JPS6151818A - Method of producing aluminum electrode material for electrolytic condenser - Google Patents

Method of producing aluminum electrode material for electrolytic condenser

Info

Publication number
JPS6151818A
JPS6151818A JP17459884A JP17459884A JPS6151818A JP S6151818 A JPS6151818 A JP S6151818A JP 17459884 A JP17459884 A JP 17459884A JP 17459884 A JP17459884 A JP 17459884A JP S6151818 A JPS6151818 A JP S6151818A
Authority
JP
Japan
Prior art keywords
etching
fine particles
electrode material
aluminum foil
aluminum electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17459884A
Other languages
Japanese (ja)
Other versions
JPH0379859B2 (en
Inventor
江島 辰彦
崇生 鈴木
礒山 永三
梅津 正藏
忠雄 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP17459884A priority Critical patent/JPS6151818A/en
Publication of JPS6151818A publication Critical patent/JPS6151818A/en
Publication of JPH0379859B2 publication Critical patent/JPH0379859B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は電解コンデンサ用アルミニウム電極材の製j
貴方法に関する。
[Detailed Description of the Invention] Industrial Field of Application This invention relates to the production of aluminum electrode materials for electrolytic capacitors.
Regarding your method.

従来の技術 電解コンデンサ用アルミニウム電極材として用いられる
アルミニウム箔は、可及的大ぎな表面積を右して単位体
積当りの静電容量の大ぎいものであることが要請される
。このため、一般的に電気化学的あるいは化学的なエツ
チング処理を施してアルミニウム箔の実効表面積を拡大
することが行われており、更にこの拡面率の可及的増大
を目的として、エツチング孔をより多く、深く、太くす
ることに関して材料の改善、エツチング核法の改善、箔
の製造工程に関する研究等種々の研究がなされている。
BACKGROUND OF THE INVENTION Aluminum foil used as an aluminum electrode material for electrolytic capacitors is required to have as large a surface area as possible and to have a large capacitance per unit volume. For this reason, the effective surface area of the aluminum foil is generally expanded by electrochemical or chemical etching treatment, and etching holes are also added to increase the area expansion ratio as much as possible. Various studies are being conducted to make the foil larger, deeper, and thicker, including improving materials, improving the etching core method, and researching the manufacturing process of the foil.

発明が解決しようとづ゛る問題点 ところが、実際上、従来既知のエツチング技術において
は、概してエツチング孔の発生部位が不均一であり、ま
たエツチング孔を多くしようとひるとエツチング孔どう
しが連通して粗大孔となったり、アルミニウム箔表面の
18解が同時に進行して箔の機械的強度が損われるのみ
ならず、エツチング孔が深いものとならないというよう
な欠点を派生するため、結果において充分に期待される
ような拡面率の増大効果を得ることが難しいという問題
点があった。特に、エツチング孔の発生部位の不均一性
に関しては、アルミニウム箔中に含まれる不純物原子の
偏析、金属間化合物、結晶粒1517の存在等によって
、エツチング時に不均一なエツチングビットが発生する
ため、これを避けることは困難なものであった。
Problems to be Solved by the Invention However, in practice, in conventionally known etching techniques, the locations where etching holes are generally generated are uneven, and when trying to increase the number of etching holes, the etching holes communicate with each other. Etching may result in coarse holes, and 18 etchings on the surface of the aluminum foil proceed at the same time, impairing the mechanical strength of the foil. There was a problem in that it was difficult to obtain the expected effect of increasing the area expansion ratio. In particular, with regard to non-uniformity in the location where etching holes occur, non-uniform etching bits are generated during etching due to the segregation of impurity atoms contained in the aluminum foil, intermetallic compounds, the presence of crystal grains 1517, etc. was difficult to avoid.

この発明は、かかる問題点を解決し、アルミニウム箔に
所要の機械的強度を保有せしめつつ、多数の深いエツチ
ング孔を均一に形成することを可能として、拡面率すな
わち静電容量に優れたものとなしうる電解コンデンサ用
アルミニウム電極材を得ることを目的としてなされたも
のである。
The present invention solves these problems and makes it possible to uniformly form a large number of deep etched holes while maintaining the necessary mechanical strength in aluminum foil, and has an excellent surface area ratio, that is, capacitance. The purpose of this work was to obtain an aluminum electrode material for electrolytic capacitors that could be used as an aluminum electrode material for electrolytic capacitors.

問題点を解決するための手段 この目的においてこの発明は、アルミニウム箔の表面に
、金底若しくは非金属微粒子を混入した被)B祠を塗イ
1した後、前記微粒子を除去することにより、箔表面に
電解エツチング液に対して耐性を有し、かつエツチング
核を形成ずべき多数の微細孔の形成された耐性被膜を一
体的に付着形成することを特徴とするものであり、これ
により材料中の金属間化合物、結晶粒塊等の存在に関係
なく、エツチング孔の発生部位を予め決定してエツチン
グ処理時にアルミニウム箔の微細孔対応部分のみの侵食
を可能とし、もって多数の深いエツチング孔を均一に形
成せしめうる電!41 uの製造に成功したものである
Means for Solving the Problems For this purpose, the present invention provides a method of coating the surface of an aluminum foil with a coating (1) containing gold or non-metal fine particles, and then removing the fine particles. It is characterized by integrally forming a resistant coating on the surface that is resistant to electrolytic etching liquid and has a large number of micropores that should not form etching nuclei. Regardless of the presence of intermetallic compounds, crystal grain agglomerates, etc., the location where etching holes will occur is determined in advance, and during the etching process, it is possible to erode only the portions of the aluminum foil that correspond to the micropores, thereby making it possible to uniformly form a large number of deep etching holes. Electricity that can be formed! 41 u was successfully manufactured.

前記被覆材に混入される微粒子は、金屈微粒子若しくは
非金属微粒子のいずれであっても良く、あるいはこれら
の混合物であっても良い。
The fine particles mixed into the coating material may be either metal fine particles or nonmetallic fine particles, or a mixture thereof.

全屈微粒子を構成する全屈元素としては、例えばFe 
、Go 、Ag、△u、V、Mn、Cd、In、Sn、
Sb、Pb、3i等をあげうる。
Examples of the totally bending element constituting the totally bending fine particles include Fe
, Go, Ag, △u, V, Mn, Cd, In, Sn,
Examples include Sb, Pb, 3i, etc.

一方、非金属微粒子としてはC微粒子等をあげうるが、
元素性微粒子に限らず、例えばアクリル、ポリエステル
、エポキシ各樹脂等のような有機物である水溶性の高分
子材料等の微粒子であっても良い。かかる微粒子は、そ
の後の処理により溶解除去されて、エツチング核形成用
の微細孔を形造るものであり、従って微粒子の配列、大
きさ、数量等が微細孔すなわちエツチング孔の配列、大
きさ、数量ひいてはアルミニウム箔の最終的な静電容最
、機械的強度等に直接的に影響する。この観点から、微
粒子の被覆材に対する配合割合を、容積比で5〜80%
程度の範囲とするのが望ましく、特に3o〜5o%が好
3al囲であり、また微粒子の大きさとしては直径0.
01μ汎〜数μ而程度の範囲で選択可能であり、特に1
μmffj度とするのが好適である。そして、エツチン
グ孔の均一発生をもたらすためには、かかる微粒子を被
覆材中に均一に分散せしめることが必要である。尚、被
覆材の一例としては、市販の半導体フォトマスク用レジ
スト剤等をあげうる。
On the other hand, examples of non-metallic particles include C particles, etc.
The particles are not limited to elemental particles, but may be particles of organic water-soluble polymer materials such as acrylic, polyester, and epoxy resins. These fine particles are dissolved and removed by subsequent processing to form fine pores for forming etching nuclei. Therefore, the arrangement, size, number, etc. of the fine particles are the same as the arrangement, size, number, etc. of the fine pores, that is, the etching holes. In turn, it directly affects the final capacitance, mechanical strength, etc. of the aluminum foil. From this point of view, the blending ratio of fine particles to the coating material should be 5 to 80% by volume.
It is desirable that the particle size be within a range of about 30% to 50%, with a preferred range of 30% to 50%, and the size of the fine particles should be 0.5% in diameter.
It is possible to select from the range of 01μ to several μ, especially 1
It is preferable to set it to μmffj degrees. In order to uniformly generate etching holes, it is necessary to uniformly disperse such fine particles in the coating material. An example of the coating material is a commercially available resist agent for semiconductor photomasks.

次に、製造工程について説明すれば、上記多数の微粒子
を含有した被覆材をまず例えば純度99.90〜99.
99%のアルミニウム箔の表面に薄く塗布する。被覆材
の被rri厚さは、全ての微粒子が被覆材中に完全に埋
没状態とならない程度とすることが必要であり、微粒子
の大きさに応じて決定すべきものである。これは、次工
程における微粒子の除去処理時に、微粒子を溶解液等に
直接接触させるためである。かかる要求を充足する被覆
方法として、ロールコート法あるいはスピンコード法等
を採用し得る。
Next, to explain the manufacturing process, first, a coating material containing the above-mentioned large number of fine particles is prepared with a purity of, for example, 99.90-99.
Apply a thin layer to the surface of 99% aluminum foil. The ri thickness of the coating material needs to be such that all the particles are not completely buried in the coating material, and should be determined depending on the size of the particles. This is because the fine particles are brought into direct contact with the solution etc. during the fine particle removal treatment in the next step. As a coating method that satisfies such requirements, a roll coating method, a spin cord method, etc. can be adopted.

次に、乾燥後前記微粒子の除去処理を施す。Next, after drying, the fine particles are removed.

この除去処理は最も一般的には、被覆材の塗布面を溶解
液に接触させて溶解除去することにJ:り行われる。溶
解液としては、微粒子を溶解除去し1【するらのであれ
ば足り、微粒子との組合わせにおいて酸、アルカリ、あ
るいは水等を適宜使用し1!する。溶解除去の程度は必
ずしも微粒子を完全に)rj滅させる必要はなく、エツ
チング処理の際にエツチングの開始点となり得る程度の
ものであれば、一部溶解状態であっても良い。
This removal treatment is most commonly carried out by bringing the coated surface of the coating material into contact with a dissolving solution and dissolving and removing it. As a dissolving solution, it is sufficient to dissolve and remove the fine particles, and use acid, alkali, water, etc. as appropriate in combination with the fine particles. do. The degree of dissolution and removal does not necessarily mean that the fine particles are completely destroyed, but may be partially dissolved as long as they can serve as starting points for etching during the etching process.

この微粒子の溶解除去処理を経て、アルミニウム箔表面
への多数のエツチング核形成用の微細孔を有する被膜の
付着形成が完了する。かかる被膜は今までの説明から明
らかなように、エツチング時に微細孔対応部分を除いて
アルミニウム箔表面の侵食を防止するためのちのであり
、従ってその性質として耐性を有するものであること、
即ち、非溶性かつ耐食性のものであることを条件とする
After the fine particles are dissolved and removed, the formation of a film having a large number of micropores for forming etching nuclei on the surface of the aluminum foil is completed. As is clear from the above explanation, such a coating is used to prevent erosion of the surface of the aluminum foil except for the areas corresponding to the micropores during etching, and is therefore resistant in nature;
That is, it must be insoluble and corrosion resistant.

こうして製造された本発明に係る電場材には、その後酸
またはアルカリ浴中で電気化学的あるいは化学的なエツ
チング処理が施される。エツチング処理に用いるエツチ
ング液は、特に限定されるものではなく、既知のような
2〜15%塩酸水溶液、あるいは該溶液に更にクロム酸
、lii?i酸、蓚酸等の酸を添加した水溶液等を任意
に採択使用しうる。他のエツチング処理条件、即ち、液
温、電流密度、エツチング時間等もずべて従来既知のエ
ツチング処理条件をそのまま採用しうる。このエツチン
グ処理により、アルミニウム箔の耐性被膜付着部の表面
溶解を抑制しつつ、微細孔対応部分のみを集中的に浸食
しうる結果、深くて太いエツチング孔の形成が可能とな
る。
The electric field material according to the present invention thus manufactured is then subjected to an electrochemical or chemical etching treatment in an acid or alkaline bath. The etching solution used in the etching process is not particularly limited, and may be a known 2 to 15% aqueous solution of hydrochloric acid, or a solution containing chromic acid. An aqueous solution to which an acid such as i-acid or oxalic acid is added may be arbitrarily selected and used. All other etching processing conditions, such as liquid temperature, current density, etching time, etc., may be employed as they are. This etching treatment suppresses surface dissolution of the portion of the aluminum foil to which the resistant coating is attached, while intensively eroding only the portions corresponding to the micropores, making it possible to form deep and thick etching holes.

エツチング処理を終えたアルミニウム箔には、続いて、
1伺えば数%Na 0)−1溶液等のアルカリ液等に浸
漬することにより箔表面に釘打している耐性被膜の除去
処1里が施される。
After the etching process, the aluminum foil is then
The resistant film nailed to the surface of the foil is removed by immersing it in an alkaline solution such as a few percent Na 0)-1 solution.

発明の詳細 な説明したようにこの発明にによれば、金属若しくは非
金属微粒子を混入した被覆材をアルミニウム箔表面に塗
布したのち、前記微粒子を除去することにより、アルミ
ニウム箔表面に多数の微細孔を均一に有する耐性被膜を
一体的に付着形成じしめたアルミニウム電極材を製造す
ることができる結果、該電極材にその後に施すエツチン
グ処11jにおいて、アルミニウム箔の耐性被膜付着部
の表面溶解を該被膜層によって抑制しながら、微細孔対
応部分のみをエツチング核として集中的に侵食せしめる
ことが可能となる。従って、その結果、アルミニウム箔
に多数の深くて太いエツチング孔を金属間化合物、結晶
粒塊等の存在に関係なく均一に形成することができ、機
械的強度を損うことなく、拡面率の著しく高い、即ち静
・顕容母の極めて大きい電気的特性に優れた理想的なア
ルミニウム電極材の提供が可能となるものである。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a coating material mixed with metal or non-metal fine particles is applied to the surface of the aluminum foil, and then the fine particles are removed, thereby forming a large number of fine pores on the surface of the aluminum foil. As a result, it is possible to manufacture an aluminum electrode material in which a resistant coating having a uniform coating is integrally deposited, so that in the etching process 11j that is subsequently applied to the electrode material, the surface melting of the resistant coating portion of the aluminum foil is performed. While being suppressed by the coating layer, it becomes possible to intensively erode only the portions corresponding to the micropores as etching nuclei. Therefore, as a result, a large number of deep and thick etching holes can be uniformly formed in the aluminum foil regardless of the presence of intermetallic compounds, crystal grain agglomerates, etc., and the area ratio can be increased without losing mechanical strength. This makes it possible to provide an ideal aluminum electrode material with excellent electrical properties, that is, extremely high static and transparent properties.

実施例 次にこの発明の実施例を比較例との対比において示す。Example Next, examples of the present invention will be shown in comparison with comparative examples.

平均粒径1μ卯のCu微粒子とNaCρ微粒子を、容積
比40%の配合割合でそれぞれ重クロム酸/親水性ポリ
マー液を主成分とする市販のフォトレジスト剤に混入し
、充分撹拌後厚さ100μ乳、純度99.99%の各焼
鈍アルミニウム箔の表面にロールコート法によりそれぞ
れ薄く塗布した。
Cu microparticles and NaCρ microparticles with an average particle size of 1 μm were mixed at a volume ratio of 40% into a commercially available photoresist agent whose main component was dichromic acid/hydrophilic polymer solution, and after thorough stirring, a thickness of 100 μm was obtained. A thin film was applied to the surface of each annealed aluminum foil with a purity of 99.99% by a roll coating method.

その後、CLI微粒子を含むレジストを塗布したアルミ
ニウム箔(試料N01)については5%FICρ水溶液
中に約30秒浸漬することにより、一方Na CQ微粒
子を含むレジストを塗布したアルミニウム箔(試料No
、2)については純水にて洗浄することにより、C【1
、NaOH各微粒子の溶解除去処理を行い、アルミニウ
ム箔表面に多数の微細孔を有する耐性被膜を形成せしめ
た本発明に係る電極材を得た。
Thereafter, the aluminum foil coated with a resist containing CLI fine particles (sample No. 01) was immersed in a 5% FICρ aqueous solution for about 30 seconds, while the aluminum foil coated with a resist containing Na CQ fine particles (sample No.
, 2), by washing with pure water, C[1
, NaOH fine particles were dissolved and removed to obtain an electrode material according to the present invention in which a resistant coating having a large number of micropores was formed on the surface of the aluminum foil.

次いで水洗、乾燥後各電極材に、エツチング液:5wt
%塩酸水溶液、温度:80℃、直流電流密度+ 20A
/ dTIt、エツチング時間=2分の条件のもので前
段電解エツチングを施し、続いて同一液組成、同一温度
、直流型流密j良:5A/(Li、エツチング時間10
分の条件のもとで後段電解エツチングを施した後、25
℃、5W【%水酸化ナトリウム水溶液に2秒浸漬して被
膜除去処]q!を行った。
Next, after washing with water and drying, apply etching solution: 5w to each electrode material.
% hydrochloric acid aqueous solution, temperature: 80°C, DC current density + 20A
/ dTIt, etching time = 2 minutes, pre-stage electrolytic etching was performed, and then the same liquid composition, the same temperature, DC flow density: 5A/(Li, etching time 10
After performing post-electrolytic etching under conditions of 25 minutes,
℃, 5W [Film removed by immersion in % sodium hydroxide aqueous solution for 2 seconds] q! I did it.

」二記により得られたエツチング箔を硼酸浴中で380
Vに化成したのち、該簡の静電容■を測定した。一方、
この結果を、前記と同一アルミニウム材を使用しかつ同
一のエツチング条件でエツチングのみを施したアルミニ
ウム箔(比較例)のそれと比較した。
The etching foil obtained in 2. was etched in a boric acid bath at 380°
After converting into V, the capacitance (2) of the strip was measured. on the other hand,
This result was compared with that of an aluminum foil (comparative example) using the same aluminum material as above and etching only under the same etching conditions.

結果は下表のとうりであった。The results were as shown in the table below.

上表の結果に示されるように、この発明によれば、アル
ミニウム箔の耐性被膜中に均一に設けられた多数の微細
孔に対応する部分のみをエツチング核として深く侵食せ
しめ得ることにより、比較例に較べて大きな静電容量を
有する電気的特性に優れたものとなし得ることが判る。
As shown in the results in the table above, according to the present invention, only the portions corresponding to the many micropores uniformly provided in the resistant coating of the aluminum foil can be deeply eroded as etching nuclei. It can be seen that it can be made to have a larger capacitance and superior electrical characteristics than that of the above.

以  上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム箔の表面に、金属若しくは非金属微
粒子を混入した被覆材を塗布した後、前記微粒子を除去
することにより、箔表面に電解エッチング液に対して耐
性を有し、かつエッチング核を形成すべき多数の微細孔
の形成された耐性被膜を一体的に付着形成することを特
徴とする電解コンデンサ用アルミニウム電極材の製造方
法。
(1) After applying a coating material mixed with metal or non-metal fine particles to the surface of the aluminum foil, by removing the fine particles, the foil surface is made resistant to electrolytic etching solution and free of etching nuclei. A method for manufacturing an aluminum electrode material for an electrolytic capacitor, which comprises integrally depositing a resistant film having a large number of micropores to be formed.
(2)微粒子の除去工程を、被覆材の塗布面を溶解液に
接触させて溶解除去することによって行う特許請求の範
囲第1項記載の電解コンデンサ用アルミニウム電極材の
製造方法。
(2) The method for producing an aluminum electrode material for an electrolytic capacitor according to claim 1, wherein the step of removing fine particles is carried out by bringing the coated surface of the coating material into contact with a dissolving solution to dissolve and remove the particles.
JP17459884A 1984-08-21 1984-08-21 Method of producing aluminum electrode material for electrolytic condenser Granted JPS6151818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17459884A JPS6151818A (en) 1984-08-21 1984-08-21 Method of producing aluminum electrode material for electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17459884A JPS6151818A (en) 1984-08-21 1984-08-21 Method of producing aluminum electrode material for electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS6151818A true JPS6151818A (en) 1986-03-14
JPH0379859B2 JPH0379859B2 (en) 1991-12-20

Family

ID=15981367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17459884A Granted JPS6151818A (en) 1984-08-21 1984-08-21 Method of producing aluminum electrode material for electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS6151818A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220512A (en) * 1987-03-09 1988-09-13 松下電器産業株式会社 Electrode foil for electrolytic capacitor
JPH02151161A (en) * 1988-12-02 1990-06-11 Iwatsu Electric Co Ltd Listening system of message in broadcast or multiple address communication
WO2003062506A1 (en) * 2002-01-25 2003-07-31 Showa Denko K.K. Composite metal material and production method therefor, etched metal material and production method therefor, and electrolytic capacitor
US6855408B2 (en) 2002-01-25 2005-02-15 Showa Denko K.K. Composite metal material and method for manufacturing the same, etched metal material and method for manufacturing the same and electrolytic capacitor
JPWO2003062506A1 (en) * 2002-01-25 2005-05-26 昭和電工株式会社 Composite metal material and manufacturing method thereof, etched metal material and manufacturing method thereof, and electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220512A (en) * 1987-03-09 1988-09-13 松下電器産業株式会社 Electrode foil for electrolytic capacitor
JPH02151161A (en) * 1988-12-02 1990-06-11 Iwatsu Electric Co Ltd Listening system of message in broadcast or multiple address communication
WO2003062506A1 (en) * 2002-01-25 2003-07-31 Showa Denko K.K. Composite metal material and production method therefor, etched metal material and production method therefor, and electrolytic capacitor
US6855408B2 (en) 2002-01-25 2005-02-15 Showa Denko K.K. Composite metal material and method for manufacturing the same, etched metal material and method for manufacturing the same and electrolytic capacitor
JPWO2003062506A1 (en) * 2002-01-25 2005-05-26 昭和電工株式会社 Composite metal material and manufacturing method thereof, etched metal material and manufacturing method thereof, and electrolytic capacitor

Also Published As

Publication number Publication date
JPH0379859B2 (en) 1991-12-20

Similar Documents

Publication Publication Date Title
CN102318141B (en) Anisotropically conductive member and method for producing the same
HUE028044T2 (en) Method of forming a conductive image on a non-conductive surface
US3939046A (en) Method of electroforming on a metal substrate
JPS6151818A (en) Method of producing aluminum electrode material for electrolytic condenser
JP2007103798A (en) Method of forming aluminum electrode foil for electrolytic capacitor
US3314869A (en) Method of manufacturing multilayer microcircuitry including electropolishing to smooth film conductors
CN1271248C (en) Production process of alumina template with nano holes
GB2080630A (en) Printed circuit panels
JPH1046382A (en) Production of fine metallic fiber and conductive paint using the fiber
US3037896A (en) Masking process
JPS6151817A (en) Aluminum electrode material for electrolytic condenser and method of producing same
JPH1197298A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JPS5825218A (en) Method of producing low voltage electrolytic condenser electrode foil
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP5373745B2 (en) Method for producing aluminum material for electrolytic capacitor electrode having excellent etching characteristics, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
DE10208120A1 (en) Process for metallizing ceramics based on titanates
JPH08218185A (en) Surface roughening etching solution for platinum plating pretreatment of titanium or titanium alloy and surface roughening etching method for platinum plating pretreatment
JPH01282813A (en) Manufacture of aluminum material for electrolytic capacitor electrode
JP2003147570A (en) Method of manufacturing fine metallic parts
JPS61288411A (en) Manufacture of aluminum electrode material for electrolytic capacitor
JP2012001753A (en) Method of forming microstructure on surface of aluminum metal or aluminum alloy
JP3480164B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPS6379311A (en) Electrode foil for electrolytic capacitor and manufacture of the same
JP2961491B2 (en) Preparation method of metal electrode material
JPS6328027A (en) Electrode foil for electrolytic capacitor and manufacture of the same