JP4126461B2 - Components for plasma process equipment - Google Patents

Components for plasma process equipment Download PDF

Info

Publication number
JP4126461B2
JP4126461B2 JP2004303171A JP2004303171A JP4126461B2 JP 4126461 B2 JP4126461 B2 JP 4126461B2 JP 2004303171 A JP2004303171 A JP 2004303171A JP 2004303171 A JP2004303171 A JP 2004303171A JP 4126461 B2 JP4126461 B2 JP 4126461B2
Authority
JP
Japan
Prior art keywords
plasma
sintered body
grain boundary
corrosion resistance
nial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004303171A
Other languages
Japanese (ja)
Other versions
JP2005022971A (en
Inventor
裕見子 伊東
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004303171A priority Critical patent/JP4126461B2/en
Publication of JP2005022971A publication Critical patent/JP2005022971A/en
Application granted granted Critical
Publication of JP4126461B2 publication Critical patent/JP4126461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、ハロゲン系腐食性ガスのプラズマに対して高い耐食性を有する、プラズマ処理装置や半導体・液晶製造用プラズマ装置内の内壁材や治具等として使用されるプラズマプロセス装置用部材に関するものである。 The present invention relates to a member for a plasma processing apparatus used as an inner wall material or jig in a plasma processing apparatus or a plasma apparatus for manufacturing semiconductors and liquid crystals, which has high corrosion resistance against plasma of a halogen-based corrosive gas. is there.

半導体製造におけるドライプロセスやプラズマコーティングなど、プラズマの利用は近年急速に進んでいる。半導体の製造時におけるプラズマプロセスでは、特にデポジション、エッチング、クリーニング用として、反応性の高いフッ素系、塩素系等のハロゲン系腐食ガスが多用されている。 In recent years, the use of plasma, such as dry processes and plasma coating in semiconductor manufacturing, has been progressing rapidly. In the plasma process during the manufacture of semiconductors, halogen-based corrosive gases such as fluorine and chlorine having high reactivity are frequently used particularly for deposition, etching and cleaning.

これら腐食性ガス及びプラズマに接触する部材には、高い耐食性が要求される。従来より、被処理物以外でこれらの腐食性ガス及びプラズマに接触する部材は、一般にガラスや石英などのSiOを主成分とする材料やステンレス、モネル等の耐食性金属が利用されている。 High corrosion resistance is required for members that come into contact with these corrosive gases and plasmas. Conventionally, members that are in contact with these corrosive gases and plasma other than the object to be processed generally use a material mainly composed of SiO 2 such as glass and quartz, and a corrosion-resistant metal such as stainless steel and monel.

また、半導体製造時において、半導体を支持固定するサセプタ材としてアルミナ焼結体、サファイア、AlN焼結体又は、これらをCVD法等により表面被覆したものが耐食性に優れるとして使用されている。また、グラファイトや窒化硼素を被覆したヒータ等も使用されている。   Further, during semiconductor manufacturing, alumina sintered bodies, sapphire, AlN sintered bodies, or those obtained by surface coating these by CVD or the like are used as susceptor materials for supporting and fixing semiconductors because they have excellent corrosion resistance. In addition, a heater coated with graphite or boron nitride is also used.

しかしながら、従来から用いられているガラスや石英ではプラズマ中の耐食性が不充分で消耗が激しく、特にフッ素や塩素プラズマに接すると接触面がエッチングされ、表面性状が変化したり、光透過性が必要とされる部材では、表面が次第に白く曇って透光性が低下する等の問題が生じていた。   However, conventionally used glass and quartz have insufficient corrosion resistance in the plasma and are very exhausted, especially when they come into contact with fluorine or chlorine plasma, the contact surface is etched, the surface properties change, and light transmittance is required. In the member, the surface gradually becomes white and cloudy, resulting in a problem that the translucency is lowered.

また、ステンレスなどの金属を使用した部材でも耐食性が不充分なため、腐食によってパーティクルが発生し、特に半導体製造においては不良品発生の原因となる。さらに、窒化硼素はハロゲン系ガスと反応してガス化し、コンタミネーションの原因となっていた。   Further, even a member using a metal such as stainless steel has insufficient corrosion resistance, so that particles are generated due to corrosion, and in particular, in semiconductor manufacturing, it may cause defective products. Further, boron nitride reacts with the halogen-based gas and gasifies, causing contamination.

特に、アルミナ、AlNの焼結体は、あらゆる形状品に適用できることからその有用性が高い。アルミナ、AlN自体は、SiO系材料や金属に比較してハロゲン系ガスに対して耐食性に優れるものの、高温でプラズマと接すると腐食が徐々に進行して、しまいには焼結体の表面からアルミナやAlNの結晶粒子の脱粒が生じ、パーティクル発生の原因になるという問題が生じている。 In particular, the sintered body of alumina and AlN is highly useful because it can be applied to any shape product. Alumina and AlN itself are superior in corrosion resistance to halogen-based gases compared to SiO 2 -based materials and metals, but corrosion gradually proceeds when in contact with plasma at high temperatures, and eventually from the surface of the sintered body There is a problem in that the crystal grains of alumina and AlN are shattered, which causes generation of particles.

また、MgOやYAl12等の周期律表第2a、3a族含有酸化物を主結晶相とする焼結体は、単味では優れた耐食性を有するが、焼結体においては、プラズマによってその粒界が選択的にエッチングされてしまい、焼結体表面が荒れやすくなるという問題があった。 In addition, a sintered body having a main crystal phase of the 2a, 3a group-containing oxides of the periodic table such as MgO and Y 3 Al 5 O 12 has excellent corrosion resistance by itself, but in the sintered body, The grain boundary is selectively etched by the plasma, and there is a problem that the surface of the sintered body is easily roughened.

本発明者らは、ハロゲン系腐食ガスのプラズマに対する耐食性を具備するセラミック焼結体の具体的な構成について検討を重ねた結果、特に焼結体材料の場合には、主結晶粒子に比較して粒界相が腐食され易いことから、主結晶粒子自体の耐食性が良好であっても、粒界相腐食の進行によって焼結体表面の主結晶粒子の脱粒が生じ、パーティクルの発生、さらには材料自体の耐食性低下を引き起こすことがわかった。   As a result of repeated studies on the specific structure of the ceramic sintered body having corrosion resistance to the plasma of the halogen-based corrosive gas, the present inventors have compared with the main crystal particles, particularly in the case of the sintered body material. Since the grain boundary phase is easily corroded, even if the main crystal particles themselves have good corrosion resistance, the main crystal particles on the surface of the sintered body are shattered due to the progress of the grain boundary phase corrosion, and the generation of particles and further the material It has been found that it causes a decrease in its corrosion resistance.

そこで、本発明者らは、粒界相の耐食性を高めるための方法について検討を重ねた結果、主結晶相をAl またはNiAl により形成するとともに、粒界相を前記主結晶相と同等以上の耐食性を有し、前記主結晶と異なる酸化物により構成することによって、粒界相の腐食の進行を抑制し、粒界相の腐食による結晶子の脱粒、それに起因するパーティクルの発生の防止、および材料自体の耐食性を高めることが可能となることを知見し、本発明に至った。 Accordingly, the present inventors have made extensive investigations on how to improve the corrosion resistance of the grain boundary phase, the main crystalline phase and forming the Al 2 O 3 or NiAl 2 O 4, the grain boundary phase before Symbol main Corrosion resistance equal to or higher than that of the crystal phase, and composed of an oxide different from that of the main crystal, suppresses the progress of corrosion of the grain boundary phase, and crystal grain detachment due to corrosion of the grain boundary phase. prevention of the occurrence, and the corrosion resistance of the material itself was found that it is possible to Rukoto increased, leading to the present invention.

即ち、本発明のプラズマプロセス装置用部材は、ハロゲン系腐食ガスのプラズマに曝される部位を、Al からなる主結晶相と、NiAl からなる粒界相とを具備するセラミック焼結体により構成するか、またはNiAl からなる主結晶相と、MgOからなる粒界相とを具備するセラミック焼結体により構成したことを特徴とする。 That is, the plasma processing apparatus member of the present invention, a portion exposed to plasma of the halogen-based corrosive gas, comprising a main crystal phase of Al 2 O 3, and Ru NiAl 2 O 4 Tona particle Sakaisho or constituted by a ceramic sintered body, or a main crystal phase consisting of NiAl 2 O 4, characterized in that it is constituted by a ceramic sintered body and a grain boundary phase composed of MgO.

本発明のプラズマプロセス装置用部材は、上記の知見に基づき完成されたものであり、ハロゲン系腐食ガスのプラズマに曝される部位を、Al 又はNiAl を主結晶とするセラミック焼結体により構成するとともに、該セラミック焼結体の粒界相を、前記主結晶相と同等以上の耐食性を有し、前記主結晶と異なるNiAl 又はMgOにより形成したことにより、セラミック焼結体の粒界腐食の進行、パーティクルの発生を抑制し、焼結体材料自体の耐食性向上を図る事が出来る。 The member for a plasma processing apparatus of the present invention has been completed based on the above-mentioned knowledge, and the part exposed to the plasma of the halogen-based corrosive gas is a ceramic having Al 2 O 3 or NiAl 2 O 4 as a main crystal. together constituting a sintered body, the grain boundary phase of the sintered ceramic body, prior to Symbol main has a crystal phase equal to or higher than corrosion resistance, by forming a different NiAl 2 O 4 or MgO and the main crystal, The progress of intergranular corrosion and generation of particles in the ceramic sintered body can be suppressed, and the corrosion resistance of the sintered body material itself can be improved.

以上詳述したとおり、本発明のプラズマプロセス装置用部材は、ハロゲン系の腐食性ガスのプラズマに曝される部位を構成するセラミック焼結体が高い耐食性を有し、且つ粒界相主結晶相と同等以上の耐食性を有し、主結晶相と異なる高耐食性酸化物からなるため、粒界の腐食を抑制し、脱粒やそれに起因するパーティクルの発生を防止することが可能となる。具体的には、プラズマ処理装置や液晶製造用部材、ウェハ固定用クランプリングやエッチング装置の上部電極周りのシールドリング等の半導体製造装置用部材に使用することによって部材の長寿命化、特に半導体製造用部材として使用する場合には、半導体の歩留り向上を図ることが出来る。 As described above in detail, the plasma processing apparatus member of the present invention has a high corrosion resistance in the ceramic sintered body constituting the portion exposed to the plasma of the halogen-based corrosive gas, and the grain boundary phase is the main crystal. has a phase equal to or higher than corrosion resistance, to become a main crystal phase different high corrosion resistance oxide, and inhibit corrosion of grain boundaries, it is possible to prevent the generation of particles caused by the shattering or it. Specifically, it can be used for semiconductor manufacturing equipment members such as plasma processing equipment, liquid crystal manufacturing equipment, wafer fixing clamp rings and shield rings around the upper electrode of etching equipment, especially for semiconductor manufacturing. When used as a member, the yield of semiconductors can be improved.

本発明のプラズマプロセス装置用部材は、ハロゲン系の腐食ガスのプラズマに曝される部材であり、ハロゲン系腐食ガスとしては、SF、CF、CHF、ClF、NF、HF等のフッ素系ガス、Cl、HCl、BCl等の塩素系ガス、Br、HBr、BBr等の臭素系ガス、HI等のヨウ素系ガス等であり、これらのガスが導入された雰囲気にマイクロ波や高周波を導入したり、あるいはガスの解離電圧以上の電位差を加えることによりこれらのガスがプラズマ化される。 The member for a plasma processing apparatus of the present invention is a member that is exposed to plasma of a halogen-based corrosive gas, and examples of the halogen-based corrosive gas include SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , and HF. Fluorine gas, chlorine gas such as Cl 2 , HCl, BCl 3 , bromine gas such as Br 2 , HBr, BBr 3 , iodine gas such as HI, etc. These gases are turned into plasma by introducing waves or high frequencies, or by applying a potential difference equal to or greater than the gas dissociation voltage.

本発明によれば、この様なハロゲン系腐食ガスのプラズマに曝されるプラズマプロセス装置用部材として、Al 又はNiAl を主結晶相とするセラミック焼結体により構成する。 According to the present invention, the member for a plasma processing apparatus that is exposed to the plasma of such a halogen-based corrosive gas is composed of a ceramic sintered body having Al 2 O 3 or NiAl 2 O 4 as a main crystal phase.

本発明によれば、上記のセラミック焼結体において、上記主結晶粒子がAl であるときには、上記主結晶粒子の粒界相を、NiAl により形成し、上記主結晶粒子がNiAl であるときには、上記主結晶粒子の粒界相を、MgOにより形成する。セラミック焼結体の粒界は、一般に粒子と比較して高蒸気圧、易腐食性であり、この性質により粒界の化学的エッチングやサマルエッチングが可能となる。その為、腐食雰囲気等に曝された場合、主結晶粒子よりも粒界の腐食進行が早く、脱粒やパーティクル発生の原因となる。そこで、粒界相を耐食性が主結晶粒子と同等、好ましくは主結晶粒子よりも優れた物質で形成して強化することにより、粒界相の腐食の進行を抑制し、粒界相の腐食による結晶子の脱粒・パーティクルの発生を防止する事が可能となる。 According to the present invention, in the ceramic sintered body, when the main crystal particle is Al 2 O 3 , a grain boundary phase of the main crystal particle is formed of NiAl 2 O 4 , and the main crystal particle is When NiAl 2 O 4 is used, the grain boundary phase of the main crystal grains is formed of MgO . Grain boundaries of the ceramic sintered body is generally compared to particles high vapor pressure, easily corrosive, it is possible to chemically etch or service over Mar etching of the grain boundaries by this property. For this reason, when exposed to a corrosive atmosphere or the like, the progress of corrosion at the grain boundary is faster than that of the main crystal particles, which causes degranulation and generation of particles. Therefore, by forming and strengthening the grain boundary phase with a material having corrosion resistance equivalent to that of the main crystal particles, preferably better than that of the main crystal particles, the progress of the corrosion of the grain boundary phase is suppressed, and the corrosion of the grain boundary phase is caused. It is possible to prevent crystal grain detachment and particle generation.

このセラミック焼結体の粒界を構成するNiAl 又はMgOは、結晶質、ガラス質のいずれでもよいが、耐食性の点からは結晶相を含むことが望ましい。 NiAl 2 O 4 or MgO constituting the grain boundary of this ceramic sintered body may be either crystalline or glassy, but it is desirable to include a crystalline phase from the viewpoint of corrosion resistance.

この様な耐食性のセラミック焼結体を作製するには、主結晶粒子がNiAl である場合、添加物としてMgOを添加、また主結晶粒子がAl である場合、添加物としてAl と反応して粒界にNiAl が生成されるようにNiOを加す When To produce a ceramic sintered body such corrosion resistance, when the main crystal grains is NiAl 2 O 4, MgO is added as an additive, or the main crystal grains, Al 2 O 3, is added reacts with for Al 2 O 3 things Ru added pressure to the NiO as NiAl 2 O 4 is produced at the grain boundaries.

焼結体は、上記各種の組み合わせにより組成物からなる粉末を成形し、焼成した焼結体、反応焼結体、或いは周知のゾルゲル法で液相を塗布し焼成した膜であっても良い。   The sintered body may be a sintered body obtained by molding a powder composed of the composition by the above-described various combinations, fired, a reaction sintered body, or a film obtained by applying a liquid phase by a known sol-gel method and firing.

た、必要に応じて上記以外に焼結を促進するための助剤を添加することもできる。 Also, it is possible to add auxiliaries for promoting the sintering in addition to the above if necessary.

なお、粒界を構成する酸化物は、酸化物換算で1〜30重量%の割合で添加するのが適当である。 In addition, it is appropriate to add the oxide which comprises a grain boundary in the ratio of 1 to 30 weight% in conversion of an oxide.

この様な原料組成物を、所望の形状に成形、或いは所定基体に塗布して焼成する。成形方法としては、通常の乾式プレス、静水圧プレス、鋳込み成形、押し出し成形、シート状成形等、目的形状を得るのに適した成形方法を利用出来る。   Such a raw material composition is molded into a desired shape, or applied to a predetermined substrate and fired. As a molding method, a molding method suitable for obtaining a target shape, such as a normal dry press, hydrostatic press, cast molding, extrusion molding, or sheet molding, can be used.

成形体は、材料に応じて緻密化に適した雰囲気、圧力、温度で焼成すればよい。必要であれば1000〜2000気圧の不活性ガス中で熱処理する熱間静水圧法によって焼結すると、焼結体中の気孔を1体積%以下にまで消失することができ、これにより耐食性を高めることができる。   The formed body may be fired in an atmosphere, pressure, and temperature suitable for densification depending on the material. If necessary, when sintered by a hot isostatic pressure method in which heat treatment is performed in an inert gas at 1000 to 2000 atmospheres, pores in the sintered body can be lost to 1% by volume or less, thereby improving corrosion resistance. be able to.

また、焼成後の焼結体表面に荒れ等が発生する場合には、焼結体の少なくともプラズマに接触する表面を周知の研磨処理によって表面粗さ1μm以下まで鏡面研磨処理することで耐食性を高めることができる。   Further, in the case where roughness or the like occurs on the surface of the sintered body after firing, the corrosion resistance is improved by mirror-polishing the surface roughness of the sintered body to a surface roughness of 1 μm or less by a known polishing process. be able to.

実施例
表1に示すような種々の酸化物からなる焼結体試料を作製した。これらの試料は、母相となるAl の高純度粉末(99.9%以上)又はNiAl にMgO、NiOを加えて混合し、プレス成形した後、1300〜1800℃で焼成した相対密度98%以上の焼結体である。また、比較例として、SiO を加えた試料を準備した。また、試料のプラズマ照射面はあらかじめ鏡面処理を施し表面粗さ1μm以下とした。これらの試料をRIEプラズマエッチング装置内に設置して、この装置内にHClガスを導入し、高周波にてプラズマを発生させ、室温(25℃)で塩素プラズマ照射テストをなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。上記の条件下で、3時間エッチング処理を行った後の表面状態を目視および光学顕微鏡で観察し、その結果を表1に示した。なお粒界相の成分についてはX線マイクロアナライザーによって同定した。テスト結果を表に示す。

Figure 0004126461
Example 1
The sintered compact sample which consists of various oxides as shown in Table 1 was produced. These samples are made of Al 2 O 3 high-purity powder (99.9% or more) or NiAl 2 O 4 as a parent phase, mixed with MgO and NiO, press-molded, and then fired at 1300 to 1800 ° C. The sintered body has a relative density of 98% or more. As a comparative example, were prepared samples plus SiO 2. Further, the plasma irradiation surface of the sample was mirror-treated in advance so that the surface roughness was 1 μm or less. By installing these samples in the RIE plasma etching apparatus, by introducing HCl gas into the apparatus, plasma is generated at a high frequency, becomes the row chlorine plasma irradiation test at room temperature (25 ° C.). The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used. The surface condition after performing the etching treatment for 3 hours under the above conditions was observed visually and with an optical microscope, and the results are shown in Table 1. The grain boundary phase components were identified by an X-ray microanalyzer. The test results are shown in Table 1 .
Figure 0004126461

塩素プラズマを照射すると、試料No.1、3の粒界相がSiO やSiO とAl からなるものは、脱粒・パーティクル発生が起きていた。これに対し、試料No.2、4はその傾向が抑制され、脱粒は見られなかった。 When irradiated with chlorine plasma, sample no. When the grain boundary phases 1 and 3 were composed of SiO 2 , SiO 2, and Al 2 O 3 , degranulation and particle generation occurred. In contrast, sample no. In 2 and 4, the tendency was suppressed, and degranulation was not observed.

実施例
実施例1と同様にして作製した表の各試料に対して、RIEプラズマエッチング装置内にHBrガスを導入し、高周波にてプラズマを発生させ、室温で臭素プラズマ照射テストをなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。評価法は実施例1と同様である。テスト結果を表に示す。

Figure 0004126461
Example 2
For each sample in Table 2 was prepared in the same manner as in Example 1, by introducing HBr gas into the RIE plasma etching apparatus, plasma is generated at a high frequency, it becomes the row bromine plasma irradiation test at room temperature. The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used. The evaluation method is the same as in Example 1. The test results are shown in Table 2 .
Figure 0004126461

臭素プラズマを照射すると、塩素の場合と同様に粒界相がSiO からなる試料No.5は、粒界の腐食が局所的に進行し、脱粒・パーティクル発生が起きていた。これに対し、試料No.6は上記の粒界の腐食が抑制され、若干の曇りは生じても脱粒は見られなかった。 Upon irradiation with bromine plasma sample grain boundary phase as in the case of chlorine consists SiO 2 No. In No. 5, grain boundary corrosion locally progressed and degranulation and particle generation occurred. In contrast, sample no. In No. 6, the above grain boundary corrosion was suppressed, and even though some clouding occurred, no degranulation was observed.

実施例
実施例1と同様にして作製した表の各試料に対して、RIEプラズマエッチング装置内にHIガスを導入し、高周波にてプラズマを発生させ、室温でヨウ素プラズマ照射テストをなった。装置内圧力は10Paに保持し、13.56MHz、1kWの高周波を利用した。評価法は実施例1と同様である。テスト結果を表に示す。

Figure 0004126461
Example 3
For each sample in Table 3 were prepared in the same manner as in Example 1, introducing HI gas into the RIE plasma etching apparatus, plasma is generated at a high frequency, it becomes the row iodine plasma irradiation test at room temperature. The pressure inside the apparatus was maintained at 10 Pa, and a high frequency of 13.56 MHz and 1 kW was used. The evaluation method is the same as in Example 1. Table 3 shows the test results.
Figure 0004126461

ヨウ素プラズマを照射すると、他のハロゲンプラズマの場合と同様に粒界相がSiO からなる試料No.7は、局所的に粒界の腐食が進行し、脱粒・パーティクル発生が起きていた。これに対し、試料No.8は、その傾向が抑制され、若干の曇りは生じても脱粒は見られなかった Upon irradiation with iodine plasma, samples for other halogen plasma as well as the grain boundary phase consists SiO 2 No. In No. 7 , grain boundary corrosion locally progressed, and degranulation and particle generation occurred. In contrast, sample no. In No. 8, the tendency was suppressed, and even though some clouding occurred, no degranulation was observed .

Claims (2)

ハロゲン系腐食ガスのプラズマに曝される部位を、Al からなる主結晶相と、NiAl からなる粒界相とを具備するセラミック焼結体により構成したことを特徴とするプラズマプロセス装置用部材。 To a portion exposed to plasma of the halogen-based corrosive gas, a main crystalline phase of Al 2 O 3, characterized in that it is constituted by a ceramic sintered body and a Ru NiAl 2 O 4 Tona particle Sakaisho Components for plasma process equipment . ハロゲン系腐食ガスのプラズマに曝される部位を、NiAl からなる主結晶相と、MgOからなる粒界相とを具備するセラミック焼結体により構成したことを特徴とするプラズマプロセス装置用部材。 For a plasma processing apparatus characterized in that a portion exposed to plasma of a halogen-based corrosive gas is composed of a ceramic sintered body having a main crystal phase made of NiAl 2 O 4 and a grain boundary phase made of MgO. Element.
JP2004303171A 2004-10-18 2004-10-18 Components for plasma process equipment Expired - Fee Related JP4126461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303171A JP4126461B2 (en) 2004-10-18 2004-10-18 Components for plasma process equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303171A JP4126461B2 (en) 2004-10-18 2004-10-18 Components for plasma process equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22704196A Division JP3623054B2 (en) 1996-08-28 1996-08-28 Components for plasma process equipment

Publications (2)

Publication Number Publication Date
JP2005022971A JP2005022971A (en) 2005-01-27
JP4126461B2 true JP4126461B2 (en) 2008-07-30

Family

ID=34191918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303171A Expired - Fee Related JP4126461B2 (en) 2004-10-18 2004-10-18 Components for plasma process equipment

Country Status (1)

Country Link
JP (1) JP4126461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944588B2 (en) 2006-07-07 2011-05-17 Canon Kabushiki Kaisha Image correction processing apparatus, image correction processing method, program, and storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721658B2 (en) * 2012-03-30 2015-05-20 京セラ株式会社 Magnesium aluminate sintered body
JP5806158B2 (en) * 2012-03-30 2015-11-10 京セラ株式会社 Magnesium aluminate sintered body
JP2016102427A (en) * 2014-11-27 2016-06-02 三井造船株式会社 Scrubber and method of manufacturing scrubber
US11034622B2 (en) * 2016-12-20 2021-06-15 Mitsui Mining & Smelting Co., Ltd. Rare earth oxyfluoride sintered body and method for producing same
WO2019022244A1 (en) * 2017-07-28 2019-01-31 京セラ株式会社 Member for plasma processing devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944588B2 (en) 2006-07-07 2011-05-17 Canon Kabushiki Kaisha Image correction processing apparatus, image correction processing method, program, and storage medium

Also Published As

Publication number Publication date
JP2005022971A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
KR100953707B1 (en) Semiconductor processing components and semiconductor processing utilizing same
JP4975676B2 (en) Apparatus and method for reducing the erosion rate of surfaces exposed to halogen-containing plasmas
JPH11214365A (en) Member for semiconductor element manufacturing device
JP3623054B2 (en) Components for plasma process equipment
JP3488373B2 (en) Corrosion resistant materials
JP4126461B2 (en) Components for plasma process equipment
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP3706488B2 (en) Corrosion-resistant ceramic material
JP4373487B2 (en) Corrosion resistant CVD-SiC coating material and jig for CVD equipment
JP4641609B2 (en) Corrosion resistant material
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JPH11279761A (en) Corrosion resistant member
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP3784180B2 (en) Corrosion resistant material
JP3769416B2 (en) Components for plasma processing equipment
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP2007063070A (en) Method for manufacturing plasma-resistant yttria sintered compact
JP3732966B2 (en) Corrosion resistant material
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor
JP2007331960A (en) Yttria ceramic member for plasma treating apparatus and its manufacturing method
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP4012714B2 (en) Corrosion resistant material
JP4925681B2 (en) Corrosion resistant material
JP4336055B2 (en) Aluminum nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees