JP2007119924A - High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same - Google Patents

High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same Download PDF

Info

Publication number
JP2007119924A
JP2007119924A JP2006322726A JP2006322726A JP2007119924A JP 2007119924 A JP2007119924 A JP 2007119924A JP 2006322726 A JP2006322726 A JP 2006322726A JP 2006322726 A JP2006322726 A JP 2006322726A JP 2007119924 A JP2007119924 A JP 2007119924A
Authority
JP
Japan
Prior art keywords
purity
plasma
sprayed coating
substrate
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006322726A
Other languages
Japanese (ja)
Inventor
Yoshio Harada
良夫 原田
Junichi Takeuchi
純一 竹内
Tatsuya Hamaguchi
竜哉 濱口
Masayuki Nagayama
将之 長山
Yasushi Mihashi
康至 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Tocalo Co Ltd
Original Assignee
Tokyo Electron Ltd
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Tocalo Co Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006322726A priority Critical patent/JP2007119924A/en
Publication of JP2007119924A publication Critical patent/JP2007119924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-purity spray-coated member to be installed inside a plasma treatment container, which is excellent in plasma erosion resistance. <P>SOLUTION: The high-purity spray-coated member is coated with a vacuum plasma sprayed film comprising Y<SB>2</SB>O<SB>3</SB>with a purity of ≥95 mass%, which is formed by thermal spraying either directly on the surface of a substrate or via an undercoat made of a metal sprayed film in an Ar gas with a reduced pressure of 50-200 hPa. A method for manufacturing the member is also provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐プラズマエロージョン性に優れるプラズマ処理容器内用高純度溶射皮膜被覆部材とその製造方法に関するものである。
とくに本発明は、ハロゲン元素を含む処理ガスのプラズマ雰囲気において、プラズマ処理が行われる、例えば、デポシールド、バッフルプレート、フォーカスリング、インシュレータリング、シールドリング、ベローズカバー、電極などに適用できる技術についての提案である。
なお、本発明はまた、単に半導体製造装置の分野のみに限られるものではなく、例えば、液晶デバイスなどのプラズマ処理容器内部品に対しても適用が可能である。以下、主に半導体製造技術の例で説明する。
The present invention relates to a high-purity sprayed coating member for a plasma processing vessel excellent in plasma erosion resistance and a method for producing the same.
In particular, the present invention relates to a technique that can be applied to, for example, a deposition shield, a baffle plate, a focus ring, an insulator ring, a shield ring, a bellows cover, and an electrode in which plasma treatment is performed in a plasma atmosphere of a processing gas containing a halogen element. It is a proposal.
The present invention is not limited only to the field of semiconductor manufacturing apparatuses, and can be applied to, for example, components in plasma processing containers such as liquid crystal devices. Hereinafter, an example of semiconductor manufacturing technology will be mainly described.

一般に、半導体および液晶デバイスなどの製造プロセスでは、処理容器内でBFやNFのようなふっ化物、BClやSnCl4などの塩化物、HBrの如き臭化物をはじめとする処理ガス類を使用するため、処理容器内部材が著しく腐食損耗するという問題があった。 In general, in manufacturing processes for semiconductors and liquid crystal devices, processing gases such as fluorides such as BF 3 and NF 3 , chlorides such as BCl 3 and SnCl 4, and bromides such as HBr are used in the processing vessel. For this reason, there has been a problem that the inner member of the processing container is significantly corroded.

例えば、半導体製造装置のプラズマ処理容器内で使われている各種の部材を構成する材料としては、AlおよびAl合金などの金属材料、その表面に被覆したAlの陽極酸化膜、あるいはボロンカーバイドなどの溶射皮膜、AlやSiなどの焼結体皮膜、さらにはふっ素樹脂やエポキシ樹脂などの高分子皮膜が知られている。これらの材料は、腐食性の強いハロゲンイオンに接すると、化学的損傷を受けたり、SiO、Siなどの微粒子、およびプラズマによって励起されたイオンによってエロージョン損傷を受けることが知られている。 For example, as materials constituting various members used in a plasma processing container of a semiconductor manufacturing apparatus, metal materials such as Al and Al alloy, an anodic oxide film of Al coated on the surface, or boron carbide, etc. Thermal spray coatings, sintered coatings such as Al 2 O 3 and Si 3 N 4, and polymer coatings such as fluorine resins and epoxy resins are known. These materials are known to be chemically damaged when in contact with highly corrosive halogen ions, or to be erosion-damaged by fine particles such as SiO 2 and Si 3 N 4 and ions excited by plasma. Yes.

とくに、ハロゲン化合物を用いるプロセスでは、反応のより一層の活性化を図るため、しばしばプラズマが用いられる。しかし、このようなプラズマ使用環境下では、ハロゲン化合物は解離して非常に腐食性の強い原子状のF、Cl、Br、Iなどを発生すると同時に、その環境中にSiOやSi、Si、Wなどの微粉末状固形物が存在すると、プラズマ処理容器内に用いられている部材が化学的腐食とともに、微粒子によるエロージョン損傷の両方の作用を強く受けることになる。
しかも、プラズマが発生している環境は、Arガスのように腐食性のない気体でもイオン化し、これが固体面に強く衝突する現象(イオンボンバードメント)が発生するので、上記容器内に配設されている各種部材はより一層強い損傷を受けることも知られている。
In particular, in a process using a halogen compound, a plasma is often used in order to further activate the reaction. However, in such a plasma use environment, the halogen compound dissociates to generate very corrosive atomic F, Cl, Br, I, etc., and at the same time, SiO 2 or Si 3 N 4 in the environment. When fine powdered solids such as Si and W are present, the members used in the plasma processing vessel are strongly affected by both erosion damage caused by fine particles as well as chemical corrosion.
Moreover, the environment in which the plasma is generated is ionized even in a non-corrosive gas such as Ar gas, and a phenomenon (ion bombardment) in which this strongly collides with the solid surface occurs. It is also known that the various members are more severely damaged.

上述した半導体製造装置のように、化学的腐食やエロージョン損傷の激しい分野で用いられる下記の従来部材については、次のような問題点があった。
(1)AlおよびAl合金を陽極酸化して耐食性を有する
Al膜(アルマイト)を生成させた材料については、ハロゲンガスを含む雰囲気中でプラズマエロージョンを受けると寿命が短いという問題がある。また、Alを含む皮膜なので、AlFのパーティクルが発生し、製造する半導体の製品不良を招く。
(2)部材表面に、PVD法やCVD法によって、Sc、Y、La、Ce、Yb、Eu、Dyなどの周期律表第3a族元素の酸化物、炭化物、窒化物、ふっ化物などの緻密な皮膜を形成したり、Yの単結晶を適用する技術がある(特許文献1)。しかし、この技術は、成膜速度が遅く生産性に劣るほか、複数の皮膜部材を同時に形成(複合皮膜)できないという欠点がある。
特開平10−4083号公報
As in the semiconductor manufacturing apparatus described above, the following conventional members used in fields where chemical corrosion and erosion damage are severe have the following problems.
(1) A material in which an Al 2 O 3 film (alumite) having corrosion resistance by anodizing Al and an Al alloy has a problem that its life is short when it is subjected to plasma erosion in an atmosphere containing a halogen gas. . Further, since the film contains Al, AlF 3 particles are generated, resulting in a defective product of the semiconductor to be manufactured.
(2) On the surface of the member, by a PVD method or a CVD method, a dense oxide such as Sc, Y, La, Ce, Yb, Eu, or Dy group 3a element oxide, carbide, nitride, fluoride, etc. There is a technique of forming a simple film or applying a single crystal of Y 2 O 3 (Patent Document 1). However, this technique has the disadvantages that the film forming speed is slow and the productivity is low and a plurality of film members cannot be formed simultaneously (composite film).
Japanese Patent Laid-Open No. 10-4083

そこで、本発明の目的は、ハロゲンガスが含まれるような環境による化学的腐食による損傷ならびにプラズマエロージョンによる損傷に対する抵抗力の大きいプラズマ処理容器内部品等に供される高純度溶射皮膜被覆部材と、それの有利な製造方法とを提案するところにある。   Accordingly, an object of the present invention is to provide a high-purity sprayed coating member to be used for components in a plasma processing vessel having a high resistance to damage caused by chemical corrosion due to an environment containing halogen gas and damage caused by plasma erosion, An advantageous production method is proposed.

本発明は、従来技術が抱えている上述した問題ならびに欠点を、以下に要約して述べる解決手段の採用によって克服したものである。すなわち、本発明を整理すると、次の通りである。   The present invention overcomes the above-described problems and disadvantages of the prior art by adopting the solutions summarized below. That is, the present invention is organized as follows.

(1)本発明は、基材の表面が、50〜200hPaの減圧下の溶射雰囲気中での溶射によって、形成された純度:95mass%以上の高純度Yからなる減圧プラズマ溶射皮膜によって、被覆されたプラズマ処理容器内用高純度溶射皮膜被覆部材である。 (1) According to the present invention, the surface of the base material is formed by thermal spraying in a thermal spraying atmosphere under a reduced pressure of 50 to 200 hPa. The reduced pressure plasma sprayed coating composed of high purity Y 2 O 3 having a purity of 95 mass% or more. A high-purity sprayed coating member for a plasma processing vessel.

(2)本発明において、前記溶射雰囲気は、Arガス雰囲気とすることが好ましい。 (2) In the present invention, the spraying atmosphere is preferably an Ar gas atmosphere.

(3)本発明においては、基材とこの基材の表面に形成されるYの減圧プラズマ溶射皮膜との間に、アンダーコートとして、ニッケルまたはニッケル合金等の金属溶射皮膜を有することが好ましい。 (3) In the present invention, a metal sprayed coating such as nickel or nickel alloy is provided as an undercoat between the substrate and the reduced-pressure plasma sprayed coating of Y 2 O 3 formed on the surface of the substrate. Is preferred.

(4)また、本発明は、基材の表面に、50〜200hPaである減圧下の溶射雰囲気中でYをプラズマ溶射することにより、純度:95mass%以上の高純度Yからなる減圧プラズマ溶射皮膜を形成することを特徴とする、プラズマ処理容器内用高純度溶射皮膜被覆部材の製造方法を提案する。 (4) Further, in the present invention, the surface of the substrate, by plasma spraying a Y 2 O 3 in a spraying atmosphere under reduced pressure is 50~200HPa, purity: 95 mass% or more purity Y 2 O 3 A method for producing a high-purity sprayed coating member for use in a plasma processing vessel, characterized by forming a reduced-pressure plasma sprayed coating comprising:

(5)上記の製造方法において、前記溶射雰囲気は、Arガス雰囲気であることが好ましい。 (5) In the above manufacturing method, the spraying atmosphere is preferably an Ar gas atmosphere.

(6)本発明においては、前記減圧プラズマ溶射皮膜下の基材の表面に、アンダーコートとして、溶射法によりニッケルまたはニッケル合金等の金属溶射皮膜を形成することが好ましい。 (6) In the present invention, it is preferable to form a metal spray coating such as nickel or a nickel alloy as an undercoat on the surface of the base material under the reduced-pressure plasma spray coating by the spraying method.

以上説明したように本発明にかかる部材は、金属質基材または非金属質基材の上に、高純度のY溶射皮膜を直接形成するか、金属によるのアンダーコートを施工した上で、そのアンダーコートの表面に高純度のY溶射皮膜を形成している部材では、ハロゲン化合物を含むガス雰囲気下でプラズマエロージョン作用を受ける環境下で使用しても、優れた抵抗性を示す。このため、プラズマエッチング作業を長時間にわたって続けても、チャンバー内はパーティクルによる汚染が少なく、また、高品質の部材を効率よく生産することができる。また、チャンバー内のパーティクルによる汚染速度が遅くなるため、清浄化作業の間隔が長くなり、半導体製品等の生産性の向上が期待できる。 As described above, the member according to the present invention is formed by directly forming a high-purity Y 2 O 3 sprayed coating on a metallic substrate or a nonmetallic substrate, or by applying a metal undercoat. In a member having a high-purity Y 2 O 3 sprayed coating formed on the surface of the undercoat, excellent resistance can be obtained even when used in an environment subject to plasma erosion in a gas atmosphere containing a halogen compound. Indicates. For this reason, even if the plasma etching operation is continued for a long time, the inside of the chamber is less contaminated with particles, and a high-quality member can be efficiently produced. In addition, since the rate of contamination by particles in the chamber is slow, the interval between cleaning operations is lengthened, and an improvement in productivity of semiconductor products and the like can be expected.

発明者らの研究によると、従来技術が抱えている上述した課題について鋭意研究した結果、プラズマ処理容器内部材の損傷は、ハロゲンガスによる化学的腐食による損傷と、プラズマエロージョンによる損傷とが考えられる。特に、この部材がプラズマによって励起されたハロゲンを含む雰囲気中で使用される場合、耐プラズマエロージョン性を起因とする損傷を防ぐことこそが重要であり、そうすれば化学的腐食防止に対しても有効に作用するとの知見を得た。そこで、本発明では主として、耐プラズマエロージョン性に対して有効な皮膜の形成について研究した。その結果として、上掲の本発明にかかる上記の部材とその製造方法とを開発した。   According to the inventors' research, as a result of diligent research on the above-mentioned problems of the prior art, damage to the plasma processing vessel internal member is considered to be caused by chemical corrosion caused by halogen gas and damage caused by plasma erosion. . In particular, when this member is used in an atmosphere containing a halogen excited by plasma, it is important to prevent damage caused by plasma erosion resistance, and also to prevent chemical corrosion. The knowledge that it acts effectively was obtained. Therefore, in the present invention, the formation of a film effective for plasma erosion resistance was mainly studied. As a result, the above-described member according to the present invention and its manufacturing method have been developed.

すなわち、その課題解決の手段として採用した本発明は、金属、セラミックス、炭素材料などの基材表面に、Arガスの50〜200hPaという減圧下の溶射によって、95mass%以上という高純度のYからなる減圧プラズマ溶射皮膜を形成することを特徴とするものである。そして、こうした部材が使用される腐食性が強い環境の場合にはさらに、前記Y溶射皮膜の下に、耐ハロゲンガス腐食性の強い金属の層を設けて複合化させる。以下、まず本発明にかかる部材の構成について詳しく説明する。 That is, the present invention adopted as a means for solving the problem is that Y 2 O having a high purity of 95 mass% or more is obtained by spraying Ar gas at a reduced pressure of 50 to 200 hPa on the surface of a substrate such as metal, ceramics, or carbon material. A low-pressure plasma sprayed coating consisting of 3 is formed. In the case of a highly corrosive environment in which such a member is used, a metal layer having a high resistance to halogen gas corrosion is further provided under the Y 2 O 3 sprayed coating to be combined. Hereinafter, the structure of the member concerning this invention is demonstrated in detail first.

(1)基材について、上記溶射皮膜の施工対象となる基材としては、ステンレス鋼を含む各種の鋼、アルミニウムおよびアルミニウム合金、タングステンおよびタングステン合金、チタンおよびチタン合金、モリブデンおよびモリブデン合金および炭素ならびに酸化物系, 非酸化物系セラミックス焼結体、あるいは炭素質材料などが好適である。
なお、銅および銅合金は、プラズマエロージョンやハロゲン化合物による腐食作用によって放出され、環境汚染の原因となるので好ましくない。従って、もし装置の構成上、銅および銅合金の使用が必要な場合は、電気めっき、化学めっき、蒸着などの手段でCr、Niなどで被覆しておく必要がある。
(1) Regarding the base material, the base material on which the thermal spray coating is applied includes various steels including stainless steel, aluminum and aluminum alloys, tungsten and tungsten alloys, titanium and titanium alloys, molybdenum and molybdenum alloys and carbon, and An oxide-based, non-oxide-based ceramic sintered body, or a carbonaceous material is suitable.
Copper and copper alloys are not preferable because they are released by plasma erosion and corrosive action by halogen compounds and cause environmental pollution. Therefore, if it is necessary to use copper and a copper alloy due to the construction of the apparatus, it is necessary to coat with Cr, Ni or the like by means of electroplating, chemical plating, vapor deposition or the like.

(2)皮膜構成について、上記基材表面への皮膜の形成は、基材をブラスト処理した後、その基材表面に直接、高純度のY溶射材料を減圧溶射して直接成膜するか、または、ブラスト処理後の基材表面にまず、アンダーコートとして、耐ハロゲンガス腐食性の強い金属材料からなる皮膜を溶射処理して形成し、そのアンダーコートの上に、高純度のY粉末をトップコートとして溶射して複合層を形成する。この場合において、前記金属アンダーコート(溶射皮膜等)は、膜厚は50〜500μmの範囲内とする。アンダーコートが50μmより薄いとアンダーコートとしての作用効果が弱く、一方、500μmを超える厚さでは効果が飽和するので、メリットが少ないからである。かかるアンダーコート用金属材料としては、ニッケルおよびニッケル合金の他、タングステンおよびタングステン合金、モリブデンおよびモリブデン合金、チタンおよびチタン合金などを用いてもよい。 (2) Regarding the coating structure, the film is formed on the surface of the base material by blasting the base material, and then directly depositing the high purity Y 2 O 3 thermal spray material on the surface of the base material under reduced pressure. Alternatively, first, a coating made of a metal material having strong halogen gas corrosion resistance is sprayed on the surface of the base material after the blasting treatment, and high purity Y is formed on the undercoat. 2 O 3 powder is sprayed as a top coat to form a composite layer. In this case, the metal undercoat (thermal spray coating or the like) has a thickness in the range of 50 to 500 μm. This is because if the undercoat is thinner than 50 μm, the effect as the undercoat is weak, whereas if the thickness exceeds 500 μm, the effect is saturated, so there are few merits. As the metal material for the undercoat, in addition to nickel and nickel alloy, tungsten and tungsten alloy, molybdenum and molybdenum alloy, titanium and titanium alloy, and the like may be used.

一方、トップコートとなる高純度のY溶射皮膜は、基材表面に直接施工したものであれ、また、前記アンダーコートの上に溶射して複合層にしたものであれ、いずれにしても50〜2000μmの厚さに施工することが好ましい。その理由は、50μmより薄い層ではプラズマエロージョンによる損傷の防止に対して効果が乏しく、一方、2000μmより厚くしても効果が飽和して経済的でないからである。 On the other hand, the high-purity Y 2 O 3 thermal spray coating used as the top coat is either directly applied to the surface of the base material or sprayed onto the undercoat to form a composite layer. Is preferably applied to a thickness of 50 to 2000 μm. The reason for this is that a layer thinner than 50 μm is not effective in preventing damage due to plasma erosion, whereas even if it is thicker than 2000 μm, the effect is saturated and it is not economical.

なお、トップコートのY溶射皮膜の気孔率は、0.2〜4%の範囲がよい。0.2%以下の皮膜は溶射法では製造が困難であり、また、4%以上の気孔率の皮膜では耐食性、耐プラズマエロージョン性に劣るからである。 The porosity of the top coat Y 2 O 3 sprayed coating is preferably in the range of 0.2 to 4%. This is because a coating of 0.2% or less is difficult to produce by a thermal spraying method, and a coating having a porosity of 4% or more is inferior in corrosion resistance and plasma erosion resistance.

(3)部材最表面層のY溶射皮膜について本発明の最も特徴とする構成は、ハロゲンガスを含む雰囲気中で耐プラズマエロージョン性を示す材料として、基材の最表層を、高純度Y溶射層として被覆形成したところにある。即ち、発明者らの研究によると、高純度のYは、比重が4.84、融点が2410℃で、酸素との化学的結合力が強いため、ハロゲンガスを含む雰囲気中でプラズマエロージョン作用をうけても、安定した状態を維持できることがわかった。従って、本発明において、この高純度のYは、純度が95mass%以上のものを用いることが必要であり、Fe、Mg、Cr、Al、Ni、Siなどの不純物が酸化物として含まれていると、耐エロージョン性が低下するので好ましくない。98mass%以上の純度のものがより好ましい。 (3) Regarding the Y 2 O 3 sprayed coating on the outermost surface layer of the member, the most characteristic configuration of the present invention is that the outermost surface layer of the substrate is made of high purity as a material exhibiting plasma erosion resistance in an atmosphere containing a halogen gas. The Y 2 O 3 sprayed layer is covered. That is, according to the study by the inventors, high-purity Y 2 O 3 has a specific gravity of 4.84, a melting point of 2410 ° C., and a strong chemical bonding force with oxygen. It was found that even when subjected to erosion action, a stable state can be maintained. Therefore, in the present invention, this high purity Y 2 O 3 must have a purity of 95 mass% or more, and impurities such as Fe, Mg, Cr, Al, Ni, and Si are included as oxides. If it is, erosion resistance is lowered, which is not preferable. Those having a purity of 98 mass% or more are more preferable.

(4)被覆方法
本発明においては、最表層となるトップコートとしては、高純度のYからなる溶射皮膜が形成される。そして、好ましくはこのトップコート溶射皮膜下にはこの皮膜をさらに強化する意味で、全体の皮膜構成を次のような多層構造にすることが好ましい。即ち、基材の表面に、金属溶射皮膜のアンダーコートを施工する。このような皮膜構成とすることが好ましい理由は、溶射皮膜を多層構造化し、皮膜の貫通気孔を少なくして耐食性、耐エロージョン性を向上させることができるからである。
(4) Coating method In the present invention, a thermal spray coating made of high-purity Y 2 O 3 is formed as the top coat as the outermost layer. In order to further strengthen the coating under the top coat sprayed coating, it is preferable to make the entire coating configuration a multilayer structure as follows. That is, an undercoat of a metal spray coating is applied to the surface of the substrate. The reason why such a film configuration is preferable is that the sprayed coating can be formed into a multilayer structure to reduce the number of through-holes in the coating and improve the corrosion resistance and erosion resistance.

本発明において、アンダーコートの金属溶射皮膜を形成するには、実質的に空気を含まないArガス雰囲気中での減圧プラズマ溶射法が好適である。   In the present invention, a low pressure plasma spraying method in an Ar gas atmosphere substantially free of air is suitable for forming a metal sprayed coating of an undercoat.

(5)本発明にかかる部材の使用環境について
本発明にかかる部材表面に被覆した高純度のYの溶射皮膜は、ハロゲン化合物を含む雰囲気下において発生するプラズマ環境下で使用する場合に特に有用である。
(5) Environment of use of the member according to the present invention The high-purity Y 2 O 3 sprayed coating coated on the surface of the member according to the present invention is used in a plasma environment generated in an atmosphere containing a halogen compound. It is particularly useful.

もちろん、ハロゲン元素またはハロゲン化合物を含まないN、Hなどの雰囲気下におけるプラズマエロージョン作用に対しても本発明は有効であり、この場合はとくにハロゲンを含む雰囲気に比較して、エロージョン損傷が緩やかであるので、本発明にかかる皮膜被覆部材は長期間にわたって安定した性能を発揮する。 Of course, the present invention is also effective for a plasma erosion action in an atmosphere of N 2 , H 2 or the like that does not contain a halogen element or a halogen compound. In this case, erosion damage is particularly caused as compared with an atmosphere containing a halogen. Since it is gentle, the film covering member according to the present invention exhibits stable performance over a long period of time.

実施例1
この実施例では、アルミニウム製試験片(寸法:幅50mm×長50mm×厚5mm)の片面をブラスト処理によって粗面化した後、Y溶射材料を用いて、Arガスで雰囲気圧力を50〜200hPaに制御した減圧プラズマ溶射法によって、それぞれ膜厚300μmのY溶射皮膜を形成した。
その後、これらの試験片表面に形成されているY溶射皮膜の気孔率、密着強さ、および熱衝撃試験(500℃に維持されている電気炉中で20分加熱した後、炉外にて空冷の操作を1サイクルとして10サイクル繰り返す試験)を行った。なお、比較例として、Alの溶射皮膜についても同じ条件、同じ工程で施工したものを供試した。
Example 1
In this example, one side of an aluminum test piece (size: width 50 mm × length 50 mm × thickness 5 mm) was roughened by blasting, and then Y 2 O 3 sprayed material was used and the atmospheric pressure was adjusted to 50 with Ar gas. A Y 2 O 3 sprayed coating having a film thickness of 300 μm was formed by a low pressure plasma spraying method controlled to ˜200 hPa.
Thereafter, the porosity, adhesion strength, and thermal shock test of the Y 2 O 3 sprayed coating formed on the surface of these test pieces (after heating in an electric furnace maintained at 500 ° C. for 20 minutes, The test which repeats 10 cycles by setting air-cooling operation as 1 cycle was performed. As a comparative example, an Al 2 O 3 sprayed coating was used under the same conditions and in the same process.

表1は、このときの試験結果をまとめたものである。本発明に適合する皮膜は、試験片の表面にY皮膜を直接被覆したもの(No.1)をはじめ、アンダーコートを施した上にY皮膜を形成したもの(No.2)を含む皮膜が良好な密着性と耐熱衝撃性を示し、Al皮膜(No.3、4)に比較しても全く遜色がなかった。とくに、減圧プラズマ溶射法で形成されたY皮膜は、大気溶射法の皮膜に比較して気孔率が少ないので、良好な耐食性も期待できる。 Table 1 summarizes the test results at this time. Films suitable for the present invention include those in which the surface of the test piece is directly coated with a Y 2 O 3 film (No. 1), and those in which a Y 2 O 3 film is formed on an undercoat (No. 1). The film containing 2) showed good adhesion and thermal shock resistance, and was completely inferior to the Al 2 O 3 film (No. 3, 4). In particular, since the Y 2 O 3 coating formed by the low pressure plasma spraying method has a lower porosity than the coating by the atmospheric spraying method, good corrosion resistance can be expected.

Figure 2007119924
Figure 2007119924

試験1
この試験は、参考例として、大気プラズマ溶射した場合の、高純度(99.5〜99.9mass%)のY減圧プラズマ溶射皮膜の効果について明らかにするものである。即ち、50mm×100mm×5mm厚のアルミニウム製基材を用いて、表2に示すような表面処理を施した後、それぞれの基材から寸法20mm×20mm×5mmの試験片を切り出し、さらに表面処理面が10mm×10mmの範囲が露出するように他の部分をマスクし、下記条件にて20時間照射して、プラズマエロージョンによる損傷量を減肉厚さとして求めた。
(1)ガス雰囲気と流量条件
CF、Ar、Oの混合ガスを下記条件の雰囲気とした。
CF/Ar/O=100/1000/10(1分間当たりの流量cm
(2)プラズマ照射出力
高周波電力:1300W
圧力 :133.3Pa
Test 1
As a reference example, this test clarifies the effect of high-purity (99.5 to 99.9 mass%) Y 2 O 3 reduced-pressure plasma sprayed coating when air plasma spraying is performed. That is, using a 50 mm × 100 mm × 5 mm thick aluminum substrate, surface treatment as shown in Table 2 was performed, and then a test piece having a size of 20 mm × 20 mm × 5 mm was cut out from each substrate, and further surface treatment was performed. The other part was masked so that the surface area of 10 mm × 10 mm was exposed, and irradiated for 20 hours under the following conditions, and the amount of damage due to plasma erosion was determined as the reduced thickness.
(1) Gas atmosphere and flow rate conditions A mixed gas of CF 4 , Ar, and O 2 was used as an atmosphere under the following conditions.
CF 4 / Ar / O 2 = 100/1000/10 (flow rate cm 3 per minute)
(2) Plasma irradiation output high frequency power: 1300W
Pressure: 133.3Pa

その試験結果を表2に示した。この表2に示す結果から明らかなように、現行技術による陽極酸化皮膜(No.8)をはじめ、BC溶射皮膜(No.10)は、いずれもプラズマエロージョンによる損傷量が大きく、実用的でないことがうかがえる。ただ、Al溶射皮膜(No.9)は比較的良好な耐プラズマエロージョン性を示した。
これに対し、高純度のY溶射皮膜は、極めて優れた耐プラズマエロージョン性を発揮し、ハロゲン化合物を含む雰囲気下においても良好な性能を維持することが認められた。
The test results are shown in Table 2. As is apparent from the results shown in Table 2, both the anodized film (No. 8) by the current technology and the B 4 C sprayed film (No. 10) have a large amount of damage due to plasma erosion and are practical. I can see that it is not. However, the Al 2 O 3 sprayed coating (No. 9) exhibited relatively good plasma erosion resistance.
In contrast, it was confirmed that the high-purity Y 2 O 3 sprayed coating exhibited extremely excellent plasma erosion resistance and maintained good performance even in an atmosphere containing a halogen compound.

Figure 2007119924
Figure 2007119924

試験2
この試験では、アルミニウム製基材を陽極酸化 (アルマイト処理) した試験片と、基材上にアンダーコートとして80%Ni−20%Alの合金皮膜を100μm厚に被覆し、その上にトップコートとしてY皮膜を250μmの厚みにプラズマ溶射法によって形成した試験片を用いた。これらの試験片を、下記条件でプラズマエッチングを行った。なお、エッチングによって削られて飛散するパーティクル粒子の数は同じチャンバー内に静置した直径8インチのシリコンウエハーの表面に付着する粒子数によって比較した。また、付着する粒子数は、表面検査装置によって調査し、概ね粒径0.2μm以上の粒子を対象にして行った。
(1)ガス雰囲気と流量条件
CHF、O、Arをそれぞれ下記のような混合比で流通した。
CHF/O/Ar=80/100/160(1分間当たりの流量cm)
(2)プラズマ照射出力
高周波電力:1300W
圧力 :4Pa
温度 :60℃
Test 2
In this test, an aluminum substrate was anodized (anodized), and an 80% Ni-20% Al alloy film was coated on the substrate as an undercoat to a thickness of 100 μm, and a top coat was formed thereon. A test piece in which a Y 2 O 3 film was formed to a thickness of 250 μm by plasma spraying was used. These test pieces were subjected to plasma etching under the following conditions. Note that the number of particle particles scraped and scattered by etching was compared based on the number of particles adhering to the surface of an 8-inch diameter silicon wafer placed in the same chamber. Further, the number of particles adhering was investigated by a surface inspection apparatus, and was roughly targeted for particles having a particle diameter of 0.2 μm or more.
(1) Gas atmosphere and flow rate conditions CHF 3 , O 2 , and Ar were circulated at the following mixing ratios.
CHF 3 / O 2 / Ar = 80/100/160 (flow rate cm 3 per minute)
(2) Plasma irradiation output high frequency power: 1300W
Pressure: 4Pa
Temperature: 60 ° C

この試験の結果、陽極酸化 (アルマイト膜)した試験片では、プラズマ照射17.5時間後、一般的なチャンバー内のパーティクル管理値の30個を超え25時間後では150個以上となった。このパーティクルの組成は、Al、Fからなるものであった。
これに対し、Y溶射皮膜を形成した試験片は、70時間照射後になって、やっと管理限界値を超える程度にとどまり、優れた耐プラズマエロージョン性を示した。
As a result of this test, the anodized (alumite film) test piece exceeded the particle management value of 30 in a general chamber after 17.5 hours of plasma irradiation and became 150 or more after 25 hours. The composition of the particles consisted of Al and F.
On the other hand, the test piece on which the Y 2 O 3 sprayed coating was formed only exceeded the control limit value after 70 hours of irradiation, and exhibited excellent plasma erosion resistance.

Claims (6)

基材の表面が、50〜200hPaの減圧下の溶射雰囲気中での溶射によって、形成された純度:95mass%以上の高純度Yからなる減圧プラズマ溶射皮膜によって、被覆されていることを特徴とする、プラズマ処理容器内用高純度溶射皮膜被覆部材。 The surface of the substrate is coated with a low-pressure plasma sprayed coating composed of high-purity Y 2 O 3 having a purity of 95 mass% or more formed by spraying in a spraying atmosphere under reduced pressure of 50 to 200 hPa. A high-purity sprayed coating member for use in a plasma processing vessel. 前記溶射雰囲気が、Arガス雰囲気であることを特徴とする、請求項1に記載のプラズマ処理容器内用高純度溶射皮膜被覆部材。 The high-purity spray coating member for plasma processing vessel according to claim 1, wherein the spraying atmosphere is an Ar gas atmosphere. 基材とこの基材の表面に形成されるY減圧プラズマ溶射皮膜との間に、アンダーコートとして、金属溶射皮膜を有することを特徴とする、請求項1または2に記載のプラズマ処理容器内用高純度溶射皮膜被覆部材。 3. The plasma treatment according to claim 1, wherein a metal sprayed coating is provided as an undercoat between the substrate and the Y 2 O 3 reduced pressure plasma sprayed coating formed on the surface of the substrate. High purity thermal spray coating coated member for use in containers. 基材の表面に、50〜200hPaである減圧下の溶射雰囲気中でYをプラズマ溶射することにより、純度が95mass%以上の高純度のYからなる減圧プラズマ溶射皮膜を形成することを特徴とする、プラズマ処理容器内用高純度溶射皮膜被覆部材の製造方法。 A low-pressure plasma sprayed coating composed of high-purity Y 2 O 3 with a purity of 95 mass% or more is formed on the surface of the substrate by plasma spraying Y 2 O 3 in a spraying atmosphere under reduced pressure of 50 to 200 hPa. A method for producing a high-purity sprayed coating member for use in a plasma processing vessel. 前記溶射雰囲気が、Arガス雰囲気であることを特徴とする、請求項4に記載のプラズマ処理容器内用高純度溶射皮膜被覆部材の製造方法。 The method for manufacturing a high-purity sprayed coating member for a plasma processing vessel according to claim 4, wherein the spraying atmosphere is an Ar gas atmosphere. 前記減圧プラズマ溶射皮膜下の基材表面に、アンダーコートとして、金属溶射皮膜を形成することを特徴とする、請求項4または5に記載のプラズマ処理容器内用高純度溶射皮膜被覆部材の製造方法。 The method for producing a high-purity sprayed coating member for a plasma processing vessel according to claim 4 or 5, wherein a metal sprayed coating is formed as an undercoat on the surface of the substrate under the reduced-pressure plasma sprayed coating. .
JP2006322726A 2006-11-30 2006-11-30 High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same Pending JP2007119924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322726A JP2007119924A (en) 2006-11-30 2006-11-30 High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322726A JP2007119924A (en) 2006-11-30 2006-11-30 High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003140698A Division JP2003321760A (en) 2003-05-19 2003-05-19 Interior member of plasma processing container and manufacturing method

Publications (1)

Publication Number Publication Date
JP2007119924A true JP2007119924A (en) 2007-05-17

Family

ID=38144055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322726A Pending JP2007119924A (en) 2006-11-30 2006-11-30 High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007119924A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379749A (en) * 1989-08-21 1991-04-04 Toshiba Corp Formation of corrosion resisting coating layer
JPH0837180A (en) * 1994-03-08 1996-02-06 Internatl Business Mach Corp <Ibm> Temperature-controlled hot-wall reactive ion etching to obtain stability of process
JPH0978220A (en) * 1995-09-08 1997-03-25 Suzuki Motor Corp Corrosion-resistant thermal spray coating film
JPH104083A (en) * 1996-06-17 1998-01-06 Kyocera Corp Anticorrosive material for semiconductor fabrication
JPH1045461A (en) * 1996-07-31 1998-02-17 Kyocera Corp Corrosion resistant member
JPH10226869A (en) * 1997-02-17 1998-08-25 Mitsui Eng & Shipbuild Co Ltd Plasma thermal spraying method
JPH1180925A (en) * 1997-07-15 1999-03-26 Ngk Insulators Ltd Corrosion resistant member, wafer mounting member, and manufacture of corrosion resistant member
JP2001031484A (en) * 1999-07-22 2001-02-06 Nihon Ceratec Co Ltd Corrosion-resistant composite member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379749A (en) * 1989-08-21 1991-04-04 Toshiba Corp Formation of corrosion resisting coating layer
JPH0837180A (en) * 1994-03-08 1996-02-06 Internatl Business Mach Corp <Ibm> Temperature-controlled hot-wall reactive ion etching to obtain stability of process
JPH0978220A (en) * 1995-09-08 1997-03-25 Suzuki Motor Corp Corrosion-resistant thermal spray coating film
JPH104083A (en) * 1996-06-17 1998-01-06 Kyocera Corp Anticorrosive material for semiconductor fabrication
JPH1045461A (en) * 1996-07-31 1998-02-17 Kyocera Corp Corrosion resistant member
JPH10226869A (en) * 1997-02-17 1998-08-25 Mitsui Eng & Shipbuild Co Ltd Plasma thermal spraying method
JPH1180925A (en) * 1997-07-15 1999-03-26 Ngk Insulators Ltd Corrosion resistant member, wafer mounting member, and manufacture of corrosion resistant member
JP2001031484A (en) * 1999-07-22 2001-02-06 Nihon Ceratec Co Ltd Corrosion-resistant composite member

Similar Documents

Publication Publication Date Title
JP3510993B2 (en) Plasma processing container inner member and method for manufacturing the same
TWI328411B (en) Productivity enhancing thermal sprayed yttria-containing coating for plasma reactor
JP4996868B2 (en) Plasma processing apparatus and plasma processing method
CN104046981B (en) Corrosion resistant aluminum coatings on plasma chamber components
JP4643478B2 (en) Manufacturing method of ceramic covering member for semiconductor processing equipment
JP4985928B2 (en) Multi-layer coated corrosion resistant member
JP5324029B2 (en) Ceramic coating for semiconductor processing equipment
KR20070043670A (en) Corrosion resistant member
JP2004003022A (en) Plasma treatment container inside member
JP7306490B2 (en) Yttrium fluoride-based thermal spray coating, thermal sprayed member, and method for producing yttrium fluoride-based thermal spray coating
JP2003321760A (en) Interior member of plasma processing container and manufacturing method
JP2007107100A (en) Composite film-covered member in plasma treatment container and method for manufacturing the same
JP2007197835A (en) Halogen gas-resistant member for semiconductor working apparatus
JP2005060827A (en) Plasma resistant member
JP2007321183A (en) Plasma resistant member
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
JP2007126752A (en) Member in plasma treatment vessel and its production method
JP2007119924A (en) High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same
JP5119429B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP7066868B2 (en) Reaction chamber components, fabrication methods, and reaction chambers
JP4732765B2 (en) Surface treatment method for thin film manufacturing apparatus member and thin film manufacturing apparatus member
JP2005350685A (en) Parts of substrate treatment apparatus, and manufacturing method therefor
JP2011093772A (en) Graphite member provided with plasma resistance characteristic
Gunda et al. TECH SPOTLIGHT

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406