JPH1064867A - Method and device for cleaning a variety of electronic component members - Google Patents

Method and device for cleaning a variety of electronic component members

Info

Publication number
JPH1064867A
JPH1064867A JP8237294A JP23729496A JPH1064867A JP H1064867 A JPH1064867 A JP H1064867A JP 8237294 A JP8237294 A JP 8237294A JP 23729496 A JP23729496 A JP 23729496A JP H1064867 A JPH1064867 A JP H1064867A
Authority
JP
Japan
Prior art keywords
cleaning
ultrapure water
gas
cleaning liquid
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8237294A
Other languages
Japanese (ja)
Other versions
JP3296405B2 (en
Inventor
Takayuki Imaoka
孝之 今岡
Kofuku Yamashita
幸福 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURON TEC KK
Organo Corp
Original Assignee
FURON TEC KK
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17013243&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1064867(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FURON TEC KK, Organo Corp, Japan Organo Co Ltd filed Critical FURON TEC KK
Priority to JP23729496A priority Critical patent/JP3296405B2/en
Priority to US09/242,601 priority patent/US6290777B1/en
Priority to PCT/JP1997/002852 priority patent/WO1998008248A1/en
Priority to CNB2004100020073A priority patent/CN1299333C/en
Priority to CNB971973342A priority patent/CN1163946C/en
Priority to KR10-1999-7001345A priority patent/KR100424541B1/en
Priority to TW086111903A priority patent/TW348078B/en
Publication of JPH1064867A publication Critical patent/JPH1064867A/en
Priority to JP2000352815A priority patent/JP3409849B2/en
Publication of JP3296405B2 publication Critical patent/JP3296405B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the readhesion of fine particles by electric repulsion by cleaning a variety of electronic parts members in cleaning liquid having negative oxidation-reduction potential, where hydrogen gas is dissolved in ultrapure water. SOLUTION: Hydrogen gas is dissolved with a gas dissolving bath 2 into ultrapure water where dissolved oxygen gas, nitrogen gas, carbon dioxide gas, etc., are degasified with a degasifier 5 so as to make it have oxygen-reduction potential, and the ultrapure water is sent from a supply 13 to a pH adjusting bath 3 to adjust pH, and then it is sent to a cleaning bath 4. Then, the fine particles at the surface of a wafer are cleaned off in cleaning liquid which has negative oxidation-reduction potential by dissolving hydrogen gas in ultrapure water, and it is rinsed in ultrapure water immediately. Hereby, the fine particles on the surface of a silicon wafer can be removed effectively with lower pH, and a large quantity of ammonium water need not be consumed, and the roughening of the surface of the silicon wafer by alkali can be prevented, and in its turn, the material and the waste solution processing cost can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体基板、ガラス
基板、電子部品、或いはこれらの製造装置部品等の如き
電子部品部材類の洗浄方法及び洗浄装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for cleaning electronic parts such as a semiconductor substrate, a glass substrate, an electronic part, and parts for manufacturing these components.

【0002】[0002]

【従来の技術】LSI等の電子部品部材類の製造工程等
においては、表面を極めて清浄にすることが求められる
ことがある。例えばLSIは、シリコンウエハ上に酸化
ケイ素の絶縁被膜を形成し、次いでこの被膜上に所定の
パターンにレジスト層を設け、レジスト層を設けていな
い部分の絶縁被膜をエッチング等によって除去して金属
シリコンを露出させ、この表面を洗浄した後、目的に応
じてp型あるいはn型の元素を導入し、アルミニウム等
の金属配線を埋め込む工程(リソグラフィプロセス)を
繰り返して素子が製造されるが、p型、n型の元素を導
入する際や金属配線を埋め込む際に、金属シリコン表面
に、微粒子等の異物や、金属、有機物、自然酸化膜等が
付着していると、金属シリコンと金属配線との接触不良
や接触抵抗増大により、素子の特性が不良となることが
ある。このためLSI製造工程において、シリコンウエ
ハ表面の洗浄工程は高性能な素子を得る上で、非常に重
要な工程であり、シリコンウエハ上の付着不純物は可能
な限り取り除くことが必要である。
2. Description of the Related Art In the process of manufacturing electronic parts such as LSIs, it is sometimes required to make the surface extremely clean. For example, in LSI, a silicon oxide insulating film is formed on a silicon wafer, a resist layer is provided in a predetermined pattern on the silicon film, and the insulating film in a portion where the resist layer is not provided is removed by etching or the like to remove metal silicon. After exposing the surface and cleaning the surface, a step (lithography process) of introducing a p-type or n-type element according to the purpose and embedding a metal wiring such as aluminum is repeated to manufacture an element. When introducing an n-type element or embedding metal wiring, if foreign matter such as fine particles, metal, organic matter, natural oxide film, etc. adhere to the metal silicon surface, the metal silicon and the metal wiring may Due to poor contact or increased contact resistance, the characteristics of the device may be poor. Therefore, in the LSI manufacturing process, the step of cleaning the surface of the silicon wafer is a very important step in obtaining a high-performance device, and it is necessary to remove impurities adhering to the silicon wafer as much as possible.

【0003】従来、シリコンウエハの洗浄は、硫酸・過
酸化水素水混合溶液、塩酸・過酸化水素水混合溶液、フ
ッ酸溶液、フッ化アンモニウム溶液等による洗浄と、超
純水による洗浄とを組み合わせて行い、シリコンウエハ
表面の原子レベルでの平坦性を損なうことなく、シリコ
ンウエハ表面に付着している有機物、微粒子、金属、自
然酸化膜等を除去している。
Conventionally, the cleaning of a silicon wafer is a combination of cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, a mixed solution of hydrochloric acid and hydrogen peroxide, a hydrofluoric acid solution, an ammonium fluoride solution, and the like, and cleaning with ultrapure water. This removes organic substances, fine particles, metals, natural oxide films and the like adhering to the silicon wafer surface without deteriorating the flatness of the silicon wafer surface at the atomic level.

【0004】以下の(1)〜(13)は、従来のシリコン
ウエハの洗浄工程の具体的な一例である。 (1)硫酸・過酸化水素洗浄工程;硫酸:過酸化水素水
=4:1(体積比)の混合溶液により、130℃で10
分洗浄。 (2)超純水洗浄工程;超純水で10分洗浄。 (3)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (4)超純水洗浄工程;超純水で10分洗浄。 (5)アンモニア・過酸化水素水洗浄工程;アンモニア
水:過酸化水素水:超純水=0.05:1:5(体積
比)の混合溶液により、80℃で10分洗浄。 (6)超純水洗浄工程;超純水で10分洗浄。 (7)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (8)超純水洗浄工程;超純水で10分洗浄。 (9)塩酸・過酸化水素水洗浄工程;塩酸:過酸化水素
水:超純水=1:1:6(体積比)の混合溶液により、
80℃で10分洗浄。 (10)超純水洗浄工程;超純水で10分洗浄。 (11)フッ酸洗浄工程;0.5%のフッ酸により1分洗
浄。 (12)超純水洗浄工程;超純水で10分洗浄。 (13)スピン乾燥又はIPA蒸気乾燥
The following (1) to (13) are specific examples of a conventional silicon wafer cleaning process. (1) Sulfuric acid / hydrogen peroxide washing step: a mixed solution of sulfuric acid: hydrogen peroxide = 4: 1 (volume ratio) at 130 ° C. for 10
Minute wash. (2) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (3) Hydrofluoric acid washing step; washing with 0.5% hydrofluoric acid for 1 minute. (4) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (5) Ammonia / hydrogen peroxide water washing step; washing with a mixed solution of ammonia water / hydrogen peroxide / ultra pure water = 0.05: 1: 5 (volume ratio) at 80 ° C. for 10 minutes. (6) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (7) Hydrofluoric acid washing step: washing with 0.5% hydrofluoric acid for 1 minute. (8) Ultrapure water washing step: washing with ultrapure water for 10 minutes. (9) Hydrochloric acid / hydrogen peroxide water washing step: a mixed solution of hydrochloric acid: hydrogen peroxide water: ultra pure water = 1: 1: 6 (volume ratio)
Wash at 80 ° C for 10 minutes. (10) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (11) Hydrofluoric acid washing step; washing with 0.5% hydrofluoric acid for 1 minute. (12) Ultrapure water washing step; washing with ultrapure water for 10 minutes. (13) Spin drying or IPA vapor drying

【0005】上記(1)の工程は、主にシリコンウエハ
表面に付着している有機物の除去を行うためのもの、
(5)の工程は、主にシリコンウエハ表面に付着してい
る微粒子を除去するためのもの、(9)の工程は、主に
シリコンウエハ表面の金属不純物を除去するためののも
のであり、また(3)、(7)、(11)の工程はシリ
コンウエハ表面の自然酸化膜を除去するために行うもの
である。尚、上記各工程における洗浄液には、上記した
主目的以外の他の汚染物質除去能力がある場合が多く、
例えば(1)の工程で用いる硫酸・過酸化水素水混合溶
液は、有機物の他に金属不純物の強力な除去作用も有し
ているため、上記したような各洗浄液によって異なる不
純物を除去する方法の他に、一種類の洗浄液で複数の不
純物を除去するようにした方法もある。
The step (1) is mainly for removing organic substances adhering to the surface of the silicon wafer,
The step (5) is mainly for removing fine particles adhering to the silicon wafer surface, and the step (9) is mainly for removing metal impurities on the silicon wafer surface. Steps (3), (7) and (11) are performed to remove the natural oxide film on the surface of the silicon wafer. In addition, the cleaning liquid in each of the above steps often has a contaminant removing ability other than the main purpose described above,
For example, the mixed solution of sulfuric acid and hydrogen peroxide used in the step (1) has a strong action of removing metal impurities in addition to organic substances. In addition, there is a method in which a plurality of impurities are removed with one type of cleaning liquid.

【0006】シリコンウエハの洗浄工程において、シリ
コンウエハ表面に洗浄液や超純水を接触させる方法とし
ては、一般に洗浄液や超純水を貯めた洗浄槽に複数のシ
リコンウエハを浸漬するバッチ洗浄法と呼ばれる方法が
採用されているが、洗浄液の汚染を防止するために洗浄
液を循環ろ過しながら洗浄する方法、洗浄液による処理
後の超純水によるすすぎ(リンス)方式として、超純水
を洗浄槽底部から供給して洗浄槽上部から溢れさせなが
ら行うオーバーフローリンス法、一旦ウエハ全面が超純
水に浸漬するまで洗浄槽内に超純水を貯めた後、一気に
超純水を洗浄槽底部から排出するクイックダンプリンス
法等も採用されている。また近年はバッチ洗浄法の他
に、ウエハ表面に洗浄液や超純水をシャワー状に吹き掛
けて洗浄する方法や、ウエハを高速回転させてその中央
に洗浄液や超純水を吹き掛けて洗浄する方法等の、所謂
枚葉洗浄法も採用されている。
In the silicon wafer cleaning step, a method of bringing a cleaning liquid or ultrapure water into contact with the silicon wafer surface is generally called a batch cleaning method in which a plurality of silicon wafers are immersed in a cleaning tank containing the cleaning liquid or ultrapure water. The method is adopted, but in order to prevent contamination of the cleaning liquid, the cleaning liquid is circulated and filtered, and the cleaning liquid is rinsed with ultrapure water (rinse). An overflow rinsing method that supplies and overflows from the top of the cleaning tank, a method of storing ultrapure water in the cleaning tank until the entire surface of the wafer is immersed in ultrapure water, and then discharging the ultrapure water from the bottom of the cleaning tank at once A dump rinse method is also employed. In recent years, in addition to the batch cleaning method, a method of spraying a cleaning liquid or ultrapure water on a wafer surface in a shower shape or cleaning the wafer by rotating the wafer at a high speed and spraying a cleaning liquid or ultrapure water on the center thereof. A so-called single wafer cleaning method such as a method is also employed.

【0007】上記洗浄液による各洗浄工程の後に行う、
超純水による洗浄はウエハ表面に残留する洗浄液等をす
すぐ(リンス)ために行うものである。このためリンス
に用いる超純水は微粒子、コロイド状物質、有機物、金
属イオン、陰イオン、溶存酸素等を極限レベルまで除去
した高純度の超純水が使用されている。この超純水は洗
浄液の溶媒としても用いられている。
After each cleaning step with the above-mentioned cleaning liquid,
The cleaning with ultrapure water is performed to rinse (rinse) the cleaning liquid and the like remaining on the wafer surface. For this reason, ultrapure water used for rinsing is high-purity ultrapure water from which fine particles, colloidal substances, organic substances, metal ions, anions, dissolved oxygen, and the like have been removed to an extremely low level. This ultrapure water is also used as a solvent for the cleaning liquid.

【0008】[0008]

【発明が解決しようとする課題】ところで、近年LSI
の集積度は飛躍的に向上し、このため初期の頃にはLS
I製造工程におけるリソグラフィプロセスが数回程度で
あったものが、20回から30回にも増大し、ウエハの
洗浄回数もリソグラフィプロセスの増大に伴って増加し
ている。このためウエハの洗浄に用いる洗浄液や超純水
の原材料コスト、使用後の洗浄液や超純水の処理コス
ト、更には高温での洗浄処理によってクリーンルーム内
に生じた洗浄液ガスをクリーンルーム内から排出するた
めのエアーコスト等が増大し、製品コストの増大につな
がっている。
By the way, in recent years, LSI
The integration of LS has been dramatically improved.
Although the number of lithography processes in the manufacturing process I was about several times, the number increased from 20 to 30 times, and the number of times of cleaning of the wafer also increased with the increase in the number of lithography processes. For this reason, the cost of the cleaning liquid and ultrapure water used for cleaning the wafer, the cost of processing the used cleaning liquid and ultrapure water, and the cleaning liquid gas generated in the clean room due to the high temperature cleaning process are discharged from the clean room. The air cost etc. of this product increase, which leads to an increase in product cost.

【0009】上記LSI製造工程において、シリコンウ
エハの表面に付着した微粒子は、LSIの歩留りを著し
く低下させるため、ウエハ表面からの微粒子の除去は特
に重要な課題である。従来シリコンウエハ表面に付着し
た微粒子を洗浄するには、アンモニア・過酸化水素水混
合溶液が用いられている。しかしながら、アンモニアと
過酸化水素とは反応してこれら以外の化学種が生成して
いるが、これらの化学種がどのような洗浄作用を示すか
は解明されておらず、アンモニア・過酸化水素水混合溶
液の組成、比率等をどのようにすれば最適な洗浄効果が
得られるかという科学的な知見は得られていない。この
ためウエハ表面の微粒子を確実に洗浄除去するために、
必要以上に高濃度のアンモニア・過酸化水素水混合溶液
を使用しているのが現状である。即ち、ウエハ表面の微
粒子を除去するには、通常、アルカリ溶液を用いてエッ
チングを行えば良いが、一旦、ウエハ表面に分離した微
粒子をウエハ表面に再付着させないようにする必要があ
る。再付着防止のためには、ウエハ表面と微粒子の表面
電位を同符号化し、電気的に反発させれば良く、そのた
めには洗浄液のpHを高くして強アルカリ性にする必要
があった。またこのように強アルカリ性薬液を用いると
ウエハ表面が必要以上に荒れるため、洗浄液に過酸化水
素水を添加し、過酸化水素水の作用で表面に酸化膜を形
成し、ウエハ表面の荒れを防ぐ必要があった。この結
果、必要以上に多量の薬品を消費するとともに、すすぎ
用の超純水の使用量増大や、排水処理コスト増大を伴う
という問題があった。
In the above-described LSI manufacturing process, fine particles adhering to the surface of the silicon wafer significantly reduce the yield of the LSI, and therefore, removal of the fine particles from the wafer surface is a particularly important problem. Conventionally, a mixed solution of ammonia and hydrogen peroxide has been used to clean fine particles attached to the surface of a silicon wafer. However, although ammonia and hydrogen peroxide react with each other to produce other chemical species, it has not been elucidated what cleaning action these chemical species exhibit. No scientific knowledge has been obtained on how to obtain the optimum cleaning effect by changing the composition, ratio, and the like of the mixed solution. Therefore, in order to surely remove the fine particles on the wafer surface,
At present, a mixed solution of ammonia and hydrogen peroxide having a higher concentration than necessary is used. That is, in order to remove the fine particles on the wafer surface, usually, etching may be performed using an alkali solution. However, it is necessary to prevent the fine particles once separated on the wafer surface from re-adhering to the wafer surface. In order to prevent re-adhesion, the surface potential of the wafer surface and the surface potential of the fine particles may be encoded in the same manner and electrically repelled. For this purpose, it is necessary to increase the pH of the cleaning solution to make it highly alkaline. In addition, since the wafer surface becomes unnecessarily rough when a strong alkaline chemical solution is used, hydrogen peroxide solution is added to the cleaning solution, and an oxide film is formed on the surface by the action of the hydrogen peroxide solution to prevent the wafer surface from being roughened. Needed. As a result, there has been a problem that a large amount of chemicals is consumed more than necessary, and that the use of ultrapure water for rinsing increases and the cost of wastewater treatment increases.

【0010】本発明者等は上記の問題点を解決するため
種々検討した結果、洗浄液の酸化還元電位に着目し、液
の酸化還元電位が表面電位にどのように影響を及ぼすか
につき研究を行った。その結果、液の酸化還元電位が還
元性の領域にある場合は、pHが中性付近でもウエハ表
面及び微粒子の表面電位をマイナスに帯電させることが
でき、電気的反発による微粒子の再付着防止を実現でき
るという知見を得、この知見に基づき本発明を完成する
に至った。
As a result of various studies to solve the above problems, the present inventors focused on the oxidation-reduction potential of the cleaning solution and conducted research on how the oxidation-reduction potential of the solution affects the surface potential. Was. As a result, when the oxidation-reduction potential of the liquid is in a reducing region, the surface potential of the wafer surface and the fine particles can be negatively charged even when the pH is near neutral, thereby preventing the fine particles from re-adhering due to electric repulsion. The inventors have found that the present invention can be realized, and have completed the present invention based on this finding.

【0011】本発明は、洗浄に要する洗浄液や超純水の
使用量の低減化に寄与でき、しかも従来よりも低温でも
確実な洗浄を行うことができる電子部品部材類の洗浄方
法及び洗浄装置を提供することを目的とするものであ
る。
The present invention provides a method and apparatus for cleaning electronic parts and components that can contribute to a reduction in the amount of cleaning liquid or ultrapure water required for cleaning and that can perform more reliable cleaning even at a lower temperature than before. It is intended to provide.

【0012】[0012]

【課題を解決するための手段】本発明は、(1)電子部
品部材類を、超純水に水素ガスを溶解してなり、負の酸
化還元電位を有する洗浄液により洗浄することを特徴と
する電子部品部材類の洗浄方法、(2)洗浄液が、0.
05ppm以上の水素ガスを溶解していることを特徴と
する(1)記載の電子部品部材類の洗浄方法、(3)洗
浄液のpHが7以上、11未満であることを特徴とする
(1)又は(2)記載の電子部品部材類の洗浄方法、
(4)洗浄液は、溶存ガス濃度が10ppm未満となる
ように脱ガスされた超純水を用いるものである(1)〜
(3)のいずれかに記載の電子部品部材類の洗浄方法、
(5)超音波を照射しながら洗浄することを特徴とする
(1)〜(4)のいずれかに記載の電子部品部材類の洗
浄方法、(6)洗浄液が、更に稀ガスを溶解しているこ
とを特徴とする(5)記載の電子部品部材類の洗浄方
法、(7)洗浄液の温度を、20℃〜60℃に温度調節
して洗浄することを特徴とする(1)〜(6)のいずれ
かに記載の電子部品部材類の洗浄方法、(8)超純水製
造装置と、超純水中に水素ガスを溶解させるためのガス
溶解手段と、超純水に水素ガスを溶解してなる、負の酸
化還元電位を有する洗浄液で電子部品部材類を洗浄する
洗浄部とからなることを特徴とする電子部品部材類の洗
浄装置、(9)洗浄液のpHを調整するためのpH調整
手段を有することを特徴とする(8)記載の電子部品部
材類の洗浄装置、(10)洗浄液中の溶存水素濃度及び
pHをそれぞれ検知する溶存水素濃度検知手段、pH検
知手段と、それらの溶存水素濃度及びpHの検知結果に
基づき、洗浄液中の溶存水素濃度及びpHをそれぞれ制
御する溶存水素濃度制御手段、pH制御手段を有するこ
とを特徴とする(9)記載の電子部品部材類の洗浄装
置、(11)洗浄部に超音波を照射するための超音波照
射手段を有することを特徴とする(8)〜(10)のい
ずれかに記載の電子部品部材類の洗浄方法を要旨とす
る。
The present invention is characterized in that (1) electronic component members are washed with a cleaning solution having a negative oxidation-reduction potential by dissolving hydrogen gas in ultrapure water. The method for cleaning electronic parts and components, (2) the cleaning liquid is 0.
(1) The method for cleaning electronic component members according to (1), wherein hydrogen gas of at least 05 ppm is dissolved, (3) the cleaning solution has a pH of 7 or more and less than 11 (1). Or the method for cleaning electronic component members according to (2),
(4) The cleaning liquid uses ultrapure water that has been degassed so that the dissolved gas concentration is less than 10 ppm.
(3) The method for cleaning electronic component members according to any of (3),
(5) The method for cleaning electronic component members according to any one of (1) to (4), wherein the cleaning is performed while irradiating ultrasonic waves. (6) The cleaning liquid further dissolves a rare gas. (5) The method for cleaning electronic parts and members according to (5), (7) cleaning by adjusting the temperature of the cleaning liquid to 20 ° C. to 60 ° C. (8) a method for cleaning electronic parts and members according to any one of (8), (8) an ultrapure water production apparatus, a gas dissolving means for dissolving hydrogen gas in ultrapure water, and hydrogen gas dissolution in ultrapure water A cleaning unit for cleaning electronic component members with a cleaning liquid having a negative oxidation-reduction potential, and (9) a pH for adjusting the pH of the cleaning liquid. (8) The apparatus for cleaning electronic component members according to (8), further comprising adjusting means. 0) Dissolved hydrogen concentration and pH in the cleaning liquid are respectively detected, and the dissolved hydrogen concentration and pH in the cleaning liquid are respectively controlled based on the detection results of the dissolved hydrogen concentration and pH. (9) The apparatus for cleaning electronic component members according to (9), further comprising a dissolved hydrogen concentration control unit and a pH control unit, and (11) having an ultrasonic irradiation unit for irradiating the cleaning unit with ultrasonic waves. The gist is the method for cleaning electronic component members according to any one of (8) to (10).

【0013】[0013]

【発明の実施の形態】本発明方法において、洗浄の対象
となる電子部品部材類(被洗浄物)としては、電子部品
製造分野等において用いられる種々の部品、材料等が挙
げられ、例えばシリコン基板、III-V 族半導体ウエハ等
の半導体基板、液晶用ガラス基板等の基板材料、メモリ
素子、CPU、センサー素子等の電子部品等の完成品や
その半製品、石英反応管、洗浄槽、基板キャリヤ等の電
子部品製造装置用部品等が例示される。本発明におい
て、超純水とは、工業用水、上水、井水、河川水、湖沼
水等の原水を凝集沈殿、ろ過、凝集ろ過、活性炭処理等
の前処理装置で処理することにより、原水中の粗大な懸
濁物質、有機物等を除去し、次いでイオン交換装置、逆
浸透膜装置等の脱塩装置を主体とする一次純水製造装置
で処理することにより、微粒子、コロイド物質、有機
物、金属イオン、陰イオン等の不純物の大部分を除去
し、更にこの一次純水を紫外線照射装置、混床式ポリッ
シャー、限外ろ過膜や逆浸透膜を装着した膜処理装置か
らなる二次純水製造装置で循環処理することにより、残
留する微粒子、コロイド物質、有機物、金属イオン、陰
イオン等の不純物を可及的に除去した高純度純水を指
し、その水質としては、例えば電気抵抗率が17.0M
Ω・cm以上、全有機炭素が100μgC/リットル以
下、美粒子数(粒径0.07μm以上のもの)が50ケ
/ミリリットル以下、生菌数が50ケ/リットル以下、
シリカが10μgSiO2 /リットル以下、ナトリウム
0.1μgNa/リットル以下のものを指す。また本発
明装置において超純水製造装置とは、前記した前処理装
置、一次純水製造装置、二次純水製造装置を組み合わせ
たものを指す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, various components and materials used in the electronic component manufacturing field and the like are listed as electronic component members (objects to be cleaned) to be cleaned. Substrate materials such as semiconductor substrates such as III-V semiconductor wafers, glass substrates for liquid crystal, etc., finished products and semi-finished products such as electronic components such as memory devices, CPUs and sensor devices, quartz reaction tubes, cleaning tanks, substrate carriers And the like for an electronic component manufacturing apparatus. In the present invention, ultrapure water is obtained by treating raw water such as industrial water, clean water, well water, river water, lake water, etc. with a pretreatment device such as coagulation sedimentation, filtration, coagulation filtration, and activated carbon treatment. By removing coarse suspended substances, organic substances, etc. in the water, and then treating with a primary pure water production apparatus mainly composed of a desalination apparatus such as an ion exchange apparatus and a reverse osmosis membrane apparatus, fine particles, colloidal substances, organic substances, Most of the impurities such as metal ions and anions are removed, and the primary pure water is further purified by an ultraviolet irradiation device, a mixed-bed polisher, a membrane treatment device equipped with an ultrafiltration membrane or a reverse osmosis membrane. It refers to high-purity pure water from which impurities such as fine particles, colloidal substances, organic substances, metal ions, and anions have been removed as much as possible by circulating treatment in the production equipment. 17.0M
Ω · cm or more, total organic carbon is 100 μgC / liter or less, number of beautiful particles (particle size of 0.07 μm or more) is 50 / ml or less, viable bacterial count is 50 / ml or less,
It refers to silica having a silica content of 10 μg SiO 2 / liter or less and sodium of 0.1 μg Na / liter or less. In the apparatus of the present invention, the ultrapure water production apparatus refers to a combination of the above-described pretreatment apparatus, primary pure water production apparatus, and secondary pure water production apparatus.

【0014】尚、一次純水製造装置の後段に、真空脱気
装置やガス透過膜を用いた膜脱気装置等の脱気装置が追
加される場合も含み、また原水としては、工業用水、上
水、井水、河川水、湖沼水などに工場内で回収された各
種回収水を混合したものが用いられることもある。
In addition, a case where a deaerator such as a vacuum deaerator or a membrane deaerator using a gas permeable membrane is added after the primary pure water production apparatus is included. Water, well water, river water, lake water, etc. may be used in which various types of recovered water collected in the factory are mixed.

【0015】図1は本発明の電子部品部材類の洗浄装置
の一例を示し、図中、1は超純水製造装置、2はガス溶
解槽、3はpH調整槽、4は洗浄槽を示し、この装置に
は更に必要に応じ、超純水製造装置1で製造された超純
水中に溶解しているガスを除去するための脱ガス装置
5、洗浄槽4内で洗浄される被洗浄物6に超音波を照射
するための超音波照射装置7が設けられる。
FIG. 1 shows an example of an apparatus for cleaning electronic parts and members of the present invention. In the figure, 1 is an ultrapure water production apparatus, 2 is a gas dissolution tank, 3 is a pH adjustment tank, and 4 is a cleaning tank. The apparatus further includes a degassing apparatus 5 for removing gas dissolved in the ultrapure water produced by the ultrapure water producing apparatus 1 and a cleaning target to be cleaned in the cleaning tank 4, if necessary. An ultrasonic irradiation device 7 for irradiating the object 6 with ultrasonic waves is provided.

【0016】超純水製造装置1には、原水を凝集沈殿装
置、砂ろ過装置、活性炭ろ過装置で処理する前処理装置
と、この前処理水を逆浸透膜装置、2床3塔イオン交換
装置、混床式イオン交換装置、精密フィルターで処理し
て一次純水を得る一次純水製造装置と、一次純水に紫外
線照射、混床式ポリッシャー、限外ろ過膜処理を施し
て、一次純水中に残留する微粒子、コロイド物質、有機
物、金属イオン、陰イオン等を除去する二次純水製造装
置とを備えている(いずれも図示せず。)。
The ultrapure water production apparatus 1 includes a pretreatment device for treating raw water with a coagulation sedimentation device, a sand filtration device, and an activated carbon filtration device, and a reverse osmosis membrane device, a two-bed three-column ion exchange device. , A mixed-bed ion exchange device, a primary-pure water production device that obtains primary purified water by processing with a precision filter, and a primary-purified water that is subjected to ultraviolet irradiation, a mixed-bed polisher, and an ultrafiltration membrane treatment. A secondary pure water production apparatus is provided for removing fine particles, colloidal substances, organic substances, metal ions, anions, and the like remaining therein (all not shown).

【0017】上記超純水製造装置1で製造される超純水
は、例えば下記表1に示す水質を有しているものが好ま
しく、このような水質の超純水であれば、超純水中の汚
染物質がウエハ表面に付着することはないとされてい
る。
The ultrapure water produced by the ultrapure water production apparatus 1 preferably has, for example, the water qualities shown in Table 1 below. It is said that no contaminants therein adhere to the wafer surface.

【0018】[0018]

【表1】 [Table 1]

【0019】上記超純水製造装置1で製造された超純水
には、ガス溶解槽2において水素ガスが溶解されるが、
その前に超純水中に溶解しているガスを脱ガス装置5に
おいて除去しておくことが好ましい。この脱ガス装置5
においては、特に超純水中に溶存している酸素ガス、窒
素ガス、炭酸ガスを除去することが好ましく、これらの
1種又は2種以上の溶存ガス濃度が10ppm未満、好
ましくは2ppm以下となるように脱ガスしておくこと
が好ましい。尚、溶存ガス濃度が10ppm以上となる
と洗浄時に気泡が発生して被洗浄物に気泡が付着し、気
泡が付着した部分の洗浄効果が低下する傾向となる。脱
ガス装置5において、超純水中の溶存ガスの脱ガスを行
う方法としては、ガス透過膜を介して真空脱ガスする方
法が好ましい。
Hydrogen gas is dissolved in the ultrapure water produced by the ultrapure water producing apparatus 1 in the gas dissolving tank 2.
Before that, it is preferable to remove the gas dissolved in the ultrapure water in the degassing device 5. This degassing device 5
It is particularly preferable to remove oxygen gas, nitrogen gas, and carbon dioxide gas dissolved in ultrapure water, and the concentration of one or more of these dissolved gases is less than 10 ppm, preferably 2 ppm or less. It is preferable to degas in such a manner. If the dissolved gas concentration is 10 ppm or more, bubbles are generated during cleaning, the bubbles adhere to the object to be cleaned, and the cleaning effect on the portion to which the bubbles are adhered tends to decrease. In the degassing device 5, as a method for degassing the dissolved gas in the ultrapure water, a method of vacuum degassing via a gas permeable membrane is preferable.

【0020】脱ガス装置5において、溶存している酸素
ガス、窒素ガス、炭酸ガス等を脱ガスした超純水には、
ガス溶解槽2において水素ガスが溶解される。ガス溶解
槽2において超純水に水素ガスを溶解して得た洗浄液
は、負の酸化還元電位を有するが、洗浄液中の溶存水素
ガス濃度は、25℃、1気圧下で0.05ppm以上
で、特に0.8〜1.6ppmであることが好ましい。
尚、溶存ガス濃度が0.05ppm未満であると、液の
酸化還元電位を還元電位側とすることが不充分となるこ
とが多く、結果として後述する実施例における表2に示
すように被洗浄体表面の微粒子の除去効果が低下する傾
向となる。超純水に水素ガスを溶解させる方法として
は、超純水にガス透過膜を介して水素ガスを注入して溶
解する方法、超純水中に水素ガスをバブリングして溶解
させる方法、超純水中にエジェクターを介して水素ガス
を溶解させる方法、ガス溶解槽2に超純水を供給するポ
ンプの上流側に水素ガスを供給し、ポンプ内の攪拌によ
って溶解させる方法等が挙げられる。ガス溶解槽2にお
いて超純水に溶解せしめる水素ガスは、超純水を電気分
解して生成させた高純度水素ガスを用いることが好まし
い。
In the degassing device 5, ultrapure water from which dissolved oxygen gas, nitrogen gas, carbon dioxide gas, etc. have been degassed,
Hydrogen gas is dissolved in the gas dissolving tank 2. The cleaning liquid obtained by dissolving hydrogen gas in ultrapure water in the gas dissolving tank 2 has a negative oxidation-reduction potential, but the dissolved hydrogen gas concentration in the cleaning liquid is 0.05 ppm or more at 25 ° C. and 1 atm. And particularly preferably 0.8 to 1.6 ppm.
When the dissolved gas concentration is less than 0.05 ppm, it is often insufficient to set the oxidation-reduction potential of the liquid to the reduction potential side, and as a result, as shown in Table 2 in Examples described later, The effect of removing fine particles on the body surface tends to decrease. As a method of dissolving hydrogen gas in ultrapure water, a method of injecting hydrogen gas into ultrapure water through a gas permeable membrane to dissolve it, a method of dissolving hydrogen gas by bubbling hydrogen gas in ultrapure water, A method of dissolving hydrogen gas in water via an ejector, a method of supplying hydrogen gas upstream of a pump that supplies ultrapure water to the gas dissolving tank 2, and dissolving the gas by stirring in the pump are exemplified. As the hydrogen gas dissolved in the ultrapure water in the gas dissolving tank 2, it is preferable to use a high-purity hydrogen gas generated by electrolyzing ultrapure water.

【0021】図2は超純水を電気分解して得た水素ガス
を、ガス溶解槽2において超純水中に溶解させる場合の
一例を示す。図2において、8は超純水電解装置で、超
純水供給管9から超純水電解装置8に導入された超純水
は、該電解装置8内で電気分解され、電解装置8のカソ
ード室で生成した高純度水素ガスは、水素ガス供給管1
0によりガス溶解槽2に送られる。ガス溶解槽2にはガ
ス透過膜11が設けられ、超純水供給管12からガス溶
解槽2に供給される超純水に、ガス透過膜11を介して
前記超純水電解装置8から供給される水素ガスが溶解さ
れ、水素ガスを溶解した超純水は、供給管13からpH
調整槽3に送られる。尚、図2において14は電気分解
した後の超純水を排出する排水弁、15はガス溶解槽2
内の水素ガス圧を測定する圧力計、16はガス溶解槽2
に供給した水素ガスを排気処理するための排気処理装
置、17は供給水素ガス量制御装置である。
FIG. 2 shows an example in which hydrogen gas obtained by electrolyzing ultrapure water is dissolved in ultrapure water in a gas dissolving tank 2. In FIG. 2, reference numeral 8 denotes an ultrapure water electrolyzer, and ultrapure water introduced into the ultrapure water electrolyzer 8 from the ultrapure water supply pipe 9 is electrolyzed in the electrolyzer 8, and a cathode of the electrolyzer 8 is used. The high-purity hydrogen gas generated in the chamber is supplied to the hydrogen gas supply pipe 1
By 0, it is sent to the gas dissolving tank 2. The gas dissolving tank 2 is provided with a gas permeable membrane 11. Ultrapure water supplied from the ultrapure water supply pipe 12 to the gas dissolving tank 2 is supplied from the ultrapure water electrolysis device 8 via the gas permeable membrane 11. The hydrogen gas to be dissolved is dissolved, and the ultrapure water in which the hydrogen gas is
It is sent to the adjustment tank 3. In FIG. 2, 14 is a drain valve for discharging ultrapure water after electrolysis, and 15 is a gas dissolving tank 2.
Pressure gauge for measuring the hydrogen gas pressure in the chamber, 16 is a gas dissolving tank 2
An exhaust processing device for exhausting the hydrogen gas supplied to the device, and 17 is a supplied hydrogen gas amount control device.

【0022】ガス溶解槽2において水素ガスを溶解せし
めた洗浄液は、pH調整槽3においてpHを調整され
る。洗浄液のpHは7以上に調整することが好ましく、
より好ましくは7以上、11未満、特に好ましくは8〜
10に調整する。pHを調整するためには、アンモニア
水、水酸化ナトリウム、水酸化カリウム、テトラメチル
アンモニウムハイドロオキサイド(TMAH)等のアル
カリ水溶液や、アンモニアガス等の如きアルカリのガス
等が用いられるが、アンモニア水やアンモニアガスを用
いると、水酸イオン(OH- )の対イオンとして金属イ
オン、有機物イオンが存在せず、対イオンが揮発性であ
るため洗浄対象物に不純物が付着しない点で好ましい。
尚、pHが7未満であると後述する実施例における表2
に示すように、被洗浄表面の微粒子の除去効果が低下す
る傾向となる。またpHが11以上となると、後述する
実施例における表2及び表3に示すように、被洗浄表面
が荒れる傾向となる。
The pH of the cleaning solution in which hydrogen gas has been dissolved in the gas dissolving tank 2 is adjusted in the pH adjusting tank 3. The pH of the washing solution is preferably adjusted to 7 or more,
More preferably 7 or more and less than 11, particularly preferably 8 to
Adjust to 10. In order to adjust the pH, an aqueous alkali solution such as aqueous ammonia, sodium hydroxide, potassium hydroxide, or tetramethylammonium hydroxide (TMAH), or an alkaline gas such as ammonia gas is used. The use of ammonia gas is preferable in that metal ions and organic ions do not exist as counter ions of hydroxyl ions (OH ) and impurities are not attached to the object to be cleaned because the counter ions are volatile.
In addition, Table 2 in Examples described later indicates that the pH is less than 7.
As shown in (1), the effect of removing fine particles on the surface to be cleaned tends to decrease. When the pH is 11 or more, the surface to be cleaned tends to be rough as shown in Tables 2 and 3 in Examples described later.

【0023】pH調整槽3にてpHを調整された洗浄液
は、洗浄槽4に送られるが、上記したように洗浄液は、
水素ガスを好ましくは0.05ppm以上溶解してな
り、且つpHが7以上であることが好ましい。このた
め、洗浄槽4に洗浄液を供給する洗浄液供給管22の途
中に、酸化還元電位計18、溶存水素濃度計19、水素
イオン濃度計20を設け、洗浄液中の酸化還元電位、溶
存水素濃度及びpHを常時監視し、ガス溶解槽2におい
て超純水に溶解させる水素ガス量及びpH調整槽3にお
いて添加するアルカリ量を制御するように構成すること
が好ましい。
The cleaning liquid whose pH has been adjusted in the pH adjusting tank 3 is sent to the cleaning tank 4.
Hydrogen gas is preferably dissolved in 0.05 ppm or more, and the pH is preferably 7 or more. For this reason, an oxidation-reduction potentiometer 18, a dissolved hydrogen concentration meter 19, and a hydrogen ion concentration meter 20 are provided in the middle of the cleaning liquid supply pipe 22 for supplying the cleaning liquid to the cleaning tank 4, and the oxidation-reduction potential, the dissolved hydrogen concentration, and the It is preferable to constantly monitor the pH and control the amount of hydrogen gas dissolved in ultrapure water in the gas dissolving tank 2 and the amount of alkali added in the pH adjusting tank 3.

【0024】洗浄槽4において被洗浄物6を前記洗浄液
によって洗浄する方法としては、洗浄液中に被洗浄物6
を浸漬して洗浄するバッチ洗浄法、洗浄液を循環させな
がら被洗浄物6と接触させて洗浄する循環洗浄法、洗浄
槽4の底部側から洗浄液を供給し、洗浄槽4の上部から
オーバーフローさせながら洗浄するフロー洗浄法、被洗
浄物6に洗浄液をシャワー状に吹き掛けて洗浄する方
法、高速回転させた被洗浄物6に洗浄液を吹き掛けて洗
浄する方法等が挙げられる。
The method of cleaning the object 6 to be cleaned in the cleaning tank 4 with the cleaning liquid is as follows.
Washing method, in which the cleaning liquid is supplied from the bottom side of the cleaning tank 4 and overflows from the upper part of the cleaning tank 4, while the cleaning liquid is supplied from the bottom side of the cleaning tank 4. Examples of the method include a flow cleaning method of cleaning, a method of spraying a cleaning liquid onto the object 6 to be cleaned in a shower shape, and a method of spraying a cleaning liquid on the object 6 rotated at a high speed to perform cleaning.

【0025】洗浄槽4にはヒーター21が設けら、必要
に応じて洗浄液の温度を調整できるようになっている。
より優れた洗浄効果を得るために、洗浄液を20〜60
℃に温度調節して洗浄することが好ましい。また洗浄時
に超音波照射を併用するとより効果的である。超音波照
射装置7から発生する超音波としては30kHz以上の
周波数のものが好ましい。超音波を照射する場合、例え
ばバッチ洗浄法では洗浄槽4内に供給した洗浄液に被洗
浄物6を浸漬した状態で照射する等の方法が採用され、
洗浄液を被洗浄物6にノズル等から吹き掛けて洗浄する
方法の場合には、洗浄液噴射ノズルの上流部において洗
浄液に超音波を照射する方法が採用される。
The cleaning tank 4 is provided with a heater 21 so that the temperature of the cleaning liquid can be adjusted as required.
In order to obtain a better cleaning effect, the cleaning solution should be 20 to 60
It is preferable that the temperature is adjusted to ° C. for washing. It is more effective to use ultrasonic irradiation at the time of cleaning. The ultrasonic wave generated from the ultrasonic irradiation device 7 preferably has a frequency of 30 kHz or more. When irradiating ultrasonic waves, for example, in a batch cleaning method, a method of irradiating the object to be cleaned 6 in a state of being immersed in a cleaning liquid supplied into the cleaning tank 4 or the like is adopted.
In the case of a method of cleaning by spraying the cleaning liquid onto the workpiece 6 from a nozzle or the like, a method of irradiating the cleaning liquid with ultrasonic waves at an upstream portion of the cleaning liquid injection nozzle is employed.

【0026】洗浄時に超音波照射を併用する場合、洗浄
液中には更に稀ガスを溶解していることが好ましい。稀
ガスとしては、ヘリウム、ネオン、アルゴン、クリプト
ン、キセノンの1種又はこれらの2種以上の混合物が挙
げられ、稀ガスは0.05ppm以上洗浄液中に溶解し
ていることが好ましい。稀ガスの溶解は、超純水中に溶
存している酸素ガス、窒素ガス、炭酸ガス等を脱ガス装
置5において脱ガスした後の工程で行うことが好まし
く、超純水に水素ガスを溶解させるガス溶解槽2におい
て水素ガスの溶解と同時に又は連続して行うことが好ま
しい。稀ガスを溶解させる方法としては、超純水に水素
ガスを溶解させるための方法と同様の方法を採用するこ
とができる。
When using ultrasonic irradiation at the time of cleaning, it is preferable that a rare gas is further dissolved in the cleaning liquid. Examples of the rare gas include helium, neon, argon, krypton, and xenon, or a mixture of two or more of them. It is preferable that the rare gas is dissolved in the cleaning solution at 0.05 ppm or more. The rare gas is preferably dissolved in a step after degassing oxygen gas, nitrogen gas, carbon dioxide gas, and the like dissolved in the ultrapure water in the degassing device 5, and dissolving the hydrogen gas in the ultrapure water. It is preferable that the hydrogen gas be dissolved in the gas dissolving tank 2 simultaneously or continuously. As a method for dissolving the rare gas, a method similar to the method for dissolving hydrogen gas in ultrapure water can be employed.

【0027】尚、本発明の洗浄装置は、超純水や洗浄液
中に大気中の酸素、窒素、炭酸ガス等のガス成分が混入
するのを防止するため、ガスシール構造を有しているこ
とが好ましい。また上記した例ではガス溶解槽2におい
て超純水に水素ガスを溶解した後、pH調整槽3にてp
H調整を行う場合について示したが、pH調整を行った
後に水素ガスを溶解するようにしても良い。
The cleaning apparatus of the present invention has a gas seal structure in order to prevent gas components such as oxygen, nitrogen and carbon dioxide in the atmosphere from being mixed into ultrapure water or the cleaning liquid. Is preferred. In the above example, after dissolving hydrogen gas in ultrapure water in the gas dissolving tank 2, p
Although the case where the H adjustment is performed has been described, the hydrogen gas may be dissolved after performing the pH adjustment.

【0028】上記の如く、超純水に水素ガスを溶解して
なる、負の酸化還元電位を有する洗浄液で表面の微粒子
が洗浄されたウエハは、超純水によるすすぎを行った
後、例えば表面の金属除去工程等に移される。
As described above, the wafer whose surface fine particles have been cleaned with the cleaning liquid having a negative oxidation-reduction potential, which is obtained by dissolving hydrogen gas in ultrapure water, is rinsed with ultrapure water, Is moved to the metal removal step.

【0029】[0029]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。 実施例1〜8、比較例1〜3 6インチのシリコンウエハ(n−Si100)を、0.
5%希フッ酸溶液に10分間浸漬した後、オーバーフロ
ーリンス法によって超純水で5分間すすぎ、次いでこの
ウエハを、10000ケ/ミリリットルとなるように平
均粒径1μmのアルミニウム粒子を超純水に添加して調
整した汚染液に10分間浸漬した後、オーバーフローリ
ンス法によって超純水で5分間すすぎ、スピンドライ乾
燥したものをサンプルとした。このサンプル25枚を、
それぞれ表2に示す洗浄液を用いて、950kHz、1
200Wの超音波を照射しながら同表に示す条件で洗浄
し、更に超純水で5分間すすぎ、スピンドライ乾燥し
た。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. Examples 1 to 8 and Comparative Examples 1 to 36
After being immersed in a 5% diluted hydrofluoric acid solution for 10 minutes, the wafer is rinsed with ultrapure water for 5 minutes by an overflow rinse method. Then, the aluminum particles having an average particle size of 1 μm are added to the ultrapure water so as to obtain 10,000 particles / milliliter. After immersion for 10 minutes in the contaminated liquid prepared by addition, the sample was rinsed with ultrapure water for 5 minutes by an overflow rinse method, and spin-dried to obtain a sample. 25 samples of this,
Using the cleaning liquids shown in Table 2, 950 kHz, 1
The substrate was washed under the conditions shown in the same table while being irradiated with ultrasonic waves of 200 W, further rinsed with ultrapure water for 5 minutes, and spin-dried.

【0030】実施例1の洗浄液は、水素ガスを溶解した
超純水をpH未調整のまま使用し、実施例2〜5及び実
施例7の洗浄液は、水素ガスを溶解した超純水のpHを
アンモニアで調整して使用し、実施例6の洗浄液は水素
ガス及びアルゴンを溶解した超純水のpHをアンモニア
で調整して使用し、実施例8の洗浄液は炭酸ガス及び水
素ガスを溶解した超純水を使用した。また比較例1の洗
浄液は超純水のみを使用し、比較例2の洗浄液は水素ガ
スを溶解していない超純水にアンモニア及び過酸化水素
水を溶解して使用し、比較例3の洗浄液は水素ガスを溶
解していない超純水に過酸化水素水を溶解して使用し
た。尚、洗浄槽容量は10リットルで、バッチ式オーバ
ーフロー方式の場合の洗浄液のオーバーフロー量は、1
リットル/分とした。アルミニウム粒子で汚染したウエ
ハを洗浄する前と、洗浄した後のウエハ表面に付着して
いるアルミニウム粒子の数、洗浄後のウエハ表面の粗度
を表2にあわせて示す。
The cleaning liquid of Example 1 uses ultrapure water in which hydrogen gas has been dissolved without adjusting the pH, and the cleaning liquids of Examples 2 to 5 and 7 have pH values of ultrapure water in which hydrogen gas has been dissolved. Was used by adjusting the pH of ultrapure water in which hydrogen gas and argon were dissolved with ammonia, and the cleaning solution of Example 8 was dissolved in carbon dioxide gas and hydrogen gas. Ultrapure water was used. The cleaning liquid of Comparative Example 1 uses only ultrapure water, the cleaning liquid of Comparative Example 2 uses ammonia and hydrogen peroxide in ultrapure water in which hydrogen gas is not dissolved, and uses the cleaning liquid of Comparative Example 3. Was used by dissolving hydrogen peroxide in ultrapure water in which hydrogen gas was not dissolved. The washing tank capacity is 10 liters, and the overflow amount of the washing liquid in the case of the batch overflow method is 1 liter.
Liters per minute. Table 2 shows the number of aluminum particles adhering to the wafer surface before and after cleaning the wafer contaminated with the aluminum particles and the roughness of the wafer surface after cleaning.

【0031】尚、ウエハ表面の粒子数は、レーザー散乱
式ウエハ表面付着粒子検査装置(TOPCON製:WH
−3)により、0.2μm以上の微粒子について測定
し、25枚のウエハの平均値を示した。またウエハ表面
の粗度は、原子間力顕微鏡(セイコー電子製:AFM−
SPI・3600)で測定し、 ○・・・・中心線平均あらさ(RMS)5Å未満 ×・・・・中心線平均あらさ(RMS)5Å以上 として評価した。
The number of particles on the wafer surface can be measured by a laser scattering type wafer surface attached particle inspection apparatus (manufactured by TOPCON: WH
According to -3), measurement was performed on fine particles of 0.2 μm or more, and the average value of 25 wafers was shown. The roughness of the wafer surface was measured with an atomic force microscope (AFM-
SPI · 3600), and evaluated as ○: center line average roughness (RMS) less than 5Å ×: center line average roughness (RMS) 5Å or more.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例9〜13、比較例4〜6 上記実施例と同様のシリコンウエハを、同様にしてフッ
酸溶液で洗浄後、アルミニウム粒子を含む汚染液で処理
して調整したサンプル25枚を、それぞれ表3に示す洗
浄液を用いて同表に示す条件で洗浄し、更に超純水で5
分間すすぎ、スピンドライ乾燥した。
Examples 9-13, Comparative Examples 4-6 Twenty-five samples were prepared by cleaning the same silicon wafers as in the above examples with a hydrofluoric acid solution and treating them with a contaminated liquid containing aluminum particles. Each was washed with the washing solution shown in Table 3 under the conditions shown in the same table, and further washed with ultrapure water for 5 times.
Rinse for minutes and spin dry.

【0034】実施例9の洗浄液は、水素ガスを溶解した
超純水をpH未調整のまま使用し、実施例10〜13の
洗浄液は、水素ガスを溶解した超純水をアンモニアでp
H調整した使用した。また比較例4、比較例5、比較例
6の洗浄液は、それぞれ前記比較例1、比較例2、比較
例3の洗浄液と同じものを用いた。洗浄槽は前記実施例
と同様の容量とし、バッチ式オーバーフロー方式の場合
の洗浄液のオーバーフロー量も1リットル/分とした。
尚、実施例9〜13、比較例4〜6では、洗浄時に超音
波照射は行なわなかった。アルミニウム粒子で汚染した
洗浄前後のウエハ表面の付着アルミニウム粒子数、洗浄
後のウエハ表面の粗度を表3にあわせて示す。
The cleaning liquid of Example 9 uses ultrapure water in which hydrogen gas is dissolved without adjusting the pH, and the cleaning liquid of Examples 10 to 13 uses ultrapure water in which hydrogen gas is dissolved with ammonia.
H adjusted and used. The cleaning liquids of Comparative Examples 4, 5 and 6 were the same as the cleaning liquids of Comparative Examples 1, 2 and 3, respectively. The cleaning tank had the same capacity as that of the above embodiment, and the overflow amount of the cleaning liquid in the case of the batch overflow method was also set to 1 liter / min.
In Examples 9 to 13 and Comparative Examples 4 to 6, no ultrasonic irradiation was performed during cleaning. Table 3 shows the number of aluminum particles adhering to the wafer surface before and after cleaning contaminated with aluminum particles, and the roughness of the wafer surface after cleaning.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【発明の効果】本発明の洗浄方法によれば、従来法のよ
うな大量の洗浄液を使用せずとも、従来法と同等乃至は
それ以上の洗浄効果を得ることができるため、洗浄液に
用いる原料や超純水にかかるコストの低減化を図ること
ができるとともに、使用済の洗浄液等を処理するための
コスト等も低減化でき、この結果、従来の洗浄法を採用
した場合に比べ、製品コストの低減化に貢献できる。本
発明の洗浄方法は、アンモニア・過酸化水素水混合溶液
により洗浄する従来法に比べ、シリコンウエハ表面の微
粒子を、より低いpHでも効果的に除去できるため、従
来法のように必要以上に多量のアンモニア水を消費しな
くても済み、原料コストの低減化はもとより、排液の処
理装置への負担を軽くすることができ、排液処理装置の
小型化、処理費用の低減化を図ることができる。また従
来法よりも低いpHで処理が行えるため、アルカリによ
るシリコンウエハ表面の荒れを防止するための過酸化水
素を併用しなくても良く、原料コストや廃液の処理コス
トの更なる低減化に貢献できる等の種々の効果を有す
る。
According to the cleaning method of the present invention, a cleaning effect equivalent to or higher than that of the conventional method can be obtained without using a large amount of cleaning liquid as in the conventional method. And ultrapure water, and the cost of treating used cleaning liquids can be reduced. As a result, product costs are lower than when conventional cleaning methods are used. Can be reduced. The cleaning method of the present invention can effectively remove fine particles on the silicon wafer surface even at a lower pH as compared with the conventional method of cleaning with a mixed solution of ammonia and hydrogen peroxide, so that an unnecessarily large amount as in the conventional method. The need for consuming no ammonia water is eliminated, so that not only can the raw material cost be reduced, but also the burden on the wastewater treatment device can be reduced, and the wastewater treatment device can be downsized and the processing cost reduced. Can be. In addition, since the treatment can be performed at a lower pH than the conventional method, it is not necessary to use hydrogen peroxide to prevent the silicon wafer surface from being roughened by alkali, contributing to further reduction in raw material costs and waste liquid treatment costs. It has various effects such as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明洗浄装置の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a cleaning device of the present invention.

【図2】水素ガスの溶解手段の一例を示す構成図であ
る。
FIG. 2 is a configuration diagram illustrating an example of a hydrogen gas dissolving unit.

【符号の説明】[Explanation of symbols]

1 超純水製造装置 2 ガス溶解槽 3 pH調整槽 4 洗浄槽 6 被洗浄物 7 超音波照射装置 19 溶存水素濃度計 20 水素イオン濃度計 DESCRIPTION OF SYMBOLS 1 Ultrapure water production apparatus 2 Gas dissolution tank 3 pH adjustment tank 4 Cleaning tank 6 Object to be cleaned 7 Ultrasonic irradiation device 19 Dissolved hydrogen concentration meter 20 Hydrogen ion concentration meter

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 電子部品部材類を、超純水に水素ガスを
溶解してなり、負の酸化還元電位を有する洗浄液により
洗浄することを特徴とする電子部品部材類の洗浄方法。
1. A method for cleaning electronic component members, comprising: dissolving hydrogen gas in ultrapure water and cleaning the electronic component members with a cleaning liquid having a negative oxidation-reduction potential.
【請求項2】 洗浄液が、0.05ppm以上の水素ガ
スを溶解していることを特徴とする請求項1記載の電子
部品部材類の洗浄方法。
2. The method according to claim 1, wherein the cleaning solution dissolves hydrogen gas of 0.05 ppm or more.
【請求項3】 洗浄液のpHが7以上、11未満である
ことを特徴とする請求項1又は2記載の電子部品部材類
の洗浄方法。
3. The method for cleaning electronic component members according to claim 1, wherein the pH of the cleaning liquid is 7 or more and less than 11.
【請求項4】 洗浄液は、溶存ガス濃度が10ppm未
満となるように脱ガスされた超純水を用いるものである
請求項1〜3のいずれかに記載の電子部品部材類の洗浄
方法。
4. The method for cleaning electronic component members according to claim 1, wherein the cleaning liquid uses ultrapure water that has been degassed so as to have a dissolved gas concentration of less than 10 ppm.
【請求項5】 超音波を照射しながら洗浄することを特
徴とする請求項1〜4のいずれかに記載の電子部品部材
類の洗浄方法。
5. The method for cleaning electronic component members according to claim 1, wherein the cleaning is performed while irradiating an ultrasonic wave.
【請求項6】 洗浄液が、更に稀ガスを溶解しているこ
とを特徴とする請求項5記載の電子部品部材類の洗浄方
法。
6. The method according to claim 5, wherein the cleaning liquid further dissolves a rare gas.
【請求項7】 洗浄液の温度を、20℃〜60℃に温度
調節して洗浄することを特徴とする請求項1〜6のいず
れかに記載の電子部品部材類の洗浄方法。
7. The method for cleaning electronic component members according to claim 1, wherein the temperature of the cleaning liquid is adjusted to 20 ° C. to 60 ° C. for cleaning.
【請求項8】 超純水製造装置と、超純水中に水素ガス
を溶解させるためのガス溶解手段と、超純水に水素ガス
を溶解してなる、負の酸化還元電位を有する洗浄液で電
子部品部材類を洗浄する洗浄部とからなることを特徴と
する電子部品部材類の洗浄装置。
8. An ultrapure water producing apparatus, a gas dissolving means for dissolving hydrogen gas in ultrapure water, and a cleaning liquid having a negative oxidation-reduction potential obtained by dissolving hydrogen gas in ultrapure water. A cleaning device for electronic component members, comprising: a cleaning section for cleaning electronic component members.
【請求項9】 洗浄液のpHを調整するためのpH調整
手段を有することを特徴とする請求項8記載の電子部品
部材類の洗浄装置。
9. The cleaning apparatus for electronic parts and members according to claim 8, further comprising a pH adjusting means for adjusting the pH of the cleaning liquid.
【請求項10】 洗浄液中の溶存水素濃度及びpHをそ
れぞれ検知する溶存水素濃度検知手段、pH検知手段
と、それらの溶存水素濃度及びpHの検知結果に基づ
き、洗浄液中の溶存水素濃度及びpHをそれぞれ制御す
る溶存水素濃度制御手段、pH制御手段を有することを
特徴とする請求項9記載の電子部品部材類の洗浄装置。
10. A dissolved hydrogen concentration detecting means and a pH detecting means for respectively detecting a dissolved hydrogen concentration and a pH in a cleaning liquid, and a dissolved hydrogen concentration and a pH in the cleaning liquid are determined based on the detection results of the dissolved hydrogen concentration and the pH. 10. The apparatus for cleaning electronic component members according to claim 9, further comprising a dissolved hydrogen concentration control means and a pH control means for controlling each of them.
【請求項11】 洗浄部に超音波を照射するための超音
波照射手段を有することを特徴とする請求項8〜10の
いずれかに記載の電子部品部材類の洗浄方法。
11. The method for cleaning electronic component members according to claim 8, further comprising an ultrasonic irradiation unit for irradiating the cleaning unit with ultrasonic waves.
JP23729496A 1996-08-20 1996-08-20 Cleaning method and cleaning device for electronic component members Expired - Lifetime JP3296405B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP23729496A JP3296405B2 (en) 1996-08-20 1996-08-20 Cleaning method and cleaning device for electronic component members
CNB971973342A CN1163946C (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member or like
PCT/JP1997/002852 WO1998008248A1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
CNB2004100020073A CN1299333C (en) 1996-08-20 1997-08-19 Method and device for cleaning electronic element or its mfg. equipment element
US09/242,601 US6290777B1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
KR10-1999-7001345A KR100424541B1 (en) 1996-08-20 1997-08-19 Method and device for washing electronic parts member, or the like
TW086111903A TW348078B (en) 1996-08-20 1997-08-20 Cleaning method and cleaning apparatus for electronic components
JP2000352815A JP3409849B2 (en) 1996-08-20 2000-11-20 Manufacturing equipment for cleaning liquid for cleaning electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23729496A JP3296405B2 (en) 1996-08-20 1996-08-20 Cleaning method and cleaning device for electronic component members

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000352815A Division JP3409849B2 (en) 1996-08-20 2000-11-20 Manufacturing equipment for cleaning liquid for cleaning electronic components

Publications (2)

Publication Number Publication Date
JPH1064867A true JPH1064867A (en) 1998-03-06
JP3296405B2 JP3296405B2 (en) 2002-07-02

Family

ID=17013243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23729496A Expired - Lifetime JP3296405B2 (en) 1996-08-20 1996-08-20 Cleaning method and cleaning device for electronic component members

Country Status (1)

Country Link
JP (1) JP3296405B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306868A (en) * 1999-02-17 2000-11-02 Kurita Water Ind Ltd Planarization method for electronic material surface oxide film
JP2001038364A (en) * 1999-08-02 2001-02-13 Kurita Water Ind Ltd Sterilization method and device for ultrapure water production and feed device
US6209553B1 (en) 1999-05-20 2001-04-03 Mitsubishidenki Kabushiki Kaisha Method of and apparatus for washing photomask and washing solution for photomask
KR100359339B1 (en) * 1999-12-28 2002-11-01 (주)케이.씨.텍 Cleaning machine for semiconductor device and the methode
JP2005218885A (en) * 2004-02-03 2005-08-18 Eito Notsuto Kk Hydrogen water manufacturing apparatus, hydrogen water manufacturing method, and hydrogen water
WO2006077770A1 (en) * 2005-01-21 2006-07-27 Sato Industry Co., Ltd. Redox potential water producing apparatus
JP2006314910A (en) * 2005-05-12 2006-11-24 Sato Kogyo Kk Metallic work cleaning system, cleaning method and production method
JP2009021419A (en) * 2007-07-12 2009-01-29 Renesas Technology Corp Method and device for cleaning substrate
WO2009128327A1 (en) * 2008-04-16 2009-10-22 栗田工業株式会社 Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
WO2011125990A1 (en) * 2010-04-06 2011-10-13 昭和電工株式会社 Manufacturing method of magnetic recording medium
JP2013128912A (en) * 2011-12-22 2013-07-04 Shibaura Mechatronics Corp Apparatus and method for production of processing liquid, and cleaning device
JP2017025148A (en) * 2015-07-17 2017-02-02 野村マイクロ・サイエンス株式会社 Production method and production device for hydrogen water for cleaning
JP2019050423A (en) * 2014-08-26 2019-03-28 東京エレクトロン株式会社 Substrate liquid-processing method and substrate liquid-processing device
JP2019209284A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
JP2019209283A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
US10865130B2 (en) 2016-08-02 2020-12-15 Nomura Micro Science Co., Ltd. Apparatus and method for producing alkaline water for cleaning electronic device
JP2022002846A (en) * 2018-06-06 2022-01-11 株式会社日本トリム Hydrogen gas dissolution device
CN116286221A (en) * 2023-03-06 2023-06-23 山东省疾病预防控制中心 Cleaning solution for ion source and ion lens of liquid chromatography-mass spectrometer

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458528A (en) * 1990-06-28 1992-02-25 Ebara Res Co Ltd Cleaning treatment method
JPH0629271A (en) 1992-03-12 1994-02-04 Kyushu Electron Metal Co Ltd Method of washing semiconductor wafer and its device
JPH0673578A (en) 1992-06-25 1994-03-15 Yoshihide Shibano Surface treatment of work
JPH06191591A (en) 1992-12-25 1994-07-12 Japan Organo Co Ltd Inert gas sealed tank for demineralized water
JPH06312175A (en) * 1993-04-28 1994-11-08 Japan Organo Co Ltd Ultra-pure water making apparatus
JPH07256260A (en) * 1994-03-25 1995-10-09 Nec Corp Apparatus for treating electrolytic activated water
JPH07263430A (en) * 1994-03-25 1995-10-13 Nec Corp Wet treatment of semiconductor substrate
JPH07328314A (en) 1994-06-07 1995-12-19 Agency Of Ind Science & Technol Fluid circulation degasifier
JPH0910713A (en) * 1995-06-28 1997-01-14 Tadahiro Omi Method and device for wet treatment
JPH0919668A (en) * 1995-07-05 1997-01-21 Furon Tec:Kk Wet treatment and treatment device
JPH09139371A (en) * 1995-06-09 1997-05-27 Toshiba Corp Method for cleaning semiconductor substrate and cleaning device used for the method
JPH09255998A (en) * 1996-03-27 1997-09-30 Furontetsuku:Kk Cleaning method and apparatus
JPH1041262A (en) 1996-07-24 1998-02-13 Fujitsu Ltd Cleaning and manufacturing method of semiconductor device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458528A (en) * 1990-06-28 1992-02-25 Ebara Res Co Ltd Cleaning treatment method
JPH0629271A (en) 1992-03-12 1994-02-04 Kyushu Electron Metal Co Ltd Method of washing semiconductor wafer and its device
JPH0673578A (en) 1992-06-25 1994-03-15 Yoshihide Shibano Surface treatment of work
JPH06191591A (en) 1992-12-25 1994-07-12 Japan Organo Co Ltd Inert gas sealed tank for demineralized water
JPH06312175A (en) * 1993-04-28 1994-11-08 Japan Organo Co Ltd Ultra-pure water making apparatus
JPH07263430A (en) * 1994-03-25 1995-10-13 Nec Corp Wet treatment of semiconductor substrate
JPH07256260A (en) * 1994-03-25 1995-10-09 Nec Corp Apparatus for treating electrolytic activated water
JPH07328314A (en) 1994-06-07 1995-12-19 Agency Of Ind Science & Technol Fluid circulation degasifier
JPH09139371A (en) * 1995-06-09 1997-05-27 Toshiba Corp Method for cleaning semiconductor substrate and cleaning device used for the method
JPH0910713A (en) * 1995-06-28 1997-01-14 Tadahiro Omi Method and device for wet treatment
JPH0919668A (en) * 1995-07-05 1997-01-21 Furon Tec:Kk Wet treatment and treatment device
JPH09255998A (en) * 1996-03-27 1997-09-30 Furontetsuku:Kk Cleaning method and apparatus
JPH1041262A (en) 1996-07-24 1998-02-13 Fujitsu Ltd Cleaning and manufacturing method of semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN3012001020; プールベダイアグラム及び訳文

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306868A (en) * 1999-02-17 2000-11-02 Kurita Water Ind Ltd Planarization method for electronic material surface oxide film
US6209553B1 (en) 1999-05-20 2001-04-03 Mitsubishidenki Kabushiki Kaisha Method of and apparatus for washing photomask and washing solution for photomask
US7077915B2 (en) 1999-05-20 2006-07-18 Renesas Technology Corp. Method of and apparatus for washing photomask and washing solution for photomask
JP2001038364A (en) * 1999-08-02 2001-02-13 Kurita Water Ind Ltd Sterilization method and device for ultrapure water production and feed device
KR100359339B1 (en) * 1999-12-28 2002-11-01 (주)케이.씨.텍 Cleaning machine for semiconductor device and the methode
JP2005218885A (en) * 2004-02-03 2005-08-18 Eito Notsuto Kk Hydrogen water manufacturing apparatus, hydrogen water manufacturing method, and hydrogen water
JP4505234B2 (en) * 2004-02-03 2010-07-21 エイトノット株式会社 Hydrogen water production apparatus and hydrogen water production method
WO2006077770A1 (en) * 2005-01-21 2006-07-27 Sato Industry Co., Ltd. Redox potential water producing apparatus
JP2006314910A (en) * 2005-05-12 2006-11-24 Sato Kogyo Kk Metallic work cleaning system, cleaning method and production method
JP2009021419A (en) * 2007-07-12 2009-01-29 Renesas Technology Corp Method and device for cleaning substrate
WO2009128327A1 (en) * 2008-04-16 2009-10-22 栗田工業株式会社 Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
US8999069B2 (en) 2008-04-16 2015-04-07 Kurita Water Industries Ltd. Method for producing cleaning water for an electronic material
JP2011222062A (en) * 2010-04-06 2011-11-04 Showa Denko Kk Method for manufacturing magnetic recording medium
WO2011125990A1 (en) * 2010-04-06 2011-10-13 昭和電工株式会社 Manufacturing method of magnetic recording medium
JP2013128912A (en) * 2011-12-22 2013-07-04 Shibaura Mechatronics Corp Apparatus and method for production of processing liquid, and cleaning device
JP2019050423A (en) * 2014-08-26 2019-03-28 東京エレクトロン株式会社 Substrate liquid-processing method and substrate liquid-processing device
JP2017025148A (en) * 2015-07-17 2017-02-02 野村マイクロ・サイエンス株式会社 Production method and production device for hydrogen water for cleaning
US10059911B2 (en) 2015-07-17 2018-08-28 Nomura Micro Science Co., Ltd. Washing hydrogen water producing method and producing apparatus
US10865130B2 (en) 2016-08-02 2020-12-15 Nomura Micro Science Co., Ltd. Apparatus and method for producing alkaline water for cleaning electronic device
JP2019209284A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
WO2019235473A1 (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolving device
JP2019209283A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
JP2022002846A (en) * 2018-06-06 2022-01-11 株式会社日本トリム Hydrogen gas dissolution device
CN116286221A (en) * 2023-03-06 2023-06-23 山东省疾病预防控制中心 Cleaning solution for ion source and ion lens of liquid chromatography-mass spectrometer

Also Published As

Publication number Publication date
JP3296405B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
US5783790A (en) Wet treatment method
US5635053A (en) Method and apparatus for cleaning electronic parts
JP4109455B2 (en) Hydrogen dissolved water production equipment
JPH08187474A (en) Washing method
KR20110007092A (en) Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases
JP3313263B2 (en) Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus
JP3296407B2 (en) Cleaning method and cleaning device for electronic component members
JP3332323B2 (en) Cleaning method and cleaning device for electronic component members
JP3639102B2 (en) Wet processing equipment
JP4482844B2 (en) Wafer cleaning method
JP2000290693A (en) Cleaning of electronic parts and members
JP3940967B2 (en) Method for producing cleaning water for electronic material and method for cleaning electronic material
JP3507588B2 (en) Wet processing method and processing apparatus
JP2005150768A (en) Cleaning method and cleaning method of electronic component
JP2006073747A (en) Method and device for treating semiconductor wafer
JP2001157879A (en) METHOD AND APPARATUS FOR CONTROLLING pH OF AQUEOUS SOLUTION
KR100424541B1 (en) Method and device for washing electronic parts member, or the like
JP3507590B2 (en) Wet processing method and processing apparatus
JPH1071375A (en) Washing method
JPH1129795A (en) Cleaning water for electronic material, its preparation, and cleaning of electronic material
JPH10174854A (en) Gas dissolver
JPH0919661A (en) Method and apparatus for washing electronic parts and the like
JP2000008083A (en) Gas-dissolved water production equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term