JPH1046064A - Production of electroconductive coating material - Google Patents

Production of electroconductive coating material

Info

Publication number
JPH1046064A
JPH1046064A JP8207499A JP20749996A JPH1046064A JP H1046064 A JPH1046064 A JP H1046064A JP 8207499 A JP8207499 A JP 8207499A JP 20749996 A JP20749996 A JP 20749996A JP H1046064 A JPH1046064 A JP H1046064A
Authority
JP
Japan
Prior art keywords
film
metal
coating film
plating
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8207499A
Other languages
Japanese (ja)
Inventor
Akira Nakabayashi
明 中林
Takashi Kimura
高志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP8207499A priority Critical patent/JPH1046064A/en
Publication of JPH1046064A publication Critical patent/JPH1046064A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an electroconductive coating material giving a coating film having excellent electromagnetic wave shielding property, electric wave reflectance, transparency, etc., by preparing an extremely fine fibrous metal and using the metal as an electrically conductive filler. SOLUTION: An aluminum material 10 is oxidized to form a porous oxide film 11 having fine pores 12 on the surface of the material and the oxide film 11 is plated to fill the fine pores with a metal 13a and cover the surface of the coating film with a plating film 13b. The oxide film 11 is dissolved and a precipitate 13 having a number of metal fibers 13a protruding on the plating film 13b is separated from the aluminum material 10. A raw coating material is cast on the precipitate 13 at the side having protruded metal fibers 13a and dried to obtain a cured coating film 14. The plating film 13b on one side of the cured coating film is dissolved to expose the cured coating film 14 and the coating film is dissolved with a solvent same as the solvent of the raw coating material to obtain the objective coating material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は塗膜に良好な電磁波
遮蔽性、電波反射性、静電防止特性に加えて透明性が得
られる導電性塗料の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive paint which can provide a coating film with good transparency in addition to good electromagnetic wave shielding, radio wave reflection and antistatic properties.

【0002】[0002]

【従来の技術】従来、この種の導電性塗料として、粒
径がナノオーダーのコロイド状の金属微粉末を導電性フ
ィラーに用いて、これを原料塗料に混合した導電性塗料
が知られている。また導電性塗料の別の導電性フィラ
ーとして、ガラス繊維のモノフィラメントを適宜長さに
切断し、更にボールミルなどにより微粉化した長さが好
ましくは20〜500μm、太さが好ましくは3〜23
μmのミルドファイバに化学めっきなどにより厚さ0.
1〜5μmでニッケル、銅、銀等の金属をコーティング
したもの、或いはガラス繊維をミルで微粉化する前に金
属をコーティングしてミルドファイバにしたものが開示
されている(特開昭61−157541)。この導電性
フィラーをプラスチック中に添加し、均一に混合するこ
とにより導電性塗料が得られる。導電性塗料の更に別
の導電性フィラーとして、In,Snの複合酸化物(I
TO)やSn,Sbの複合酸化物を用いて、これを原料
塗料に混合した導電性塗料が知られている。この導電性
塗料によれば、塗膜に導電性のみならず、透明性が付与
される。
2. Description of the Related Art Conventionally, as this kind of conductive paint, a conductive paint in which a colloidal metal fine powder having a nano-order particle size is used as a conductive filler and mixed with a raw material paint is known. . Further, as another conductive filler of the conductive paint, a length obtained by cutting a monofilament of glass fiber into an appropriate length and further pulverizing the monofilament by a ball mill or the like is preferably 20 to 500 μm, and the thickness is preferably 3 to 23.
μm milled fiber with a thickness of 0.
There is disclosed a material coated with a metal such as nickel, copper, silver or the like at a thickness of 1 to 5 μm, or a material obtained by coating a metal before milling a glass fiber into a milled fiber (JP-A-61-157541). ). The conductive paint is obtained by adding the conductive filler to the plastic and mixing it uniformly. As another conductive filler of the conductive paint, a composite oxide of In and Sn (I
A conductive paint is known in which a composite oxide of (TO) or Sn or Sb is mixed with a raw material paint. According to this conductive paint, not only conductivity but also transparency is imparted to the coating film.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の導電
性フィラーを用いた導電性塗料では、塗膜に導電性を付
与するために金属微粉末を多量に原料塗料に混合しなけ
ればならず、塗膜が金属微粉末自体の色で着色し、透明
にならない不具合があった。また上記の導電性フィラ
ーを用いた導電性塗料では、比較的少量の導電性フィラ
ーで塗膜に導電性が付与されるが、導電性フィラーの長
さ及び太さが大きいために、透明にならない不具合があ
った。また上記の導電性フィラーを用いた導電性塗料
では、塗膜が透明になるものの、最も導電性の優れてい
るITOを分散したものでも、表面抵抗値が1000Ω
/□程度であり、より高い導電性が得られる塗膜が望ま
れていた。
However, in the conductive paint using the above-mentioned conductive filler, a large amount of fine metal powder must be mixed with the raw material paint in order to impart conductivity to the coating film. There was a problem that the coating film was colored with the color of the metal fine powder itself and did not become transparent. Further, in the conductive paint using the above conductive filler, conductivity is imparted to the coating film by a relatively small amount of the conductive filler, but because the length and thickness of the conductive filler is large, it does not become transparent. There was a defect. In the conductive paint using the above conductive filler, although the coating film becomes transparent, even when the most conductive ITO is dispersed, the surface resistance value is 1000Ω.
/ □, and a coating film with higher conductivity was desired.

【0004】本発明の目的は、塗膜に良好な電磁波遮蔽
性、電波反射性、静電防止特性に加えて透明性が得られ
る導電性塗料の製造方法を提供することにある。
[0004] It is an object of the present invention to provide a method for producing a conductive paint, which provides a coating film with good electromagnetic wave shielding properties, radio wave reflection properties, antistatic properties and transparency.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、アルミニウム材10を陽極酸化して
その表面に微細孔12を有する多孔質酸化皮膜11を形
成し、この酸化皮膜11を無電解めっき処理又は電気め
っき処理してその微細孔12に金属13aを充填すると
ともにこの酸化皮膜11の表面をめっき膜13bで被覆
し、このめっき処理した酸化皮膜11を溶解して繊維状
の金属13aがめっき膜13bに林立した剣山状の析出
物13をアルミニウム材10から分離し、この分離した
析出物13の繊維状の金属13aが林立した側に原料塗
料を流し込み、この原料塗料を乾燥して硬化塗膜14を
形成し、この硬化塗膜14の片面にあるめっき膜13b
を溶解して硬化塗膜14を露出させた後、この硬化塗膜
14を上記原料塗料の溶剤と同一の溶剤18で溶解して
塗料化する導電性塗料の製造方法である。陽極酸化の条
件により、酸化皮膜11の微細孔12の孔径及び孔長が
決められ、これが繊維状の金属13aの繊維径及び繊維
長になる。この金属13aは極めて微細なため、この金
属13aを導電性フィラーとする導電性塗料によって形
成された塗膜は、良好な電磁波遮蔽性、電波反射性、静
電防止特性が得られるとともに透明度が高い。
The invention according to claim 1 is
As shown in FIG. 1, an aluminum material 10 is anodically oxidized to form a porous oxide film 11 having fine holes 12 on its surface, and the oxide film 11 is subjected to electroless plating or electroplating to form the fine holes. 12 is filled with a metal 13a and the surface of the oxide film 11 is covered with a plating film 13b, and the plated oxide film 11 is dissolved to dissolve the fibrous metal 13a on the plating film 13b. 13 is separated from the aluminum material 10, and the raw material paint is poured into the separated precipitate 13 on the side where the fibrous metal 13a has been established, and the raw material paint is dried to form a cured coating film 14. 14 a plating film 13b on one side
Is dissolved to expose the cured coating film 14, and then, the cured coating film 14 is dissolved in the same solvent 18 as the solvent of the raw material coating material to form a coating material. The diameter and length of the micropores 12 of the oxide film 11 are determined by the conditions of the anodic oxidation, and these become the fiber diameter and fiber length of the fibrous metal 13a. Since the metal 13a is extremely fine, a coating film formed of a conductive paint using the metal 13a as a conductive filler has good electromagnetic wave shielding properties, radio wave reflection properties, antistatic properties and high transparency. .

【0006】請求項2に係る発明は、図2に示すよう
に、アルミニウム材10を陽極酸化してその表面に微細
孔12を有する多孔質酸化皮膜11を形成し、この酸化
皮膜11を無電解めっき処理又は電気めっき処理してそ
の微細孔12に金属13aを充填し、この微細孔12に
金属13aを充填した酸化皮膜11を更に別のめっき液
で無電解めっき処理又は電気めっき処理して微細孔12
に充填した金属13aと連続しかつ酸化皮膜11の表面
を被覆するめっき膜16を形成し、このめっき処理した
酸化皮膜11を溶解して繊維状の金属13aがめっき膜
16に林立した剣山状の析出物17をアルミニウム材1
0から分離し、この分離した析出物17の繊維状の金属
13aが林立した側に原料塗料を流し込み、この原料塗
料を乾燥して硬化塗膜14を形成し、この硬化塗膜14
の片面にあるめっき膜16を溶解して硬化塗膜14を露
出させた後、この硬化塗膜14を上記原料塗料の溶剤1
8と同一の溶剤で溶解して塗料化する導電性塗料の製造
方法である。金属13aとめっき膜16の金属を異なら
せることにより、めっき膜16の除去が容易になり、所
望の繊維径及び繊維長の繊維状の金属13aが容易に得
られる。
According to a second aspect of the present invention, as shown in FIG. 2, an aluminum material 10 is anodized to form a porous oxide film 11 having fine pores 12 on its surface. The fine holes 12 are filled with metal 13a by plating or electroplating, and the oxide film 11 in which the fine holes 12 are filled with metal 13a is electroless-plated or electroplated with another plating solution to form fine particles. Hole 12
A plating film 16 is formed, which is continuous with the metal 13a filled in the metal film and covers the surface of the oxide film 11, and the plated oxide film 11 is dissolved to form a fibrous metal 13a on the plating film 16 in a sword-like shape. Precipitate 17 was converted to aluminum material 1
The raw material paint is poured into the separated precipitate 17 on the side where the fibrous metal 13a stands, and the raw material paint is dried to form a cured coating film 14.
After dissolving the plating film 16 on one side to expose the cured coating film 14, this cured coating film 14 is
This is a method for producing a conductive paint which is dissolved in the same solvent as in No. 8 to form a paint. By making the metal of the metal 13a and the metal of the plating film 16 different, the removal of the plating film 16 becomes easy, and the fibrous metal 13a having a desired fiber diameter and fiber length can be easily obtained.

【0007】請求項3に係る発明は、請求項1又は2に
係る発明であって、金属13aがAu,Ag,Pt,P
d,Cu,Ni,Co,Sn,PbまたはSn−Pbで
ある導電性塗料の製造方法である。金属13aの材質は
要求される導電性塗料の特性により決められる。金属1
3aは酸化皮膜11を無電解めっき処理又は電気めっき
処理できるものであれば、上記金属に限定されない。こ
の金属13aは極めて微細であるため、塗膜に良好な導
電性が与えられるとともに、塗膜が高い透明度のものに
なる。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the metal 13a is made of Au, Ag, Pt, P
This is a method for producing a conductive paint that is d, Cu, Ni, Co, Sn, Pb or Sn-Pb. The material of the metal 13a is determined by the required characteristics of the conductive paint. Metal 1
The metal 3a is not limited to the above metals as long as the oxide film 11 can be subjected to electroless plating or electroplating. Since the metal 13a is extremely fine, good conductivity is given to the coating film, and the coating film has high transparency.

【0008】[0008]

【発明の実施の形態】請求項1に係る導電性塗料の製造
方法では、先ずアルミニウム材に対して電気分解を行
う。このアルミニウム材は純粋なアルミニウム材に限ら
ずその合金を含む。アルミニウム合金としては、Al−
Cu−Mg系、Al−Si系、Al−Zn−Mg−Cu
系の加工用合金、Al−Cu−Si系、Al−Si系、
Al−Cu−Ni−Mg系、Al−Mg系、Al−Si
−Cu−Ni−Mg系の鋳造用合金が挙げられる。この
電気分解は電解液としてシュウ酸、硫酸、クロム酸水溶
液を用い、この電解液中でアルミニウム材をアノード処
理することにより行われる。これにより、図1(a)及
び(b)に示すように、素地であるアルミニウム材10
の表面には多孔質酸化皮膜11(Al23)が形成され
る。酸化皮膜11の微細孔12はアルミニウム材表面に
垂直方向に細い柱状に多数形成される。この柱状の微細
孔12は孔径が0.01〜0.3μm程度また孔長が
0.1〜50μm程度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method for producing a conductive paint according to the first aspect, first, an aluminum material is electrolyzed. This aluminum material includes not only a pure aluminum material but also an alloy thereof. As an aluminum alloy, Al-
Cu-Mg system, Al-Si system, Al-Zn-Mg-Cu
Based processing alloys, Al-Cu-Si based, Al-Si based,
Al-Cu-Ni-Mg system, Al-Mg system, Al-Si
-Cu-Ni-Mg based casting alloys. This electrolysis is performed by using an aqueous solution of oxalic acid, sulfuric acid, or chromic acid as an electrolytic solution, and anodizing the aluminum material in the electrolytic solution. Thereby, as shown in FIGS. 1A and 1B, the aluminum material 10
A porous oxide film 11 (Al 2 O 3 ) is formed on the surface of. A large number of fine holes 12 in the oxide film 11 are formed in a column shape thin in the vertical direction on the surface of the aluminum material. The columnar fine holes 12 have a hole diameter of about 0.01 to 0.3 μm and a hole length of about 0.1 to 50 μm.

【0009】次いで、図1(c)に示すように、酸化皮
膜11を無電解めっき処理又は電気めっき処理すること
により、これらの微細孔12の深部に至るまで金属13
aを充填し、かつ酸化皮膜11の表面全体をめっき膜1
3bで被覆する。無電解めっき処理を行う前には、アル
ミニウム材の酸化皮膜に触媒化処理を施しておくことが
必要である。金属13aは酸化皮膜11を無電解めっき
処理又は電気めっき処理できるものであれば、特に制限
されない。Au,Ag,Pt,Pd,Cu,Ni,C
o,Sn,Pb又はSn−Pbが好ましい。次に、図1
(d)に示すように、酸化皮膜11のみをNaOH,K
OH,HCl,H3PO4等の水溶液で溶解することによ
り、繊維状の金属13aがめっき膜13bに林立した剣
山状の析出物13をアルミニウム材10から分離して得
る。続いて、図1(e)に示すように、析出物13の繊
維状の金属13aが林立した側に原料塗料を流し込み、
この原料塗料の溶剤を蒸発させて塗料を乾燥して硬化塗
膜14を形成する。このとき硬化塗膜14の表面に金属
13aを露出させておくことが好ましい。続いて、図1
(f)に示すように、この硬化塗膜14の片面にあるめ
っき膜13bを硝酸、王水等で溶解して硬化塗膜14を
露出させた後、図1(g)及び(h)に示すように、こ
の硬化塗膜14を上記原料塗料の溶剤と同一の溶剤18
の入った容器19の中に入れ、この溶剤18で硬化塗膜
14を溶解する。繊維状の金属13aが溶剤中に分散し
導電性塗料20が得られる。
Next, as shown in FIG. 1C, the oxide film 11 is subjected to an electroless plating process or an electroplating process so that the metal 13 extends to the deep portion of these fine holes 12.
a, and the entire surface of oxide film 11 is plated film 1
3b. Before performing the electroless plating treatment, it is necessary to perform a catalytic treatment on the oxide film of the aluminum material. The metal 13a is not particularly limited as long as the oxide film 11 can be electrolessly plated or electroplated. Au, Ag, Pt, Pd, Cu, Ni, C
o, Sn, Pb or Sn-Pb is preferred. Next, FIG.
As shown in (d), only the oxide film 11 is made of NaOH, K
By dissolving with an aqueous solution of OH, HCl, H 3 PO 4 or the like, a fibrous metal 13 a is separated from the aluminum material 10 to obtain a sword mountain-like precipitate 13 formed on the plating film 13 b. Subsequently, as shown in FIG. 1 (e), the raw material paint is poured into the side of the precipitate 13 where the fibrous metal 13 a has grown.
The solvent of the raw material paint is evaporated and the paint is dried to form a cured coating film 14. At this time, it is preferable to expose the metal 13a on the surface of the cured coating film 14. Subsequently, FIG.
As shown in (f), the plating film 13b on one side of the cured coating film 14 is dissolved with nitric acid, aqua regia or the like to expose the cured coating film 14, and then, as shown in FIGS. 1 (g) and (h). As shown, the cured coating film 14 is coated with the same solvent 18 as the solvent of the raw material paint.
, And the cured coating film 14 is dissolved with the solvent 18. The fibrous metal 13a is dispersed in the solvent, and the conductive paint 20 is obtained.

【0010】請求項2に係る導電性塗料の製造方法で
は、図2(c)及び(d)に示すように、微細孔12に
金属13aを充填した後で、陽極酸化皮膜11の上に別
のめっき液でめっき処理して金属13aと異なる金属の
めっき膜16を陽極酸化皮膜11の表面を被覆するよう
に形成した点が、請求項1に係る製造方法との相違点で
ある。図2(d)〜(f)に示す、析出物17の形成、
硬化塗膜14の形成、めっき膜16の除去は、請求項1
に係る製造方法に準じて行われる。
In the method for producing a conductive paint according to the second aspect, as shown in FIGS. 2C and 2D, after the metal 13a is filled in the fine holes 12, a separate coating is formed on the anodic oxide film 11. This is a difference from the manufacturing method according to claim 1 in that a plating film 16 made of a metal different from the metal 13a is formed so as to cover the surface of the anodic oxide film 11 by plating with the plating solution. 2 (d) to 2 (f), formation of precipitate 17;
The formation of the cured coating film 14 and the removal of the plating film 16 are described in claim 1.
Is performed according to the manufacturing method according to the above.

【0011】請求項1及び請求項2に係る製造方法によ
り、繊維径が0.01〜0.3μm、繊維長が0.1〜
50μmであって繊維径の10倍以上である繊維状金属
が均一に分散した導電性塗料が得られる。繊維状金属は
好ましくは繊維径が0.01〜0.1μm、より好まし
くは繊維径が0.02〜0.06μmであって、好まし
くは繊維長が0.1〜2μm、より好ましくは繊維長が
0.01〜1μmである。製造上の理由から繊維径の下
限(0.01μm)及び繊維長の下限(0.1μm)が
決められる。繊維径が0.3μmを越え、繊維長が50
μmを越えるとこの繊維状金属が分散した導電性塗料を
塗膜にしたときに、塗膜が透明でなくなる。請求項1及
び請求項2に係る製造方法で得られた導電性塗料は、導
電性フィラーが純粋な金属からなるため、少量で塗膜に
良好な導電性を付与するとともに、導電性フィラーが微
細孔12に相応した極めて微細な繊維状、針状であるた
め、塗膜において肉眼で視認することができない。この
結果、本発明の導電性塗料から作られた塗膜は、良好な
電磁波遮蔽性、電波反射性、静電防止特性を有するとと
もに、透明度の高いものとなる。
According to the first and second production methods, the fiber diameter is 0.01 to 0.3 μm and the fiber length is 0.1 to 0.3 μm.
A conductive paint in which fibrous metal having a size of 50 μm and having a fiber diameter of 10 times or more is uniformly dispersed can be obtained. The fibrous metal preferably has a fiber diameter of 0.01 to 0.1 μm, more preferably a fiber diameter of 0.02 to 0.06 μm, preferably a fiber length of 0.1 to 2 μm, more preferably a fiber length. Is 0.01 to 1 μm. For manufacturing reasons, the lower limit of the fiber diameter (0.01 μm) and the lower limit of the fiber length (0.1 μm) are determined. Fiber diameter exceeds 0.3 μm and fiber length is 50
When the thickness exceeds μm, when the conductive coating material in which the fibrous metal is dispersed is formed into a coating film, the coating film is not transparent. In the conductive paint obtained by the production method according to claim 1 or claim 2, since the conductive filler is made of a pure metal, the conductive filler is provided with good conductivity in a small amount, and the conductive filler is fine. Since it is an extremely fine fibrous or acicular shape corresponding to the hole 12, it cannot be visually recognized in the coating film. As a result, the coating film made from the conductive paint of the present invention has good electromagnetic wave shielding property, radio wave reflection property, antistatic property and high transparency.

【0012】[0012]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>先ず、A1050材のアルミニウム板(1
00mm×100mm×1mm)をアルカリ水溶液で脱
脂し、硝酸水溶液で洗浄した後、0℃の硫酸20wt%
の電解液に浸漬した。アルミニウム板を陽極としてこの
電解液中で直流3A/dm2の電流密度で10分間通電
してその表面に多孔質陽極酸化皮膜を形成した。この条
件下で形成された皮膜の膜厚は約5μmであった。次い
で、このアルミニウム板を水洗した後、5wt%のSn
Cl2溶液に5分間浸漬して感受性化処理し、引き続い
て0.1wt%のPdCl2溶液に1分間浸漬して活性
化処理することにより皮膜に触媒性を付与した後、この
アルミニウム板を無電解Niめっき処理した。無電解N
iめっきは、硫酸ニッケル3wt%、次亜リン酸ナトリ
ウム3wt%及びクエン酸2wt%からなる溶液をアン
モニア水でpH10に調整した50℃の溶液にアルミニ
ウム板を30分間浸漬することにより行った。この条件
下で形成されたNiめっき膜は陽極酸化皮の微細孔を充
填するとともに、酸化皮膜の表面を覆っていた。
Next, examples of the present invention will be described together with comparative examples. <Example 1> First, an A1050 aluminum plate (1
(100 mm x 100 mm x 1 mm) was degreased with an aqueous alkali solution and washed with an aqueous nitric acid solution.
Immersed in the electrolyte solution of A current was passed for 10 minutes at a current density of 3 A / dm 2 in this electrolytic solution using an aluminum plate as an anode to form a porous anodic oxide film on the surface. The thickness of the film formed under these conditions was about 5 μm. Next, after washing this aluminum plate with water, 5 wt% of Sn
After immersion in a Cl 2 solution for 5 minutes for sensitization, followed by immersion in a 0.1 wt% PdCl 2 solution for 1 minute to activate the coating, the film was made catalytic. Electrolytic Ni plating was performed. Electroless N
The i-plating was performed by immersing the aluminum plate for 30 minutes in a 50 ° C. solution in which a solution composed of 3 wt% of nickel sulfate, 3 wt% of sodium hypophosphite, and 2 wt% of citric acid was adjusted to pH 10 with aqueous ammonia. The Ni plating film formed under these conditions filled the micropores of the anodized skin and covered the surface of the oxide film.

【0013】次に、Niめっき処理されたアルミニウム
板を20wt%のNaOH水溶液に浸漬して表面の陽極
酸化皮膜を溶解させた。これにより厚さ約3μmのNi
めっき膜上に長さ約5μmの繊維状のNiが林立した、
剣山状の析出物をアルミニウム板より分離した。この分
離した析出物の繊維状Niが林立した側に、市販の固形
分35wt%のクリヤアクリルラッカー(関西ペイント
社製、ACRIC No.2026 GLクリヤー)をアセトン
で固形分20wt%に希釈して、真空排気条件下で流し
込んだ後、この流し込んだ液中の溶剤を蒸発させた。次
いで50℃で2時間乾燥して硬化アクリル塗膜を形成し
た後、この硬化アクリル塗膜の片側だけにあるNiめっ
き膜をアクリル塗膜が露出するまで硝酸で溶解させた。
続いて、アセトンとトルエンを一対一の同容量で混合し
た溶剤に繊維状Niが埋め込まれた状態のアクリル塗膜
を再溶解させて塗料化した。得られた塗料は、導電性フ
ィラーである繊維状Niの凝集は全く見られなかった。
Next, the Ni-plated aluminum plate was immersed in a 20 wt% NaOH aqueous solution to dissolve the anodic oxide film on the surface. As a result, Ni of about 3 μm thickness is obtained.
A fibrous Ni having a length of about 5 μm was established on the plating film.
The sword-like precipitate was separated from the aluminum plate. On the side where the fibrous Ni of the separated precipitates stand, a commercially available clear acrylic lacquer having a solid content of 35 wt% (ACRIC No. 2026 GL Clear, manufactured by Kansai Paint Co., Ltd.) is diluted with acetone to a solid content of 20 wt%. After pouring under vacuum evacuation conditions, the solvent in the poured liquid was evaporated. Then, after drying at 50 ° C. for 2 hours to form a cured acrylic coating, the Ni plating film on only one side of the cured acrylic coating was dissolved with nitric acid until the acrylic coating was exposed.
Subsequently, the acrylic coating film in which the fibrous Ni was embedded was redissolved in a solvent in which acetone and toluene were mixed in the same volume in a one-to-one relationship, thereby forming a paint. In the obtained paint, no aggregation of fibrous Ni as the conductive filler was observed at all.

【0014】<実施例2>実施例1と同じアルミニウム
板を用いて、このアルミニウム板を実施例1と同様に脱
脂、洗浄した後、陽極酸化して、表面に約5μm厚の多
孔質陽極酸化皮膜を形成した。次いで、市販の亜硫酸A
uめっき(上村工業社製、アウルナ593)を用いて、
陽極酸化皮膜を形成したアルミニウム板をこのめっき液
に浸漬し、このアルミニウム板を陰極にしてこのめっき
液中で直流1A/dm2の電流密度で10分間通電して
Auめっき処理した。この条件下で形成されたAuめっ
き膜は陽極酸化皮膜の微細孔を充填するだけで、酸化皮
膜の表面はAuめっき膜で覆われていなかった。次に、
ピロリン酸銅8wt%、ピロリン酸カリウム35wt%
からなる溶液をアンモニア水でpH8.5に調整した5
0℃の溶液にアルミニウム板を浸漬し、このアルミニウ
ム板を陰極にしてこの溶液中で直流3A/dm2の電流
密度で15分間通電してCuめっき処理した。この条件
下で形成されたCuめっき膜は陽極酸化皮膜の微細孔に
充填されたAuと連続して析出して陽極酸化皮膜の表面
を覆っていた。
<Example 2> Using the same aluminum plate as in Example 1, this aluminum plate was degreased and washed in the same manner as in Example 1, and then anodized to form a porous anodized film having a thickness of about 5 μm on the surface. A film was formed. Then, commercially available sulfite A
Using u plating (Aurna 593, manufactured by Uemura Industries)
The aluminum plate on which the anodic oxide film was formed was immersed in the plating solution, and the aluminum plate was used as a cathode, and a current was passed through the plating solution at a current density of 1 A / dm 2 for 10 minutes to perform Au plating. The Au plating film formed under these conditions only filled the micropores of the anodic oxide film, and the surface of the oxide film was not covered with the Au plating film. next,
Copper pyrophosphate 8wt%, potassium pyrophosphate 35wt%
Was adjusted to pH 8.5 with aqueous ammonia.
The aluminum plate was immersed in a solution at 0 ° C., and the aluminum plate was used as a cathode, and a current was applied at a current density of 3 A / dm 2 for 15 minutes in the solution to perform Cu plating. The Cu plating film formed under these conditions was continuously deposited with Au filled in the fine pores of the anodic oxide film and covered the surface of the anodic oxide film.

【0015】引き続いて、実施例1と同様にこのアルミ
ニウム板を20wt%のNaOH水溶液に浸漬して表面
の陽極酸化皮膜を溶解させた。これにより厚さ約9μm
のCuめっき膜上に長さ約5μmの繊維状のAuが林立
した、剣山状の析出物をアルミニウム板より分離した。
この分離した析出物の繊維状Auが林立した側に、市販
の固形分35wt%のクリヤアクリルラッカー(関西ペ
イント社製、ACRIC No.2026 GLクリヤー)をア
セトンで固形分20wt%に希釈して、真空排気条件下
で流し込んだ後、この流し込んだ液中の溶剤を蒸発させ
た。次いで50℃で2時間乾燥して硬化アクリル塗膜を
形成した後、この硬化アクリル塗膜の片側だけにあるC
uめっき膜をアクリル塗膜が露出するまで硝酸で溶解さ
せた。続いて、アセトンとトルエンを一対一の同容量で
混合した溶剤に繊維状Auが埋め込まれた状態のアクリ
ル塗膜を再溶解させて塗料化した。得られた塗料は、導
電性フィラーである繊維状Auの凝集は全く見られなか
った。
Subsequently, in the same manner as in Example 1, this aluminum plate was immersed in a 20 wt% aqueous solution of NaOH to dissolve the anodic oxide film on the surface. This makes the thickness about 9μm
A fibrous Au having a length of about 5 μm was formed on the Cu plating film of No. 1, and a sword-shaped precipitate was separated from the aluminum plate.
On the side where the fibrous Au of the separated precipitates stand, a commercially available clear acrylic lacquer having a solid content of 35 wt% (manufactured by Kansai Paint Co., Ltd., ACRIC No. 2026 GL Clear) is diluted with acetone to a solid content of 20 wt%. After pouring under vacuum evacuation conditions, the solvent in the poured liquid was evaporated. Then, after drying at 50 ° C. for 2 hours to form a cured acrylic coating film, the C on only one side of the cured acrylic coating film
The u-plated film was dissolved with nitric acid until the acrylic coating film was exposed. Subsequently, the acrylic coating film in which the fibrous Au was embedded was re-dissolved in a solvent in which acetone and toluene were mixed in the same volume in a one-to-one relationship, thereby forming a paint. In the obtained paint, no aggregation of fibrous Au as the conductive filler was observed at all.

【0016】<比較例>ニトロセルロース20wt%、
酢酸ブチル9wt%、酢酸エチル18wt%、ブチルア
ルコール4wt%、エチルアルコール4wt%及びトル
エン35wt%からなる原料塗料に、平均粒径0.02
μmのITO微粉末を10wt%の割合で添加してビー
ズミルを用いて十分に分散させて塗料を得た。
Comparative Example 20% by weight of nitrocellulose,
A raw material paint composed of 9 wt% of butyl acetate, 18 wt% of ethyl acetate, 4 wt% of butyl alcohol, 4 wt% of ethyl alcohol, and 35 wt% of toluene has an average particle size of 0.02.
A fine powder of ITO was added at a ratio of 10 wt% and sufficiently dispersed using a bead mill to obtain a coating material.

【0017】<塗膜特性>実施例1、実施例2及び比較
例の各塗料を、5番のバーコータでPETフィルムに塗
布した。乾燥後のそれぞれの塗膜の膜厚及び塗膜特性を
表1に示す。
<Characteristics of Coating Film> Each coating material of Examples 1, 2 and Comparative Example was applied to a PET film with a No. 5 bar coater. Table 1 shows the film thickness and coating film characteristics of each dried coating film.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、塗膜の膜厚は電子マイクロメータK
−402B(アンリツ社製)を、表面抵抗値はロレスタ
(三菱油化社製)を、また全光透過率及びヘイズは直読
ヘイズコンピュータHGM−3D(スガ試験機社製)を
それぞれ用いて測定した。
The thickness of the coating film is determined by using an electronic micrometer K.
-402B (manufactured by Anritsu), surface resistance was measured using Loresta (manufactured by Mitsubishi Yuka), and total light transmittance and haze were measured using a direct reading haze computer HGM-3D (manufactured by Suga Test Instruments). .

【0020】表1から明らかなように、実施例1及び実
施例2の導電性塗料は、比較例の導電性塗料と比較し
て、塗膜の膜厚及び全光透過率は同等であるが、ヘイズ
が小さいため透明感があり、更に導電性は著しく優れて
いた。
As is clear from Table 1, the conductive paints of Examples 1 and 2 have the same film thickness and total light transmittance as those of the conductive paints of Comparative Example. Because of the small haze, the film had a transparent feeling, and the conductivity was remarkably excellent.

【0021】[0021]

【発明の効果】以上述べたように、本発明の製造方法に
より、繊維径が0.01〜0.3μm、繊維長が0.1
〜50μmであって繊維径の10倍以上の超微細な繊維
状の金属が均一に分散した導電性塗料が得られる。この
導電性塗料は、導電性フィラーが純粋な金属からなるた
め、少量で塗膜に良好な導電性が付与されるとともに、
導電性フィラーは陽極酸化皮膜の微細孔に相応した極め
て微細な繊維状、針状であるため、塗膜において肉眼で
視認することができない。その結果、本発明の導電性塗
料は、塗膜に良好な電磁波遮蔽性、電波反射性、静電防
止特性に加えて透明性を得ることができる。
As described above, according to the production method of the present invention, the fiber diameter is 0.01 to 0.3 μm and the fiber length is 0.1
It is possible to obtain a conductive paint in which ultrafine fibrous metal having a size of about 50 μm and a fiber diameter of 10 times or more is uniformly dispersed. This conductive paint, since the conductive filler is made of pure metal, while imparting good conductivity to the coating film in a small amount,
Since the conductive filler is in the form of extremely fine fibers or needles corresponding to the fine pores of the anodic oxide film, it cannot be visually recognized in the coating film. As a result, the conductive paint of the present invention can provide the coating film with transparency in addition to good electromagnetic wave shielding properties, radio wave reflection properties, and antistatic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の導電性塗料の製造を工程順に示す図。FIG. 1 is a view showing the production of a conductive paint of the present invention in the order of steps.

【図2】本発明の導電性塗料の別の製造を工程順に示す
図。
FIG. 2 is a view showing another production of the conductive paint of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

10 アルミニウム材 11 酸化皮膜 12 微細孔 13,17 析出物 13a 金属 13b,16 めっき膜 14 硬化塗膜 18 溶剤 20 導電性塗料 DESCRIPTION OF SYMBOLS 10 Aluminum material 11 Oxide film 12 Micropore 13, 17 Deposit 13a Metal 13b, 16 Plating film 14 Cured coating film 18 Solvent 20 Conductive paint

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム材(10)を陽極酸化してその
表面に微細孔(12)を有する多孔質酸化皮膜(11)を形成
し、 前記酸化皮膜(11)を無電解めっき処理又は電気めっき処
理してその微細孔(12)に金属(13a)を充填するとともに
前記酸化皮膜(11)の表面をめっき膜(13b)で被覆し、 前記めっき処理した酸化皮膜(11)を溶解して繊維状の金
属(13a)が前記めっき膜(13b)に林立した剣山状の析出物
(13)を前記アルミニウム材(10)から分離し、 前記分離した析出物(13)の繊維状の金属(13a)が林立し
た側に原料塗料を流し込み、 前記原料塗料を乾燥して硬化塗膜(14)を形成し、 前記硬化塗膜(14)の片面にある前記めっき膜(13b)を溶
解して前記硬化塗膜(14)を露出させた後、 前記硬化塗膜(14)を前記原料塗料の溶剤と同一の溶剤(1
8)で溶解して塗料化する導電性塗料の製造方法。
1. Anodizing an aluminum material (10) to form a porous oxide film (11) having micropores (12) on its surface, and subjecting the oxide film (11) to electroless plating or electroplating The surface of the oxide film (11) is coated with a plating film (13b) and the surface of the oxide film (11) is covered with a plating film (13b). -Like metal (13a) is formed on the plating film (13b) by a sword-like precipitate
(13) is separated from the aluminum material (10), and the raw material paint is poured into the separated precipitate (13) on the side where the fibrous metal (13a) stands, and the raw material paint is dried to form a cured coating film. After forming (14), dissolving the plating film (13b) on one side of the cured coating film (14) to expose the cured coating film (14), the cured coating film (14) is The same solvent (1
A method for producing a conductive paint which is dissolved and made into a paint in step 8).
【請求項2】 アルミニウム材(10)を陽極酸化してその
表面に微細孔(12)を有する多孔質酸化皮膜(11)を形成
し、 前記酸化皮膜(11)を無電解めっき処理又は電気めっき処
理してその微細孔(12)に金属(13a)を充填し、 前記微細孔(12)に金属(13a)を充填した酸化皮膜(11)を
更に別のめっき液で無電解めっき処理又は電気めっき処
理して前記微細孔(12)に充填した金属(13a)と連続しか
つ前記酸化皮膜(11)の表面を被覆するめっき膜(16)を形
成し、 前記めっき処理した酸化皮膜(11)を溶解して繊維状の金
属(13a)が前記めっき膜(16)に林立した剣山状の析出物
(17)を前記アルミニウム材(10)から分離し、 前記分離した析出物(17)の繊維状の金属(13a)が林立し
た側に原料塗料を流し込み、 前記原料塗料を乾燥して硬化塗膜(14)を形成し、 前記硬化塗膜(14)の片面にある前記めっき膜(16)を溶解
して前記硬化塗膜(14)を露出させた後、 前記硬化塗膜(14)を前記原料塗料の溶剤と同一の溶剤(1
8)で溶解して塗料化する導電性塗料の製造方法。
2. Anodizing an aluminum material (10) to form a porous oxide film (11) having micropores (12) on its surface, and subjecting the oxide film (11) to electroless plating or electroplating. The micropores (12) are filled with a metal (13a), and the oxide film (11) filled with the metal (13a) in the micropores (12) is subjected to electroless plating or electroplating with another plating solution. Forming a plating film (16) continuous with the metal (13a) filled in the micropores (12) and covering the surface of the oxide film (11) by plating, and forming the plated oxide film (11) Dissolves and the fibrous metal (13a) grows on the plating film (16) in a sword-like precipitate
(17) is separated from the aluminum material (10), and the raw material paint is poured into the separated precipitate (17) on the side where the fibrous metal (13a) stands, and the raw material paint is dried to form a cured coating film. After forming (14), dissolving the plating film (16) on one side of the cured coating film (14) to expose the cured coating film (14), the cured coating film (14) is The same solvent (1
A method for producing a conductive paint which is dissolved and made into a paint in step 8).
【請求項3】 金属(13a)がAu,Ag,Pt,Pd,
Cu,Ni,Co,Sn,Pb又はSn−Pbのいずれ
かである請求項1又は2記載の導電性塗料の製造方法。
3. The method according to claim 1, wherein the metal (13a) is Au, Ag, Pt, Pd,
The method for producing a conductive paint according to claim 1 or 2, wherein the conductive paint is one of Cu, Ni, Co, Sn, Pb, and Sn-Pb.
JP8207499A 1996-08-07 1996-08-07 Production of electroconductive coating material Withdrawn JPH1046064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8207499A JPH1046064A (en) 1996-08-07 1996-08-07 Production of electroconductive coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8207499A JPH1046064A (en) 1996-08-07 1996-08-07 Production of electroconductive coating material

Publications (1)

Publication Number Publication Date
JPH1046064A true JPH1046064A (en) 1998-02-17

Family

ID=16540735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8207499A Withdrawn JPH1046064A (en) 1996-08-07 1996-08-07 Production of electroconductive coating material

Country Status (1)

Country Link
JP (1) JPH1046064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134828A4 (en) * 1998-07-31 2002-01-16 Finecell Co Ltd Method for treating metallic aluminium and copper current collector for secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134828A4 (en) * 1998-07-31 2002-01-16 Finecell Co Ltd Method for treating metallic aluminium and copper current collector for secondary cell

Similar Documents

Publication Publication Date Title
EP2508652B1 (en) Porous metal foil and method for manufacturing the same
JP5284728B2 (en) Silver-coated aluminum powder and method for producing the same
US4564424A (en) Metallization of electrically insulating polymeric film substrates
EP2059107A1 (en) Method for manufacturing light transmitting electromagnetic wave shielding material, light transmitting electromagnetic wave shielding material and filter for display
JPH08250865A (en) Method for improving further reliability of electronic housing by preventing formation of metallic whisker on sheetutilized for manufacture of the electronic housing
CN105483795B (en) A kind of method that compound copper nano-wire is prepared using underpotential deposition technology
JP6210723B2 (en) Silver-coated nickel particles and method for producing the same
WO2000013475A1 (en) Light-transmitting electromagnetic shielding material and method for manufacturing the same
US4565606A (en) Metallization of electrically insulating polyimide/aromatic polyamide film substrates
JPH1046382A (en) Production of fine metallic fiber and conductive paint using the fiber
JPH09324324A (en) Fine metallic fiber, its production and electroconductive coating produced by using the fiber
JPH1046064A (en) Production of electroconductive coating material
JP4895162B2 (en) Method for forming high corrosion resistant coating on magnesium alloy
JP2006233315A (en) Magnesium alloy member and its production method
JP2706110B2 (en) Production method of copper fine powder
Tran et al. Electrodeposition of gold nanostructures having controlled morphology
WO2006004299A1 (en) Method for manufacturing black surface-treated copper foil for emi shield
GB2080630A (en) Printed circuit panels
JPH1143797A (en) Method for via-filling
US3505181A (en) Treatment of titanium surfaces
CN108650826B (en) Sheet material, preparation method thereof, shell and mobile terminal
DE3124522C2 (en) Process for electroless coloring of porous materials
Šupicová et al. Electrolytical modification of Fe hollow spheres by Cu, Ni and Ni–Cu binary coatings
JPH06260759A (en) Manufacture of printed circuit board
CN114734036B (en) Powder for coating silver layer of silver-plated activated substrate of core-shell structure, preparation method and application

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007