JP3211608B2 - Manufacturing method of copper-clad laminate - Google Patents

Manufacturing method of copper-clad laminate

Info

Publication number
JP3211608B2
JP3211608B2 JP03417595A JP3417595A JP3211608B2 JP 3211608 B2 JP3211608 B2 JP 3211608B2 JP 03417595 A JP03417595 A JP 03417595A JP 3417595 A JP3417595 A JP 3417595A JP 3211608 B2 JP3211608 B2 JP 3211608B2
Authority
JP
Japan
Prior art keywords
copper
thickness
clad laminate
prepreg
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03417595A
Other languages
Japanese (ja)
Other versions
JPH08224832A (en
Inventor
幸一 伊藤
英人 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12406877&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3211608(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP03417595A priority Critical patent/JP3211608B2/en
Publication of JPH08224832A publication Critical patent/JPH08224832A/en
Application granted granted Critical
Publication of JP3211608B2 publication Critical patent/JP3211608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、銅張積層板の製法に関
し、具体的にはアラミド繊維不織布に樹脂を含浸、乾燥
して得たプリプレグを複数枚重ね、さらに銅箔を重ねて
被圧体とし、この被圧体を加熱加圧する銅張積層板の製
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper-clad laminate, and more specifically, a method in which a plurality of prepregs obtained by impregnating an aramid fiber non-woven fabric with a resin and drying, and further laminating a copper foil are subjected to pressure control. The present invention relates to a method for producing a copper-clad laminate in which a pressed body is heated and pressed.

【0002】[0002]

【従来の技術】従来、電子機器に収納される、半導体素
子等のチップを搭載するプリント回路板に使用される銅
張積層板としては、基材にガラス布を用いたエポキシ樹
脂積層板が汎用されているが、近年、軽量化、低誘電率
化、高密度化の要望から、基材にアラミド繊維不織布を
用いた銅張積層板が提案されている。一般には、プリン
ト回路板に半導体素子等の部品を表面実装方式で搭載す
ると、チップと回路との接続信頼性が問題となる。とこ
ろが、アラミド繊維不織布は、負の熱膨張係数を有し、
アラミド繊維不織布に付着したエポキシ樹脂やポリイミ
ド樹脂は正の熱膨張係数を有するので、両者の組合せ
は、前記の汎用エポキシ樹脂積層板に比べて小さい熱膨
張係数を有し、チップとの整合がとれるので、高い接続
信頼性を示す。
2. Description of the Related Art Conventionally, an epoxy resin laminate using a glass cloth as a base material is widely used as a copper-clad laminate used for a printed circuit board on which a chip such as a semiconductor element is housed in an electronic device. However, in recent years, a copper-clad laminate using an aramid fiber nonwoven fabric as a base material has been proposed due to demands for weight reduction, low dielectric constant, and high density. Generally, when components such as semiconductor elements are mounted on a printed circuit board by a surface mounting method, there is a problem in connection reliability between a chip and a circuit. However, aramid fiber nonwoven fabric has a negative coefficient of thermal expansion,
Since the epoxy resin or the polyimide resin attached to the aramid fiber nonwoven fabric has a positive coefficient of thermal expansion, the combination of both has a smaller coefficient of thermal expansion than the general-purpose epoxy resin laminate, and can be matched with the chip. So it shows high connection reliability.

【0003】しかしながら、アラミド繊維は樹脂との接
着力が低く、吸湿し易いために吸湿時の絶縁特性や耐熱
性が劣る点で問題であった。
[0003] However, aramid fibers have a problem in that they have low adhesive strength to resin and easily absorb moisture, and thus have poor insulation properties and heat resistance when absorbing moisture.

【0004】[0004]

【発明が解決しようとする課題】したがって、本発明の
目的は、熱膨張係数が小さく、且つ吸湿時の耐熱性が高
い、アラミド繊維を基材とした積層板の製法を提供する
ものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing a laminate based on aramid fiber, which has a small coefficient of thermal expansion and high heat resistance when absorbing moisture.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
銅張積層板の製法は、アラミド繊維不織布に樹脂を含
浸、乾燥して得たプリプレグに銅箔を重ねて被圧体と
し、この被圧体を20〜50kg/cm 2 の圧力で成形
して上記プリプレグの硬化した板厚が上記プリプレグの
厚みの60〜80%になるまで加熱加圧すると共に、ア
ラミド繊維不織布がポリパラフェニレンテレフタラミド
又はコポリパラフェニレン3.4’オキシジフェニレン
テレフタラミドから成るアラミド繊維製の不織布を用い
ことを特徴とするものである。
According to a method of manufacturing a copper-clad laminate according to claim 1 of the present invention, a copper foil is stacked on a prepreg obtained by impregnating a resin with an aramid fiber non-woven fabric and drying it, thereby forming a pressure-receiving body. This pressed body is formed at a pressure of 20 to 50 kg / cm 2.
While heating and pressing until the cured prepreg has a thickness of 60 to 80% of the thickness of the prepreg ,
Lamid fiber non-woven fabric is polyparaphenylene terephthalamide
Or copolyparaphenylene 3.4 'oxydiphenylene
Using nonwoven fabric made of aramid fiber composed of terephthalamide
It is characterized in that that.

【0006】本発明の請求項2に係る銅張積層板の製法
は、請求項1の銅張積層板の製法において、上記アラミ
ド繊維不織布として、50〜80g/m2 で厚みが90
〜160μmの不織布を用いた点に特徴を有するもので
ある。
According to a second aspect of the present invention, there is provided a method for producing a copper-clad laminate according to the first aspect, wherein the aramid fiber nonwoven fabric has a thickness of 50 to 80 g / m 2 and a thickness of 90.
It is characterized in that a nonwoven fabric of up to 160 μm is used.

【0007】本発明の請求項3に係る銅張積層板の製法
は、請求項1又は請求項2の銅張積層板の製法におい
て、上記プリプレグとして、樹脂量が50〜60wt%
で、樹脂流れが5〜15wt%で、厚みが100〜17
0μmのプリプレグを用いた点に特徴を有するものであ
る。
According to a third aspect of the present invention, there is provided the method for producing a copper-clad laminate according to the first or second aspect, wherein the prepreg has a resin content of 50 to 60 wt%.
And the resin flow is 5 to 15 wt% and the thickness is 100 to 17
It is characterized in that a prepreg of 0 μm is used.

【0008】本発明の請求項4に係る銅張積層板の製法
は、請求項1又は請求項3いずれかの銅張積層板の製法
において、上記樹脂として、エポキシ樹脂を用いること
を特徴とするものである。
According to a fourth aspect of the present invention, in the method for producing a copper-clad laminate according to the first or third aspect, an epoxy resin is used as the resin. Things.

【0009】[0009]

【作用】本発明の請求項1乃至請求項4の銅張積層板の
製法によると、アラミド繊維不織布に樹脂を含浸、乾燥
して得たプリプレグに銅箔を重ねて被圧体とし、この被
圧体を上記プリプレグの硬化した板厚が上記プリプレグ
の厚みの60〜80%になるまで加熱加圧すると、熱膨
張係数が小さく、且つ吸湿時の耐熱性が高いアラミド繊
維を基材とした積層板を製造することができる。
According to the method for producing a copper-clad laminate according to any one of the first to fourth aspects of the present invention, a prepreg obtained by impregnating a resin with an aramid fiber nonwoven fabric and drying is laminated with a copper foil to form a pressure-receiving body. When the pressure body is heated and pressed until the cured prepreg has a cured plate thickness of 60 to 80% of the thickness of the prepreg, the laminate is made of aramid fiber having a low coefficient of thermal expansion and high heat resistance when absorbing moisture. Boards can be manufactured.

【0010】以下、本発明を詳しく説明する。積層板の
基材として用いるアラミド繊維不織布としては、特に限
定する趣旨ではないが、たとえばPoly(p−phe
nylene terephtalamide)やCo
−poly(p−phenylene 3,4, −ox
ydiphelylene terephtalami
de)から成るアラミド繊維製の不織布を用いることが
できる。熱分解開始温度は前者が560℃、後者は50
0℃であり、熱収縮開始温度は前者が400℃、後者が
200℃であって、耐熱性の観点からは前者のPoly
(p−phenylene terephtalami
de)が望ましい。
Hereinafter, the present invention will be described in detail. The aramid fiber nonwoven fabric used as the base material of the laminate is not particularly limited, but may be, for example, Poly (p-phe).
nylon terephthalamide) or Co
-Poly (p-phenylene 3,4 , -ox
ydiphenylene terephtalami
a) a non-woven fabric made of aramid fibers can be used. The thermal decomposition onset temperature is 560 ° C for the former and 50 for the latter.
0 ° C., and the thermal shrinkage onset temperature is 400 ° C. for the former and 200 ° C. for the latter. From the viewpoint of heat resistance, the former is Poly.
(P-phenylene terephtalami
de) is desirable.

【0011】このアラミド繊維不織布は、本発明によっ
て得られる銅張積層板のプリント回路加工の際に、絶縁
層の厚みが少なくとも100μm前後が電気設計上又は
プリント加工上、省力的である点すからすれば、坪量5
0〜80g/m2 、厚み90〜160μmが望ましい。
This nonwoven fabric of aramid fiber is characterized in that when the printed circuit processing of the copper-clad laminate obtained by the present invention is performed, the thickness of the insulating layer is at least about 100 μm, which is energy saving in electrical design or printing. If you do, basis weight 5
Desirably, the thickness is from 0 to 80 g / m 2 and the thickness is from 90 to 160 μm.

【0012】このアラミド繊維不織布から成る基材に含
浸する樹脂としては、たとえば、エポキシ樹脂、ポリイ
ミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂等
の熱硬化性樹脂やポリフェニレンオキサイド樹脂や弗素
樹脂等の熱可塑性樹脂を用いることができる。これらの
中でもエポキシ樹脂はアラミド繊維との接着性や電気的
特性の点から最適である。
Examples of the resin impregnated in the substrate made of the nonwoven fabric of aramid fiber include thermosetting resins such as epoxy resin, polyimide resin, phenol resin and unsaturated polyester resin, and thermoplastic resins such as polyphenylene oxide resin and fluorine resin. Resin can be used. Among them, epoxy resin is most suitable in view of adhesiveness to aramid fiber and electric characteristics.

【0013】この樹脂をアラミド繊維不織布に含浸し、
乾燥して半硬化したBステージのプリプレグを得る。こ
のプリプレグは、樹脂量が50〜60wt%で、樹脂流
れが5〜15wt%、厚みが100〜170μmのプリ
プレグが望ましい。すなわち、50wt%よりも樹脂量
が少ないと熱膨張率を低下させることができるものの、
半田付け処理に耐え得る耐熱性とエッチング処理に耐え
うる耐薬品性に著しく劣るだけでなく、アラミド繊維不
織布との接着力も低下し、60wt%を越えると低熱膨
張率を実現できないだけでなく耐熱性と板厚のバラツキ
が増大し、熱膨張率のバラツキが大となり、樹脂流れが
上下限をはずれると、加熱加圧の際に樹脂の流出が増大
し、その結果、吸湿量が増大し電気的特性の低下が起こ
るからである。
This resin is impregnated in an aramid fiber non-woven fabric,
A dried and semi-cured B-stage prepreg is obtained. The prepreg preferably has a resin amount of 50 to 60 wt%, a resin flow of 5 to 15 wt%, and a thickness of 100 to 170 μm. That is, if the amount of resin is less than 50 wt%, the coefficient of thermal expansion can be reduced,
Not only is the heat resistance that can withstand the soldering process and the chemical resistance that can withstand the etching process remarkably inferior, but also the adhesive strength with the aramid fiber nonwoven fabric is reduced. If it exceeds 60 wt%, not only a low coefficient of thermal expansion cannot be realized, but also heat resistance When the resin flow deviates from the upper and lower limits, the outflow of the resin increases during heating and pressing, and as a result, the amount of moisture absorption increases, This is because the characteristics are deteriorated.

【0014】上記のプリプレグを必要に応じて複数枚重
ね、さらにこの上に銅箔を重ねて被圧体とし、この被圧
体をプリプレグの厚みが60〜80%になるまで加熱加
圧して、目的とする銅張積層板を得る。プリプレグの厚
みが60〜80%になるまで薄くするための加熱加圧条
件は、使用する樹脂の種類により異なるのは当然である
が、エポキシ樹脂を一例にとれば、170℃前後の温度
で20〜50kg/cm2 の圧力で成形するのが適当で
ある。
A plurality of the above-mentioned prepregs are stacked as required, and a copper foil is further stacked thereon to form a pressurized body. The pressurized body is heated and pressed until the thickness of the prepreg becomes 60 to 80%. Obtain the desired copper-clad laminate. The heating and pressing conditions for reducing the thickness of the prepreg to 60 to 80% naturally depend on the type of the resin used. It is appropriate to mold at a pressure of 5050 kg / cm 2 .

【0015】[0015]

【実施例】以下、実施例と比較例を挙げる。EXAMPLES Examples and comparative examples will be described below.

【0016】(実施例1)アラミド繊維不織布として、
Poly(p−phenylene terephta
lamide)から成る、秤量72g/cm2 、厚み1
30μmのデュポン社製のサマウント(商標)を用い
た。このアラミド繊維不織布に含浸するエポキシ樹脂に
ついては、クレゾールノボラック型エポキシ樹脂10重
量部(以下、部と記す)臭素化ビスフェノールA型エポ
キシ樹脂3部、硬化剤としてジシアンジアミド0.5
部、硬化促進剤としてベンジルメチルアミン0.2部、
溶剤としてメチルエチルケトン50部の割合で配合して
ワニスを調製した。このワニスを用いてアラミド繊維不
織布に含浸乾燥してプリプレグを得た。このプリプレグ
は、樹脂量が54wt%で厚み140μmであった。な
お、このプリプレグの樹脂流れを測定したところ、10
wt%であった。
(Example 1) As an aramid fiber nonwoven fabric,
Poly (p-phenylene terephta)
amide, weighing 72 g / cm 2 , thickness 1
A 30 μm Summount (trademark) manufactured by DuPont was used. Regarding the epoxy resin impregnated in the aramid fiber nonwoven fabric, 10 parts by weight of cresol novolak type epoxy resin (hereinafter, referred to as "part"), 3 parts of brominated bisphenol A type epoxy resin, and dicyandiamide 0.5 as a curing agent
Parts, 0.2 parts of benzylmethylamine as a curing accelerator,
A varnish was prepared by mixing 50 parts of methyl ethyl ketone as a solvent. Using this varnish, the aramid fiber nonwoven fabric was impregnated and dried to obtain a prepreg. This prepreg had a resin amount of 54 wt% and a thickness of 140 μm. When the resin flow of this prepreg was measured, 10
wt%.

【0017】このプリプレグを4枚重ねて両面に厚さ3
5μmの銅箔を置いて被圧体とし、被圧体を170℃、
30kg/cm2 の圧力で120分加熱加圧成形し、本
発明の銅張積層板を得た。
[0017] Four prepregs are stacked, and the thickness is 3
A 5 μm copper foil is placed on the object to be pressed, and the object to be pressed is 170 ° C.
It was heated and pressed at a pressure of 30 kg / cm 2 for 120 minutes to obtain a copper-clad laminate of the present invention.

【0018】この銅張積層板の銅箔を除いた後の絶縁層
の厚みは0.4mmであって、加熱加圧前のプリプレグ
の厚みを基準にすると、71.4%に相当するものであ
った。この銅張積層板の銅箔を除去してプリプレグの硬
化した絶縁層の熱膨張係数を測定したところ、8×10
-6/℃で、そのバラツキは2×10-6/℃であった。
The thickness of the insulating layer of this copper-clad laminate after removing the copper foil is 0.4 mm, which is equivalent to 71.4% based on the thickness of the prepreg before heating and pressing. there were. The copper foil of this copper-clad laminate was removed, and the thermal expansion coefficient of the cured insulating layer of the prepreg was measured.
At −6 / ° C., the variation was 2 × 10 −6 / ° C.

【0019】また、この銅張積層板の耐熱性を試験した
ところ、プレッシャークッカー処理(2atm−3h
r)後、260℃の半田槽に浸漬しても異常はなかっ
た。
Further, when the heat resistance of the copper clad laminate was tested, the pressure cooker treatment (2 atm-3 h) was performed.
After r), there was no abnormality even when immersed in a solder bath at 260 ° C.

【0020】さらに、この銅張積層板を吸水処理した後
の沿層絶縁抵抗を測定したところ、1013Ωであった。
なお、この銅張積層板のその他の物性乃至性能の詳細を
含め、(表1)に示した。
Further, when the copper-clad laminate was subjected to a water-absorbing treatment and the insulation resistance along the layer was measured, it was 10 13 Ω.
In addition, the details of other physical properties and performances of the copper-clad laminate are shown in (Table 1).

【0021】(実施例2)実施例1のアラミド繊維不織
布を用い、ポリイミド樹脂としてチバガイギー社製のケ
ルイミド601(商標)100部、溶媒としてN−メチ
ルピロリドン50部の組成を有するワニスを含浸乾燥
し、プリプレグを得た。このプリプレグは、樹脂量が5
4%で厚み140μmであった。なお、樹脂流れを測定
したところ、6wt%であった。
(Example 2) Using the aramid fiber nonwoven fabric of Example 1, a varnish having a composition of 100 parts of Kelimide 601 (trademark) manufactured by Ciba-Geigy Corporation as a polyimide resin and 50 parts of N-methylpyrrolidone as a solvent was impregnated and dried. And prepreg were obtained. This prepreg has a resin amount of 5
The thickness was 140 μm at 4%. When the resin flow was measured, it was 6 wt%.

【0022】このプリプレグを4枚重ねて、さらに両面
に厚さ35μmの銅箔を置いて200℃で30kg/c
2 の圧力で150分加熱加圧成形し、本発明の銅張積
層板を得た。この銅張積層板から両面の銅箔を除去して
絶縁層の厚みを測定したところ、0.42mmで加熱加
圧前のプリプレグの厚みを基準にすると、75%であっ
た。また、この銅張積層板の物性、性能は(表1)に示
す通りであった。
Four prepregs are stacked, and a copper foil having a thickness of 35 μm is placed on both sides thereof.
It was heated and pressed at a pressure of m 2 for 150 minutes to obtain a copper-clad laminate of the present invention. The copper foil on both surfaces was removed from the copper-clad laminate, and the thickness of the insulating layer was measured. The thickness was 0.42 mm, which was 75% based on the thickness of the prepreg before heating and pressing. The physical properties and performance of this copper-clad laminate were as shown in (Table 1).

【0023】(実施例3)実施例1のアラミド繊維不織
布とエポキシ樹脂を用いて、アラミド繊維不織布にエポ
キシ樹脂を含浸乾燥してプリプレグを得た。このプリプ
レグの樹脂量、厚み等は(表1)に示すとおりであっ
た。このプリプレグを4枚重ね、さらに両面に銅箔をお
いて被圧体とし、この被圧体を加熱加圧成形して銅張積
層板を得た。この銅張積層板から両面の銅箔を除去して
絶縁層の厚みを測定したところ、0.35mmで、加熱
加圧前のプリプレグの厚みを基準にすると、64.8%
であった。
Example 3 Using the aramid fiber nonwoven fabric of Example 1 and an epoxy resin, the aramid fiber nonwoven fabric was impregnated with an epoxy resin and dried to obtain a prepreg. The resin amount, thickness and the like of this prepreg were as shown in (Table 1). Four prepregs were stacked, and copper foil was placed on both sides to form a pressure-receiving body. The pressure-receiving body was heated and pressed to obtain a copper-clad laminate. When the copper foil on both sides was removed from the copper-clad laminate and the thickness of the insulating layer was measured, it was 0.35 mm, which was 64.8% based on the thickness of the prepreg before heating and pressing.
Met.

【0024】(実施例4)アラミド繊維不織布として、
Co−poly(p−phenylene 3,4,
oxydiphelylene terephtala
mide)から成る、秤量72g/cm2 、厚み140
μmの帝人(株)製のテクノーラ(商標)を用いた。こ
のアラミド繊維不織布に実施例1のエポキシ樹脂を含浸
乾燥してプリプレグを得た。このプリプレグの樹脂量、
厚み等は(表1)に示すとおりであった。このプリプレ
グを4枚重ね、さらに両面に厚さ35μmの銅箔を置い
て被圧体とし、この被圧体を170℃で40kg/cm
2 で120分加熱加圧成形し、銅張積層板を得た。この
銅張積層板から両面の銅箔を除去して絶縁層の厚みを測
定したところ、0.45mmで、加熱加圧前のプリプレ
グの厚みを基準にすると、70.3%であった。
Example 4 As an aramid fiber nonwoven fabric,
Co-poly (p-phenylene 3,4 , -
oxydiphenylene terephthala
weighing 72 g / cm 2 , thickness 140
μm Technora (trademark) manufactured by Teijin Limited was used. The aramid fiber nonwoven fabric was impregnated with the epoxy resin of Example 1 and dried to obtain a prepreg. The amount of resin in this prepreg,
The thickness and the like were as shown in (Table 1). Four prepregs are stacked, and a copper foil having a thickness of 35 μm is placed on both surfaces to form a pressure-receiving body.
The resulting mixture was heated and pressed at 120 for 120 minutes to obtain a copper-clad laminate. The copper foil on both surfaces was removed from the copper-clad laminate, and the thickness of the insulating layer was measured. The thickness was 0.45 mm, which was 70.3% based on the thickness of the prepreg before heating and pressing.

【0025】(比較例1)実施例1のプリプレグを4枚
重ねて、両面に厚さ35μmの銅箔をおいて被圧体と
し、この被圧体を170℃で70kg/cm2 で120
分加熱加圧成形して銅張積層板とした。この銅張積層板
から両面の銅箔を除去して絶縁層の厚みを測定したとこ
ろ、0.35mmで、加熱加圧前のプリプレグの厚みを
基準にすると、62.5%であった。この絶縁層の熱膨
張係数は8×10-6/℃で、そのバラツキは3×10-6
/℃で、バラツキは実施例1の絶縁層と比べると大であ
った。また、この銅張積層板の耐熱性を試験したとこ
ろ、プレッシャークッカー処理(2atm−3hr)
後、260℃の半田槽に浸漬すると、20秒でフクレが
発生した。沿層絶縁抵抗は吸水処理後109 Ωまで劣化
した。なお、この銅張積層板の物性、性能は(表1)に
示す通りであった。
(Comparative Example 1) Four prepregs of Example 1 were overlaid, and a copper foil having a thickness of 35 μm was placed on both sides to form a pressurized body. The pressurized body was heated at 170 ° C. and 70 kg / cm 2 at 120 kg / cm 2 .
It was heated and pressed for a minute to obtain a copper-clad laminate. The copper foil on both sides was removed from the copper-clad laminate, and the thickness of the insulating layer was measured. The thickness was 0.35 mm, which was 62.5% based on the thickness of the prepreg before heating and pressing. The thermal expansion coefficient of this insulating layer is 8 × 10 −6 / ° C., and its variation is 3 × 10 −6.
At / ° C., the variation was larger than that of the insulating layer of Example 1. When the heat resistance of this copper-clad laminate was tested, a pressure cooker treatment (2 atm-3 hr) was performed.
After that, when it was immersed in a solder bath at 260 ° C., blisters occurred in 20 seconds. Coastal insulation resistance deteriorated to 10 9 Ω after the water absorption treatment. The physical properties and performance of the copper clad laminate were as shown in (Table 1).

【0026】(比較例2)実施例1のアラミド繊維不織
布と実施例1のエポキシ樹脂を用いてエポキシ樹脂を含
浸乾燥してプリプレグを得た。このプリプレグは樹脂量
54wt%で厚み140μmであった。なお樹脂流れに
ついては40wt%と増大していた。このプリプレグを
4枚重ねて、両面に厚さ35μmの銅箔を置いて被圧体
とし、この被圧体を実施例1と同一の条件で加熱加圧成
形して銅張積層板を得た。この銅張積層板の銅箔を除去
した絶縁層の厚みは0.30μmで、加熱加圧前のプリ
プレグの厚みを基準にすると53.5%であった。
Comparative Example 2 The prepreg was obtained by impregnating and drying the epoxy resin using the aramid fiber nonwoven fabric of Example 1 and the epoxy resin of Example 1. This prepreg had a resin amount of 54 wt% and a thickness of 140 μm. The resin flow was increased to 40 wt%. Four prepregs were laminated, and a copper foil having a thickness of 35 μm was placed on both surfaces to form a pressure-receiving body. The pressure-receiving body was heated and pressed under the same conditions as in Example 1 to obtain a copper-clad laminate. . The thickness of the insulating layer of the copper-clad laminate from which the copper foil had been removed was 0.30 μm, and was 53.5% based on the thickness of the prepreg before heating and pressing.

【0027】この絶縁層の熱膨張係数は7×10-6/℃
で、そのバラツキは4×10-6/℃で、バラツキは実施
例1の絶縁層と比べると大であった。また、この銅張積
層板の耐熱性を試験したところ、プレッシャークッカー
処理(2atm−3hr)後、260℃の半田槽に浸漬
すると20秒でフクレが発生した。沿層絶縁抵抗は吸水
処理後109 Ωまで劣化した。なお、この銅張積層板の
物性、性能は(表1)に示す通りであった。
The thermal expansion coefficient of this insulating layer is 7 × 10 −6 / ° C.
The variation was 4 × 10 −6 / ° C., and the variation was larger than that of the insulating layer of Example 1. Further, when the heat resistance of this copper-clad laminate was tested, blistering occurred in 20 seconds when immersed in a solder bath at 260 ° C. after the pressure cooker treatment (2 atm-3 hr). Coastal insulation resistance deteriorated to 10 9 Ω after the water absorption treatment. The physical properties and performance of the copper clad laminate were as shown in (Table 1).

【0028】なお、(表1)には、それぞれの性質、性
能、物性に関して実施した測定方法を付記した。
Table 1 shows the measurement methods used for the properties, performances, and physical properties.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明の請求項1乃至請求項4に係る銅
張積層板の製法によると、熱膨張係数が小さく、且つ吸
湿時の耐熱性が高い、アラミド繊維を基材とした銅張積
層板を得ることができる。
According to the method for producing a copper-clad laminate according to any one of the first to fourth aspects of the present invention, a copper-clad laminate having an aramid fiber as a base material has a small coefficient of thermal expansion and a high heat resistance when absorbing moisture. A laminate can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H05K 1/03 610 B29K 105:08 B29K 105:08 B29L 9:00 B29L 9:00 C08L 63:00 C08L 63:00 77:10 77:10 B29C 67/14 G (56)参考文献 特開 平3−221537(JP,A) 特開 平3−296535(JP,A) 特開 平3−268929(JP,A) 特公 昭49−2018(JP,B1) 特公 昭60−52937(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B32B 15/00 - 15/20 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI H05K 1/03 610 B29K 105: 08 B29K 105: 08 B29L 9:00 B29L 9:00 C08L 63:00 C08L 63:00 77:10 77:10 B29C 67 / 14G (56) References JP-A-3-221537 (JP, A) JP-A-3-296535 (JP, A) JP-A-3-268929 (JP, A) Japanese Patent Publication No. 49 -2018 (JP, B1) JP 60-52937 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B32B 15/00-15/20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アラミド繊維不織布に樹脂を含浸、乾燥
して得たプリプレグに銅箔を重ねて被圧体とし、この被
圧体を20〜50kg/cm 2 の圧力で成形して上記プ
リプレグの硬化した板厚が上記プリプレグの厚みの60
〜80%になるまで加熱加圧すると共に、アラミド繊維
不織布がポリパラフェニレンテレフタラミド又はコポリ
パラフェニレン3.4’オキシジフェニレンテレフタラ
ミドから成るアラミド繊維製の不織布を用いることを特
徴とする銅張積層板の製法。
A prepreg obtained by impregnating a resin with an aramid fiber non-woven fabric and drying it is overlaid with a copper foil to form a pressurized body, and the pressurized body is molded at a pressure of 20 to 50 kg / cm 2 to form a prepreg. The cured plate thickness is 60 times the thickness of the prepreg.
Aramid fiber while heating and pressurizing to ~ 80%
Non-woven fabric is polyparaphenylene terephthalamide or copoly
Paraphenylene 3.4 'oxydiphenylene terephthala
A method for producing a copper-clad laminate, comprising using an aramid fiber nonwoven fabric made of amide .
【請求項2】 上記アラミド繊維不織布として、50〜
80g/m2 で厚みが90〜160μmの不織布を用い
る請求項1の銅張積層板の製法。
2. The aramid fiber nonwoven fabric according to claim 1, wherein
Preparation of copper-clad laminate of claim 1 having a thickness using nonwoven fabric of 90~160μm in 80 g / m 2.
【請求項3】 上記プリプレグとして、樹脂量が50〜
60wt%で、厚みが100〜170μmのプリプレグ
を用いる請求項1又は請求項2の銅張積層板の製法。
3. The method according to claim 1, wherein the prepreg has a resin content of 50 to 50.
The method for producing a copper-clad laminate according to claim 1 or 2, wherein a prepreg having a thickness of 100 to 170 m is used at 60 wt%.
【請求項4】 上記樹脂がエポキシ樹脂である請求項1
乃至請求項3いずれかの銅張積層板の製法。
4. The method according to claim 1, wherein said resin is an epoxy resin.
A method for producing a copper-clad laminate according to any one of claims 3 to 3.
JP03417595A 1995-02-23 1995-02-23 Manufacturing method of copper-clad laminate Expired - Fee Related JP3211608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03417595A JP3211608B2 (en) 1995-02-23 1995-02-23 Manufacturing method of copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03417595A JP3211608B2 (en) 1995-02-23 1995-02-23 Manufacturing method of copper-clad laminate

Publications (2)

Publication Number Publication Date
JPH08224832A JPH08224832A (en) 1996-09-03
JP3211608B2 true JP3211608B2 (en) 2001-09-25

Family

ID=12406877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03417595A Expired - Fee Related JP3211608B2 (en) 1995-02-23 1995-02-23 Manufacturing method of copper-clad laminate

Country Status (1)

Country Link
JP (1) JP3211608B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025177B2 (en) 2001-11-26 2007-12-19 三井金属鉱業株式会社 Method for producing copper foil with insulating layer
CN108908964B (en) * 2018-07-06 2020-07-31 江阴奥派希莫科技复合材料有限公司 Method for manufacturing fiber reinforced resin matrix composite laminated board

Also Published As

Publication number Publication date
JPH08224832A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
US6673190B2 (en) Lasable bond-ply materials for high density printed wiring boards
JP3119577B2 (en) Laminated board
US20040170795A1 (en) Lasable bond-ply materials for high density printed wiring boards
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JPH11131385A (en) Substrate for laminated plate, its production, prepreg and laminated board
JP3343443B2 (en) Resin composition and prepreg
JP2503601B2 (en) Laminate
KR102041665B1 (en) Adhesive composition for cupper clad laminate
JP2510065B2 (en) Manufacturing method of electronic circuit package
JP4168736B2 (en) Insulating sheet with metal foil and multilayer wiring board for manufacturing multilayer wiring board
JPH08283436A (en) Prepreg and copper-clad laminate board
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP2675810B2 (en) Manufacturing method of electric laminate
JP2001030279A (en) Manufacture of laminated sheet
JPH05309789A (en) Production of composite copper clad laminated sheet
JP3883727B2 (en) Aramid fiber base insulation board and printed wiring board
JP3364782B2 (en) Prepreg and laminate for printed wiring board production
JP3323873B2 (en) Composite copper-clad laminate
JP3227874B2 (en) Manufacturing method of laminated board
JP2003313272A (en) Epoxy resin composition for impregnating organic fiber base material, and prepreg, laminated sheet, and printed- wiring board using the same
JPH1171564A (en) Adhesive composition for metal foil and adhesive-having metal foil using the same, metal-clad laminate
JP2004115746A (en) Prepreg, insulation layer, metal-clad laminated board and printed circuit board
JPH10266055A (en) Resin fiber nonwoven fabric for electrical insulation, its production and laminated board and prepreg
JPH11228669A (en) Epoxy resin composition, prepreg, copper-clad laminate and multilayer laminate
JP3227969B2 (en) Manufacturing method of multilayer laminate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees