JPH06191591A - Inert gas sealed tank for demineralized water - Google Patents

Inert gas sealed tank for demineralized water

Info

Publication number
JPH06191591A
JPH06191591A JP4358011A JP35801192A JPH06191591A JP H06191591 A JPH06191591 A JP H06191591A JP 4358011 A JP4358011 A JP 4358011A JP 35801192 A JP35801192 A JP 35801192A JP H06191591 A JPH06191591 A JP H06191591A
Authority
JP
Japan
Prior art keywords
inert gas
gas
pure water
demineralized water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4358011A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawada
和彦 川田
Masaaki Nakamura
正明 中村
Kenji Takahashi
健二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP4358011A priority Critical patent/JPH06191591A/en
Publication of JPH06191591A publication Critical patent/JPH06191591A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an inert gas like nitrogen gas from dissolving into demineralized water by a method wherein a gas-liquid isolating member made of a material having a low gas permeability is floated on the boundary layer between demineralized water and inert gas in a tank sealed with inert gas. CONSTITUTION:Demineralized water is sent into a sealed tank main body 1 through a demineralized water feed pipe 2. On the other hand, inert gas is supplied from an inert gas source 3 consisting of nitrogen gas cylinders and others into the space above the demineralized water in the sealed tank 1 through an inert gas feed pipe 4. A gas-liquid isolating member 12 is floated so as to cover the water surface of the demineralized water 5 in the sealed tank 2. Thereby, the inert gas can be prevented from dissolving into the deminralized water during storage. Therefore, foaming phenomena, which arises due to the presence of inert gas during washing of semiconductor wafers by using a supersonic wave oscillator, can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱ガス処理の済んだ純
水、あるいは超純水(以下、純水と超純水を併せて単に
純水という)を一時的に貯溜しておくための窒素ガスの
ような不活性ガスでシールされた純水用不活性ガスシー
ル槽に関するものである。
BACKGROUND OF THE INVENTION The present invention is for temporarily storing degassed pure water or ultrapure water (hereinafter, pure water and ultrapure water are simply referred to as pure water). The present invention relates to an inert gas sealing tank for pure water, which is sealed with an inert gas such as nitrogen gas.

【0002】[0002]

【従来の技術】たとえば、半導体ウエハーのような精密
電子部品の洗浄用には、溶存電解質、微粒子、コロイダ
ル物質、高分子有機物、発熱物質のほか、微生物の増殖
を促すおそれのある溶存ガス、特に溶存酸素を可能な限
り除去した純水が要求される。特に、酸素が溶解してい
る純水にて半導体ウエハー等を洗浄すると、当該ウエハ
ーの酸化が促進され歩留りが悪くなるという問題点があ
る。そのため、純水の製造ライン中には真空脱気装置や
加熱脱気装置のような脱気設備が付設されている。そし
て、これらの脱気設備によって溶存ガスの取り除かれた
純水は、次段のサブシステムに送られるまでの間、ある
いはユースポイントにおいて使用されるまでの間、ライ
ン中に準備された純水貯槽内に一時的に貯溜される。と
ころが、この純水貯槽内で貯溜中に酸素や炭酸ガス等が
微量ではあるが、半導体ウエハーの洗浄用としては好ま
しくない程度の量が純水中に再溶解するのでこれまで純
水貯槽内に窒素ガスのような不活性ガスを圧入し、純水
の水面上を不活性ガスでシールする方法が一般的に採用
されている。
2. Description of the Related Art For example, for cleaning precision electronic parts such as semiconductor wafers, in addition to dissolved electrolytes, fine particles, colloidal substances, high molecular weight organic substances, and exothermic substances, dissolved gases that may promote the growth of microorganisms, especially Pure water from which dissolved oxygen is removed as much as possible is required. In particular, when a semiconductor wafer or the like is washed with pure water in which oxygen is dissolved, there is a problem that the oxidation of the wafer is promoted and the yield is deteriorated. Therefore, degassing equipment such as a vacuum degassing device and a heating degassing device are attached to the pure water production line. Then, the pure water from which the dissolved gas has been removed by these degassing facilities is stored in the pure water storage tank prepared in the line until it is sent to the next subsystem or used at the point of use. It is temporarily stored inside. However, although the amount of oxygen, carbon dioxide gas, etc. stored in the pure water storage tank is very small, an amount unfavorable for cleaning semiconductor wafers is redissolved in the pure water storage tank so far. A method in which an inert gas such as nitrogen gas is pressed in and the surface of pure water is sealed with an inert gas is generally adopted.

【0003】[0003]

【発明が解決しようとする課題】前記したように、純水
貯槽内は窒素ガスのような不活性ガスによってシールさ
れた状態となっているので、当該貯槽内で酸素や炭酸ガ
ス等が純水中に再溶解するのを防止することができる。
しかしながら、当該貯槽内の純水の上面には窒素ガス、
アルゴン、ヘリウム、ネオンのような不活性ガスが圧入
されており、しかも純水の水面と当該不活性ガスは接触
状態であるため、当該不活性ガスが純水中に溶解すると
いう問題点がある。窒素ガスのような不活性ガスの場合
には、酸素や炭酸ガスが溶解した場合と較べて半導体ウ
エハー等の洗浄に不都合を来すことが本来少ないのであ
るが、超音波を利用した洗浄装置では、純水中に不活性
ガスが溶解していると超音波発振時に発泡するという問
題点があり、超音波洗浄時に発泡が起きると、気泡がウ
エハーの表面に付着し、当該付着部分に洗浄用の純水が
届かず洗浄されない部分が生じてしまうという重大な欠
点がある。
As described above, since the inside of the pure water storage tank is sealed by the inert gas such as nitrogen gas, oxygen and carbon dioxide gas are purified water in the storage tank. It can be prevented from re-dissolving in it.
However, the upper surface of the pure water in the storage tank contains nitrogen gas,
Since an inert gas such as argon, helium, or neon is press-fitted and the water surface of pure water is in contact with the inert gas, there is a problem that the inert gas is dissolved in pure water. . In the case of an inert gas such as nitrogen gas, compared with the case where oxygen or carbon dioxide gas is dissolved, there is essentially less inconvenience in cleaning semiconductor wafers, etc. However, when inert gas is dissolved in pure water, there is a problem that foaming occurs during ultrasonic oscillation. When foaming occurs during ultrasonic cleaning, bubbles adhere to the surface of the wafer, and However, there is a serious drawback that some of the pure water does not reach and is not washed.

【0004】本発明者らは上記した従来の問題点を克服
すべく鋭意研究した結果、不活性ガスでシールされた純
水貯槽内の純水と不活性ガスの界面に気体透過性の低い
材質からなる気液遮断体を介在させれば、貯槽内の純水
中に不活性ガスが溶解するのを防ぐことができるのを見
出し本発明を完成するに至ったものである。従って、本
発明の目的は窒素ガスのような不活性ガスが純水中に溶
解するのを防止するようになした純水用不活性ガスシー
ル槽を提供することにある。
As a result of intensive studies to overcome the above-mentioned conventional problems, the present inventors have made a material having a low gas permeability at the interface between pure water and an inert gas in a pure water storage tank sealed with an inert gas. The present invention has been completed by finding that it is possible to prevent the inert gas from being dissolved in the pure water in the storage tank by interposing the gas-liquid blocker. Therefore, it is an object of the present invention to provide an inert gas seal tank for pure water, which prevents an inert gas such as nitrogen gas from dissolving in pure water.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
の本発明シール槽の構成を詳述すれば、溶存ガスの除去
された純水を貯溜する純水貯槽内で酸素や炭酸ガスが純
水中に再溶解するのを防止するため当該貯槽内の純水の
水面の上方部に窒素ガスのような不活性ガスを供給する
ようになした不活性ガスシール槽において、当該不活性
ガスシール槽内の純水の水面を覆うように気液遮断体を
浮設して前記不活性ガスが貯溜中の純水中に溶解するの
を防止するようにしたことを特徴とする純水用不活性ガ
スシール槽である。
The structure of the seal tank of the present invention for achieving the above object will be described in detail. In the pure water tank for storing the pure water from which the dissolved gas has been removed, oxygen and carbon dioxide gas are pure. In order to prevent redissolution in water, the inert gas seal tank is designed so that an inert gas such as nitrogen gas is supplied above the water surface of pure water in the storage tank. A gas-liquid barrier is provided so as to cover the surface of the pure water in the tank to prevent the inert gas from dissolving in the pure water in the reservoir. It is an active gas sealing tank.

【0006】貯槽内の純水の水面に浮設する気液遮断体
は、気体透過性の低い、たとえば独立気泡構造の発泡ポ
リエチレンのような合成樹脂発泡体が好適に用いられ、
当該合成樹脂発泡体を貯槽内の横断面形状に合わせて薄
板状に形成したものとしてもよいし、あるいは当該薄板
状の合成樹脂発泡体を芯材として、その全周面をポリエ
チレン、ポリプロピレン、ポリエステル、ポリ塩化ビニ
リデン、EVA(エチレン−酢酸ビニル共重合体)、E
VAとポリエステルの共重合体等によって作成したシー
ト状物によって覆うようになしたものとしてもよいもの
である。さらに、前記した合成樹脂製のシート状物を用
いて全周縁部をシールした内部中空の浮揚体を作成し、
当該浮揚体内に不活性ガスを封入して気液遮断体となし
てもよいものである。
As the gas-liquid barrier that floats on the surface of pure water in the storage tank, a synthetic resin foam having low gas permeability, such as foamed polyethylene having a closed cell structure, is preferably used.
The synthetic resin foam may be formed in a thin plate shape in accordance with the cross-sectional shape in the storage tank, or the synthetic resin foam in the thin plate may be used as a core material and polyethylene, polypropylene, polyester may be used on the entire peripheral surface thereof. , Polyvinylidene chloride, EVA (ethylene-vinyl acetate copolymer), E
It may be covered with a sheet-like material made of a copolymer of VA and polyester. Furthermore, using the above-mentioned synthetic resin sheet material, an inner hollow levitation body whose entire peripheral edge is sealed is created,
An inert gas may be enclosed in the levitation body to form a gas-liquid blocker.

【0007】[0007]

【実施例】以下、本発明不活性ガスシール槽の具体的構
成を図示の実施例に基づき詳細に説明する。図1は本発
明不活性ガスシール槽の一実施例を示す概略図、図2は
図1のA−A線に沿った断面図、図3乃至図5は気液遮
断体の実施例を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The specific construction of the inert gas sealing tank of the present invention will be described in detail below with reference to the illustrated embodiments. 1 is a schematic view showing an embodiment of the inert gas sealing tank of the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIGS. 3 to 5 show an embodiment of a gas-liquid blocker. FIG.

【0008】図中1は密閉状のシール槽本体、2は当該
シール槽本体1内に純水を供給する純水供給管である。
この純水供給管2を通じて送られてくる純水は、図示し
ない真空脱気装置や加熱脱気装置等によって溶存酸素や
炭酸ガスが予じめ除去されている。3は窒素ガスボンベ
等からなる不活性ガス源、4は当該ガス源3内の不活性
ガスをシール槽本体1内の純水5の上方空間に供給する
ための不活性ガス供給管、6は当該不活性ガス供給管4
の管路中に付設したガス量を自動的に調整する減圧弁、
7はシール槽本体1内の純水を図示しないユースポイン
ト、あるいは紫外線殺菌装置、カートリッジポリシャ
ー、限外濾過膜装置等を組み合わせてなるサブシステム
に送るための純水送出管である。また、8はシール槽本
体1を急激な減圧または加圧状態から保護するための水
封装置、9はシール槽本体1に付設した水位制御装置、
10は圧力制御装置、11は純水送出管7の管路中に配
設した送水ポンプである。
In the figure, 1 is a hermetically sealed seal tank main body, and 2 is a pure water supply pipe for supplying pure water into the seal tank main body 1.
In the pure water sent through the pure water supply pipe 2, dissolved oxygen and carbon dioxide gas are previously removed by a vacuum deaeration device, a heating deaeration device and the like not shown. Reference numeral 3 denotes an inert gas source composed of a nitrogen gas cylinder or the like, 4 denotes an inert gas supply pipe for supplying the inert gas in the gas source 3 to the space above the pure water 5 in the seal tank body 1, and 6 denotes Inert gas supply pipe 4
A pressure reducing valve that automatically adjusts the amount of gas attached to the pipeline of
Reference numeral 7 denotes a pure water delivery pipe for sending the pure water in the seal tank main body 1 to a use point (not shown) or a subsystem which is a combination of an ultraviolet sterilizer, a cartridge polisher, an ultrafiltration membrane device and the like. Further, 8 is a water sealing device for protecting the seal tank main body 1 from sudden depressurization or pressurization, 9 is a water level control device attached to the seal tank main body 1,
Reference numeral 10 is a pressure control device, and 11 is a water feed pump disposed in the conduit of the pure water delivery pipe 7.

【0009】このように、シール槽本体1内に貯溜され
ている純水5の水面の上方空間部には不活性ガス源3か
ら供給される窒素ガスのような不活性ガスが圧入される
ので、当該シール槽本体1内で酸素や炭酸ガスが純水5
中に再溶解するのを防止することができるものである。
ところが、純水5の水面は常に不活性ガスと接触状態に
あるため、純水5中に窒素ガスのような不活性ガスが溶
け込むという問題点があったのである。そこで、本発明
においては、シール槽本体1内の純水5の水面を覆うよ
うに気液遮断体12を浮設して前記不活性ガスが貯溜中
の純水5中に溶解するのを防止するようにしたものであ
る。
As described above, since the inert gas such as the nitrogen gas supplied from the inert gas source 3 is press-fitted into the space above the water surface of the pure water 5 stored in the seal tank body 1. , Pure water containing oxygen or carbon dioxide gas in the seal tank body 1
It is possible to prevent the redissolved therein.
However, since the water surface of the pure water 5 is always in contact with the inert gas, there is a problem that an inert gas such as nitrogen gas is dissolved in the pure water 5. Therefore, in the present invention, the gas-liquid blocker 12 is floated so as to cover the surface of the pure water 5 in the seal tank body 1 to prevent the inert gas from being dissolved in the pure water 5 in the reservoir. It is something that is done.

【0010】気液遮断体12は、独立気泡構造を有する
ポリエチレン、ポリスチレン、ポリプロピレン、ABS
樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデンのよう
な合成樹脂発泡体13によって図3に示すように、薄板
状に形成したものとしてもよいし、あるいはポリエチレ
ン、ポリエステル、ポリプロピレン、ポリ塩化ビニリデ
ン、EVA、EVAとポリエステルの共重合体のような
合成樹脂シート状物にて袋14を形成し、当該袋14内
に、図4に示すように前記薄板状の合成樹脂発泡体13
を一種の芯材として封入してシールした構造のものとし
てもよいものである(図4)。さらに、気液遮断体12
は、図5に示すように内部に不活性ガスを封入した中空
の合成樹脂製浮揚体15によって構成することもできる
ものであり、また特に図示しないが、一枚の合成樹脂シ
ート状物によって気液遮断体12を構成し、当該合成樹
脂シート状物を気液遮断体12としてシール槽本体1内
の純水5の水面に浮設するようにしてもよいものであ
る。
The gas-liquid blocker 12 is polyethylene, polystyrene, polypropylene, ABS having a closed cell structure.
As shown in FIG. 3, synthetic resin foam 13 such as resin, polyvinyl chloride resin, polyvinylidene chloride may be formed into a thin plate, or polyethylene, polyester, polypropylene, polyvinylidene chloride, EVA, A bag 14 is formed of a synthetic resin sheet material such as a copolymer of EVA and polyester, and the thin plate-shaped synthetic resin foam 13 is formed in the bag 14 as shown in FIG.
It is also possible to have a structure in which is sealed as a kind of core material and sealed (FIG. 4). Further, the gas-liquid blocker 12
5 can also be configured by a hollow synthetic resin levitation body 15 in which an inert gas is sealed as shown in FIG. 5, and although not shown in particular, it can be formed by a single synthetic resin sheet-like material. The liquid blocking body 12 may be configured so that the synthetic resin sheet-like material serves as the gas-liquid blocking body 12 and is floated on the surface of the pure water 5 in the seal tank body 1.

【0011】いずれの実施例の場合でも、気液遮断体1
2はシール槽本体1内の純水5の水面の殆どを覆うこと
ができる程度の大きさに形成するのはいうまでもなく、
且つシール槽本体1内において純水5の水面の変化に応
じて上下動し得るようシール槽本体1の内周形状より僅
かに小さい形状に形成するものである。なお、シール槽
本体1の内周縁と気液遮断体12の外周縁との間には、
前記したように気液遮断体12が水面の変化に応動し得
る程度の間隔が設けられるが、この間隔はシール槽本体
1内の純水5の水面全体からみればごく僅かであり、本
発明の効果に影響を与えるようなことはない。
In any of the embodiments, the gas-liquid blocker 1
Needless to say, 2 is formed in such a size that it can cover most of the surface of the pure water 5 in the seal tank body 1.
Further, it is formed in a shape slightly smaller than the inner peripheral shape of the seal tank body 1 so that it can move up and down in accordance with the change of the water surface of the pure water 5 in the seal tank body 1. In addition, between the inner peripheral edge of the seal tank main body 1 and the outer peripheral edge of the gas-liquid blocker 12,
As described above, the gas-liquid blocker 12 is provided with an interval to the extent that it can respond to changes in the water surface, but this interval is very small when viewed from the entire water surface of the pure water 5 in the seal tank body 1. It does not affect the effect of.

【0012】次に、合成樹脂発泡体13として独立気泡
構造を有する厚さ約1cmの発泡ポリエチレン製の薄板
を用い、これをEVA・ポリエステルの共重合体によっ
て作成した袋14内に封入して気液遮断体12を構成
し、当該気液遮断体12をシール槽本体1内の純水5の
水面に浮設した場合(実施例)と、このような気液遮断
体を用いず従来と同様に不活性ガスと接触状態のまま貯
溜した場合(比較例)とにつき、純水送出管7を介して
送出される純水中の溶存窒素ガス濃度と溶存酸素濃度を
調べた結果を下記に示す。なお、この実験では純水供給
管2より真空脱気装置によって溶存酸素、溶存炭酸ガス
の除去された純水を3m3 /hの割合でシール槽本体1
内に供給すると共に、不活性ガス供給管4より6Nl/
minの割合で窒素ガスをシール槽本体1内の水面の上
方部に供給した。比較例によった場合、送出された純水
中の溶存窒素ガス濃度は1.1mgN/lであったが、
実施例によった場合は全く検出できなかった。また、溶
存酸素濃度は実施例によった場合22.0μgO/l、
比較例によった場合22.4μgO/lで、実施例によ
った場合の方が幾分改善されていた。なお、前記溶存窒
素ガス濃度の測定はガスクロマトグラフィー、溶存酸素
濃度の測定は溶存酸素計によった。
Next, as the synthetic resin foam 13, a thin polyethylene foam plate having a closed cell structure and having a thickness of about 1 cm is used. The thin plate is enclosed in a bag 14 made of an EVA / polyester copolymer and sealed. When the liquid-blocking body 12 is configured and the gas-liquid blocking body 12 is floated on the surface of the pure water 5 in the seal tank body 1 (Example), the gas-liquid blocking body is not used and is the same as the conventional one. The following shows the results of examining the dissolved nitrogen gas concentration and the dissolved oxygen concentration in the pure water delivered through the pure water delivery pipe 7 for the case where the water was stored in contact with the inert gas (comparative example). . In this experiment, pure water from which dissolved oxygen and dissolved carbon dioxide were removed from the pure water supply pipe 2 by a vacuum degassing device at a rate of 3 m 3 / h was used for the sealing tank body 1.
6Nl / from the inert gas supply pipe 4
Nitrogen gas was supplied to the upper part of the water surface in the seal tank body 1 at a rate of min. According to the comparative example, the concentration of dissolved nitrogen gas in the pure water delivered was 1.1 mgN / l,
No detection was possible according to the example. The dissolved oxygen concentration is 22.0 μg O / l according to the example,
In the case of the comparative example, 22.4 μg O / l, and in the case of the example, there was some improvement. The dissolved nitrogen gas concentration was measured by gas chromatography, and the dissolved oxygen concentration was measured by a dissolved oxygen meter.

【0013】[0013]

【発明の効果】本発明シール槽は以上のように気液遮断
体を純水の水面に浮設したものであり、従来からのシス
テムの簡単な変更でシール槽内での溶存酸素等の再溶解
を防ぐことができるのは勿論のこと、シール槽内で貯溜
中に純水に窒素ガスのような不活性ガスが溶解するのを
有効に防止することができるものである。従って、超音
波発振を利用した半導体ウエハー等の洗浄時に不活性ガ
スに起因する発泡をなくすることができ、半導体ウエハ
ー等の歩留り向上に大きな効果がある。
As described above, the seal tank of the present invention is one in which the gas-liquid barrier is floated on the surface of pure water, and it is possible to re-dissolve dissolved oxygen etc. in the seal tank by a simple modification of the conventional system. In addition to being able to prevent dissolution, it is possible to effectively prevent the dissolution of an inert gas such as nitrogen gas in pure water during storage in the seal tank. Therefore, when cleaning a semiconductor wafer or the like using ultrasonic oscillation, it is possible to eliminate foaming due to an inert gas, and it is very effective in improving the yield of the semiconductor wafer and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明不活性ガスシール槽の一実施例を示す概
略図である。
FIG. 1 is a schematic view showing an embodiment of an inert gas sealing tank of the present invention.

【図2】図1のA−A線に沿った断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】気液遮断体の実施例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a gas-liquid blocker.

【図4】気液遮断体の実施例を示す断面図である。FIG. 4 is a cross-sectional view showing an embodiment of a gas-liquid blocker.

【図5】気液遮断体の実施例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a gas-liquid blocker.

【符号の説明】[Explanation of symbols]

1:シール槽本体 2:純水供給管 3:不活性ガス源 4:不活性ガス
供給管 5:純水 6:減圧弁 7:純水送出管 8:水封装置 9:水位制御装置 10:圧力制御装
置 11:送水ポンプ 12:気液遮断
体 13:合成樹脂発泡体 14:袋 15:合成樹脂製浮揚体
1: Seal tank main body 2: Pure water supply pipe 3: Inert gas source 4: Inert gas supply pipe 5: Pure water 6: Pressure reducing valve 7: Pure water delivery pipe 8: Water sealing device 9: Water level control device 10: Pressure control device 11: Water pump 12: Gas-liquid barrier 13: Synthetic resin foam 14: Bag 15: Float made of synthetic resin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶存ガスの除去された純水を貯溜する純
水貯槽内で酸素や炭酸ガスが純水中に再溶解するのを防
止するため当該貯槽内の純水の水面の上方部に窒素ガス
のような不活性ガスを供給するようになした不活性ガス
シール槽において、当該不活性ガスシール槽内の純水の
水面を覆うように気液遮断体を浮設して前記不活性ガス
が貯溜中の純水中に溶解するのを防止するようにしたこ
とを特徴とする純水用不活性ガスシール槽。
1. In order to prevent redissolution of oxygen and carbon dioxide gas in pure water in a pure water storage tank for storing pure water from which dissolved gas has been removed, a pure water tank is provided above the water surface of the pure water in the storage tank. In an inert gas seal tank adapted to supply an inert gas such as nitrogen gas, the gas-liquid blocker is floated so as to cover the surface of pure water in the inert gas seal tank, and An inert gas seal tank for pure water, characterized in that the gas is prevented from dissolving in the pure water in the reservoir.
JP4358011A 1992-12-25 1992-12-25 Inert gas sealed tank for demineralized water Pending JPH06191591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4358011A JPH06191591A (en) 1992-12-25 1992-12-25 Inert gas sealed tank for demineralized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4358011A JPH06191591A (en) 1992-12-25 1992-12-25 Inert gas sealed tank for demineralized water

Publications (1)

Publication Number Publication Date
JPH06191591A true JPH06191591A (en) 1994-07-12

Family

ID=18457089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4358011A Pending JPH06191591A (en) 1992-12-25 1992-12-25 Inert gas sealed tank for demineralized water

Country Status (1)

Country Link
JP (1) JPH06191591A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064867A (en) 1996-08-20 1998-03-06 Japan Organo Co Ltd Method and device for cleaning a variety of electronic component members
WO2018176196A1 (en) * 2017-03-27 2018-10-04 孙强丹 Cyclic inert sealing system based on gas source servo device and qhse storage and transport method
WO2018176198A1 (en) * 2017-03-27 2018-10-04 孙强丹 Dome-based cyclic inert sealing system for external floating roof tank and qhse storage and transport method thereof
WO2019095517A1 (en) * 2017-11-17 2019-05-23 米亚索乐装备集成(福建)有限公司 Drying box for storing solar cell chips
WO2019149291A1 (en) * 2018-02-02 2019-08-08 孙强丹 Liquid-sealed fluid container-based cyclic inert sealing system and qhse storage and transportation method
CN110496833A (en) * 2018-05-18 2019-11-26 中石化广州工程有限公司 A kind of nitrogen envelope internal floating roof tank pipeline scavenging system
CN112628591A (en) * 2020-11-30 2021-04-09 湖南汉华京电清洁能源科技有限公司 Supercritical carbon dioxide pressure stabilizer
CN113124003A (en) * 2021-03-22 2021-07-16 北京天地玛珂电液控制***有限公司 Mine underground pure water tank
WO2022038897A1 (en) * 2020-08-20 2022-02-24 野村マイクロ・サイエンス株式会社 Gas seal tank, seal gas supply method, ultrapure water manufacturing apparatus, and ultrapure water manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064867A (en) 1996-08-20 1998-03-06 Japan Organo Co Ltd Method and device for cleaning a variety of electronic component members
WO2018176196A1 (en) * 2017-03-27 2018-10-04 孙强丹 Cyclic inert sealing system based on gas source servo device and qhse storage and transport method
WO2018176198A1 (en) * 2017-03-27 2018-10-04 孙强丹 Dome-based cyclic inert sealing system for external floating roof tank and qhse storage and transport method thereof
WO2019095517A1 (en) * 2017-11-17 2019-05-23 米亚索乐装备集成(福建)有限公司 Drying box for storing solar cell chips
JP2021506697A (en) * 2018-02-02 2021-02-22 孫強丹SUN, Qiangdan Circulating Inactive Medium Sealing System with Liquid-Sealed Fluid Container and QHSE Storage and Transportation Method
WO2019149291A1 (en) * 2018-02-02 2019-08-08 孙强丹 Liquid-sealed fluid container-based cyclic inert sealing system and qhse storage and transportation method
CN110496833A (en) * 2018-05-18 2019-11-26 中石化广州工程有限公司 A kind of nitrogen envelope internal floating roof tank pipeline scavenging system
WO2022038897A1 (en) * 2020-08-20 2022-02-24 野村マイクロ・サイエンス株式会社 Gas seal tank, seal gas supply method, ultrapure water manufacturing apparatus, and ultrapure water manufacturing method
JP2022035213A (en) * 2020-08-20 2022-03-04 野村マイクロ・サイエンス株式会社 Gas seal tank, seal gas supplying method, ultrapure water generation device and ultrapure water generation method
KR20230051424A (en) 2020-08-20 2023-04-18 노무라마이크로사이엔스가부시키가이샤 Gas seal tank, seal gas supply method, ultrapure water production device and ultrapure water production method
CN112628591A (en) * 2020-11-30 2021-04-09 湖南汉华京电清洁能源科技有限公司 Supercritical carbon dioxide pressure stabilizer
CN112628591B (en) * 2020-11-30 2022-06-28 湖南汉华京电清洁能源科技有限公司 Supercritical carbon dioxide pressure stabilizer
CN113124003A (en) * 2021-03-22 2021-07-16 北京天地玛珂电液控制***有限公司 Mine underground pure water tank

Similar Documents

Publication Publication Date Title
JPH06191591A (en) Inert gas sealed tank for demineralized water
JPH09113494A (en) Solution container for analytical reagent
JPH0231785Y2 (en)
JPH06165808A (en) Air bubble generator
JPH06190360A (en) Dissolved oxygen decreasing device
JP2000317210A (en) Device and method for degassing liquid chemical
JP3492730B2 (en) Pure water storage method
JPH0994447A (en) Liquid chemical feeder and method for degassing liquid chemical
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JP2952114B2 (en) Degassed liquid production apparatus and degassed liquid production method
JPH0429703A (en) Accumulator
JPH03154601A (en) Removal of dissolving oxygen in water
JPH05289036A (en) Liquid crystal supply device into which deaeration device is integrated and its operating method
JPH0764375B2 (en) Exhaust structure of aseptic storage equipment
JP3129569B2 (en) Anodizing equipment and method
JPH11169606A (en) Deaerator
JPH0350925Y2 (en)
JPH0740916B2 (en) Bioreactor for alcohol fermentation
JPH0785793B2 (en) Device for removing dissolved oxygen in liquid
JPH10114393A (en) Pure water storage tank
JPS6379584A (en) Pressurizing type cultivation device
JPH0337759Y2 (en)
JPH0119930B2 (en)
JPH0560583U (en) Ultrapure water tank device
JPH0334305A (en) Method and device for electrolytic vacuum impregnation for electrolytic capacitor element