JPH1046382A - Production of fine metallic fiber and conductive paint using the fiber - Google Patents

Production of fine metallic fiber and conductive paint using the fiber

Info

Publication number
JPH1046382A
JPH1046382A JP19726996A JP19726996A JPH1046382A JP H1046382 A JPH1046382 A JP H1046382A JP 19726996 A JP19726996 A JP 19726996A JP 19726996 A JP19726996 A JP 19726996A JP H1046382 A JPH1046382 A JP H1046382A
Authority
JP
Japan
Prior art keywords
film
metal
replica
fiber
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19726996A
Other languages
Japanese (ja)
Inventor
Akira Nakabayashi
明 中林
Takashi Kimura
高志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP19726996A priority Critical patent/JPH1046382A/en
Publication of JPH1046382A publication Critical patent/JPH1046382A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a conductive paint forming a coating film capable of shielding an electromagnetic wave and reflecting an electric wave and having transparency, etc., by obtaining an extremely fine metallic fiber and using the fiber in a conductive filler. SOLUTION: An aluminum material 10 is oxidized to form a porous oxide film 11 having micropores 12 the film 11 is plated to fill the micropore with a metal 13a, and the film surface is coated with a metallic film 13b. The film 11 is dissolved, a frog-like deposit 13 with the plating film 13b bristled with the fibrous metal 13a is separated from the aluminum material 10, and a curing soln. is poured on the bristling metal 13a side of the deposit 13 and cured to form a hard film 14. The hard film is released from the deposit, the replica 15 of the film pierced with a micropore 16 is formed and stuck to a conductor plate 19, the conductor plate is plated to fill the micropore of the replica with a metal 17, the replica is then dissolved to disperse the fine metallic fibers 18 in the soln., and the fine metallic fiber is separated from the replica soln. and obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は極めて微細な金属繊
維の製造方法に関する。更に本発明はこの方法で製造さ
れた金属繊維を導電性フィラーとして用いて、塗膜に良
好な電磁波遮蔽性、電波反射性、静電防止特性に加えて
透明性が得られる導電性塗料に関するものである。
The present invention relates to a method for producing extremely fine metal fibers. Furthermore, the present invention relates to a conductive paint which uses a metal fiber produced by this method as a conductive filler, and in which a coating film has good transparency in addition to good electromagnetic wave shielding properties, radio wave reflection properties and antistatic properties. It is.

【0002】[0002]

【従来の技術】従来、導電性フィラーとして、粒径が
ナノオーダーのコロイド状の金属微粉末を用いて、これ
を原料塗料に混合した導電性塗料が知られている。また
別の導電性フィラーとして、ガラス繊維のモノフィラ
メントを適宜長さに切断し、更にボールミルなどにより
微粉化した長さが好ましくは20〜500μm、太さが
好ましくは3〜23μmのミルドファイバに化学めっき
などにより厚さ0.1〜5μmでニッケル、銅、銀等の
金属をコーティングしたもの、或いはガラス繊維をミル
で微粉化する前に金属をコーティングしてミルドファイ
バにしたものが開示されている(特開昭61−1575
41)。この導電性フィラーをプラスチック中に添加
し、均一に混合することにより導電性塗料が得られる。 更に別の導電性フィラーとして、In,Snの複合酸
化物(ITO)やSn,Sbの複合酸化物を用いて、こ
れを原料塗料に混合した導電性塗料が知られている。こ
の導電性塗料によれば、塗膜に導電性のみならず、透明
性が付与される。
2. Description of the Related Art Conventionally, there has been known a conductive paint in which a colloidal metal fine powder having a nano-order particle size is used as a conductive filler and mixed with a raw material paint. Further, as another conductive filler, a monofilament of glass fiber is appropriately cut into lengths, and then further finely pulverized by a ball mill or the like. The length is preferably 20 to 500 μm, and the thickness is preferably 3 to 23 μm. For example, a material coated with a metal such as nickel, copper, silver, or the like having a thickness of 0.1 to 5 μm, or a material obtained by coating a metal before milling a glass fiber into a milled fiber is disclosed ( JP-A-61-1575
41). The conductive paint is obtained by adding the conductive filler to the plastic and mixing it uniformly. As another conductive filler, there has been known a conductive paint in which a composite oxide of In and Sn (ITO) or a composite oxide of Sn and Sb is used and mixed with a raw material paint. According to this conductive paint, not only conductivity but also transparency is imparted to the coating film.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の導電
性フィラーを用いた導電性塗料では、塗膜に導電性を付
与するために金属微粉末を多量に原料塗料に混合しなけ
ればならず、塗膜が金属微粉末自体の色で着色し、透明
にならない不具合があった。また上記の導電性フィラ
ーを用いた導電性塗料では、比較的少量の導電性フィラ
ーで塗膜に導電性が付与されるが、導電性フィラーの長
さ及び太さが大きいために、透明にならない不具合があ
った。また上記の導電性フィラーを用いた導電性塗料
では、塗膜が透明になるものの、最も導電性の優れてい
るITOを分散したものでも、表面抵抗値が1000Ω
/□程度であり、より高い導電性が得られるフィラーが
望まれていた。
However, in the conductive paint using the above-mentioned conductive filler, a large amount of fine metal powder must be mixed with the raw material paint in order to impart conductivity to the coating film. There was a problem that the coating film was colored with the color of the metal fine powder itself and did not become transparent. Further, in the conductive paint using the above conductive filler, conductivity is imparted to the coating film by a relatively small amount of the conductive filler, but because the length and thickness of the conductive filler is large, it does not become transparent. There was a defect. In the conductive paint using the above conductive filler, although the coating film becomes transparent, even when the most conductive ITO is dispersed, the surface resistance value is 1000Ω.
/ □, and a filler which can obtain higher conductivity has been desired.

【0004】本発明の目的は、極めて微細な金属繊維を
製造する方法を提供することにある。本発明の別の目的
は、塗膜に良好な電磁波遮蔽性、電波反射性、静電防止
特性に加えて透明性が得られる導電性塗料を提供するこ
とにある。
[0004] It is an object of the present invention to provide a method for producing extremely fine metal fibers. It is another object of the present invention to provide a conductive paint which provides a coating film with good transparency in addition to good electromagnetic wave shielding properties, radio wave reflection properties and antistatic properties.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、アルミニウム材10を陽極酸化して
その表面に微細孔12を有する多孔質酸化皮膜11を形
成し、この酸化皮膜11を無電解めっき処理又は電気め
っき処理してその微細孔12に第1金属13aを充填す
るとともにこの酸化皮膜11の表面をめっき膜13bで
被覆し、このめっき処理した酸化皮膜11を溶解して繊
維状の第1金属13aがめっき膜13bに林立した剣山
状の析出物13をアルミニウム材10から分離し、この
分離した析出物13の繊維状の第1金属13aが林立し
た側に硬化液を流し込み、この硬化液を硬化させて硬化
膜14を形成し、この硬化膜14を析出物13から剥離
して微細孔16のあいた酸化皮膜11のレプリカ15を
作製し、このレプリカ15を導電板19に貼り付け、こ
の導電板19を無電解めっき処理又は電気めっき処理す
ることによりレプリカ15の微細孔16に第2金属17
を充填し、レプリカ15を溶解してその溶液中に微細金
属繊維18を分散し、レプリカ15の溶液中の微細金属
繊維18を固液分離して得る微細金属繊維の製造方法で
ある。陽極酸化の条件により、酸化皮膜11の微細孔1
2の孔径及び孔長が決められ、これが金属繊維18のそ
れぞれ繊維径及び繊維長になる。析出物13からレプリ
カ15を多数製作すれば、量産が容易になる。
The invention according to claim 1 is
As shown in FIG. 1, an aluminum material 10 is anodically oxidized to form a porous oxide film 11 having fine holes 12 on its surface, and the oxide film 11 is subjected to electroless plating or electroplating to form the fine holes. 12 is filled with a first metal 13a, the surface of the oxide film 11 is covered with a plating film 13b, and the plated oxide film 11 is dissolved to form a fibrous first metal 13a on the plating film 13b. A precipitate 13 is separated from the aluminum material 10 and a hardening liquid is poured into the separated precipitate 13 on the side where the fibrous first metal 13 a is established, and the hardening liquid is hardened to form a hardened film 14. The cured film 14 is peeled off from the precipitate 13 to form a replica 15 of the oxide film 11 having fine holes 16, and the replica 15 is attached to a conductive plate 19. The second metal 17 in the micropores 16 of the replica 15 by treating solutions plating or electroplating
, The replica 15 is dissolved, the fine metal fibers 18 are dispersed in the solution, and the fine metal fibers 18 in the solution of the replica 15 are solid-liquid separated to obtain fine metal fibers. Depending on the conditions of the anodic oxidation, the fine pores 1 of the oxide film 11
The hole diameter and the hole length of 2 are determined, and these become the fiber diameter and the fiber length of the metal fiber 18, respectively. If a large number of replicas 15 are manufactured from the precipitates 13, mass production becomes easy.

【0006】請求項2に係る発明は、請求項1に係る発
明であって、第1金属13a又は第2金属17のいずれ
か一方又は双方がAu,Ag,Pt,Pd,Cu,N
i,Co,Sn,PbまたはSn−Pbである微細金属
繊維の製造方法である。第2金属17は微細金属繊維の
用途により決められる。第1金属13aは酸化皮膜11
を無電解めっき処理又は電気めっき処理できるものであ
れば、上記金属に限定されない。
The invention according to claim 2 is the invention according to claim 1, wherein one or both of the first metal 13a and the second metal 17 is Au, Ag, Pt, Pd, Cu, N
This is a method for producing fine metal fibers of i, Co, Sn, Pb or Sn-Pb. The second metal 17 is determined depending on the use of the fine metal fiber. The first metal 13a is an oxide film 11
Are not limited to the above metals as long as they can be subjected to electroless plating or electroplating.

【0007】請求項3に係る発明は、請求項1記載の方
法で製造された微細金属繊維を導電性フィラーとして含
む導電性塗料である。この導電性フィラーは極めて微細
であるため、塗膜に良好な導電性が与えられるととも
に、塗膜が透明になる。
According to a third aspect of the present invention, there is provided a conductive paint containing the fine metal fibers produced by the method of the first aspect as a conductive filler. Since the conductive filler is extremely fine, the coating film has good conductivity and is transparent.

【0008】[0008]

【発明の実施の形態】本発明の微細金属繊維を作製する
には、先ずアルミニウム材に対して電気分解を行う。こ
のアルミニウム材は純粋なアルミニウム材に限らずその
合金を含む。アルミニウム合金としては、Al−Cu−
Mg系、Al−Si系、Al−Zn−Mg−Cu系の加
工用合金、Al−Cu−Si系、Al−Si系、Al−
Cu−Ni−Mg系、Al−Mg系、Al−Si−Cu
−Ni−Mg系の鋳造用合金が挙げられる。この電気分
解は電解液としてシュウ酸、硫酸、クロム酸水溶液を用
い、この電解液中でアルミニウム材をアノード処理する
ことにより行われる。これにより、図1(a)及び
(b)に示すように、素地であるアルミニウム材10の
表面には多孔質酸化皮膜11(Al23)が形成され
る。酸化皮膜11の微細孔12はアルミニウム材表面に
垂直方向に細い柱状に多数形成される。これらの微細孔
12の深部に至るまで第1金属13aが充填される。こ
の柱状の微細孔12は孔径が0.01〜0.3μm程度
また孔長が0.1〜50μm程度である。この金属13
aの充填は酸化皮膜11を無電解めっき処理又は電気め
っき処理することにより行われる。無電解めっき処理を
行う前には、アルミニウム材の酸化皮膜に触媒化処理を
施しておくことが必要である。金属13aは酸化皮膜1
1を無電解めっき処理又は電気めっき処理できるもので
あれば、特に制限されない。Au,Ag,Pt,Pd,
Cu,Ni,Co,Sn,Pb又はSn−Pbが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION In order to produce the fine metal fiber of the present invention, first, an aluminum material is electrolyzed. This aluminum material includes not only a pure aluminum material but also an alloy thereof. Al-Cu-
Mg-based, Al-Si-based, Al-Zn-Mg-Cu-based processing alloys, Al-Cu-Si-based, Al-Si-based, Al-
Cu-Ni-Mg, Al-Mg, Al-Si-Cu
-Ni-Mg based casting alloys. This electrolysis is performed by using an aqueous solution of oxalic acid, sulfuric acid, or chromic acid as an electrolytic solution, and anodizing the aluminum material in the electrolytic solution. As a result, as shown in FIGS. 1A and 1B, a porous oxide film 11 (Al 2 O 3 ) is formed on the surface of the aluminum material 10 as the base material. A large number of fine holes 12 in the oxide film 11 are formed in a column shape thin in the vertical direction on the surface of the aluminum material. The first metal 13a is filled up to the deep portions of these fine holes 12. The columnar fine holes 12 have a hole diameter of about 0.01 to 0.3 μm and a hole length of about 0.1 to 50 μm. This metal 13
Filling a is performed by subjecting the oxide film 11 to electroless plating or electroplating. Before performing the electroless plating treatment, it is necessary to perform a catalytic treatment on the oxide film of the aluminum material. Metal 13a is oxide film 1
1 is not particularly limited as long as it can be subjected to electroless plating or electroplating. Au, Ag, Pt, Pd,
Cu, Ni, Co, Sn, Pb or Sn-Pb is preferred.

【0009】次のレプリカ15を形成するために、図1
(c)に示すように微細孔12の深部まで金属13aで
充填し、かつ酸化皮膜11の表面全体をめっき膜14で
被覆するようにめっき処理する。図1(d)に示すよう
に酸化皮膜11のみをNaOH,KOH,HCl,H3
PO4等の水溶液で溶解することにより、繊維状の第1
金属13aがめっき膜13bに林立した剣山状の析出物
13をアルミニウム材10から分離して得る。図1
(e)に示すように、析出物13の繊維状の第1金属1
3aが林立した側に硬化液を流し込み、この硬化液を硬
化させて硬化膜14を形成する。このとき硬化膜14の
表面に第1金属13aを露出させておくことが必要であ
る。
To form the next replica 15, FIG.
As shown in FIG. 3C, the metal 13a is filled up to the deep portion of the fine hole 12 and the plating process is performed so that the entire surface of the oxide film 11 is covered with the plating film 14. As shown in FIG. 1D, only the oxide film 11 is made of NaOH, KOH, HCl, H 3.
By dissolving with an aqueous solution such as PO 4 , the fibrous first
The sword-like precipitate 13 in which the metal 13a is formed on the plating film 13b is obtained by separating from the aluminum material 10. FIG.
As shown in (e), the fibrous first metal 1 of the precipitate 13 is formed.
A hardening liquid is poured into the side where 3a has been established, and the hardening liquid is hardened to form a hardened film 14. At this time, it is necessary to expose the first metal 13a on the surface of the cured film 14.

【0010】図1(f)に示すように、硬化膜14を析
出物13から静かに剥離して微細孔16のあいた酸化皮
膜11のレプリカ15を作製する。このとき析出物13
に損傷が見られなければ、析出物13は繰返し使用可能
であり、本発明の製造を図1(d)から始めることがで
きる。図1(g)に示すように、レプリカ15を導電板
19に接着テープ等を用いて貼り付け、この導電板19
を無電解めっき処理又は電気めっき処理することによ
り、レプリカ15の微細孔16に第2金属17を充填す
る。金属17は、微細金属繊維の用途により決められ、
導電板19を無電解めっき処理又は電気めっき処理でき
るものであれば、特に制限されない。Au,Ag,P
t,Pd,Cu,Ni,Co,Sn,Pb又はSn−P
bが好ましい。図1(h)に示すように、レプリカ15
を溶解してその溶液中に微細金属繊維18を分散し、レ
プリカ15の溶液中の微細金属繊維18を固液分離して
得る。この固液分離は、溶液中の微細金属繊維18を、
金属繊維18のサイズより小さな孔を有するメンブラン
フィルタなどを用いて濾別した後、十分に溶液を除去す
ることにより行われる。
[0010] As shown in FIG. 1 (f), the cured film 14 is gently peeled off from the precipitate 13 to form a replica 15 of the oxide film 11 having fine holes 16. At this time, the precipitate 13
If no damage is seen on the deposit 13, the precipitate 13 can be used repeatedly, and the production of the present invention can be started from FIG. 1 (d). As shown in FIG. 1 (g), the replica 15 is attached to the conductive plate 19 using an adhesive tape or the like.
Is subjected to an electroless plating process or an electroplating process to fill the fine holes 16 of the replica 15 with the second metal 17. The metal 17 is determined by the use of the fine metal fiber,
There is no particular limitation as long as the conductive plate 19 can be subjected to electroless plating or electroplating. Au, Ag, P
t, Pd, Cu, Ni, Co, Sn, Pb or Sn-P
b is preferred. As shown in FIG.
Is dissolved to disperse the fine metal fibers 18 in the solution, and the fine metal fibers 18 in the solution of the replica 15 are obtained by solid-liquid separation. This solid-liquid separation converts the fine metal fibers 18 in the solution into
The filtration is performed by using a membrane filter having holes smaller than the size of the metal fibers 18 and then sufficiently removing the solution.

【0011】本発明の製造方法により、繊維径が0.0
1〜0.3μm、繊維長が0.1〜50μmであって繊
維径の10倍以上である微細金属繊維が得られる。好ま
しい繊維径は0.01〜0.1μm、より好ましい繊維
径は0.02〜0.06μmである。また好ましい繊維
長は0.1〜2μm、より好ましい繊維長は0.01〜
1μmである。製造上の理由から繊維径の下限(0.0
1μm)及び繊維長の下限(0.1μm)が決められ
る。繊維径が0.3μmを越え、繊維長が50μmを越
えるとこの金属繊維を導電性塗料に混合したときに、塗
膜が透明でなくなる。
According to the production method of the present invention, a fiber diameter of 0.0
Fine metal fibers having a fiber length of 1 to 0.3 μm, a fiber length of 0.1 to 50 μm and a diameter of 10 times or more are obtained. A preferred fiber diameter is 0.01 to 0.1 μm, and a more preferred fiber diameter is 0.02 to 0.06 μm. The preferred fiber length is 0.1 to 2 μm, and the more preferred fiber length is 0.01 to 2 μm.
1 μm. The lower limit of the fiber diameter (0.0
1 μm) and the lower limit of the fiber length (0.1 μm). If the fiber diameter exceeds 0.3 μm and the fiber length exceeds 50 μm, the coating film will not be transparent when this metal fiber is mixed with the conductive paint.

【0012】得られた微細金属繊維を導電性フィラーと
して原料塗料に均一に混合して分散させれば、導電性フ
ィラーは純粋な金属からなるため、少量で塗膜に良好な
導電性が付与されるとともに、導電性フィラーは微細孔
12に相応した極めて微細な繊維状、針状であるため、
塗膜において肉眼で視認することができない。この結
果、微細金属繊維を導電性フィラーとすることにより、
塗膜に良好な電磁波遮蔽性、電波反射性、静電防止特性
を有する透明導電性塗料が得られる。
If the obtained fine metal fibers are uniformly mixed and dispersed as a conductive filler in a raw material coating, the conductive filler is made of a pure metal, so that a small amount of the conductive filler can impart good conductivity to the coating film. In addition, since the conductive filler is in the form of extremely fine fibers and needles corresponding to the fine holes 12,
The coating film cannot be visually recognized. As a result, by using fine metal fibers as conductive filler,
A transparent conductive paint having good electromagnetic wave shielding properties, radio wave reflection properties and antistatic properties on the coating film can be obtained.

【0013】[0013]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>先ず、A1050材のアルミニウム板(1
00×100×0.5mm)をアルカリ水溶液で脱脂
し、硝酸水溶液で洗浄した後、10℃のシュウ酸0.5
wt%の電解液に浸漬した。アルミニウム板を陽極とし
てこの電解液中で直流3A/dm2の電流密度で10分
間通電してその表面に多孔質陽極酸化皮膜を形成した
後、リン酸5wt%水溶液に20℃で10分間浸漬し、
微細孔を広げるポアワイドニング処理を行った。この条
件下で形成された皮膜の膜厚は約8μmであった。次い
で、このアルミニウム板を水洗した後、スルファミン酸
ニッケル40wt%、ホウ酸30wt%からなる溶液を
水酸化ニッケルでpH4に調整した40℃の溶液に浸漬
した。このアルミニウム板を陰極にしてこの溶液中で直
流3A/dm2の電流密度で40分間通電してNiめっ
き処理した。この条件下で形成されたNiめっき膜は陽
極酸化皮膜の微細孔を充填するとともに、酸化皮膜の表
面を覆っていた。
Next, examples of the present invention will be described together with comparative examples. <Example 1> First, an A1050 aluminum plate (1
(00 × 100 × 0.5 mm) was degreased with an aqueous alkali solution, washed with an aqueous nitric acid solution, and then oxalic acid 0.5% at 10 ° C.
It was immersed in a wt% electrolytic solution. An aluminum plate is used as an anode, a current is applied at a current density of 3 A / dm 2 for 10 minutes in the electrolytic solution to form a porous anodic oxide film on the surface thereof, and then dipped in a 5 wt% aqueous solution of phosphoric acid at 20 ° C. for 10 minutes. ,
Pore widening treatment for expanding micropores was performed. The film thickness formed under these conditions was about 8 μm. Next, after washing this aluminum plate with water, a solution composed of nickel sulfamate 40 wt% and boric acid 30 wt% was immersed in a 40 ° C. solution adjusted to pH 4 with nickel hydroxide. The aluminum plate was used as a cathode, and a current was applied at a current density of 3 A / dm 2 for 40 minutes in the solution to perform Ni plating. The Ni plating film formed under these conditions filled the pores of the anodic oxide film and covered the surface of the oxide film.

【0014】次に、Niめっき処理されたアルミニウム
板を20wt%のNaOH水溶液に浸漬して表面の陽極
酸化皮膜を溶解させた。これにより厚さ約10μmのN
i箔上に長さ約8μmの繊維状のNiが林立した、剣山
状の析出物をアルミニウム板より分離した。この分離し
た析出物の繊維状Niが林立した側に、市販のアルコー
ル溶性型のフェノール樹脂系接着剤(東邦理化工業製)
を真空排気条件下で流し込んだ後、接着剤中のアルコー
ルを蒸発させた。次いで80℃で1時間乾燥した後、フ
ェノール樹脂膜を剥離して陽極酸化皮膜のレプリカを得
た。
Next, the aluminum plate subjected to the Ni plating was immersed in a 20 wt% NaOH aqueous solution to dissolve the anodic oxide film on the surface. Thereby, the N of about 10 μm thickness is obtained.
A sword-like precipitate in which fibrous Ni having a length of about 8 μm was grown on the i-foil was separated from the aluminum plate. A commercially available alcohol-soluble phenolic resin adhesive (manufactured by Toho Rika Kogyo Co., Ltd.)
Was poured under vacuum evacuation conditions, and then the alcohol in the adhesive was evaporated. Next, after drying at 80 ° C. for 1 hour, the phenol resin film was peeled off to obtain a replica of the anodic oxide film.

【0015】剥離したレプリカのフェノール樹脂膜をマ
スキングテープ(3M社製、#851)で銅板(120
×120×1mm)に貼り付けた後、上述しためっき液
に浸漬し、この銅板を陰極にしてこのめっき液中で直流
3A/dm2の電流密度で10分間通電してNiめっき
処理した。この条件下で形成されたNiめっき膜は陽極
酸化皮膜の微細孔を充填するだけで、酸化皮膜の表面は
Niで覆われていなかった。次いで、メタノールでフェ
ノール樹脂膜を溶解した。これによりフェノール樹脂膜
の微細孔を充填していたNi繊維がメタノール中に分散
した。この溶液を公称0.2μmのメンブランフィルタ
でろ過し、Ni繊維を分離した。得られたNi繊維は繊
維径が約0.08μmで繊維長が約7μmであり、凝集
は全く見られなかった。
The phenol resin film of the peeled replica is coated on a copper plate (120 mm) with a masking tape (# 851 manufactured by 3M).
(× 120 × 1 mm), and immersed in the above-mentioned plating solution. The copper plate was used as a cathode, and a current was passed through the plating solution at a current density of 3 A / dm 2 for 10 minutes to perform Ni plating. The Ni plating film formed under these conditions only filled the micropores of the anodic oxide film, and the surface of the oxide film was not covered with Ni. Next, the phenol resin film was dissolved with methanol. As a result, the Ni fibers filling the micropores of the phenol resin film were dispersed in methanol. This solution was filtered through a nominal 0.2 μm membrane filter to separate Ni fibers. The obtained Ni fibers had a fiber diameter of about 0.08 μm and a fiber length of about 7 μm, and no aggregation was observed.

【0016】<実施例2>実施例1と同じアルミニウム
板を用いて、このアルミニウム板を実施例1と同様に脱
脂、洗浄した後、陽極酸化及びポアワイドニング処理を
行って、表面に約8μm厚の多孔質陽極酸化皮膜を形成
した。次いで、このアルミニウム板を水洗した後に、実
施例1と同様にNiめっき処理することにより、Niめ
っき膜により陽極酸化皮膜の微細孔を充填するととも
に、酸化皮膜の表面を覆った。次に、実施例1と同様に
して、Niめっき処理されたアルミニウム板の表面の陽
極酸化皮膜を溶解して厚さ約10μmのNi箔上に長さ
約8μmの繊維状のNiが林立した、剣山状の析出物を
アルミニウム板より分離した。
<Example 2> Using the same aluminum plate as in Example 1, the aluminum plate was degreased and washed in the same manner as in Example 1, and then subjected to anodizing and pore widening treatment to obtain a surface of about 8 μm. A thick porous anodic oxide film was formed. Next, the aluminum plate was washed with water and then subjected to Ni plating in the same manner as in Example 1, thereby filling the fine pores of the anodic oxide film with the Ni plated film and covering the surface of the oxide film. Next, in the same manner as in Example 1, the anodic oxide film on the surface of the Ni-plated aluminum plate was dissolved to form fibrous Ni having a length of about 8 μm on a Ni foil having a thickness of about 10 μm. The sword-like precipitate was separated from the aluminum plate.

【0017】この分離された析出物の繊維状Niが林立
した側に、市販の固形分35wt%のクリヤアクリルラ
ッカー(関西ペイント社製)をアセトンで固形分25w
t%に希釈して、真空排気条件下で流し込んだ後、この
流し込んだ液中の溶剤を蒸発させた。次いで80℃で1
時間乾燥した後、アクリル塗膜を剥離して陽極酸化皮膜
のレプリカを得た。
A commercially available clear acrylic lacquer (manufactured by Kansai Paint Co., Ltd.) having a solid content of 35 wt% was washed with acetone at a solid content of 25 w
After dilution to t% and pouring under vacuum evacuation conditions, the solvent in the poured liquid was evaporated. Then at 80 ° C for 1
After drying for an hour, the acrylic coating was peeled off to obtain a replica of the anodic oxide coating.

【0018】剥離したレプリカのフェノール樹脂膜をマ
スキングテープ(3M社製、#851)で銅板(120
×120×1mm)に貼り付けた後、市販の亜硫酸Au
めっき(上村工業社製、アウルナ593)に浸漬し、こ
の銅板を陰極にしてこのめっき液中で直流1A/dm2
の電流密度で10分間通電してAuめっき処理した。こ
の条件下で形成されたAuめっき膜は陽極酸化皮膜の微
細孔を充填するだけで、酸化皮膜の表面はAuで覆われ
ていなかった。次いで、アセトンとトルエンを一対一の
同容量で混合した溶剤でアクリル塗膜を溶解した。これ
によりアクリル塗膜の微細孔を充填していたAu繊維が
溶剤中に分散した。この溶剤を公称0.2μmのメンブ
ランフィルタでろ過し、Au繊維を分離した。得られた
Au繊維は繊維径が約0.08μmで繊維長が約5μm
であり、凝集は全く見られなかった。
The phenol resin film of the peeled replica is coated on a copper plate (120 mm) with a masking tape (# 851 manufactured by 3M).
× 120 × 1 mm), and then commercially available Au sulfite
It was immersed in plating (Aurna 593, manufactured by Uemura Kogyo Co., Ltd.), and the copper plate was used as a cathode, and a direct current of 1 A / dm 2 was used in the plating solution.
Was passed for 10 minutes at a current density of 10 μm for Au plating. The Au plating film formed under these conditions only filled the micropores of the anodic oxide film, and the surface of the oxide film was not covered with Au. Next, the acrylic coating film was dissolved with a solvent in which acetone and toluene were mixed in the same volume one by one. As a result, the Au fibers filling the micropores of the acrylic coating film were dispersed in the solvent. The solvent was filtered through a nominal 0.2 μm membrane filter to separate Au fibers. The obtained Au fiber has a fiber diameter of about 0.08 μm and a fiber length of about 5 μm.
And no aggregation was observed.

【0019】<比較例>実施例1及び実施例2の金属繊
維の代わりに平均粒径0.02μmのITO微粉末を比
較例とした。
Comparative Example Instead of the metal fibers of Examples 1 and 2, an ITO fine powder having an average particle size of 0.02 μm was used as a comparative example.

【0020】<塗料化及び塗膜特性>実施例1及び実施
例2で得られた金属繊維及び比較例のITO微粉末を、
ニトロセルロース20wt%、酢酸ブチル9wt%、酢
酸エチル18wt%、ブチルアルコール4wt%、エチ
ルアルコール4wt%及びトルエン35wt%からなる
原料塗料にそれぞれ10wt%の割合で添加してビーズ
ミルを用いて十分に分散させた。更にこれらの塗料を、
5番のバーコータでPETフィルムに塗布した。乾燥後
の塗膜の膜厚及び塗膜特性を表1に示す。
<Formation of paint and properties of coating film> The metal fibers obtained in Examples 1 and 2 and the fine ITO powder of Comparative Example were
Nitrocellulose 20 wt%, butyl acetate 9 wt%, ethyl acetate 18 wt%, butyl alcohol 4 wt%, ethyl alcohol 4 wt% and toluene were added at a ratio of 10 wt% to each and thoroughly dispersed using a bead mill. Was. In addition, these paints
A No. 5 bar coater was applied to the PET film. Table 1 shows the thickness and properties of the dried coating film.

【0021】[0021]

【表1】 [Table 1]

【0022】なお、塗膜の膜厚は電子マイクロメータK
−402B(アンリツ社製)を、表面抵抗値はロレスタ
(三菱油化社製)を、また全光透過率及びヘイズは直読
ヘイズコンピュータHGM−3D(スガ試験機社製)を
それぞれ用いて測定した。
The thickness of the coating film is determined by an electronic micrometer K.
-402B (manufactured by Anritsu), surface resistance was measured using Loresta (manufactured by Mitsubishi Yuka), and total light transmittance and haze were measured using a direct reading haze computer HGM-3D (manufactured by Suga Test Instruments). .

【0023】表1から明らかなように、実施例1及び実
施例2の導電性塗料は、比較例の導電性塗料と比較し
て、塗膜の膜厚及び全光透過率は同等であるが、ヘイズ
が小さいため透明感があり、更に導電性は著しく優れて
いた。
As is clear from Table 1, the conductive paints of Examples 1 and 2 have the same film thickness and total light transmittance as those of the conductive paints of the comparative examples. Because of the small haze, the film had a transparent feeling, and the conductivity was remarkably excellent.

【0024】[0024]

【発明の効果】以上述べたように、本発明の製造方法に
より、繊維径が0.01〜0.3μm、繊維長が0.1
〜50μmであって繊維径の10倍以上の超微細な金属
繊維が得られる。この金属繊維を導電性フィラーに用い
た導電性塗料は、導電性フィラーが純粋な金属からなる
ため、少量で塗膜に良好な導電性が付与されるととも
に、導電性フィラーは陽極酸化皮膜の微細孔に相応した
極めて微細な繊維状、針状であるため、塗膜において肉
眼で視認することができない。その結果、本発明の導電
性塗料は、塗膜に良好な電磁波遮蔽性、電波反射性、静
電防止特性に加えて透明性を得ることができる。
As described above, according to the production method of the present invention, the fiber diameter is 0.01 to 0.3 μm and the fiber length is 0.1
An ultrafine metal fiber having a size of 50 μm and 10 times or more the fiber diameter can be obtained. In the conductive paint using this metal fiber as the conductive filler, since the conductive filler is made of pure metal, good conductivity is imparted to the coating film in a small amount, and the conductive filler is a fine anodic oxide film. Since it is an extremely fine fibrous or acicular shape corresponding to the pores, it cannot be visually recognized in the coating film. As a result, the conductive paint of the present invention can provide the coating film with transparency in addition to good electromagnetic wave shielding properties, radio wave reflection properties, and antistatic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の微細金属繊維の製造を工程順に示す
図。
FIG. 1 is a view showing the production of fine metal fibers of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

10 アルミニウム材 11 酸化皮膜 12 微細孔 13 析出物 13a 第1金属 13b めっき膜 14 硬化膜 15 レプリカ 16 微細孔 17 第2金属 18 微細金属繊維 19 導電板 DESCRIPTION OF SYMBOLS 10 Aluminum material 11 Oxide film 12 Micropore 13 Deposit 13a 1st metal 13b Plating film 14 Hardened film 15 Replica 16 Micropore 17 2nd metal 18 Fine metal fiber 19 Conductive plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム材(10)を陽極酸化してその
表面に微細孔(12)を有する多孔質酸化皮膜(11)を形成
し、 前記酸化皮膜(11)を無電解めっき処理又は電気めっき処
理してその微細孔(12)に第1金属(13a)を充填するとと
もに前記酸化皮膜(11)の表面をめっき膜(13b)で被覆
し、 前記めっき処理した酸化皮膜(11)を溶解して繊維状の第
1金属(13a)が前記めっき膜(13b)に林立した剣山状の析
出物(13)を前記アルミニウム材(10)から分離し、 前記分離した析出物(13)の繊維状の第1金属(13a)が林
立した側に硬化液を流し込み、 前記硬化液を硬化させて硬化膜(14)を形成し、 前記硬化膜(14)を前記析出物(13)から剥離して微細孔(1
6)のあいた前記酸化皮膜(11)のレプリカ(15)を作製し、 前記レプリカ(15)を導電板(19)に貼り付け、 前記導電板(19)を無電解めっき処理又は電気めっき処理
することにより前記レプリカ(15)の微細孔(16)に第2金
属(17)を充填し、 前記レプリカ(15)を溶解してその溶液中に微細金属繊維
(18)を分散し、 前記レプリカ(15)の溶液中の微細金属繊維(18)を固液分
離して得る微細金属繊維の製造方法。
1. Anodizing an aluminum material (10) to form a porous oxide film (11) having micropores (12) on its surface, and subjecting the oxide film (11) to electroless plating or electroplating The micropores (12) are filled with a first metal (13a) and the surface of the oxide film (11) is covered with a plating film (13b), and the plated oxide film (11) is dissolved. The fibrous first metal (13a) separates from the aluminum material (10) the sword mountain-like precipitate (13) that has grown on the plating film (13b), and the fibrous form of the separated precipitate (13) A hardening solution is poured into the side where the first metal (13a) has grown, and the hardening solution is hardened to form a hardened film (14). The hardened film (14) is peeled off from the precipitate (13). Micropore (1
6) Prepare a replica (15) of the oxide film (11) that has been opened, attach the replica (15) to a conductive plate (19), and subject the conductive plate (19) to electroless plating or electroplating. This fills the micropores (16) of the replica (15) with the second metal (17), dissolves the replica (15), and puts fine metal fibers in the solution.
(18) A method for producing fine metal fibers obtained by dispersing (18) and solid-liquid separating the fine metal fibers (18) in the solution of the replica (15).
【請求項2】 第1金属(13a)又は第2金属(17)のいず
れか一方又は双方がAu,Ag,Pt,Pd,Cu,N
i,Co,Sn,Pb又はSn−Pbである請求項1記
載の微細金属繊維の製造方法。
2. One of or both of the first metal (13a) and the second metal (17) is made of Au, Ag, Pt, Pd, Cu, N
The method for producing a fine metal fiber according to claim 1, wherein the metal is i, Co, Sn, Pb or Sn-Pb.
【請求項3】 請求項1記載の方法で製造された微細金
属繊維を導電性フィラーとして含む導電性塗料。
3. A conductive paint containing the fine metal fibers produced by the method according to claim 1 as a conductive filler.
JP19726996A 1996-07-26 1996-07-26 Production of fine metallic fiber and conductive paint using the fiber Withdrawn JPH1046382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19726996A JPH1046382A (en) 1996-07-26 1996-07-26 Production of fine metallic fiber and conductive paint using the fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19726996A JPH1046382A (en) 1996-07-26 1996-07-26 Production of fine metallic fiber and conductive paint using the fiber

Publications (1)

Publication Number Publication Date
JPH1046382A true JPH1046382A (en) 1998-02-17

Family

ID=16371670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19726996A Withdrawn JPH1046382A (en) 1996-07-26 1996-07-26 Production of fine metallic fiber and conductive paint using the fiber

Country Status (1)

Country Link
JP (1) JPH1046382A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545881A (en) * 2005-05-18 2008-12-18 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Electrolytic production of self-supporting nanocomposite elements
JP2010121040A (en) * 2008-11-19 2010-06-03 Panasonic Electric Works Co Ltd Coating agent composition for forming transparent electroconductive coating film and article coated with same
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
CN115135809A (en) * 2020-02-26 2022-09-30 富士胶片株式会社 Metal-filled microstructure, method for producing metal-filled microstructure, and structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46606E1 (en) 2000-04-28 2017-11-14 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
USRE44830E1 (en) 2000-04-28 2014-04-08 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
JP2008545881A (en) * 2005-05-18 2008-12-18 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Electrolytic production of self-supporting nanocomposite elements
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
JP2010121040A (en) * 2008-11-19 2010-06-03 Panasonic Electric Works Co Ltd Coating agent composition for forming transparent electroconductive coating film and article coated with same
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same
CN115135809A (en) * 2020-02-26 2022-09-30 富士胶片株式会社 Metal-filled microstructure, method for producing metal-filled microstructure, and structure

Similar Documents

Publication Publication Date Title
DE2064861C3 (en) Process for the production of printed circuit boards. Eliminated in: 2065346 and 2065347 and 2065348 and 2065349
EP2508652B1 (en) Porous metal foil and method for manufacturing the same
DE60207720T2 (en) COMPOSITE FILM AND MANUFACTURING METHOD THEREFOR
US4564424A (en) Metallization of electrically insulating polymeric film substrates
JP5284728B2 (en) Silver-coated aluminum powder and method for producing the same
JPH1046382A (en) Production of fine metallic fiber and conductive paint using the fiber
DE69935333T2 (en) IMPROVED METHOD FOR MAKING LEADING TRACKS AND PRINTED PCBS MANUFACTURED THEREFOR
US4774122A (en) Resinous product provided with surface coatable with metal layer bonded through an array of microdendrites and metal-clad resinous product thereof
WO2000013475A1 (en) Light-transmitting electromagnetic shielding material and method for manufacturing the same
US4565606A (en) Metallization of electrically insulating polyimide/aromatic polyamide film substrates
JPH09324324A (en) Fine metallic fiber, its production and electroconductive coating produced by using the fiber
CN110114517B (en) Method for producing thin functional coatings on light alloys
JP4895162B2 (en) Method for forming high corrosion resistant coating on magnesium alloy
JP2006233315A (en) Magnesium alloy member and its production method
JP2706110B2 (en) Production method of copper fine powder
JPH1046064A (en) Production of electroconductive coating material
JPH1143797A (en) Method for via-filling
JP4894649B2 (en) Electromagnetic wave shielding member and manufacturing method thereof
CN115916523A (en) Structure and method for manufacturing structure
JPH1050145A (en) Non-isotropic electrically conductive film and its manufacture
US20040060728A1 (en) Method for producing electroconductive structures
US3622284A (en) Electrodeposition of metal over large nonconducting surfaces
DE3124522C2 (en) Process for electroless coloring of porous materials
JPS6151818A (en) Method of producing aluminum electrode material for electrolytic condenser
CN109825858A (en) A method of making porous copper foil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007