JPH1045461A - Corrosion resistant member - Google Patents

Corrosion resistant member

Info

Publication number
JPH1045461A
JPH1045461A JP8201566A JP20156696A JPH1045461A JP H1045461 A JPH1045461 A JP H1045461A JP 8201566 A JP8201566 A JP 8201566A JP 20156696 A JP20156696 A JP 20156696A JP H1045461 A JPH1045461 A JP H1045461A
Authority
JP
Japan
Prior art keywords
plasma
corrosion
gas
sintered body
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8201566A
Other languages
Japanese (ja)
Other versions
JP3619330B2 (en
Inventor
Yumiko Itou
裕見子 伊東
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20156696A priority Critical patent/JP3619330B2/en
Publication of JPH1045461A publication Critical patent/JPH1045461A/en
Application granted granted Critical
Publication of JP3619330B2 publication Critical patent/JP3619330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem of unstable characteristics of a compd. of groups IIa and IIIa elements of the Periodic Table having high corrosion resistance while a sintered compact of glass, quartz, stainless steel, alumina or AlN used so far has unsatisfactory corrosion resistance. SOLUTION: A part of a member exposed to halogen-contg. corrosive gas such as fluorine- or chlorine-contg. gas or plasma of the gas is made of a ceramic sintered compact based on a compd. contg. at least one of groups IIa and IIIa elements of the Periodic Table, e.g. a multiple oxide, spinel, cordierite, YAG or a silicate and having <=1μm surface roughness Ra and <=3% porosity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特にハロゲン系腐
食性ガスおよびハロゲン系プラズマに対して、高い耐食
性を有する、プラズマ処理装置や半導体製造用又は液晶
プロセス用プラズマ装置内部にて使用される内壁材やウ
ェハ支持具、保護カバー、絶縁リング等の治具として使
用される耐食性部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner wall used in a plasma processing apparatus, a semiconductor manufacturing apparatus, or a plasma apparatus for a liquid crystal process, which has a high corrosion resistance especially to a halogen-based corrosive gas and a halogen-based plasma. The present invention relates to a corrosion-resistant member used as a jig such as a material, a wafer support, a protective cover, and an insulating ring.

【0002】[0002]

【従来の技術】半導体製造のドライプロセスやプラズマ
コーティング、放電管、プラズマディスプレイなど、プ
ラズマの利用は近年急速に進んでいる。半導体における
プラズマプロセスとしては、フッ素系、塩素系等のハロ
ゲン系腐食ガスが、その反応性の高さから、気相成長、
エッチングやクリーニングに利用されている。
2. Description of the Related Art In recent years, the use of plasma has been rapidly advancing, such as in a dry process for manufacturing semiconductors, plasma coating, discharge tubes, and plasma displays. As a plasma process in semiconductors, halogen-based corrosive gases such as fluorine-based and chlorine-based gases are vapor-phase grown due to their high reactivity,
Used for etching and cleaning.

【0003】これらの腐食性ガスやプラズマに接触する
部材は、高い耐食性が要求される。
[0003] These members that come into contact with corrosive gas or plasma are required to have high corrosion resistance.

【0004】従来より被処理物以外のこれらプラズマに
接触する部材は、一般にガラスや石英などのSiO2
主成分とする材料やステンレス、モネル等の耐食性金属
が多用されている。
Conventionally, members other than the object to be treated that come into contact with the plasma are generally made of a material mainly composed of SiO 2 such as glass or quartz, or a corrosion-resistant metal such as stainless steel or Monel.

【0005】また、半導体製造製造時において、ウェハ
を支持固定するサセプタ材としてアルミナ焼結体、サフ
ァイア、AlNの焼結体、又はこれらをCVD法等によ
り表面被覆したものが耐食性に優れるとして使用されて
いる。また、グラファイト、窒化硼素をコーティングし
たヒータ等も使用されている。
[0005] In the manufacture of semiconductors, a susceptor material for supporting and fixing a wafer, a sintered body of alumina, sapphire, or a sintered body of AlN, or a surface-coated body of these bodies by a CVD method or the like is used as having excellent corrosion resistance. ing. Further, a heater coated with graphite or boron nitride is also used.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英ではプラズマ中の耐食性が不充
分で消耗が激しく、特にハロゲンプラズマに接すると接
触面がエッチングされ、表面性状が変化したり、光透過
性が必要とされる部材では、表面が次第に白く曇って透
光性が低下する等の問題が生じていた。また、ステンレ
スなどの金属を使用した部材でも耐食性が不充分なた
め、腐食によって特に半導体製造においては不良品発生
の原因となる。
However, conventionally used glass and quartz have insufficient corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with halogen plasma, the contact surface is etched and the surface properties change. In the case of a member that requires light transmissivity, there have been problems such as that the surface gradually becomes cloudy and the light transmissivity decreases. Further, even a member using a metal such as stainless steel has insufficient corrosion resistance, so that corrosion causes a defective product especially in semiconductor manufacturing.

【0007】アルミナ、AlNの焼結体は、上記の材料
に比較してハロゲン系ガスに対して耐食性に優れるもの
の、高温でプラズマと接すると腐食が徐々に進行して焼
結体の表面から結晶粒子の脱粒が生じ、パーティクル発
生の原因になるという問題が起きている。
[0007] Alumina and AlN sintered bodies are more excellent in corrosion resistance to halogen-based gas than the above materials, but when they come into contact with plasma at high temperature, the corrosion gradually progresses and the surface of the sintered body crystallizes. There is a problem that particles are shed and cause particles to be generated.

【0008】本発明者らは、ハロゲン系腐食ガス及びプ
ラズマに対する耐食性に優れた材料の検討を重ねた結
果、まず、ハロゲン系腐食ガス又はプラズマとの反応が
進行すると、表面にハロゲン化物が生成されること、そ
して周期律表第2a族、第3a族元素を含むハロゲン化
物は融点が高く安定であることから、周期律表第2a
族、第3a族化合物が耐食性部材として好適であること
を先に提案した。
The present inventors have repeatedly studied materials having excellent corrosion resistance to halogen-based corrosive gas and plasma. As a result, when the reaction with the halogen-based corrosive gas or plasma proceeds, halide is generated on the surface. And the fact that halides containing elements of groups 2a and 3a of the periodic table have a high melting point and are stable,
It was previously proposed that Group 3a compounds are suitable as corrosion resistant members.

【0009】その中でもこれらの焼結体は、あらゆる形
状品に適用できるとともに適度の強度を有することか
ら、各種構造体としても適用できるためにその有用性が
高いものである。しかしながら、周期律表第2a族、第
3a族元素を含む焼結体において、耐食性が安定しない
という問題があり、焼結体の組織や表面状態によって耐
食性が変化するという問題があった。
[0009] Among them, these sintered bodies can be applied to various shapes and have appropriate strength, so that they are highly useful because they can be applied to various structures. However, there is a problem that the corrosion resistance of a sintered body containing a Group 2a element or a Group 3a element of the periodic table is not stable, and there is a problem that the corrosion resistance changes depending on the structure and surface state of the sintered body.

【0010】[0010]

【課題を解決するための手段】そこで、本発明者らは検
討を重ねた結果、耐食性に優れた周期律表第2a、3a
族元素化合物であっても、材料のプラズマに曝される表
面が粗ければ、それだけ腐食性ガスやプラズマに接触す
る面積が大きくなり耐食性は低下すること、また、焼結
体中に気孔が存在すると、表面に現れた気孔部分で腐食
の進行が早く、ハロゲンガスと接触すると表面状態の劣
化を助長し材料の寿命を短縮させることから、焼結体の
表面粗さ及び気孔率を所定のレベルに制御することによ
り、その影響を抑制可能なことを知見した。
The inventors of the present invention have made repeated studies and have found that the periodic table 2a, 3a having excellent corrosion resistance is obtained.
Even if the material is exposed to the plasma of a group III element compound, the rougher the surface exposed to the plasma, the larger the area in contact with corrosive gases and plasma, which lowers the corrosion resistance and the presence of pores in the sintered body Then, corrosion progresses quickly in the pores that appear on the surface, and when it comes into contact with halogen gas, the deterioration of the surface state is promoted and the life of the material is shortened. Therefore, the surface roughness and porosity of the sintered body are reduced to a predetermined level. It was found that the effect can be suppressed by controlling the temperature to.

【0011】即ち、本発明の耐食性部材は、フッ素系や
塩素系などのハロゲン性腐食ガス或いはそれらのプラズ
マに曝される部位が、周期律表第2a族、第3a族元素
のうちの少なくとも1種を含む化合物を主体とし、その
表面粗さ(Ra)が1μm以下、気孔率が3%以下の焼
結体によって構成することを特徴とする。
That is, in the corrosion-resistant member of the present invention, a portion exposed to a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas or a plasma thereof is formed of at least one of Group 2a and Group 3a elements of the periodic table. It is characterized by being composed mainly of a compound containing a seed and having a surface roughness (Ra) of 1 μm or less and a porosity of 3% or less.

【0012】つまり、本発明者らの研究によれば、部材
表面で腐食進行の起点となるのは気孔だけではなく、表
面の傷やマイクロクラックなどによりエッジが形成され
ると、そこに電界が集中し、腐食の進行が加速される。
それを防ぐためにも部材の表面は滑らかに仕上げる必要
がある。表面粗さRaが大きくなると、腐食性ガスやプ
ラズマとの接触によって凹凸形成が促進され、材料の寿
命を低下させてしまう。その為、表面粗さRaを1μm
以下とすることにより、電界の集中を防止し腐食の進行
を抑制することができるのである。
That is, according to the study of the present inventors, it is not only the pores that become the starting point of the progress of corrosion on the surface of the member, but when an edge is formed due to a scratch or micro crack on the surface, an electric field is generated there. Concentrate and accelerate the progress of corrosion.
To prevent this, the surface of the member must be finished smoothly. When the surface roughness Ra increases, the formation of unevenness is promoted by contact with a corrosive gas or plasma, thereby shortening the life of the material. Therefore, the surface roughness Ra is 1 μm
By the following, the concentration of the electric field can be prevented and the progress of corrosion can be suppressed.

【0013】また、同様に焼結体中の気孔率を3%以下
とすることにより、気孔部の腐食による表面性状の劣
化、表面積の増加に伴う耐食性の低下を防止することが
可能となるのである。
Similarly, by setting the porosity in the sintered body to 3% or less, it is possible to prevent the deterioration of the surface properties due to the corrosion of the pores and the decrease in the corrosion resistance due to the increase in the surface area. is there.

【0014】[0014]

【発明の実施の形態】本発明の耐食性部材は、ハロゲン
系ガスやプラズマに曝される部材であり、ハロゲン系ガ
スとしては、SF6 、NF3 、CF4 、CHF3 、Cl
3 、HF等のフッ素系ガス、Cl2 、BCl3 、Si
Cl4 等の塩素系ガス、HBr、Br2 等の臭素系ガ
ス、HI等のヨウ素系ガス等であり、これらのガスが導
入された雰囲気にマイクロ波や高周波等を導入するとこ
れらのガスがプラズマ化される。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention is a member exposed to a halogen-based gas or plasma. Examples of the halogen-based gas include SF 6 , NF 3 , CF 4 , CHF 3 and Cl.
Fluorine gas such as F 3 and HF, Cl 2 , BCl 3 , Si
These gases include chlorine-based gases such as Cl 4 , bromine-based gases such as HBr and Br 2 , and iodine-based gases such as HI. When microwaves or high-frequency waves are introduced into the atmosphere in which these gases are introduced, these gases become plasma. Be transformed into

【0015】また、エッチング効果をより高めるため、
ハロゲン系のガスと共にArなど不活性ガスを導入して
プラズマを発生させる場合もある。
In order to further enhance the etching effect,
In some cases, an inert gas such as Ar is introduced together with a halogen-based gas to generate plasma.

【0016】本発明の耐食性部材では、このようなハロ
ゲン系腐食ガス或いはそのプラズマ中で使用される部材
を、周期律表第2a族、第3a族元素のうちの少なくと
も1種を含む化合物を主体とする焼結体にて構成する。
この焼結体は、構成元素である周期律表2a族、第3a
族元素がハロゲンと反応して安定な化合物を形成するた
め、それ自体従来材料よりも格段に優れた耐食性を有す
る。
In the corrosion-resistant member of the present invention, the member used in such a halogen-based corrosive gas or its plasma is mainly composed of a compound containing at least one of Group 2a and Group 3a elements of the periodic table. And a sintered body.
This sintered body is composed of the constituent elements of the periodic table 2a group, 3a
Since the group III element reacts with the halogen to form a stable compound, it itself has much better corrosion resistance than conventional materials.

【0017】用いられる周期律表第2a族元素としては
Mg、Ca、Baが好適で、周期律表第3a族元素とし
てはSc、Y、La、Ce、Nd、Yb、Dy、Luが
好適であり、化合物としては酸化物、窒化物、炭化物、
硼化物、フッ化物等が挙げられる。これらは、ハロゲン
化ガスやそれらのプラズマと長時間接触することによっ
て各元素を含むハロゲン化物を形成することになる。そ
の他、前記周期律表第2a族、第3a族元素を含む化合
物としては、これらの元素と、Al等の周期律表第3b
族元素、Si、Pb、Fe、Cr、Ti等の元素を含む
複合酸化物であってもよく、具体的には、AB2
4 (Aは周期律表第2a族元素、Bは周期律表第3b族
元素)で表されるスピネル型結晶またはコージェライト
結晶や、周期律表第3a族元素とAlとの化合物として
ペロブスカイト型(YAP型)、メリライト型(YAM
型)、ガーネット型(YAG型)化合物、さらにはSi
との複合化合物として、周期律表第2a、3a族元素の
シリケート化合物等も使用できる。
Mg, Ca, and Ba are preferably used as Group 2a elements in the periodic table, and Sc, Y, La, Ce, Nd, Yb, Dy, and Lu are preferably used as Group 3a elements in the periodic table. Yes, compounds include oxides, nitrides, carbides,
Boride, fluoride and the like. These will form a halide containing each element by long-term contact with a halogenated gas or their plasma. In addition, as the compound containing an element of Group 2a or Group 3a of the periodic table, these elements may be used in combination with the elements of the periodic table 3b such as Al.
Group elements, Si, Pb, Fe, Cr, may be a composite oxide containing elements such as Ti, specifically, AB 2 O
4 A spinel type crystal or cordierite crystal represented by (A is a Group 2a element of the periodic table, B is a Group 3b element of the periodic table), or a perovskite type compound as a compound of Group 3a element of the periodic table and Al (YAP type), melilite type (YAM
Type), garnet type (YAG type) compounds, and Si
And silicate compounds of Group 2a and 3a elements of the periodic table.

【0018】更に、この部材を構成する焼結体において
は、その表面粗さ(Ra)が1μm以下、より好ましく
は0.1μm以下とすることが重要である。部材の表面
粗さが1μmを越えると腐食性ガスやプラズマに接触す
る面積が大きくなり耐食性は大きく低下する。従って、
部材表面は限りなく鏡面処理されていることが好まし
い。また、材料表面で腐食進行の起点となるのは気孔だ
けではなく、表面の傷やマイクロクラックなどにより、
エッジが形成されるとそこに電界が集中し、腐食の進行
が加速される。それを防ぐためにも部材の表面は滑らか
に仕上げる必要がある。
Furthermore, it is important that the surface roughness (Ra) of the sintered body constituting this member is 1 μm or less, more preferably 0.1 μm or less. If the surface roughness of the member exceeds 1 μm, the area in contact with corrosive gas or plasma increases, and the corrosion resistance is greatly reduced. Therefore,
It is preferable that the surface of the member is mirror-finished as much as possible. Also, the starting point of corrosion progress on the material surface is not only the pores, but also due to surface scratches and micro cracks, etc.
When an edge is formed, an electric field concentrates there, and the progress of corrosion is accelerated. To prevent this, the surface of the member must be finished smoothly.

【0019】また、部材を構成する焼結体の気孔率を3
%以下、特に1%以下とする事で、部材表面の局部的な
腐食の進行と表面状態の劣化を防止することが出来る。
気孔率が3%を越えると、前述したような望ましい表面
状態(鏡面)を得ることが難しく、また鏡面状態を得ら
れたとしても腐食雰囲気に曝されているうちに表面に残
った気孔部から腐食が進行し、表面状態が劣化して部材
の寿命低下を引き起こすこととなる。
The porosity of the sintered body constituting the member is 3
% Or less, particularly 1% or less, it is possible to prevent local corrosion of the member surface from progressing and deterioration of the surface state.
If the porosity exceeds 3%, it is difficult to obtain the desired surface state (mirror surface) as described above, and even if the mirror surface state can be obtained, the pores remaining on the surface during exposure to a corrosive atmosphere will not be obtained. Corrosion progresses, and the surface condition deteriorates, which causes a reduction in the life of the member.

【0020】本発明の耐食性部材の製造法としては、所
定の気孔率、表面粗さの条件を満たす緻密な焼結体が得
られれば、どのような方法でも構わない。例えば、周知
の方法によって、成形、焼成した焼結体、反応焼結体、
周知のゾルゲル法で液相を所定の基体表面に塗布し焼成
したものであってもよい。
As a method for producing the corrosion-resistant member of the present invention, any method may be used as long as a dense sintered body satisfying predetermined porosity and surface roughness conditions can be obtained. For example, by a well-known method, a molded and fired sintered body, a reaction sintered body,
A liquid phase may be applied to a predetermined substrate surface by a well-known sol-gel method and fired.

【0021】具体的には、出発原料として、周期律表第
3a族元素、第2a族元素の金属粉末、あるいは酸化
物、炭化物、窒化物、炭酸塩、酢酸塩などの化合物粉末
を用いて、最終的に作製される焼結体と同じ組成となる
ように秤量した混合粉末、または前記出発原料を所定比
率で混合したのちに仮焼処理し粉砕して作製した複合化
合物粉末、反応焼結によって焼結体を形成し得る金属粉
末と前記化合物或いは複合化合物との混合粉末、加熱処
理によってセラミックスに分解する有機系、無機系のセ
ラミックス前駆体等がある。また、必要に応じて焼結を
促進するための助剤を添加することもできる。
Specifically, as a starting material, a metal powder of a Group 3a element or a Group 2a element of the periodic table or a compound powder of an oxide, carbide, nitride, carbonate, acetate or the like is used. A mixed compound powder weighed so as to have the same composition as the finally produced sintered body, or a composite compound powder produced by mixing the starting materials at a predetermined ratio, followed by calcination treatment and pulverization, by reaction sintering There are mixed powders of a metal powder capable of forming a sintered body and the above compound or composite compound, and organic and inorganic ceramic precursors which are decomposed into ceramics by heat treatment. If necessary, an auxiliary agent for promoting sintering can be added.

【0022】この様な原料を、所望の形状に成形、或い
は基体に塗布して焼成する。成形方法としては、通常の
乾式プレス、静水圧プレス、鋳込み成形、押し出し成
形、シート状成形等、目的形状を得るのに適した成形方
法を利用出来る。
Such a raw material is formed into a desired shape or applied to a substrate and fired. As a molding method, a molding method suitable for obtaining a target shape, such as a normal dry press, an isostatic press, a casting molding, an extrusion molding, and a sheet-like molding, can be used.

【0023】成形体は、材料に応じて緻密化に適した雰
囲気、圧力、温度で焼成し、必要であれば1000〜2
000気圧の不活性ガス中で熱処理する熱間静水圧法に
よって焼結体中の気孔を消失すればよい。
The molded body is fired in an atmosphere, pressure and temperature suitable for densification depending on the material.
The pores in the sintered body may be eliminated by a hot isostatic method in which heat treatment is performed in an inert gas at 2,000 atm.

【0024】また、用いる材質によっては、焼成後の焼
結体表面に荒れ等が発生する場合もあるが、そのような
場合には、焼結体の少なくともガスまたはプラズマに接
触する表面を周知の研磨処理によって表面粗さ1μm以
下まで鏡面研磨処理することで本発明の耐食性部材を作
製することができる。
Depending on the material to be used, the surface of the sintered body may be roughened after firing. In such a case, at least the surface of the sintered body that comes into contact with gas or plasma is well known. The anti-corrosion member of the present invention can be manufactured by performing mirror polishing to a surface roughness of 1 μm or less by polishing.

【0025】[0025]

【実施例】【Example】

実施例1 表1に示すような各材料の高純度微粉末を成形し、13
00〜1800℃で焼成し、気孔率の異なる焼結体を作
製した。なお、気孔率0%の試料はいずれもその焼結体
を2000気圧のアルゴンガス中で熱間静水圧焼成(H
IP)したものである。そしてこれら気孔率の異なる試
料を平面研削及びラップによって適当な面粗さに研磨
し、気孔率と面粗さの異なる各試料を準備した。
Example 1 A high-purity fine powder of each material as shown in Table 1 was molded, and 13
It was fired at 00 to 1800 ° C. to produce sintered bodies having different porosity. In each of the samples having a porosity of 0%, the sintered body was subjected to hot isostatic firing (H
IP). Then, these samples having different porosity were polished to an appropriate surface roughness by surface grinding and lapping, and samples having different porosity and surface roughness were prepared.

【0026】RIEプラズマエッチング装置にて、これ
らをSF6 プラズマに室温で3時間曝し、エッチング速
度を重量変化から算出した。これらのエッチング速度に
ついて、同一の材質品について、表面粗さRaおよび気
孔率が最も小さな試料のエッチング速度を1.00とし
た時のそれ以外の試料のエッチング速度を相対値として
算出し表1に示した。
These were exposed to SF 6 plasma at room temperature for 3 hours in an RIE plasma etching apparatus, and the etching rate was calculated from the change in weight. Regarding these etching rates, for the same material, the etching rates of the other samples were calculated as relative values when the etching rate of the sample having the smallest surface roughness Ra and porosity was set to 1.00. Indicated.

【0027】[0027]

【表1】 [Table 1]

【0028】材質によってそれぞれエッチング速度の絶
対値は異なるが、いずれの試料も表面粗さRaが1μm
を越えるか、気孔率が3%を越えると、エッチング速度
がHIP処理/鏡面処理した試料の2倍以上になってい
ることがわかる。従って、同一材質であっても表面粗さ
および気孔率が耐食性を決定する大きな要因となってい
ることが理解される。
Although the absolute value of the etching rate is different depending on the material, each sample has a surface roughness Ra of 1 μm.
If the porosity exceeds 3% or the porosity exceeds 3%, it can be seen that the etching rate is twice or more that of the sample subjected to the HIP treatment / mirror treatment. Therefore, it is understood that the surface roughness and the porosity are the major factors that determine the corrosion resistance even with the same material.

【0029】実施例2 実施例1と同様に作製した各試料を、RIEプラズマエ
ッチング装置にて、HClプラズマに3時間曝し、実施
例1と同様な評価を行った。結果は表2に示した。
Example 2 Each sample produced in the same manner as in Example 1 was exposed to HCl plasma for 3 hours by an RIE plasma etching apparatus, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】表2の結果からも明らかなように、この場
合も実施例1と同様に表面粗さRaが1μmを越える、
或いは気孔率が3%を越えるとエッチング速度(相対
値)が2を越えるものであった。
As is clear from the results shown in Table 2, in this case, the surface roughness Ra exceeds 1 μm as in Example 1.
Alternatively, when the porosity exceeds 3%, the etching rate (relative value) exceeds 2.

【0032】実施例3 実施例1と同様に作製した試料を、RIEプラズマエッ
チング装置にて、HBrプラズマに3時間曝し、実施例
1と同様な評価を行った。結果は表2に示した。
Example 3 A sample manufactured in the same manner as in Example 1 was exposed to HBr plasma for 3 hours by an RIE plasma etching apparatus, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.

【0033】[0033]

【表3】 [Table 3]

【0034】表3の結果からも明らかなように、この場
合も実施例1と同様に表面粗さRaが1μmを越える、
或いは気孔率が3%を越えるとエッチング速度(相対
値)が2を越えるものであった。
As is clear from the results shown in Table 3, in this case also, the surface roughness Ra exceeds 1 μm as in Example 1.
Alternatively, when the porosity exceeds 3%, the etching rate (relative value) exceeds 2.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明の耐食性部材
は、ハロゲン系腐食性ガス及びそのプラズマに曝される
部材を構成する焼結体の気孔率および表面粗さを特定範
囲内に制御することにより、その焼結体材料が有する本
来の耐食性を充分に引き出すことが可能となり、それに
より、半導体や液晶製造用のプラズマ処理装置内の内壁
材や治具等、具体的にはウェハ固定用のクランプリン
グ、エッチング装置の電極回りの絶縁リングや電極カバ
ー等に使用することにより、長寿命化を図ることが出来
る。
As described in detail above, the corrosion-resistant member of the present invention controls the porosity and surface roughness of the sintered body constituting the member exposed to the halogen-based corrosive gas and its plasma within a specific range. By doing so, it is possible to sufficiently draw out the intrinsic corrosion resistance of the sintered body material, thereby fixing the inner wall material and jigs in the plasma processing apparatus for manufacturing semiconductors and liquid crystals, specifically, fixing the wafer. Life can be prolonged by using it for a clamp ring for an electrode, an insulating ring around an electrode of an etching apparatus, an electrode cover, or the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/443 C04B 35/16 Z 35/56 35/44 35/58 101 101 105 35/56 A H01L 21/3065 H01L 21/302 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C04B 35/443 C04B 35/16 Z 35/56 35/44 35/58 101 101 105 105/56 A H01L 21/3065 H01L 21/302 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フッ素系や塩素系などのハロゲン性腐食ガ
ス或いはそれらのプラズマに曝される部位が、周期律表
第2a族、第3a族元素のうちの少なくとも1種を含む
化合物を主体とし、その表面粗さ(Ra)が1μm以
下、気孔率が3%以下のセラミック焼結体によって構成
されることを特徴とする耐食性部材。
1. A method according to claim 1, wherein the portion exposed to the halogen-based corrosive gas such as a fluorine-based or chlorine-based gas or a plasma thereof is mainly composed of a compound containing at least one of Group 2a and 3a elements of the periodic table. A corrosion-resistant member comprising a ceramic sintered body having a surface roughness (Ra) of 1 μm or less and a porosity of 3% or less.
JP20156696A 1996-07-31 1996-07-31 Components for plasma process equipment Expired - Lifetime JP3619330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20156696A JP3619330B2 (en) 1996-07-31 1996-07-31 Components for plasma process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20156696A JP3619330B2 (en) 1996-07-31 1996-07-31 Components for plasma process equipment

Publications (2)

Publication Number Publication Date
JPH1045461A true JPH1045461A (en) 1998-02-17
JP3619330B2 JP3619330B2 (en) 2005-02-09

Family

ID=16443189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20156696A Expired - Lifetime JP3619330B2 (en) 1996-07-31 1996-07-31 Components for plasma process equipment

Country Status (1)

Country Link
JP (1) JP3619330B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001362A (en) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk Corrosion resistant ceramic material
EP1013623A3 (en) * 1998-12-21 2000-07-05 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant composite oxide material
WO2001042526A1 (en) 1999-12-10 2001-06-14 Tocalo Co., Ltd. Plasma processing container internal member and production method therefor
JP2001181042A (en) * 1999-12-27 2001-07-03 Kyocera Corp Corrosion-resistant ceramic member and method for producing the same
JP2001206764A (en) * 2000-01-25 2001-07-31 Kyocera Corp Corrosion-resistant ceramics and its manufacturing method
EP1158072A2 (en) * 2000-04-18 2001-11-28 Ngk Insulators, Ltd. Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP2002029831A (en) * 2000-07-19 2002-01-29 Toshiba Ceramics Co Ltd Plasma resistant member and method for manufacturing the same
WO2002015248A1 (en) * 2000-07-31 2002-02-21 Shin-Etsu Quartz Products Co., Ltd. Quartz glass jig for plasma-using process device
JP2002249864A (en) * 2000-04-18 2002-09-06 Ngk Insulators Ltd Halogen gas plasma resistant member and production method therefor
JP2003055050A (en) * 2001-08-20 2003-02-26 Nihon Ceratec Co Ltd Yttrium oxide member
JP2003063883A (en) * 2001-08-29 2003-03-05 Shin Etsu Chem Co Ltd Oxide member containing rare earths
US6631062B1 (en) 1999-04-13 2003-10-07 Nihon Ceratec Co., Ltd. Electrically conductive ceramic material, a process of producing same, and an electrostatic chuck
US6861122B2 (en) 2001-01-31 2005-03-01 Toshiba Ceramics Co., Ltd. Ceramic member with fine protrusions on surface and method of producing the same
JP2005521250A (en) * 2002-03-21 2005-07-14 ラム リサーチ コーポレーション Low contamination component for semiconductor processing equipment and method of manufacturing the same
JP2006315955A (en) * 2000-07-10 2006-11-24 Toshiba Ceramics Co Ltd Ceramic member
EP1777731A1 (en) * 2005-10-21 2007-04-25 Shin-Etsu Chemical Co., Ltd. Corrosion resistant multilayer member
JP2007107100A (en) * 2006-11-30 2007-04-26 Tocalo Co Ltd Composite film-covered member in plasma treatment container and method for manufacturing the same
US7211216B2 (en) 2004-06-18 2007-05-01 Ngk Insulators, Ltd. Aluminum nitride ceramic, semiconductor manufacturing member, and manufacturing method for aluminum nitride ceramic
JP2007119924A (en) * 2006-11-30 2007-05-17 Tocalo Co Ltd High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same
JP2007126752A (en) * 2006-12-08 2007-05-24 Tocalo Co Ltd Member in plasma treatment vessel and its production method
JP2007291528A (en) * 1999-12-10 2007-11-08 Tokyo Electron Ltd Treating apparatus
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
JP2008260644A (en) * 2007-04-10 2008-10-30 Ferrotec Ceramics Corp Yttria sintered compact and member for plasma processing apparatus
US7494723B2 (en) 2005-07-29 2009-02-24 Tocalo Co., Ltd. Y2O3 spray-coated member and production method thereof
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
WO2011122376A1 (en) * 2010-03-30 2011-10-06 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
WO2011122377A1 (en) * 2010-03-30 2011-10-06 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
KR101238528B1 (en) 2005-06-29 2013-02-28 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth metal member and making method
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel
US8980045B2 (en) 2007-05-30 2015-03-17 Applied Materials, Inc. Substrate cleaning chamber and components
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
WO2015080134A1 (en) * 2013-11-29 2015-06-04 株式会社東芝 Plasma device part and manufacturing method therefor
US9068273B2 (en) 2002-11-25 2015-06-30 Quantum Global Technologies LLC Electrochemical removal of tantalum-containing materials
WO2015115624A1 (en) * 2014-01-30 2015-08-06 京セラ株式会社 Cylinder, plasma device, gas laser device, and method for manufacturing cylinder
US9481608B2 (en) 2005-07-13 2016-11-01 Applied Materials, Inc. Surface annealing of components for substrate processing chambers
US10119188B2 (en) 2013-06-20 2018-11-06 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US10336656B2 (en) 2012-02-21 2019-07-02 Applied Materials, Inc. Ceramic article with reduced surface defect density
US10364197B2 (en) 2012-02-22 2019-07-30 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
JPWO2018116688A1 (en) * 2016-12-20 2019-10-24 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and method for producing the same
WO2021106871A1 (en) 2019-11-27 2021-06-03 京セラ株式会社 Plasma resistant member, plasma treatment device component, and plasma treatment device
CN113611589A (en) * 2021-10-08 2021-11-05 中微半导体设备(上海)股份有限公司 Component, plasma device, method for forming corrosion-resistant coating and device thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466831B2 (en) 2008-04-28 2014-04-09 株式会社フェローテックセラミックス Yttria sintered body and member for plasma process equipment

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001362A (en) * 1998-06-10 2000-01-07 Nippon Seratekku:Kk Corrosion resistant ceramic material
US6326076B1 (en) 1998-12-21 2001-12-04 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant composite oxide material
EP1013623A3 (en) * 1998-12-21 2000-07-05 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant composite oxide material
US6631062B1 (en) 1999-04-13 2003-10-07 Nihon Ceratec Co., Ltd. Electrically conductive ceramic material, a process of producing same, and an electrostatic chuck
JP2007291528A (en) * 1999-12-10 2007-11-08 Tokyo Electron Ltd Treating apparatus
US7364798B2 (en) 1999-12-10 2008-04-29 Tocalo Co., Ltd. Internal member for plasma-treating vessel and method of producing the same
WO2001042526A1 (en) 1999-12-10 2001-06-14 Tocalo Co., Ltd. Plasma processing container internal member and production method therefor
US6884516B2 (en) * 1999-12-10 2005-04-26 Tocalo Co., Ltd. Internal member for plasma-treating vessel and method of producing the same
US6783863B2 (en) 1999-12-10 2004-08-31 Tocalo Co., Ltd. Plasma processing container internal member and production method thereof
JP2001181042A (en) * 1999-12-27 2001-07-03 Kyocera Corp Corrosion-resistant ceramic member and method for producing the same
JP4548887B2 (en) * 1999-12-27 2010-09-22 京セラ株式会社 Corrosion-resistant ceramic member and manufacturing method thereof
JP2001206764A (en) * 2000-01-25 2001-07-31 Kyocera Corp Corrosion-resistant ceramics and its manufacturing method
JP4651145B2 (en) * 2000-01-25 2011-03-16 京セラ株式会社 Corrosion resistant ceramics
US6783875B2 (en) 2000-04-18 2004-08-31 Ngk Insulators, Ltd. Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
EP1158072A3 (en) * 2000-04-18 2004-01-07 Ngk Insulators, Ltd. Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
EP1892318A1 (en) * 2000-04-18 2008-02-27 Ngk Insulators, Ltd. Halogen gas plasma-resistive members, laminates, and corrosion-resistant members
EP1158072A2 (en) * 2000-04-18 2001-11-28 Ngk Insulators, Ltd. Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP2002249864A (en) * 2000-04-18 2002-09-06 Ngk Insulators Ltd Halogen gas plasma resistant member and production method therefor
JP2006315955A (en) * 2000-07-10 2006-11-24 Toshiba Ceramics Co Ltd Ceramic member
JP2002029831A (en) * 2000-07-19 2002-01-29 Toshiba Ceramics Co Ltd Plasma resistant member and method for manufacturing the same
WO2002015248A1 (en) * 2000-07-31 2002-02-21 Shin-Etsu Quartz Products Co., Ltd. Quartz glass jig for plasma-using process device
US6861122B2 (en) 2001-01-31 2005-03-01 Toshiba Ceramics Co., Ltd. Ceramic member with fine protrusions on surface and method of producing the same
JP2003055050A (en) * 2001-08-20 2003-02-26 Nihon Ceratec Co Ltd Yttrium oxide member
JP2003063883A (en) * 2001-08-29 2003-03-05 Shin Etsu Chem Co Ltd Oxide member containing rare earths
JP4663927B2 (en) * 2001-08-29 2011-04-06 信越化学工業株式会社 Rare earth-containing oxide member
US6794047B2 (en) 2001-08-29 2004-09-21 Shin-Etsu Chemical Co., Ltd. Rare earth-containing oxide member
US9012030B2 (en) 2002-01-08 2015-04-21 Applied Materials, Inc. Process chamber component having yttrium—aluminum coating
KR101024514B1 (en) * 2002-03-21 2011-03-31 램 리써치 코포레이션 Low contamination components for semiconductor processing apparatus and methods for making components
JP2005521250A (en) * 2002-03-21 2005-07-14 ラム リサーチ コーポレーション Low contamination component for semiconductor processing equipment and method of manufacturing the same
US8318327B2 (en) 2002-03-21 2012-11-27 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components
US8935990B2 (en) 2002-03-21 2015-01-20 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components
JP2010153881A (en) * 2002-03-21 2010-07-08 Lam Res Corp Low contamination component for semiconductor processing apparatus and method for making the same
US9068273B2 (en) 2002-11-25 2015-06-30 Quantum Global Technologies LLC Electrochemical removal of tantalum-containing materials
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
US7605102B2 (en) 2004-06-18 2009-10-20 Ngk Insulators, Ltd. Aluminum nitride ceramic and semiconductor manufacturing member
US7211216B2 (en) 2004-06-18 2007-05-01 Ngk Insulators, Ltd. Aluminum nitride ceramic, semiconductor manufacturing member, and manufacturing method for aluminum nitride ceramic
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
KR101238528B1 (en) 2005-06-29 2013-02-28 신에쓰 가가꾸 고교 가부시끼가이샤 Rare earth metal member and making method
US9481608B2 (en) 2005-07-13 2016-11-01 Applied Materials, Inc. Surface annealing of components for substrate processing chambers
US7494723B2 (en) 2005-07-29 2009-02-24 Tocalo Co., Ltd. Y2O3 spray-coated member and production method thereof
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
EP1777731A1 (en) * 2005-10-21 2007-04-25 Shin-Etsu Chemical Co., Ltd. Corrosion resistant multilayer member
US7968205B2 (en) 2005-10-21 2011-06-28 Shin-Etsu Chemical Co., Ltd. Corrosion resistant multilayer member
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
JP2007107100A (en) * 2006-11-30 2007-04-26 Tocalo Co Ltd Composite film-covered member in plasma treatment container and method for manufacturing the same
JP2007119924A (en) * 2006-11-30 2007-05-17 Tocalo Co Ltd High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same
JP2007126752A (en) * 2006-12-08 2007-05-24 Tocalo Co Ltd Member in plasma treatment vessel and its production method
JP2008260644A (en) * 2007-04-10 2008-10-30 Ferrotec Ceramics Corp Yttria sintered compact and member for plasma processing apparatus
US8980045B2 (en) 2007-05-30 2015-03-17 Applied Materials, Inc. Substrate cleaning chamber and components
JP5819816B2 (en) * 2010-03-30 2015-11-24 日本碍子株式会社 Corrosion resistant member for semiconductor manufacturing equipment and method for manufacturing the same
KR101400598B1 (en) * 2010-03-30 2014-05-27 엔지케이 인슐레이터 엘티디 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
US8685313B2 (en) 2010-03-30 2014-04-01 Ngk Insulators, Ltd. Corrosion-resistant member for semiconductor manufacturing apparatus and method for manufacturing the same
US8679998B2 (en) 2010-03-30 2014-03-25 Ngk Insulators, Ltd. Corrosion-resistant member for semiconductor manufacturing apparatus and method for manufacturing the same
KR101371640B1 (en) * 2010-03-30 2014-03-06 엔지케이 인슐레이터 엘티디 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
CN102822116A (en) * 2010-03-30 2012-12-12 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
JP5767209B2 (en) * 2010-03-30 2015-08-19 日本碍子株式会社 Corrosion resistant member for semiconductor manufacturing equipment and method for manufacturing the same
TWI499574B (en) * 2010-03-30 2015-09-11 Ngk Insulators Ltd A corrosion resistant material for a semiconductor manufacturing apparatus and fabricated method thereof
WO2011122376A1 (en) * 2010-03-30 2011-10-06 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
WO2011122377A1 (en) * 2010-03-30 2011-10-06 日本碍子株式会社 Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
US10336656B2 (en) 2012-02-21 2019-07-02 Applied Materials, Inc. Ceramic article with reduced surface defect density
US11279661B2 (en) 2012-02-22 2022-03-22 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
US10364197B2 (en) 2012-02-22 2019-07-30 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
US10119188B2 (en) 2013-06-20 2018-11-06 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
TWI734119B (en) * 2013-06-20 2021-07-21 美商應用材料股份有限公司 Plasma erosion resistant rare-earth oxide based thin film coatings
US11680308B2 (en) 2013-06-20 2023-06-20 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
TWI664073B (en) * 2013-06-20 2019-07-01 應用材料股份有限公司 Plasma erosion resistant rare-earth oxide based thin film coatings
TWI748928B (en) * 2013-06-20 2021-12-01 美商應用材料股份有限公司 Plasma erosion resistant rare-earth oxide based thin film coatings
US11053581B2 (en) 2013-06-20 2021-07-06 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US10501843B2 (en) 2013-06-20 2019-12-10 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
JPWO2015080134A1 (en) * 2013-11-29 2017-03-16 株式会社東芝 Plasma device component and method of manufacturing the same
WO2015080134A1 (en) * 2013-11-29 2015-06-04 株式会社東芝 Plasma device part and manufacturing method therefor
WO2015115624A1 (en) * 2014-01-30 2015-08-06 京セラ株式会社 Cylinder, plasma device, gas laser device, and method for manufacturing cylinder
US10090628B2 (en) 2014-01-30 2018-10-02 Kyocera Corporation Cylinder, plasma apparatus, gas laser apparatus, and method of manufacturing cylinder
JPWO2015115624A1 (en) * 2014-01-30 2017-03-23 京セラ株式会社 Cylindrical body, plasma apparatus, gas laser apparatus, and manufacturing method of cylindrical body
JPWO2018116688A1 (en) * 2016-12-20 2019-10-24 三井金属鉱業株式会社 Rare earth oxyfluoride sintered body and method for producing the same
WO2021106871A1 (en) 2019-11-27 2021-06-03 京セラ株式会社 Plasma resistant member, plasma treatment device component, and plasma treatment device
CN113611589A (en) * 2021-10-08 2021-11-05 中微半导体设备(上海)股份有限公司 Component, plasma device, method for forming corrosion-resistant coating and device thereof
CN113611589B (en) * 2021-10-08 2021-12-24 中微半导体设备(上海)股份有限公司 Component, plasma device, method for forming corrosion-resistant coating and device thereof

Also Published As

Publication number Publication date
JP3619330B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JPH1045461A (en) Corrosion resistant member
JP4548887B2 (en) Corrosion-resistant ceramic member and manufacturing method thereof
KR100489172B1 (en) A film of yittria-alumina complex oxide, a method of producing the same, a sprayed film, a corrosion resistant member, a member effective for reducing particle generation
US6645585B2 (en) Container for treating with corrosive-gas and plasma and method for manufacturing the same
JP2003146751A (en) Plasma-resistant member and method of producing the same
JPH1045467A (en) Corrosion resistant member
JP3164559B2 (en) Processing container material
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP3559426B2 (en) Corrosion resistant materials
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP3623054B2 (en) Components for plasma process equipment
JP2000086344A (en) High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP3706488B2 (en) Corrosion-resistant ceramic material
JP2002226274A (en) Corrosion resistant ceramic material, method for manufacturing the same and product for manufacturing semiconductor
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP4641609B2 (en) Corrosion resistant material
JP2001151559A (en) Corrosion-resistant member
JP4126461B2 (en) Components for plasma process equipment
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP3784180B2 (en) Corrosion resistant material
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP4733819B2 (en) Method of forming corrosion-resistant ceramic sprayed coating
JP2001148370A (en) Anti-corrosion and anti-plasma ceramic member
JP3732966B2 (en) Corrosion resistant material

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term