polyamide fiber nonwoven fabric base material, improvement of the binder used as a binder for the aromatic polyamide fiber, and surface modification of the nonwoven fabric base material, and The improvement of the composition (dispersing agent during papermaking) or the development of an impregnated resin has been studied, but in reality, sufficient results have not been obtained.

【0005】本発明は、前記従来の問題を解決するた
め、機械的変形を低下させた芳香族ポリアミド繊維不織
布基材と、樹脂界面の接合強度を向上させる効果的な表
面処理方法を提供し、絶縁信頼性を向上できるプリント
配線板用不織布基材とその製造方法及びプリプレグとそ
の製造方法並びにプリント配線板を提供することを目的
とする。
The present invention provides an effective surface treatment method for improving the bonding strength at the interface between an aromatic polyamide fiber nonwoven fabric substrate having reduced mechanical deformation and a resin interface in order to solve the above-mentioned conventional problems. It is an object of the present invention to provide a nonwoven fabric substrate for a printed wiring board, a method for manufacturing the same, a prepreg, a method for manufacturing the same, and a printed wiring board which can improve insulation reliability.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明のプリント配線板用不織布基材は、芳香族ポ
リアミド繊維から構成され、250℃と30℃の貯蔵弾
性率比(E´(250℃)/E´(30℃))が0.7〜
1.0で、かつその温度範囲の損失正接(Tanδ)ピ
ーク値が0.05以下であるという構成を備えたもので
ある。この構成により、不織布基材の機械的変形を低下
させることができ、プリント配線板の製造および信頼性
試験温度範囲において、熱プレス時の基材自身の変形あ
るいは樹脂の流れ性の不均一が抑制され、ソリ、ネジレ
が抑制される。
In order to achieve the above object, a nonwoven fabric substrate for a printed wiring board according to the present invention is composed of aromatic polyamide fibers and has a storage modulus ratio (E '( 250 ° C.) / E ′ (30 ° C.)) 0.7 to
1.0 and the peak value of the loss tangent (Tan δ) in the temperature range is 0.05 or less. With this configuration, it is possible to reduce the mechanical deformation of the non-woven fabric base material, and to suppress the deformation of the base material itself or the unevenness of resin flow during hot pressing in the temperature range of printed wiring board manufacturing and reliability testing. Thus, warpage and twisting are suppressed.

【0007】前記した本発明のプリント配線板用不織布
基材においては、前記不織布基材が、不織布の状態で2
50℃〜400℃で熱処理、及びアルコール系溶剤中へ
の浸漬処理から選ばれる少なくとも一つの処理がなされ
ていることが好ましい。この処理により、不織布基材の
機械的変形をさらに低下させることができ、プリント配
線板の製造および信頼性試験温度範囲において、熱プレ
ス時の基材自身の変形あるいは樹脂の流れ性の不均一が
抑制され、ソリ、ネジレがさらに抑制される。また、こ
の処理により、最終製品のプリント配線板において樹脂
とアラミド繊維との接着力を向上させることができる。
また、絶縁信頼性を向上させることができる。
In the above-mentioned nonwoven fabric substrate for a printed wiring board according to the present invention, the nonwoven fabric substrate may be a non-woven fabric in a non-woven state.
It is preferable that at least one treatment selected from a heat treatment at 50 ° C. to 400 ° C. and a dipping treatment in an alcohol solvent is performed. By this treatment, the mechanical deformation of the nonwoven fabric substrate can be further reduced, and the deformation of the substrate itself or the non-uniformity of the resin flow at the time of hot pressing can be reduced in the production and reliability test temperature range of the printed wiring board. It is suppressed, and warpage and twisting are further suppressed. Further, by this treatment, the adhesive strength between the resin and the aramid fiber in the printed wiring board of the final product can be improved.
Also, insulation reliability can be improved.

【0008】前記の処理を行った後、さらにシランカッ
プリング剤処理、コロナ処理及びオゾン処理から選ばれ
る少なくとも一つの処理がなされていることが好まし
い。また、前記芳香族ポリアミド繊維が、ポリ(パラ−
フェニレン テレフタルアミド)(poly(p-phenylene te
rephthalamide))のようなパラ系アラミド繊維、例え
ば”ケブラー(KEVLAR)”(登録商標、米国デュポン社
製)及び/またはポリ(メタ−フェニレン イソフタル
アミド)(poly(m-phenylene isophthalamide))のような
メタ系アラミド繊維、例えば”ノメックス(NOMEX)”
(登録商標、米国デュポン社製)から選ばれる少なくと
も一つの繊維であることが好ましい。
After the above treatment, it is preferable that at least one treatment selected from a silane coupling agent treatment, a corona treatment, and an ozone treatment is further performed. Further, the aromatic polyamide fiber is a poly (para-
Phenylene terephthalamide) (poly (p-phenylene te
para-aramid fibers, such as, for example, "KEVLAR" (registered trademark, manufactured by DuPont, USA) and / or poly (meta-phenylene isophthalamide) (poly (m-phenylene isophthalamide)). Meta-based aramid fiber, eg "NOMEX"
(Registered trademark, manufactured by DuPont, USA) is preferably at least one fiber.

【0009】また、芳香族ポリアミド繊維の繊度が0.
5〜6.0デニール、繊維長が2〜15mmの範囲であ
ることが好ましい。また、不織布基材が、湿式抄紙法に
よって作成されていることが好ましい。ここで「湿式抄
紙法」とは、当業界で良く知られているように、例えば
水中に短繊維を結合材成分(例えばアラミド・フィブリ
ル、アラミド・パルプ、エポキシ樹脂等)とともに分散
し、ネットですくって一定の厚さのシートとし、カレン
ダーロールで圧縮して製造する(米国特許第4,72
9,921号明細書5欄26〜60行)。
Further, the fineness of the aromatic polyamide fiber is 0.3.
It is preferable that the denier is 5 to 6.0 denier and the fiber length is 2 to 15 mm. Further, it is preferable that the nonwoven fabric substrate is prepared by a wet papermaking method. As used herein, the term "wet papermaking" refers to, for example, a net in which short fibers are dispersed in water together with a binder component (eg, aramid fibril, aramid pulp, epoxy resin, etc.). The sheet is made into a sheet having a constant thickness, and is manufactured by compressing with a calender roll (US Pat. No. 4,72
9,921, column 5, lines 26-60).

【0010】また、不織布基材の目付が、乾燥時で30
〜120g/m2 の範囲であることが好ましい。また、
不織布基材の厚さが50〜300μmの範囲であること
が好ましい。
Further, the basis weight of the nonwoven fabric substrate is 30 when dried.
It is preferably in the range of 120 to 120 g / m 2 . Also,
It is preferable that the thickness of the nonwoven fabric substrate is in the range of 50 to 300 μm.

【0011】また、本発明のプリプレグは、請求項1の
不織布基材に、樹脂ワニスを含浸し、乾燥したものであ
る。前記プリプレグにおいては、樹脂ワニスがエポキシ
樹脂を含むことが好ましい。エポキシ樹脂としては、例
えば油化シェルエポキシ社製”YL−6090”(商品
名)等がある。
[0011] The prepreg of the present invention is obtained by impregnating the nonwoven fabric substrate of claim 1 with a resin varnish and drying it. In the prepreg, the resin varnish preferably contains an epoxy resin. Examples of the epoxy resin include "YL-6090" (trade name) manufactured by Yuka Shell Epoxy.

【0012】また前記プリプレグにおいては、樹脂ワニ
スがフェノール樹脂を含むことが好ましい。フェノール
樹脂としては、例えば油化シェルエポキシ社製”YHL
−129”(商品名、ノボラック型フェノール樹脂)等
がある。
In the prepreg, it is preferable that the resin varnish contains a phenol resin. Examples of the phenol resin include “YHL” manufactured by Yuka Shell Epoxy.
-129 "(trade name, novolak type phenol resin).

【0013】また前記プリプレグにおいては、樹脂ワニ
スの存在量が、乾燥後の重量割合で35〜65重量%の
範囲であることが好ましい。また前記プリプレグにおい
ては、プリプレグの厚さが、50〜200μmの範囲で
あることが好ましい。
In the prepreg, the amount of the resin varnish is preferably in the range of 35 to 65% by weight after drying. In the prepreg, the thickness of the prepreg is preferably in the range of 50 to 200 μm.

【0014】また前記プリプレグにおいては、請求項2
の処理を行った後、樹脂ワニスを含浸し、乾燥したこと
が好ましい。また前記プリプレグにおいては、請求項3
の処理を行った後、樹脂ワニスを含浸し、乾燥したこと
が好ましい。
Further, in the prepreg,
After performing the above-mentioned treatment, it is preferable to impregnate the resin varnish and dry it. Further, in the prepreg,
After performing the above-mentioned treatment, it is preferable to impregnate the resin varnish and dry it.

【0015】次に本発明のプリント配線板は、前記の不
織布基材に、樹脂ワニスを含浸し、乾燥したプリプレグ
を用いて作成したという構成を備えたものである。この
プリント配線板は上記プリプレグと銅箔を積層し、加圧
成形して作られる。
Next, the printed wiring board of the present invention has a structure in which the above nonwoven fabric base material is impregnated with a resin varnish and prepared using a dried prepreg. This printed wiring board is formed by laminating the prepreg and a copper foil and press-molding.

【0016】前記した本発明のプリント配線板用不織布
基材によれば、最終のプリント配線板において樹脂とア
ラミド繊維との接着力を向上させることができ、また絶
縁信頼性を向上させることができる。
According to the nonwoven fabric substrate for a printed wiring board of the present invention described above, the adhesive strength between the resin and the aramid fiber in the final printed wiring board can be improved, and the insulation reliability can be improved. .

【0017】また本発明のプリント配線板用不織布基材
の製造方法によれば、芳香族ポリアミド繊維不織布基材
と樹脂界面の接合強度を向上させる効果的な表面処理方
法を行うことにより、絶縁信頼性を大幅に向上させるこ
とができる。不織布基材の熱処理や溶剤処理は、繊維表
面の結晶化や不純物の除去に効果があり、不織布基材と
含浸樹脂との接着性を向上させ、絶縁信頼性を向上させ
る。さらにシランカップリング剤処理、コロナ処理やオ
ゾン処理は含浸樹脂との親和性を向上させて不織布基材
と含浸樹脂との接着性を向上させる。最終的に、絶縁信
頼性を向上させる。
According to the method for producing a non-woven fabric substrate for a printed wiring board of the present invention, an effective surface treatment method for improving the bonding strength between the aromatic polyamide fiber non-woven fabric substrate and the resin interface is carried out, so that insulation reliability can be improved. Performance can be greatly improved. Heat treatment or solvent treatment of the nonwoven fabric substrate is effective for crystallization of the fiber surface and removal of impurities, improves the adhesion between the nonwoven fabric substrate and the impregnated resin, and improves insulation reliability. Further, the silane coupling agent treatment, corona treatment and ozone treatment improve the affinity with the impregnated resin and improve the adhesion between the nonwoven fabric substrate and the impregnated resin. Finally, the insulation reliability is improved.

【0018】なお本発明でいう貯蔵弾性率及び損失正接
(Tanδ)は、実施例中に記載されている測定法によ
って測定するものである。
The storage elastic modulus and the loss tangent (Tan δ) referred to in the present invention are measured by the measuring methods described in Examples.

【0019】[0019]

【実施例】以下、本発明の実施例を説明する。なお、実
施例に示している部数は、全て重量部を示している。
Embodiments of the present invention will be described below. In addition, the number of parts shown in the examples all indicates parts by weight.

【0020】(実施例1) 1.芳香族ポリアミド繊維不織布基材の作成 パラ系芳香族ポリアミド繊維(デュポン社”ケブラ
ー”、繊度:2.2デニール、繊維長:6mm)を用い
て湿式法により不織布とし、カレンダロールによる加圧
処理を行った後、250℃、10分加熱処理したシート
(サーマウント(Thermount)-230,-240,-244、米国デュ
ポン社製商品名)(不織布の目付は乾燥後で70g/m
2 、厚さは120μm)を使用した。 2.樹脂ワニス含浸操作 臭素化ビスフェノールA型エポキシ樹脂(臭素量;23%,エポキシ当量;2 70)と、3官能エポキシ樹脂(臭素量;23%,エポキシ当量;270)から なる等量混合樹脂(油化シェルエポキシ会社製,YL-6090) 70.0部 ノボラック型フェノール樹脂(水酸基当量;120、油化シェルエポキシ会社製 ,YHL-129) 30.0部 カルボニルジイミダゾール 0.1部 メチルエチルケトン 66.6部 上記材料を溶解混合してワニスを調製した。このワニス
を前記不織布基材に含浸させた後、これをオーブン等で
加熱乾燥することによって、溶剤の除去と含浸樹脂の反
応を進ませ、プリプレグを得た。含浸時間は、10秒〜
2分間程度で良く、また加熱乾燥の条件は、102〜1
60℃程度の温度で3〜10分間程度である。
(Embodiment 1) 1. Preparation of non-woven fabric of aromatic polyamide fiber non-woven fabric Para-aromatic polyamide fiber (DuPont "Kevlar", fineness: 2.2 denier, fiber length: 6 mm) is made into a non-woven fabric by a wet method, and is subjected to pressure treatment with a calendar roll. After that, a sheet (Thermount-230, -240, -244, trade name, manufactured by DuPont, USA) heat-treated at 250 ° C for 10 minutes (the basis weight of the nonwoven fabric is 70 g / m after drying)
2. The thickness was 120 μm. 2. Resin varnish impregnation operation Equivalent mixed resin (oil) consisting of brominated bisphenol A type epoxy resin (bromine content: 23%, epoxy equivalent: 270) and trifunctional epoxy resin (bromine content: 23%, epoxy equivalent: 270) 70.0 parts Novolak-type phenol resin (hydroxyl equivalent: 120, YHL-129, manufactured by Yuka Shell Epoxy Co., Ltd.) 30.0 parts Carbonyl diimidazole 0.1 part Methyl ethyl ketone 66.6 Part The above materials were dissolved and mixed to prepare a varnish. After the varnish was impregnated into the nonwoven fabric substrate, the varnish was heated and dried in an oven or the like, thereby removing the solvent and allowing the reaction of the impregnated resin to proceed to obtain a prepreg. Impregnation time is 10 seconds ~
About 2 minutes may be sufficient, and the conditions for heating and drying are from 102 to 1
The temperature is about 60 ° C. for about 3 to 10 minutes.

【0021】本実施例では、不織布基材に、プリプレグ
状態で含浸合計樹脂量が50±1重量%になるようにワ
ニスを含浸させ、140℃で5分間乾燥しプリプレグと
した。前記において、含浸樹脂量は、樹脂含浸後の乾燥
プリプレグの重量(P)と、樹脂含浸前の不織布基材の
重量差から含浸樹脂量の値(R)を求め、含浸樹脂量の
値(R)の樹脂含浸後の乾燥プリプレグの重量(P)に
対する百分率として算出する。含浸樹脂量の調整は、樹
脂ワニスの固形分濃度や、含浸時間などによって行う。 3.積層操作 樹脂ワニス含浸終了後、上記プリプレグの両面に、厚さ
18μmの電解銅箔を積層し、プレス機により熱圧着し
て銅張り積層板を形成した。熱圧着は圧力50kg/c
2、温度180℃で60分間の条件で行った。
In this embodiment, the nonwoven fabric substrate was impregnated with varnish so that the total amount of impregnated resin in the prepreg state was 50 ± 1% by weight, and dried at 140 ° C. for 5 minutes to obtain a prepreg. In the above, the amount of the impregnated resin is determined by calculating the value (R) of the amount of the impregnated resin from the difference between the weight (P) of the dried prepreg after the resin impregnation and the weight of the nonwoven fabric substrate before the resin impregnation. )) Is calculated as a percentage of the weight (P) of the dried prepreg after the resin impregnation. The amount of the impregnated resin is adjusted according to the solid concentration of the resin varnish, the impregnation time, and the like. 3. Lamination Operation After the resin varnish impregnation was completed, an electrolytic copper foil having a thickness of 18 μm was laminated on both surfaces of the prepreg and thermocompression-bonded with a press machine to form a copper-clad laminate. Thermocompression bonding pressure 50kg / c
The test was performed under the conditions of m 2 and a temperature of 180 ° C. for 60 minutes.

【0022】(実施例2)実施例1の芳香族ポリアミド
繊維基材不織布を、300℃で10分間加熱処理した以
外は、実施例1と同様にしてプリプレグ及び銅張り積層
板を形成した。
Example 2 A prepreg and a copper-clad laminate were formed in the same manner as in Example 1 except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was subjected to a heat treatment at 300 ° C. for 10 minutes.

【0023】(実施例3)実施例1の芳香族ポリアミド
繊維基材不織布を、400℃で10分間加熱処理した以
外は、実施例1と同様にしてプリプレグ及び銅張り積層
板を形成した。
(Example 3) A prepreg and a copper-clad laminate were formed in the same manner as in Example 1 except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was heat-treated at 400 ° C for 10 minutes.

【0024】(比較例1)実施例1の芳香族ポリアミド
繊維基材不織布を、加熱処理を行わなかった以外は、実
施例1と同様にしてプリプレグ及び銅張り積層板を形成
した。
Comparative Example 1 A prepreg and a copper-clad laminate were formed in the same manner as in Example 1 except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was not subjected to heat treatment.

【0025】(比較例2)実施例1の芳香族ポリアミド
繊維基材不織布を、450℃で10分間加熱処理した以
外は、実施例1と同様にしてプリプレグ及びプリント配
線板を形成した。
Comparative Example 2 A prepreg and a printed wiring board were formed in the same manner as in Example 1 except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was heat-treated at 450 ° C. for 10 minutes.

【0026】(実施例4)実施例1の芳香族ポリアミド
繊維基材不織布を、メタノール中に浸漬処理(メタノー
ルを入れた容器中に約1分間不織布基材を浸漬)した以
外は、実施例1と同様にしてプリプレグ及び銅張り積層
板を形成した。
Example 4 The procedure of Example 1 was repeated except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was immersed in methanol (the nonwoven fabric substrate was immersed in a container containing methanol for about 1 minute). A prepreg and a copper-clad laminate were formed in the same manner as described above.

【0027】(実施例5)実施例1の芳香族ポリアミド
繊維基材不織布を、エタノール中に浸漬処理(エタノー
ルを入れた容器中に約1分間不織布基材を浸漬)した以
外は、実施例1と同様にしてプリプレグ及び銅張り積層
板を形成した。
Example 5 The procedure of Example 1 was repeated except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was immersed in ethanol (the nonwoven fabric substrate was immersed in a container containing ethanol for about 1 minute). A prepreg and a copper-clad laminate were formed in the same manner as described above.

【0028】(実施例6)実施例1の芳香族ポリアミド
繊維基材不織布を、300℃で10分間加熱処理し、さ
らにメタノール中に浸漬処理(メタノールを入れた容器
中に約1分間不織布基材を浸漬)した以外は、実施例1
と同様にしてプリプレグ及び銅張り積層板を形成した。
Example 6 The nonwoven fabric of the aromatic polyamide fiber base material of Example 1 was heat-treated at 300 ° C. for 10 minutes, and further immersed in methanol (for about 1 minute in a container containing methanol). Example 1 except that
A prepreg and a copper-clad laminate were formed in the same manner as described above.

【0029】(実施例7)実施例1の芳香族ポリアミド
繊維基材不織布を、300℃で10分間加熱処理し、さ
らにシランカップリング剤処理した以外は、実施例1と
同様にしてプリプレグ及び銅張り積層板を形成した。シ
ランカップリング剤としては、γ−グリシドキシプロピ
ル・トリメトキシシラン(日本ユニカー社製の商品名:
A−187)、N−β−(アミノエチル)−γ−アミノ
プロピル・トリメトキシシラン(日本ユニカー社製の商
品名:A−1120)、γ−ウレイドプロピル・トリエ
トキシシラン(日本ユニカー社製の商品名:A−116
0)等があるが、本実施例ではγ−グリシドキシプロピ
ル・トリメトキシシランを用いた。1重量%の濃度のγ
−グリシドキシプロピル・トリメトキシシランをメタノ
ールに溶解し、これをステンレス製バットに入れ、この
中に1分間不織布基材を含浸させた。
Example 7 A prepreg and copper were prepared in the same manner as in Example 1 except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was heat-treated at 300 ° C. for 10 minutes and further treated with a silane coupling agent. A laminated laminate was formed. As the silane coupling agent, γ-glycidoxypropyl trimethoxysilane (trade name of Nippon Unicar Co., Ltd .:
A-187), N-β- (aminoethyl) -γ-aminopropyl trimethoxysilane (trade name: A-1120, manufactured by Nippon Unicar), γ-ureidopropyl triethoxysilane (manufactured by Nippon Unicar) Product name: A-116
0) and the like, but in this example, γ-glycidoxypropyl trimethoxysilane was used. Γ at a concentration of 1% by weight
-Glycidoxypropyl trimethoxysilane was dissolved in methanol, placed in a stainless steel vat, and impregnated with the nonwoven fabric substrate for 1 minute.

【0030】(実施例8)実施例1の芳香族ポリアミド
繊維基材不織布を、300℃で10分間加熱処理し、さ
らにコロナ処理(春日電機社製コロナ放電処理装置使
用、10〜500W・分/m2 )した以外は、実施例1
と同様にしてプリプレグ及び銅張り積層板を形成した。
(Example 8) The aromatic polyamide fiber-based nonwoven fabric of Example 1 was subjected to a heat treatment at 300 ° C for 10 minutes, followed by a corona treatment (using a corona discharge treatment device manufactured by Kasuga Electric Co., Ltd., 10-500 W · min / min). Example 1 except that m 2 ) was used.
A prepreg and a copper-clad laminate were formed in the same manner as described above.

【0031】(実施例9)実施例1の芳香族ポリアミド
繊維基材不織布を、300℃で10分間加熱処理し、さ
らにオゾン処理(アイグラフィクス社製、QOL−25
SY装置使用、5分間処理)した以外は、実施例1と同
様にしてプリプレグ及び銅張り積層板を形成した。
Example 9 The aromatic polyamide fiber-based nonwoven fabric of Example 1 was subjected to a heat treatment at 300 ° C. for 10 minutes, followed by an ozone treatment (QOL-25, manufactured by Eye Graphics Co., Ltd.).
A prepreg and a copper-clad laminate were formed in the same manner as in Example 1 except that the SY apparatus was used and the treatment was performed for 5 minutes.

【0032】(実施例10)実施例1の芳香族ポリアミ
ド繊維基材不織布を、メタノール中に浸積処理し、さら
にシランカップリング剤処理した以外は実施例1と同様
にしてプリプレグ及び銅張り積層板を形成した。
Example 10 A prepreg and a copper-clad laminate were prepared in the same manner as in Example 1 except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was immersed in methanol and further treated with a silane coupling agent. A plate was formed.

【0033】(実施例11)実施例1の芳香族ポリアミ
ド繊維基材不織布を、メタノール中に浸積処理し、さら
にコロナ処理した以外は、実施例1と同様にしてプリプ
レグ及び銅張り積層板を形成した。
Example 11 A prepreg and a copper-clad laminate were prepared in the same manner as in Example 1 except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was immersed in methanol and further corona-treated. Formed.

【0034】(実施例12)実施例1の芳香族ポリアミ
ド繊維基材不織布を、メタノール中に浸積処理し、さら
にオゾン処理した以外は、実施例1と同様にしてプリプ
レグ及び銅張り積層板を形成した。
Example 12 A prepreg and a copper-clad laminate were prepared in the same manner as in Example 1 except that the aromatic polyamide fiber-based nonwoven fabric of Example 1 was immersed in methanol and then subjected to ozone treatment. Formed.

【0035】上記実施例において各種の処理を実施例1
の不織布基材の作成においてなされてもよい。即ち各種
処理を施した不織布基材を作成しておいてもよい事は明
らかである。この場合はプリプレグの製造方法において
は処理は省かれる。
In the above embodiment, various processes are performed according to the first embodiment.
May be made in the production of the nonwoven fabric substrate. That is, it is apparent that a nonwoven fabric substrate subjected to various treatments may be prepared. In this case, the processing is omitted in the prepreg manufacturing method.

【0036】以上実施例1〜12及び比較例1〜2で得
られた銅張り積層板に対し、絶縁信頼性に直接影響する
アラミド繊維不織布基材とマトリックス樹脂間の接着強
度(層間強度)を、さらに水溶性不純物量の指標となる
水抽出物の導電率の測定結果を表1〜2に示す。
With respect to the copper-clad laminates obtained in Examples 1 to 12 and Comparative Examples 1 and 2, the adhesive strength (interlayer strength) between the aramid fiber nonwoven substrate and the matrix resin, which directly affects the insulation reliability, was measured. Tables 1 and 2 show the measurement results of the conductivity of the water extract, which is an index of the amount of water-soluble impurities.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】表1〜2における測定方法は以下に示す。 (1)層間剥離強度(kg/cm):図1に示す通り、
熱プレス後の銅張積層板1を切断線2で1cm幅、10
cmの長さに切断し、試料3を作成した。試料3の一端
約2cmの長さの部分を層の中間をカッターで切断し
て、把持部6,6´を作成した。次に図2に示す通り、
引っ張り試験機を用いて把持部6,6´を把持し、F,
Fの方向に引っ張ることにより剥離試験を行った。なお
図2において、4はアラミド繊維不織布基材とマトリッ
クス樹脂からなる基材層、5,5´は銅箔層である。こ
の試験条件では、アラミド繊維不織布基材とマトリック
ス樹脂間で剥離していることが走査形電子顕微鏡(SE
M)観察で確認されており、これを層間強度とした。 (2)導電率(μS/cm):熱プレス後の銅張積層板
両面の銅箔を除去した硬化基板を60メッシュアンダー
の微粉に粉砕し、100mlのポリテトラフルオロエチ
レン(デュポン社”テフロン”)製密閉容器に、この粉
砕微粉5gと50mlの純水を添加し、121℃で24
時間処理し、この溶液の導電率を導電率計で測定した。
The measuring methods in Tables 1 and 2 are shown below. (1) Delamination strength (kg / cm): As shown in FIG.
The copper-clad laminate 1 after hot pressing is cut 1 cm wide by 10
Sample 3 was prepared by cutting into a length of 3 cm. A portion having a length of about 2 cm at one end of the sample 3 was cut in the middle of the layer with a cutter to form grips 6, 6 '. Next, as shown in FIG.
Using the tensile tester, grip the grip portions 6, 6 ', and
The peel test was performed by pulling in the direction of F. In FIG. 2, reference numeral 4 denotes a base layer made of an aramid fiber nonwoven base material and a matrix resin, and reference numerals 5 and 5 ′ denote copper foil layers. Under these test conditions, the separation between the aramid fiber nonwoven fabric substrate and the matrix resin was confirmed by a scanning electron microscope (SE).
M) It was confirmed by observation, and this was taken as the interlayer strength. (2) Conductivity (μS / cm): The cured substrate from which the copper foil on both sides of the copper-clad laminate after hot pressing was removed was pulverized into a fine powder of 60 mesh under, and 100 ml of polytetrafluoroethylene (Defon “Teflon”). 5) and 50 ml of pure water are added to a sealed container made of
After time treatment, the conductivity of the solution was measured with a conductivity meter.

【0040】表1は熱処理とメタノール処理の効果を示
している。熱処理したものとしていないものとでは層間
強度が向上している。熱処理温度は250℃から400
℃が好ましい。450℃になると層間強度は低下する。
熱処理は導電率の低減にも効果が大きい。熱により繊維
の結晶化が進み内包する不純物の溶出を防いでいると考
えられる。プリント配線板にした時の絶縁不良を防ぐの
に効果的である。メタノールあるいはエタノールを用い
た溶剤処理も熱処理と同様に層間強度の向上に効果があ
る。もちろん、熱処理と溶剤処理を共に施してもよい。
これらの処理は繊維の表面をクリーニングする作用をも
ち、層間強度を上げると考えられる。したがって、他の
溶剤(例えばエタノール、アセトン、メチルエチルケト
ン等)でも効果があると思われる。
Table 1 shows the effects of the heat treatment and the methanol treatment. The interlaminar strength is improved between those not subjected to heat treatment and those not subjected to heat treatment. Heat treatment temperature from 250 ° C to 400
C is preferred. At 450 ° C., the interlayer strength decreases.
Heat treatment is also highly effective in reducing electrical conductivity. It is considered that the crystallization of the fiber is promoted by the heat and elution of the contained impurities is prevented. This is effective for preventing insulation failure when a printed wiring board is formed. Solvent treatment using methanol or ethanol is also effective in improving interlayer strength as in heat treatment. Of course, both heat treatment and solvent treatment may be performed.
It is considered that these treatments have the effect of cleaning the surface of the fiber and increase the interlayer strength. Therefore, it seems that other solvents (eg, ethanol, acetone, methyl ethyl ketone, etc.) are also effective.

【0041】表2は熱処理、溶剤処理の各々の処理に加
えて他の処理を加えたときの層間強度を示している。シ
ランカップリング処理、コロナ処理、オゾン処理いずれ
も層間強度を増強させている。これらの処理は接着強度
を上げるために一般的によく行われるものであり、効果
が大きい。
Table 2 shows the interlaminar strength when other treatments were added in addition to the heat treatment and the solvent treatment. The silane coupling treatment, corona treatment, and ozone treatment all increase the interlayer strength. These treatments are generally performed in order to increase the adhesive strength, and are highly effective.

【0042】(実施例13) 1.芳香族ポリアミド繊維不織布基材の作成 パラ系芳香族ポリアミド繊維(96重量%、デュポン
社”ケブラー”、繊度:2.2デニール、繊維長:6m
m)と、メタ系芳香族ポリアミド繊維(4重量%、デュ
ポン社”ノメックス”、繊度:2.2デニール、繊維
長:6mm)の材料構成で湿式法により不織布を作成し
た。不織布は抄紙後、温度:300℃、圧力:200k
g/cmの条件でカレンダ処理を行った。不織布の目付
(乾燥重量)は70g/m2 、厚さは100μmであっ
た。 2.樹脂ワニス含浸操作 臭素化ビスフェノールA型エポキシ樹脂(臭素量;23%,エポキシ当量;27 0) 35.0部 3官能エポキシ樹脂(臭素量;23%,エポキシ当量;270) 35.0部 ノボラック型フェノール樹脂(水酸基当量;120) 30.0部 カルボニルジイミダゾール 0.1部 メチルエチルケトン 66.6部 上記材料を溶解混合してワニスを調製した。
(Embodiment 13) Preparation of non-woven fabric of aromatic polyamide fiber non-woven fabric Para-based aromatic polyamide fiber (96% by weight, "Kevlar" manufactured by DuPont, fineness: 2.2 denier, fiber length: 6 m)
m) and a meta-aromatic polyamide fiber (4% by weight, DuPont “Nomex”, fineness: 2.2 denier, fiber length: 6 mm) to form a nonwoven fabric by a wet method. After making the nonwoven fabric, temperature: 300 ° C, pressure: 200k
Calendar processing was performed under the condition of g / cm. The basis weight (dry weight) of the nonwoven fabric was 70 g / m 2 , and the thickness was 100 μm. 2. Resin varnish impregnation operation Brominated bisphenol A type epoxy resin (bromine content: 23%, epoxy equivalent: 270) 35.0 parts Trifunctional epoxy resin (bromine content: 23%, epoxy equivalent; 270) 35.0 parts Novolak type Phenol resin (hydroxyl equivalent: 120) 30.0 parts Carbonyl diimidazole 0.1 part Methyl ethyl ketone 66.6 parts The above materials were dissolved and mixed to prepare a varnish.

【0043】不織布基材に、プリプレグ状態で含浸合計
樹脂量が50±1重量%になるようにワニスを含浸さ
せ、140℃で5分間乾燥しプリプレグとした。 3.積層操作 樹脂ワニス含浸終了後、上記プリプレグの両面に厚さ1
8μmの電解銅箔を積層し、熱圧着して銅張り積層板を
形成した。熱圧着は圧力50kg/cm2 、温度180
℃で60分間の条件で行った。
The nonwoven fabric substrate was impregnated with varnish so that the total amount of resin impregnated in the prepreg state was 50 ± 1% by weight, and dried at 140 ° C. for 5 minutes to obtain a prepreg. 3. Lamination operation After completion of the resin varnish impregnation, a thickness of 1
An 8 μm electrolytic copper foil was laminated and thermocompression bonded to form a copper-clad laminate. Thermocompression bonding: pressure 50 kg / cm 2 , temperature 180
This was performed at 60 ° C. for 60 minutes.

【0044】(実施例14)全芳香族ポリアミド繊維に
水分散エポキシ樹脂(大日本インキ化学工業社製、ディ
ックファインEN−0270(商品名))バインダーを
1重量%添加した構成の不織布を作成した以外は、実施
例13と同様にしてカレンダ処理、プリプレグ及び銅張
り積層板を形成した。
Example 14 A nonwoven fabric was prepared by adding 1% by weight of a water-dispersed epoxy resin (Dick Fine EN-0270 (trade name) manufactured by Dainippon Ink and Chemicals, Inc.) to a wholly aromatic polyamide fiber. Except for the above, a calendar process, a prepreg and a copper-clad laminate were formed in the same manner as in Example 13.

【0045】(実施例15)全芳香族ポリアミド繊維に
実施例14で用いた水分散エポキシ樹脂バインダーを3
重量%添加した構成の不織布を作成した以外は、実施例
13と同様にしてカレンダ処理、プリプレグ及び銅張り
積層板を形成した。
Example 15 The water-dispersed epoxy resin binder used in Example 14 was used for the wholly aromatic polyamide fiber.
A calendar treatment, a prepreg, and a copper-clad laminate were formed in the same manner as in Example 13 except that a nonwoven fabric having a configuration in which the weight% was added was prepared.

【0046】(比較例3)全芳香族ポリアミド繊維に実
施例14で用いた水分散エポキシ樹脂バインダーを5重
量%添加した構成の不織布を作成した以外は、実施例1
3と同様にしてカレンダ処理、プリプレグ及び銅張り積
層板を形成した。
Comparative Example 3 Example 1 was repeated except that a 5% by weight of the water-dispersed epoxy resin binder used in Example 14 was added to a wholly aromatic polyamide fiber.
In the same manner as in No. 3, a calendar treatment, a prepreg, and a copper-clad laminate were formed.

【0047】(比較例4)全芳香族ポリアミド繊維に実
施例14で用いた水分散エポキシ樹脂バインダーを7重
量%添加した構成の不織布を作成した以外は、実施例1
3と同様にしてカレンダ処理、プリプレグ及び銅張り積
層板を形成した。
Comparative Example 4 Example 1 was repeated except that a 7% by weight of the water-dispersed epoxy resin binder used in Example 14 was added to a wholly aromatic polyamide fiber.
In the same manner as in No. 3, a calendar treatment, a prepreg, and a copper-clad laminate were formed.

【0048】(実施例16)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、250℃で10分間加熱処理した以外は、実施例
13と同様にしてプリプレグ及び銅張り積層板を形成し
た。
(Example 16) A prepreg was prepared in the same manner as in Example 13 except that a wholly aromatic polyamide fiber-based nonwoven fabric was prepared with the material composition of Example 13 and calendered and then heat-treated at 250 ° C for 10 minutes. And a copper-clad laminate.

【0049】(実施例17)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、300℃で10分間加熱処理した以外は、実施例
13と同様にしてプリプレグ及び銅張り積層板を形成し
た。
Example 17 A prepreg was prepared in the same manner as in Example 13 except that a wholly aromatic polyamide fiber-based nonwoven fabric was prepared using the material composition of Example 13 and calendered, followed by heat treatment at 300 ° C. for 10 minutes. And a copper-clad laminate.

【0050】(実施例18)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、400℃で10分間加熱処理した以外は、実施例
13と同様にしてプリプレグ及び銅張り積層板を形成し
た。
(Example 18) A prepreg was prepared in the same manner as in Example 13 except that a wholly aromatic polyamide fiber-based nonwoven fabric was prepared with the material composition of Example 13 and calendered, followed by heat treatment at 400 ° C for 10 minutes. And a copper-clad laminate.

【0051】(比較例5)全芳香族ポリアミド繊維基材
不織布を実施例13の材料構成で作成し、カレンダ処理
後、450℃で10分間加熱処理した以外は、実施例1
と同様にしてプリプレグ及びプリント配線板を形成し
た。
Comparative Example 5 Example 1 was repeated except that a wholly aromatic polyamide fiber-based nonwoven fabric was prepared using the material composition of Example 13 and calendered and then heat-treated at 450 ° C. for 10 minutes.
A prepreg and a printed wiring board were formed in the same manner as described above.

【0052】(実施例19)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、メタノール中に浸積処理した以外は、実施例13
と同様にしてプリプレグ及び銅張り積層板を形成した。
Example 19 A non-woven fabric made of a wholly aromatic polyamide fiber based on the material composition of Example 13 was prepared, calendered, and then immersed in methanol.
A prepreg and a copper-clad laminate were formed in the same manner as described above.

【0053】(実施例20)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、エタノール中に浸積処理した以外は、実施例13
と同様にしてプリプレグ及び銅張り積層板を形成した。
Example 20 Example 13 was repeated except that a wholly aromatic polyamide fiber-based non-woven fabric was prepared using the material composition of Example 13, calendered, and immersed in ethanol.
A prepreg and a copper-clad laminate were formed in the same manner as described above.

【0054】(実施例21)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、300℃で10分間加熱処理し、さらにメタノー
ル中に浸積処理した以外は、実施例13と同様にしてプ
リプレグ及び銅張り積層板を形成した。
Example 21 A non-woven fabric made of a wholly aromatic polyamide fiber based on the material composition of Example 13 was prepared, calendered, heated at 300 ° C. for 10 minutes, and immersed in methanol. In the same manner as in Example 13, a prepreg and a copper-clad laminate were formed.

【0055】(実施例22)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、300℃で10分間加熱処理し、さらにシランカ
ップリング剤処理した以外は、実施例13と同様にして
プリプレグ及び銅張り積層板を形成した。
(Example 22) A non-woven fabric made of a wholly aromatic polyamide fiber based on the material composition of Example 13, was calendered, heated at 300 ° C for 10 minutes, and further treated with a silane coupling agent. A prepreg and a copper-clad laminate were formed in the same manner as in Example 13.

【0056】(実施例23)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、300℃で10分間加熱処理し、さらにコロナ処
理した以外は、実施例13と同様にしてプリプレグ及び
銅張り積層板を形成した。
Example 23 Example 13 was repeated except that a wholly aromatic polyamide fiber-based nonwoven fabric was prepared in the same manner as in Example 13, calendered, heated at 300 ° C. for 10 minutes, and further corona-treated. A prepreg and a copper-clad laminate were formed in the same manner as described above.

【0057】(実施例24)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、300℃で10分間加熱処理し、さらにオゾン処
理した以外は、実施例13と同様にしてプリプレグ及び
銅張り積層板を形成した。
(Example 24) A non-woven fabric made of a wholly aromatic polyamide fiber based on the material composition of Example 13 was calendered, heated at 300 ° C for 10 minutes, and further subjected to ozone treatment. A prepreg and a copper-clad laminate were formed in the same manner as described above.

【0058】(実施例25)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、メタノール中に浸積処理し、さらにシランカップ
リング剤処理した以外は、実施例13と同様にしてプリ
プレグ及び銅張り積層板を形成した。
Example 25 A non-woven fabric made of a wholly aromatic polyamide fiber based on the material composition of Example 13 was prepared, calendered, immersed in methanol, and further treated with a silane coupling agent. A prepreg and a copper-clad laminate were formed in the same manner as in Example 13.

【0059】(実施例26)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、メタノール中に浸積処理し、さらにコロナ処理し
た以外は、実施例13と同様にしてプリプレグ及び銅張
り積層板を形成した。
Example 26 A non-woven fabric made of a wholly aromatic polyamide fiber based on the material composition of Example 13 was prepared, calendered, immersed in methanol, and further corona-treated. Similarly, a prepreg and a copper-clad laminate were formed.

【0060】(実施例27)全芳香族ポリアミド繊維基
材不織布を実施例13の材料構成で作成し、カレンダ処
理後、メタノール中に浸積処理し、さらにオゾン処理し
た以外は、実施例13と同様にしてプリプレグ及び銅張
り積層板を形成した。
Example 27 A non-woven fabric made of a wholly aromatic polyamide fiber based on the material composition of Example 13 was prepared, calendered, immersed in methanol, and further treated with ozone. Similarly, a prepreg and a copper-clad laminate were formed.

【0061】上記実施例において各種の処理を実施例1
の不織布基材の作成においてなされてもよい。即ち各種
処理を施した不織布基材を作成しておいてもよい事は明
らかである。この場合はプリプレグの製造方法において
は処理は省かれる。
In the above embodiment, various processes are performed according to the first embodiment.
May be made in the production of the nonwoven fabric substrate. That is, it is apparent that a nonwoven fabric substrate subjected to various treatments may be prepared. In this case, the processing is omitted in the prepreg manufacturing method.

【0062】以上実施例及び比較例で得られた銅張り積
層板に対し、動的粘弾特性(貯蔵弾性率比、損失正接ピ
ーク値)、ソリ量そして絶縁信頼性に直接影響するアラ
ミド繊維不織布基材とマトリックス樹脂間の接着強度
(層間強度)を、さらに水溶性不純物量の指標となる水
抽出物の導電率の測定結果を表3〜5に示す。
The aramid fiber nonwoven fabric which directly affects the dynamic viscoelastic properties (storage modulus ratio, loss tangent peak value), warpage amount and insulation reliability is compared with the copper-clad laminates obtained in the above Examples and Comparative Examples. Tables 3 to 5 show the measurement results of the adhesive strength (interlayer strength) between the base material and the matrix resin, and the conductivity of the water extract, which is an index of the amount of water-soluble impurities.

【0063】[0063]

【表3】 [Table 3]

【0064】[0064]

【表4】 [Table 4]

【0065】[0065]

【表5】 [Table 5]

【0066】測定方法は以下に説明する。 (1)貯蔵弾性率比(E´250℃/E´30℃):熱プレ
ス後の銅張積層板両面の銅箔を除去した硬化基板を3m
m幅に切断し、動的粘弾性測定装置(11Hz、3℃/
minの条件)で、20〜300℃間の貯蔵弾性率(E
´)を測定し、250℃と30℃の弾性率比を求めた。
表1にはE´250℃/E´30℃をE1/E2で示した。 (2)損失正接(Tanδ)ピーク値:熱プレス後の銅
張積層板両面の銅箔を除去した硬化基板を3mm幅に切
断し、動的粘弾性測定装置(11Hz、3℃/minの
条件)で、20〜300℃間の貯蔵弾性率(E´)と損
失弾性率(E")を測定し、その弾性率比(Tanδ=
E"/E´)を求め、そのピーク値を用いた。(3)ソ
リ量(mm):熱プレス後の縦20cm、横20cmサ
イズの銅張積層板両面の銅箔を除去した硬化基板を定盤
の上におき、硬化基板の4隅で持ち上がり量のいちばん
大きいところを反り量として測定した。 (4)層間強度(kg/cm):熱プレス後の銅張積層
板を1cm幅に切断後、引っ張り試験機で90度剥離試
験を行った。この試験条件では、アラミド繊維不織布基
材とマトリックス樹脂間で剥離していることが走査形電
子顕微鏡(SEM)観察で確認されており、これを層間
強度とした。 (5)導電率(μS/cm):熱プレス後の銅張積層板
両面の銅箔を除去した硬化基板を60メッシュアンダー
の微粉に粉砕し、100mlのポリテトラフルオロエチ
レン(デュポン社”テフロン”)製密閉容器に、この粉
砕微粉5gと50mlの純水を添加し、121℃で24
時間処理し、この溶液の導電率を導電率計で測定した。
The measuring method will be described below. (1) Storage elastic modulus ratio (E'250 ° C / E'30 ° C): 3 m of cured substrate from which copper foil on both sides of copper-clad laminate after hot pressing was removed
m width, and a dynamic viscoelasticity measuring device (11 Hz, 3 ° C /
min condition), the storage elastic modulus (E
') Was measured, and the elastic modulus ratio between 250 ° C and 30 ° C was determined.
In Table 1, E'250 ° C / E'30 ° C is shown by E1 / E2. (2) Loss tangent (Tan δ) peak value: The cured substrate from which the copper foil on both surfaces of the copper-clad laminate after hot pressing was removed was cut into a width of 3 mm, and was subjected to a dynamic viscoelasticity measurement apparatus (11 Hz, 3 ° C./min). ), The storage elastic modulus (E ′) and the loss elastic modulus (E ″) between 20 and 300 ° C. were measured, and the elastic modulus ratio (Tan δ =
E "/ E ') was obtained and the peak value was used. (3) Warpage (mm): The cured board from which the copper foil on both sides of the copper-clad laminate of 20 cm in length and 20 cm in width after hot pressing was removed. It was placed on a surface plate and the largest lift at the four corners of the cured substrate was measured as the amount of warpage (4) Interlayer strength (kg / cm): The copper-clad laminate after hot pressing was cut into 1 cm width. After that, a 90-degree peel test was performed using a tensile tester, and under these test conditions, it was confirmed by scanning electron microscope (SEM) observation that peeling had occurred between the aramid fiber nonwoven fabric substrate and the matrix resin. (5) Conductivity (μS / cm): The cured board from which the copper foil on both sides of the copper-clad laminate after hot pressing was removed was pulverized into fine powder of 60 mesh under, and 100 ml of polytetrafluoroethylene was pulverized. (DuPont “te” 5 g of the pulverized fine powder and 50 ml of pure water were added to a sealed container made of Freon '
After time treatment, the conductivity of the solution was measured with a conductivity meter.

【0067】プリント配線板は銅張り積層板の表面の銅
箔を必要なパターンにエッチングして作られるもので、
プリント配線板のソリやネジレは基材そのものの不均一
性の影響が大きいが、残った銅箔のパターンの影響を受
ける。そのために銅箔パターンの影響を受けないように
ソリ量は銅箔をエッチングして取り除いた基材を用いて
測定した。
A printed wiring board is made by etching a copper foil on the surface of a copper-clad laminate into a required pattern.
The warpage or twisting of the printed wiring board is greatly affected by the non-uniformity of the base material itself, but is affected by the pattern of the remaining copper foil. Therefore, the amount of warpage was measured using a substrate from which the copper foil was removed by etching so as not to be affected by the copper foil pattern.

【0068】表3において、E1/E2、Tanδとソリ
量とのあいだには明らかに相関があり、E1/E2が小さ
くなればソリ量は大きくなる。E1/E2が大きく1.0
に近くTanδが0に近いことは熱的に安定であり寸法
的にも変化がないことを示している。また、プリプレグ
や積層板の製造時のプロセス中不均一な機械的変動がな
いことを示している。ソリ量を2.0mm以下に止める
ためにはE1/E2が0.7以上でTanδが0.05以
下であることが好ましい。導電率については比較例3,
4に見られるように水系エポキシ樹脂バインダーの増加
に伴って増えている。
In Table 3, there is a clear correlation between E1 / E2, Tanδ and the amount of warpage, and the smaller the E1 / E2, the larger the amount of warpage. E1 / E2 is large and 1.0
And that Tan δ is close to 0 indicates that it is thermally stable and has no dimensional change. It also shows that there is no non-uniform mechanical fluctuation during the process of manufacturing prepregs and laminates. In order to keep the warp amount at 2.0 mm or less, it is preferable that E1 / E2 is 0.7 or more and Tan δ is 0.05 or less. Comparative Example 3
As can be seen from FIG. 4, the amount of the binder increases with the increase of the water-based epoxy resin binder.

【0069】表4は、熱処理とメタノール処理の効果を
示している。熱処理したものとしていないものとではソ
リ量は変わらないが、層間強度が向上している。熱処理
温度は250℃から400℃が好ましい。450℃にな
ると層間強度は低下する。熱処理は導電率の低減にも効
果が大きい。熱により繊維の結晶化が進み内包する不純
物の溶出を防いでいると考えられる。プリント配線板に
した時の絶縁不良を防ぐのに効果的である。メタノール
あるいはエタノールを用いた溶剤処理も熱処理と同様に
層間強度の向上に効果がある。もちろん、熱処理と溶剤
処理を共に施してもよい。これらの処理は繊維の表面を
クリーニングする作用をもち、層間強度を上げると考え
られる。したがって、他の溶剤でも効果があると思われ
る。
Table 4 shows the effects of the heat treatment and the methanol treatment. Although the amount of warpage does not change from that of the non-heat-treated one, the interlayer strength is improved. The heat treatment temperature is preferably from 250 ° C to 400 ° C. At 450 ° C., the interlayer strength decreases. Heat treatment is also highly effective in reducing electrical conductivity. It is considered that the crystallization of the fiber is promoted by the heat and elution of the contained impurities is prevented. This is effective for preventing insulation failure when a printed wiring board is formed. Solvent treatment using methanol or ethanol is also effective in improving interlayer strength as in heat treatment. Of course, both heat treatment and solvent treatment may be performed. It is considered that these treatments have the effect of cleaning the surface of the fiber and increase the interlayer strength. Therefore, it seems that other solvents are effective.

【0070】表5は、熱処理、溶剤処理の各々の処理に
加えて他の処理を加えたときの層間強度を示している。
シランカップリング処理、コロナ処理、オゾン処理いず
れも層間強度を増強させている。これらの処理は通常単
独では接着強度の向上は期待できないが、熱処理あるい
は溶剤処理で繊維表面をクリーニングした状態での組合
せにより効果を発揮するものである。
Table 5 shows the interlayer strength when other treatments were added in addition to each of the heat treatment and the solvent treatment.
The silane coupling treatment, corona treatment, and ozone treatment all increase the interlayer strength. Usually, these treatments cannot be expected to improve the adhesive strength by themselves, but they are effective when combined with heat treatment or solvent treatment after cleaning the fiber surface.

【0071】[0071]

【発明の効果】以上説明したとおり、本発明のプリント
配線板用不織布基材によれば、芳香族ポリアミド繊維か
ら構成され、250℃と30℃の貯蔵弾性率比(E´
(250℃)/E´(30℃))が0.7〜1.0で、かつ
その温度範囲の損失正接(Tanδ)ピーク値が0.0
5以下であることにより、不織布基材の機械的変形を低
下させることができ、プリント配線板の製造および信頼
性試験温度範囲において、熱プレス時の基材自身の変形
あるいは樹脂の流れ性の不均一が抑制され、ソリ、ネジ
レが抑制される。その結果、絶縁信頼性を向上させるこ
とができる。
As described above, according to the nonwoven fabric substrate for a printed wiring board of the present invention, it is composed of an aromatic polyamide fiber and has a storage modulus ratio (E ') of 250 ° C. and 30 ° C.
(250 ° C.) / E ′ (30 ° C.)) is 0.7 to 1.0, and the loss tangent (Tan δ) peak value in the temperature range is 0.0.
When it is 5 or less, the mechanical deformation of the nonwoven fabric base material can be reduced, and the deformation of the base material itself or the flowability of the resin during hot pressing can be reduced in the temperature range of the production of the printed wiring board and the reliability test. Uniformity is suppressed, and warpage and twisting are suppressed. As a result, insulation reliability can be improved.

【0072】次に本発明のプリント配線板用不織布基材
の製造方法は、芳香族ポリアミド繊維から構成される不
織布基材を、250℃〜400℃で熱処理、及びアルコ
ール系溶剤中への浸漬処理から選ばれる少なくとも一つ
の処理を行うことにより、最終製品のプリント配線板に
おいて樹脂とアラミド繊維との接着力を向上させること
ができる。また、絶縁信頼性を向上させることができ
る。
Next, the method for producing a non-woven fabric substrate for a printed wiring board according to the present invention comprises heat-treating a non-woven fabric substrate composed of aromatic polyamide fibers at 250 ° C. to 400 ° C. and immersing it in an alcohol-based solvent. By performing at least one treatment selected from the group consisting of the above, the adhesive strength between the resin and the aramid fiber in the printed wiring board of the final product can be improved. Also, insulation reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例で測定した層間剥離強度測
定法の試料を作成するための説明図。
FIG. 1 is an explanatory diagram for preparing a sample for a method for measuring delamination strength measured in one example of the present invention.

【図2】 本発明の一実施例の層間剥離強度測定法を作
成するための説明図。
FIG. 2 is an explanatory diagram for creating a method for measuring delamination strength according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 熱プレス後の銅張積層板 2 切断線 3 測定試料 4 アラミド繊維不織布基材とマトリックス樹脂からな
る基材層 5,5´ 銅箔層 6,6´ 把持部
Reference Signs List 1 Copper-clad laminate after hot pressing 2 Cutting line 3 Measurement sample 4 Substrate layer composed of aramid fiber nonwoven substrate and matrix resin 5, 5 'Copper foil layer 6, 6' Gripping part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D06M 15/55 D06M 13/50 D21H 13/26 10/00 H H05K 1/03 610 D21H 5/20 E (72)発明者 中谷 誠一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岡野 祐幸 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小島 環生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location D06M 15/55 D06M 13/50 D21H 13/26 10/00 H H05K 1/03 610 D21H 5/20 E (72) Inventor Seiichi Nakatani 1006 Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. 1006 Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 芳香族ポリアミド繊維から構成され、2
50℃と30℃の貯蔵弾性率比(E´(250℃)/E´
(30℃))が0.7〜1.0で、かつその温度範囲の損
失正接(Tanδ)ピーク値が0.05以下であるプリ
ント配線板用不織布基材。
1. An aromatic polyamide fiber, comprising:
Storage modulus ratio between 50 ° C and 30 ° C (E '(250 ° C) / E'
(30 ° C.)) is 0.7 to 1.0, and a loss tangent (Tan δ) peak value in the temperature range is 0.05 or less.
【請求項2】 前記不織布基材が、不織布の状態で25
0℃〜400℃で熱処理、及びアルコール系溶剤中への
浸漬処理から選ばれる少なくとも一つの処理がなされて
いる請求項1に記載のプリント配線板用不織布基材。
2. The method according to claim 1, wherein the non-woven fabric substrate is a non-woven fabric.
The nonwoven fabric substrate for a printed wiring board according to claim 1, wherein at least one treatment selected from a heat treatment at 0 ° C to 400 ° C and a dipping treatment in an alcohol solvent is performed.
【請求項3】 請求項2の処理を行った後、さらにシラ
ンカップリング剤処理、コロナ処理及びオゾン処理から
選ばれる少なくとも一つの処理がなされている請求項2
に記載のプリント配線板用不織布基材。
3. After the treatment of claim 2, at least one treatment selected from a silane coupling agent treatment, a corona treatment, and an ozone treatment is further performed.
4. The nonwoven fabric substrate for a printed wiring board according to claim 1.
【請求項4】 芳香族ポリアミド繊維が、パラ系アラミ
ド繊維及びメタ系アラミド繊維から選ばれる少なくとも
一つの繊維である請求項1に記載のプリント配線板用不
織布基材。
4. The nonwoven fabric substrate for a printed wiring board according to claim 1, wherein the aromatic polyamide fiber is at least one fiber selected from para-aramid fibers and meta-aramid fibers.
【請求項5】 芳香族ポリアミド繊維の繊度が0.5〜
6.0デニール、繊維長が2〜15mmの範囲である請
求項1に記載のプリント配線板用不織布基材。
5. The fineness of the aromatic polyamide fiber is from 0.5 to 0.5.
The nonwoven fabric substrate for a printed wiring board according to claim 1, wherein the denier is 6.0 denier and the fiber length is in a range of 2 to 15 mm.
【請求項6】 不織布基材が、湿式抄紙法によって作成
されている請求項1に記載のプリント配線板用不織布基
材。
6. The nonwoven fabric substrate for a printed wiring board according to claim 1, wherein the nonwoven fabric substrate is prepared by a wet papermaking method.
【請求項7】 不織布基材の目付が30〜120g/m
2 の範囲である請求項1に記載のプリント配線板用不織
布基材。
7. The nonwoven fabric substrate has a basis weight of 30 to 120 g / m.
The nonwoven fabric substrate for a printed wiring board according to claim 1, wherein the nonwoven fabric substrate is in the range of 2 .
【請求項8】 不織布基材の厚さが50〜300μmの
範囲である請求項1に記載のプリント配線板用不織布基
材。
8. The nonwoven fabric substrate for a printed wiring board according to claim 1, wherein the thickness of the nonwoven fabric substrate is in the range of 50 to 300 μm.
【請求項9】 請求項1の不織布基材に、樹脂ワニスを
含浸し、乾燥したプリプレグ。
9. A prepreg obtained by impregnating the nonwoven fabric substrate of claim 1 with a resin varnish and drying.
【請求項10】 樹脂ワニスがエポキシ樹脂を含む請求
項9に記載のプリプレグ。
10. The prepreg according to claim 9, wherein the resin varnish contains an epoxy resin.
【請求項11】 樹脂ワニスがフェノール樹脂を含む請
求項9に記載のプリプレグ。
11. The prepreg according to claim 9, wherein the resin varnish contains a phenol resin.
【請求項12】 樹脂ワニスの存在量が、乾燥後の重量
割合で35〜65重量%の範囲である請求項9に記載の
プリプレグ。
12. The prepreg according to claim 9, wherein the amount of the resin varnish is in a range of 35 to 65% by weight after drying.
【請求項13】 プリプレグの厚さが、50〜200μ
mの範囲である請求項9に記載のプリプレグ。
13. A prepreg having a thickness of 50 to 200 μm.
The prepreg according to claim 9, which has a range of m.
【請求項14】 請求項2の処理を行った後、樹脂ワニ
スを含浸し、乾燥した請求項9に記載のプリプレグ。
14. The prepreg according to claim 9, wherein after the treatment of claim 2, the resin varnish is impregnated and dried.
【請求項15】 請求項3の処理を行った後、樹脂ワニ
スを含浸し、乾燥した請求項9に記載のプリプレグ。
15. The prepreg according to claim 9, wherein after the treatment of claim 3, the resin varnish is impregnated and dried.
JP9123654A 1996-05-15 1997-05-14 Nonwoven fabric base material for printed circuit board and prepreg using the same Pending JPH1072752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9123654A JPH1072752A (en) 1996-05-15 1997-05-14 Nonwoven fabric base material for printed circuit board and prepreg using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-120630 1996-05-15
JP12063096 1996-05-15
JP9123654A JPH1072752A (en) 1996-05-15 1997-05-14 Nonwoven fabric base material for printed circuit board and prepreg using the same

Publications (1)

Publication Number Publication Date
JPH1072752A true JPH1072752A (en) 1998-03-17

Family

ID=26458171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9123654A Pending JPH1072752A (en) 1996-05-15 1997-05-14 Nonwoven fabric base material for printed circuit board and prepreg using the same

Country Status (1)

Country Link
JP (1) JPH1072752A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532798A (en) * 2004-04-16 2007-11-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aramid paper blend
JP2009521624A (en) * 2005-12-21 2009-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー PIPD paper and parts made from it
JP2009226260A (en) * 2008-03-19 2009-10-08 Hokuetsu Paper Mills Ltd Air filter medium heat-emboss moldable and air filter using the same
JP4778114B2 (en) * 2009-03-12 2011-09-21 タツタ電線株式会社 Multilayer wiring board manufacturing method and multilayer wiring board obtained thereby
JP2015089622A (en) * 2013-11-05 2015-05-11 住友ベークライト株式会社 Metal-clad laminate, printed wiring board, and semiconductor device
JP2015101651A (en) * 2013-11-26 2015-06-04 住友ベークライト株式会社 Fiber-reinforced composite material and housing using the same
WO2018124158A1 (en) * 2016-12-28 2018-07-05 三菱瓦斯化学株式会社 Prepreg, laminated board, metal-foil-clad laminated board, printed wiring board, and multilayer printed wiring board
US10292260B2 (en) 2014-01-07 2019-05-14 Mitsubishi Gas Chemical Company, Inc. Insulating layer for printed circuit board and printed circuit board

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532798A (en) * 2004-04-16 2007-11-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aramid paper blend
JP2011219913A (en) * 2004-04-16 2011-11-04 E.I.Du Pont De Nemours And Company Aramid paper blend
JP2009521624A (en) * 2005-12-21 2009-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー PIPD paper and parts made from it
JP2009226260A (en) * 2008-03-19 2009-10-08 Hokuetsu Paper Mills Ltd Air filter medium heat-emboss moldable and air filter using the same
JP4778114B2 (en) * 2009-03-12 2011-09-21 タツタ電線株式会社 Multilayer wiring board manufacturing method and multilayer wiring board obtained thereby
KR101114058B1 (en) 2009-03-12 2012-03-13 다츠다 덴센 가부시키가이샤 Multilayer wiring substrate producing method and multilayer wiring substrate obtained by the same
JP2015089622A (en) * 2013-11-05 2015-05-11 住友ベークライト株式会社 Metal-clad laminate, printed wiring board, and semiconductor device
JP2015101651A (en) * 2013-11-26 2015-06-04 住友ベークライト株式会社 Fiber-reinforced composite material and housing using the same
US10292260B2 (en) 2014-01-07 2019-05-14 Mitsubishi Gas Chemical Company, Inc. Insulating layer for printed circuit board and printed circuit board
WO2018124158A1 (en) * 2016-12-28 2018-07-05 三菱瓦斯化学株式会社 Prepreg, laminated board, metal-foil-clad laminated board, printed wiring board, and multilayer printed wiring board
JP6424992B1 (en) * 2016-12-28 2018-11-21 三菱瓦斯化学株式会社 Prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board
JP2019048990A (en) * 2016-12-28 2019-03-28 三菱瓦斯化学株式会社 Prepreg, laminate sheet, metal foil-clad laminate sheet, printed wiring board, and multilayer printed wiring board

Similar Documents

Publication Publication Date Title
EP1310593A1 (en) Heat-resistant fibrous paper
JP3631385B2 (en) Laminate substrate and method for producing the same
JPH09228289A (en) Aromatic polyamide fiber paper
JPH1072752A (en) Nonwoven fabric base material for printed circuit board and prepreg using the same
US5858884A (en) Nonwoven fabric cloth substrate for printed wiring boards, and prepreg using the same
JP2002509588A (en) Aramid paper with improved solvent resistance and dimensionally stable laminates made therefrom
JP4580705B2 (en) Base material for electrical insulation, method for producing the same, and prepreg and printed wiring board using the base material
JPH09307203A (en) Printed circuit board and its manufacture
JPH0892394A (en) Prepreg for laminate formation and laminated plate
JPH06248572A (en) Glass cloth for fiber-reinforced composite material
JP2003217351A (en) Electric insulation paper
JP2001271287A (en) Sheet-shaped base material of aramid fiber for electric insulation and method for manufacturing the same
JPH11222798A (en) Substrate for printed circuit board, laminated sheet and their production
JP2844840B2 (en) Method for producing glass fiber substrate, glass fiber substrate and glass fiber reinforced resin laminate
JP3951601B2 (en) Manufacturing method for composite laminates
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JPH0977886A (en) Glass nonwoven fabric for laminated plate and laminated plate
JP2003292646A (en) Prepreg and laminate for printed circuit board composed thereof
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JPH01189985A (en) Electrical laminate
JPH10324755A (en) Resin impregnated substrate, its production, laminated sheet and its production
JPH1158610A (en) Manufacture of metal foil clad laminated sheet
JPH10235780A (en) Substrate for tape carrier package