WO2015080134A1 - Plasma device part and manufacturing method therefor - Google Patents

Plasma device part and manufacturing method therefor Download PDF

Info

Publication number
WO2015080134A1
WO2015080134A1 PCT/JP2014/081189 JP2014081189W WO2015080134A1 WO 2015080134 A1 WO2015080134 A1 WO 2015080134A1 JP 2014081189 W JP2014081189 W JP 2014081189W WO 2015080134 A1 WO2015080134 A1 WO 2015080134A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
yttrium oxide
particles
lanthanoid element
plasma device
Prior art date
Application number
PCT/JP2014/081189
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 道雄
高志 日野
仁 中谷
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to JP2015550947A priority Critical patent/JP6526568B2/en
Priority to KR1020167013892A priority patent/KR101807444B1/en
Publication of WO2015080134A1 publication Critical patent/WO2015080134A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5045Rare-earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a plasma device component coated with an oxide film, which has excellent corrosion resistance against halogen-based corrosive gas and plasma and can be suitably used for plasma device components for semiconductor and liquid crystal production.
  • ceramic materials such as alumina (aluminum oxide), aluminum nitride, yttria (yttrium oxide), and YAG are widely used as constituent materials of components exposed to halogen plasma in the above-described processes.
  • the base material is made of a metal or a ceramic provided with a metal electrode, and the outermost surface on the base material has 5% by weight or more and less than 60% by weight of tungsten or molybdenum with respect to yttrium oxide. It is described that, by dispersing and forming an yttrium oxide plasma sprayed coating having a porosity of 5% or less, a plasma device component (electrostatic chuck) having a stable low volume resistivity dielectric layer can be obtained. ing.
  • Patent Document 2 a dielectric layer composed of a main component of aluminum oxide and a resistivity adjusting component containing titanium oxide and a group 5A metal is formed on the surface of a ceramic substrate such as aluminum oxide by an atmospheric plasma spraying method.
  • a plasma device component electrostatic chuck
  • a stable dielectric layer having a low volume resistivity can be obtained.
  • coating films such as yttrium oxide and aluminum oxide formed by the above thermal spraying method are formed by depositing raw material powders such as yttrium oxide and aluminum oxide in a molten state, so that the molten particles are rapidly solidified by the thermal spray heat source.
  • a large number of microcracks are generated in the particles deposited in a flat state, and further, strains generated by rapid solidification remain in the respective flat particles to form a film.
  • active radicals generated by plasma discharge are irradiated to a film such as yttrium oxide or aluminum oxide, the active radicals attack the microcracks, and the cracks develop, and further, the internal strain is released. Further, there is a problem that cracks propagate and the sprayed coating is lost to cause generation of particles.
  • plasma device parts having ceramic sprayed coatings have a structure in which flat particles are deposited, so that irregular surface irregularities remain on the surface even when polishing finish is performed, and dielectrics are formed during processing such as etching. There is a concern that the particles present on the surface of the layer are shed and particles are generated due to these.
  • the coating film such as yttrium oxide or aluminum oxide formed by the thermal spraying process is a deposited film in the molten state, and therefore tends to be a source of particles and causes a decrease in product yield. Forming is prone to problems.
  • the thermal spray coating is deposited on the surface that has been subjected to a blasting process in which abrasive grains and the like are sprayed onto the surface of the base material together with the high-pressure grains. Residual pieces of blasting material (abrasive grains) may be present, or a fragile fracture layer may be formed by blasting on the part surface. Since the thermal spray coating is deposited on the surface of the component in this way, the thermal stress generated by the temperature change caused by the plasma discharge causes the stress to act on the interface between the component and the thermal spray coating, and the film is likely to peel off together with the thermal spray coating. .
  • the life of the thermal spray coating is a factor greatly influenced by the conditions of the blast treatment in addition to the configuration of the thermal spray coating itself.
  • the particle diameter of the yttrium oxide powder supplied as a raw material is as large as about 10 to 45 ⁇ m, pores (voids) are generated up to about 15% in the formed sprayed coating, and the surface of the sprayed surface
  • the roughness becomes as coarse as about 6 to 10 ⁇ m on the basis of the arithmetic average roughness Ra, and there is a problem that a long time is required for planarization by the polishing process.
  • plasma etching proceeds through the pores. Further, if the surface roughness is large, the plasma discharge is struck by being concentrated on the convex portion of the sprayed surface.
  • the thermal spray coating is brittle due to surface defects, so the amount of particles generated due to wear of the thermal spray coating increases, and the service life of plasma equipment components decreases. There was also a problem that invited.
  • the wiring width is being reduced (for example, 24 nm and 19 nm).
  • the wiring width is being reduced (for example, 24 nm and 19 nm).
  • ultrafine particles (fine particles) having a diameter of, for example, about 40 nm are mixed, the cause of wiring failure (disconnection) or device failure (short circuit) is caused.
  • the present invention has been made in order to solve the above-described conventional problems, and improves the plasma resistance and corrosion resistance of the coating itself during the etching process, thereby stably and effectively suppressing the generation of particles, and cleaning the apparatus and parts. It is possible to prevent contamination due to impurities by suppressing the decrease in productivity due to replacement, etc., and increasing the cost of etching and film formation, as well as preventing film peeling and effectively suppressing the generation of fine particles. It is an object of the present invention to provide a plasma device component and a method for manufacturing the plasma device component that do not cause damage such as corrosion or deformation to a member by chemical treatment or blast treatment in a regenerating process.
  • a component for a plasma apparatus having an yttrium oxide film formed by the shock sintering method of the present invention is a lanthanoid selected from 1 to 8% by mass of La, Ce, Sm, Dy, Gd, Er, and Yb in an yttrium oxide film. It has an yttrium oxide film containing at least one kind of system element in terms of oxide, the thickness of the film is 10 ⁇ m or more, the density of the film is 90% or more, and the unit area of the film is 20 ⁇ m ⁇ 20 ⁇ m
  • the area ratio of particles in which existing grain boundaries can be confirmed is 0 to 80%, while the area ratio of particles in which no grain boundaries can be confirmed is 20 to 100%.
  • the yttrium oxide coating containing the oxide of the lanthanoid element has a thickness of 10 to 200 ⁇ m, and the coating density is preferably 99% or more and 100% or less. It is preferable that the oxide particles of the yttrium oxide and the lanthanoid element include fine particles having a particle size of 1 ⁇ m or less, and the yttrium oxide particles that can confirm the grain boundary have an average particle size of 2 ⁇ m or less. The average particle size of the oxide particles of yttrium oxide and lanthanoid elements is preferably 5 ⁇ m or less.
  • the ratio (Im / Ic) of the monoclinic strongest peak Im to the cubic strongest peak Ic was 0.2 to 0.6.
  • the yttrium oxide film containing the oxide of the lanthanoid element has a surface roughness Ra of 0.5 ⁇ m or less by polishing treatment.
  • a method for manufacturing a plasma device component in which an yttrium oxide film containing an oxide of a lanthanoid element is formed by the shock sintering method of the present invention includes a step of supplying a slurry containing oxide particles to a combustion flame, and a yttrium oxide particle And a step of injecting the lanthanoid element oxide particles onto the substrate at an injection speed of 400 to 1000 m / sec.
  • the average particle size of the yttrium oxide particles and the lanthanoid element oxide particles is preferably 0.05 to 5 ⁇ m.
  • the film thickness of the yttrium oxide film containing an oxide of a lanthanoid element is preferably 10 ⁇ m or more.
  • a slurry containing yttrium oxide particles and lanthanoid-based element oxide particles is preferably supplied to the center of the combustion flame.
  • an oxide of a lanthanum element using an impact sintering method deposited without melting a supply powder containing fine particles having an average particle size of 5 ⁇ m or less and a particle size of 1 ⁇ m or less at the time of coating formation
  • a supply powder containing fine particles having an average particle size of 5 ⁇ m or less and a particle size of 1 ⁇ m or less at the time of coating formation
  • fine particles having a particle size of 1 ⁇ m or less are also deposited, so that microvoids can be reduced and surface defects can be reduced.
  • An yttrium oxide film containing an oxide of a lanthanoid element such as La, Ce, Sm, Dy, Gd, Er, or Yb in the film achieves higher density and smoother surface than the yttrium oxide single film. Therefore, the internal defects of the coating can be reduced. This improves the densification of the film compared to a film composed of yttrium oxide alone, and increases the stability of the crystal structure of the oxide constituting the film, thereby improving the chemical stability of the film. It is possible to improve plasma resistance and corrosion resistance.
  • the lanthanoid element can be suitably used as a single metal, an oxide, or a complex oxide with Y 2 O 3 .
  • An oxide or a complex oxide is preferable. If it is an oxide or a complex oxide, it becomes possible to improve corrosion resistance more.
  • the plasma resistance of the component can be improved, and the amount of particles generated and the amount of impurity contamination can be suppressed.
  • the chemical treatment or blast treatment in the regeneration treatment does not damage the member such as corrosion or deformation, the number of times of cleaning the device or replacing parts can be greatly reduced.
  • the reduction in the amount of generated particles greatly contributes to the improvement of the yield of various thin films to be subjected to plasma etching, as well as elements and components using the thin films.
  • the reduction in the number of device cleanings and part replacements greatly contributes to the improvement of productivity and the reduction of etching costs and film formation costs.
  • the present invention provides a plasma device component that can be applied to the manufacture of highly integrated semiconductor devices and that can reduce the cost of etching and film formation by improving the operating rate, and a method for manufacturing the same. be able to.
  • a component for a plasma apparatus having an yttrium oxide film formed by the shock sintering method of the present invention is a lanthanoid selected from 1 to 8% by mass of La, Ce, Sm, Dy, Gd, Er, and Yb in an yttrium oxide film.
  • the area ratio is 0 to 80%, while the area ratio of particles in which no grain boundary can be confirmed is 20 to 100%.
  • FIG. 1 shows an example of the structure of an electrostatic chuck component as a plasma device component according to the present invention.
  • reference numeral 1 denotes a plasma device component
  • 2 denotes an yttrium oxide coating containing an oxide of a lanthanoid element
  • 3 denotes a substrate.
  • Yttrium oxide alone has strong resistance to chlorine-based plasma attack, fluorine-based plasma attack, and radical attack (for example, active F radical and Cl radical), but has corrosion resistance La, Ce, Sm, Dy, Gd, Er,
  • the corrosion resistance can be further improved.
  • lanthanoid-based oxide particles combine yttrium oxide particles to improve the grain boundary strength, exhibit an effect of eliminating the particle step in the polishing finish, and adjust the volume resistivity of the coating.
  • the amount of the lanthanoid element oxide added is less than 1% by mass, the above-mentioned effect is not sufficiently exhibited.
  • the addition amount exceeds 8% by mass, the grain boundary layer becomes thick, leading to a decrease in the film strength and a significant particle step.
  • a more preferable addition amount is 2 to 6% by mass.
  • the yttrium oxide film containing an oxide of a lanthanoid element has yttrium oxide particles containing an oxide of a lanthanoid element.
  • a film is formed by a general thermal spraying method, the film is formed in a state where yttrium oxide particles containing an oxide of a lanthanoid element are dissolved. Therefore, yttrium oxide particles containing an oxide of a lanthanoid element are flat.
  • the area ratio of particles in which the grain boundaries existing in the unit area 20 ⁇ m ⁇ 20 ⁇ m of the coating structure can be confirmed is 0 to 80%, while the area ratio of particles in which the grain boundaries cannot be confirmed is 20 to 100%. It is characterized by being.
  • the yttrium oxide particles containing an oxide of a lanthanoid element that can confirm the above grain boundary can be confirmed by an enlarged photograph.
  • an enlarged photograph of 5000 times is taken with a scanning electron micrograph.
  • FIG. 2 shows an example (enlarged photo) showing an example of an yttrium oxide coating containing an oxide of a lanthanoid element.
  • reference numeral 4 is a particle whose grain boundary cannot be confirmed
  • 5 is a particle whose grain boundary can be confirmed.
  • the grain which can confirm a grain boundary can confirm the grain boundary of each grain by the difference in contrast.
  • particles whose grain boundaries cannot be confirmed cannot be confirmed by adjoining particles to each other.
  • the unit area of the coating structure was 20 ⁇ m ⁇ 20 ⁇ m. Further, this unit area is measured at three arbitrary points, and the average value is defined as the area ratio of “particles that can confirm grain boundaries” and “particles that contain oxides of lanthanoid elements whose grain boundaries cannot be confirmed”. In FIG. 2, a particle group of “particles whose grain boundaries can be confirmed” and a particle group of “particles whose grain boundaries cannot be confirmed” are mixed.
  • the impact sintering method is a coating method in which particles are jetted by a combustion flame, and the particles collide at a high speed, and a film is formed by sinter bonding with the crushing heat of the particles caused by the collision. is there. Therefore, the yttrium oxide particles in the yttrium oxide film containing the oxide of the lanthanoid element tend to form a crushed film rather than the particle shape of the raw material powder.
  • the yttrium oxide particles containing the lanthanoid element oxide are melted by controlling the injection speed of the yttrium oxide particles containing the lanthanoid element oxide to a high speed and accelerating to a speed higher than the critical speed at which the particles start to deposit.
  • a yttrium oxide film containing an oxide of a lanthanoid element having a high film density and substantially maintaining the particle shape of the raw material powder Since the impact sintering method enables high-speed injection, it is easy to obtain a structure in which “particles whose grain boundaries can be confirmed” and “particles whose grain boundaries cannot be confirmed” are mixed.
  • the area ratio of “particles whose grain boundaries can be confirmed” is 0 to 80%, It is important that the area ratio of “particles whose grain boundaries cannot be confirmed” is 20 to 100%.
  • the impact sintering method is a film forming method in which yttrium oxide particles containing an oxide of a lanthanoid-based element are jetted at high speed, and the particles are deposited by destructive heat when colliding with a substrate.
  • yttrium oxide particles containing the lanthanoid element oxide are bonded by heat at the time of deposition by the fracture heat, yttrium oxide particles containing the lanthanoid element oxide whose grain boundary cannot be confirmed are formed.
  • the raw material powder since the raw material powder is not melted and sprayed by spraying at a high speed by spraying, it can be deposited while maintaining the powder shape of the yttrium oxide particles containing the oxide of the lanthanoid element as the raw material powder. As a result, no stress is generated inside the film, and a dense and strong coating can be formed.
  • the area ratio of “particles whose grain boundaries can be confirmed” is preferably 0 to 50%. This means that the area ratio of “particles whose grain boundaries cannot be confirmed” is preferably in the range of 50 to 100%.
  • the thickness of the yttrium oxide coating containing the oxide of the lanthanoid element needs to be 10 ⁇ m or more. If the film thickness is less than 10 ⁇ m, the effect of providing an yttrium oxide film containing an oxide of a lanthanoid element cannot be obtained sufficiently, and on the contrary, the film may be peeled off.
  • the upper limit of the thickness of the yttrium oxide film containing the oxide of the lanthanoid element is not particularly limited, but if it is excessively thick, no further effect can be obtained, and the cost increases. Therefore, the thickness of the yttrium oxide film containing the oxide of the lanthanoid element is in the range of 10 to 200 ⁇ m, and more preferably in the range of 50 to 150 ⁇ m.
  • the coating density needs to be 90% or more.
  • the density of the coating is a term opposite to the porosity, and the density of 90% or more has the same meaning as the porosity of 10% or less.
  • an yttrium oxide film containing an oxide of a lanthanoid element is taken in a film thickness direction, a cross-sectional structure photograph is taken 500 times magnified by an optical microscope, and the area ratio of pores reflected therein is calculated.
  • “Membrane density (%) 100 ⁇ pore area ratio”
  • the film density is calculated by the following formula. In calculating the coating density, an area of a unit area 200 ⁇ m ⁇ 200 ⁇ m of the tissue is analyzed. In addition, when the thickness of a film is thin, it shall measure in several places until the total unit area will be 200 micrometers x 200 micrometers.
  • the film density is 90% or more, more preferably 95% or more, and further preferably 99% or more and 100% or less.
  • the surface roughness of the yttrium oxide film containing the oxide of the lanthanoid element is preferably set to Ra 0.5 ⁇ m or less by polishing treatment.
  • the surface roughness after the polishing process is Ra 0.5 ⁇ m or less, the wafer comes into close contact with the dielectric layer and the etching uniformity is improved.
  • the surface roughness after the polishing process exceeds Ra 0.5 ⁇ m, the wafer is deformed, the adhesion is lowered, the etching property becomes non-uniform, and particles are liable to be generated.
  • the average particle diameter of yttrium oxide particles containing an oxide of a lanthanoid element that can confirm a grain boundary is 2 ⁇ m or less, and the entire lanthanoid element including yttrium oxide particles containing an oxide of a lanthanum element that cannot confirm a grain boundary. It is preferable that the average particle diameter of the yttrium oxide particles containing the oxide is 5 ⁇ m or less.
  • the yttrium oxide powder containing an oxide of a lanthanoid element as a raw material powder using an impact sintering method preferably has an average particle size in the range of 0.05 to 5 ⁇ m.
  • the average particle size of the yttrium oxide particles containing the oxide of the lanthanoid element as the raw material powder exceeds 5 ⁇ m, when the particles collide with each other, it becomes difficult to form a coating without being crushed, and the blasting action of the particles themselves May damage the coating and cause cracks.
  • the yttrium oxide particles containing an oxide of a lanthanoid element are 5 ⁇ m or less, crushing proceeds moderately when the fine particles collide, and particle bonding is promoted by heat generated by crushing, so that a film is easily formed.
  • the formed film has a high bonding force between particles, wear due to plasma attack and radical attack is reduced, the amount of generated particles is reduced, and plasma resistance is improved.
  • a more preferable value of the particle diameter of the particles is 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the particle diameter is less than 0.05 ⁇ m, the particles are less likely to be crushed and formed as a film, but the film has a low density. Since the plasma resistance and the corrosion resistance are lowered, the application range of the fine particle diameter is preferably 0.05 to 5 ⁇ m. However, if the fine particles of less than 0.05 ⁇ m are less than 5% of the total yttrium oxide particles containing the oxide of the lanthanoid element, the film formation does not deteriorate, so a powder containing fine particles of less than 0.05 ⁇ m is used. It doesn't matter.
  • the average particle diameter is obtained using an enlarged photograph as shown in FIG.
  • the particle whose grain boundary can be confirmed has the longest diagonal line as the particle size in each particle shown in the photograph.
  • Particles for which grain boundaries cannot be confirmed are determined by using the hypothetical circle of each particle as the diameter. This operation is performed for 50 particles each, for a total of 100 particles, and the average value is defined as the average particle size.
  • the ratio of the monoclinic strongest peak Im to the strongest peak Ic of cubic is preferably 0.2 to 0.6.
  • the XRD analysis is performed by the 2 ⁇ method, a Cu target, a tube voltage of 40 kV, and a tube current of 40 mA.
  • the strongest peak of the cubic crystal is detected between 28 and 30 °, while the strongest peak of the monoclinic crystal is detected between 30 and 33 °.
  • commercially available yttrium oxide particles are cubic. It is preferable that the monoclinic crystal is increased because it changes to monoclinic crystal due to the heat of fracture of the impact sintering method, and when the monoclinic crystal is increased, the plasma resistance is improved.
  • the method of manufacturing a plasma device component in which an yttrium oxide film containing an oxide of a lanthanoid element is formed by the shock sintering method of the present invention includes a slurry containing yttrium oxide particles containing an oxide of a lanthanoid element in a combustion flame. And a step of spraying yttrium oxide particles containing an oxide of a lanthanoid-based element onto a substrate at an injection speed of 400 to 1000 m / sec.
  • the average particle diameter of the yttrium oxide particles containing the oxide of the lanthanoid element is preferably 0.05 to 5 ⁇ m.
  • the film thickness of the yttrium oxide particles containing the oxide of the lanthanoid element is preferably 10 ⁇ m or more.
  • the slurry containing yttrium oxide particles containing an oxide of a lanthanoid element is preferably supplied to the center of the combustion flame.
  • the impact sintering method is a film forming method in which a slurry containing yttrium oxide particles containing an oxide of a lanthanoid element is supplied into a combustion flame, and yttrium oxide particles containing an oxide of a lanthanoid element are injected at high speed. .
  • the film forming apparatus for performing the impact sintering method includes a combustion source supply port for supplying a combustion source and a combustion chamber connected thereto. By burning the combustion source in the combustion chamber, a combustion flame is generated at the combustion flame opening.
  • a slurry supply port is disposed in the vicinity of the combustion flame, and the yttrium oxide particle slurry containing the oxide of the lanthanoid element supplied from the slurry supply is injected from the combustion flame to the base material through the nozzle. It will be filmed.
  • combustion source oxygen, acetylene, kerosene or the like is used, and two or more kinds may be used as necessary. Further, the combustion conditions such as the blending ratio of the combustion source and the amount of cooling gas input are adjusted so that the temperature of the combustion flame is less than the boiling point of the yttrium oxide particles containing the oxide of the lanthanoid element to be formed.
  • the yttrium oxide particles containing oxides of the lanthanoid elements supplied as a slurry evaporate, decompose or melt, even if high-speed injection, do not accumulate, Or even if it deposits, it will become the form similar to thermal spraying.
  • the spray rate of yttrium oxide particles containing an oxide of a lanthanoid element may be in the range of 400 m / sec to 1000 m / sec. preferable. If the spray speed is as low as less than 400 m / sec, the pulverization when the particles collide may be insufficient and a film having a high film density may not be obtained. On the other hand, when the injection speed exceeds 1000 m / sec, the impact force becomes excessive, the blast effect due to the yttrium oxide particles containing the oxide of the lanthanoid element is likely to occur, and the intended film is difficult to obtain.
  • the yttrium oxide particle slurry containing the oxide of the lanthanoid element is introduced into the slurry supply port, it is preferable to supply the slurry so that the slurry is injected into the center of the combustion flame.
  • the injection speed will not be stable.
  • Yttrium oxide particles containing oxides of some lanthanoid elements are injected outside the combustion flame, and some are injected after reaching the center. Even with the same flame flame, the combustion temperature differs slightly between the outside and inside. By forming the film under the same temperature conditions and the same injection speed as much as possible, it is possible to control the structure composed of “particles whose grain boundaries can be confirmed” and “particles whose grain boundaries cannot be confirmed”.
  • the impact sintering method is a coating method in which particles are jetted by a combustion flame, and the particles collide at a high speed, and a film is formed by sinter bonding with the crushing heat of the particles caused by the collision. is there. For this reason, yttrium oxide particles containing an oxide of a lanthanoid element in the coating tend to form a coating having a crushed shape rather than the particle shape of the raw material powder.
  • yttrium oxide particles containing lanthanoid element oxides are not melted.
  • An yttrium oxide film containing an oxide of a lanthanum element having a high film density can be obtained. Since the impact sintering method enables high-speed injection, it is easy to obtain “particles whose grain boundaries cannot be confirmed”.
  • An yttrium oxide coating film containing an oxide of a lanthanoid element in which the area ratio of particles in which grain boundaries can be confirmed as in the present invention is 0 to 80%, while the area ratio of particles in which grain boundaries cannot be confirmed is 20 to 100% Can be obtained efficiently.
  • the impact sintering method uses a combustion flame flame to inject yttrium oxide particles containing an oxide of a lanthanoid element at high speed, and sinter-bond by using the heat of fracture of the particles at the time of collision. It is a method to make.
  • the injection distance L is 100 to 400 mm.
  • the spray distance L is less than 100 mm, it is difficult to obtain a coating in which the yttrium oxide particles containing the oxide of the lanthanoid element are sintered without being crushed because the distance is too short.
  • the spray distance L exceeds 400 mm, the impact force is weakened because it is too far away, and it is difficult to obtain a target yttrium oxide film containing an oxide of a lanthanoid element.
  • the injection distance L is 100 to 200 mm.
  • the yttrium oxide particle slurry containing the lanthanoid element oxide is preferably a slurry containing yttrium oxide particles containing the lanthanoid element oxide having an average particle size of 0.05 to 5 ⁇ m as a raw material powder.
  • the solvent for slurrying is preferably a solvent that is relatively volatile, such as methyl alcohol or ethyl alcohol.
  • the yttrium oxide particles containing the oxide of the lanthanoid element are mixed with a solvent after being sufficiently pulverized and free of coarse particles.
  • coarse particles having a particle size of 20 ⁇ m or more, it is difficult to obtain a uniform film.
  • the yttrium oxide particles in the slurry are preferably 30 to 80 vol%.
  • the crystal structure of the raw material powder (yttrium oxide particle slurry containing the lanthanoid element oxide) is changed to a monoclinic crystal, and the yttrium oxide film containing the lanthanoid element oxide is formed.
  • yttrium oxide is cubic at room temperature.
  • the crystal structure changes when exposed to high temperatures such as a combustion flame, but the impact sintering method can be sprayed at high speed, so it changes to a monoclinic crystal and contains an oxide of a lanthanoid element with high plasma resistance.
  • the plasma resistance of the parts for the plasma etching apparatus is remarkably improved, and it is possible to reduce particles, reduce impurity contamination, and extend the service life of the parts. For this reason, if it is a plasma etching apparatus using such a part for plasma etching apparatuses, it will become possible to generate particles and reduce the number of parts replacement during the plasma etching process.
  • the generation of particles due to the peeling of the yttrium oxide film deposited on the parts can be effectively suppressed, and the number of times of device cleaning and part replacement can be greatly reduced.
  • the reduction in the amount of generated particles greatly contributes to the improvement of the yield of various thin films that are etched and formed by a semiconductor manufacturing apparatus, and further, the elements and components using the thin films.
  • extending the service life of parts by reducing the number of times of device cleaning and parts replacement and eliminating the need for blasting will greatly contribute to the improvement of productivity and the reduction of etching costs.
  • Plasma is formed by adding various oxide ceramics to yttrium oxide under the conditions shown in Table 1 on an alumina substrate (300 mm x 3 mm) by an impact sintering method using a combustion frame type injection device. It was set as equipment parts.
  • the solvent of yttrium oxide particles and other oxide particle slurries was ethyl alcohol.
  • the raw material powder used was high-purity oxide particles having a purity of 99.9% or more. Further, Y 2 O 3 particles as the raw material powder is cubic, using raw material powder no coarse particles of more than 10 ⁇ m by sufficient grinding and sieving.
  • Comparative Example 1 is a film formed by plasma spraying using yttrium oxide powder having an average particle size of 14 ⁇ m as a raw material.
  • the film density was obtained from the ratio of pores appearing in an enlarged photograph (500 times) so that the total unit area of the film cross section was 200 ⁇ m ⁇ 200 ⁇ m.
  • the area ratio between the particles where the grain boundaries can be confirmed and the particles where the grain boundaries cannot be confirmed is obtained by taking an enlarged photograph (magnification 5000 times) of a unit area of 20 ⁇ m ⁇ 20 ⁇ m on the coating surface to understand the grain boundary of one yttrium oxide particle.
  • the area ratio was determined as “particles whose grain boundaries can be confirmed” and those whose grain boundaries are not bonded and understood as “particles whose grain boundaries cannot be confirmed”.
  • the crystal structure was investigated by XRD analysis.
  • XRD analysis was performed using a Cu target under the conditions of a tube voltage of 40 kV and a tube current of 40 mA, and the ratio of the strongest peak Im of the monoclinic crystal to the strongest peak Ic of the cubic crystal (Im / Ic) was investigated. The results are shown in Table 2 below.
  • the yttrium oxide film containing the oxide of the lanthanoid element according to each example has a high film density, and the ratio (area ratio) of “particles whose grain boundaries can be confirmed” is 0. It was in the range of ⁇ 80%. Moreover, it became the particle
  • the surface roughness Ra of the yttrium oxide coating in each of Examples 1 to 8 was 0.5 ⁇ m or less.
  • the surface roughness Ra of the film in Comparative Example 1 was 3.1 ⁇ m.
  • the components for the plasma etching apparatus according to each example and comparative example were placed in the plasma etching apparatus and exposed to a mixed etching gas of CF 4 (50 sccm) + O 2 (20 sccm) + Ar (50 sccm). After setting the inside of the etching chamber to 10 mTorr and continuously operating for 2 hours at an output of 300 W (bias 100 W), as an evaluation of the peeling for each yttrium oxide coating, It was measured.
  • each yttrium oxide film was measured at room temperature (25 ° C.) by a four-terminal method (conforming to JIS K 7194), and as a result, it was in the range of 1.2 to 1.5 ⁇ 10 12 ⁇ ⁇ cm.
  • particles generated from the component can be stably and effectively prevented. Further, since the corrosion of the coating film against the active radicals of the corrosive gas is suppressed, it is possible to prevent the generation of particles from the coating film, and it is possible to suppress the generation of particles by reducing the corrosion products and preventing the falling off. Therefore, it is possible to reduce the number of times of cleaning the plasma device parts and replacing the parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention is: a plasma device part having an yttrium oxide film containing microparticles formed by impact sintering with a particle diameter of not more than 1 µm, the plasma device part being characterized in that the yttrium oxide film has a film containing 1-8 mass% of an oxide of a lanthanoid element selected from La, Ce, Sm, Dy, Gd, Er, and Yb, the thickness of the film is at least 10 µm, the film density is at least 90%, and the area ratio of the particles, present in a 20 µm × 20 µm unit area of the film, for which the grain boundaries are visible is 0-80% while the area ratio of particles for which the grain boundaries are fused is 20-100%; and a manufacturing method therefor. Said configuration provides: a plasma device part with which it is possible to stably and effectively limit the occurrence of particles during the plasma process, limit reduction of productivity and increased etching and film formation cost, and prevent contamination of product by impurities by limiting the occurrence of microparticles; and a manufacturing method therefor.

Description

プラズマ装置用部品およびその製造方法Plasma device component and method of manufacturing the same
 本発明は、ハロゲン系腐食性ガスやプラズマに対する耐食性に優れ、半導体・液晶製造用等のプラズマ装置用部品に好適に用いることができる、酸化物膜で被覆されたプラズマ装置用部品に関する。 The present invention relates to a plasma device component coated with an oxide film, which has excellent corrosion resistance against halogen-based corrosive gas and plasma and can be suitably used for plasma device components for semiconductor and liquid crystal production.
 半導体製造装置のうち、プラズマプロセスが主流であるエッチング工程、CVD成膜工程、レジストを除去するアッシング工程における装置用部品は、反応性が高いフッ素、塩素等のハロゲン系腐食性ガスに曝される。 Among semiconductor manufacturing equipment, parts for equipment in the etching process, the CVD film forming process, and the ashing process for removing resist, which are mainly plasma processes, are exposed to highly reactive halogen-based corrosive gases such as fluorine and chlorine. .
 このため、上記のような工程においてハロゲンプラズマに曝される部品の構成材料としては、アルミナ(酸化アルミニウム)、窒化アルミニウム、イットリア(酸化イットリウム)、YAG等のセラミックス材料が広く用いられている。 For this reason, ceramic materials such as alumina (aluminum oxide), aluminum nitride, yttria (yttrium oxide), and YAG are widely used as constituent materials of components exposed to halogen plasma in the above-described processes.
 例えば、特許文献1には、基材が金属または金属電極を備えたセラミックスからなり、前記基材上の最表面には、酸化イットリウムに対して5重量%以上60重量%未満のタングステンまたはモリブデンが分散し、気孔率が5%以下である酸化イットリウム系プラズマ溶射被膜を形成することにより、安定した低い体積抵抗率の誘電層を有するプラズマ装置用部品(静電チャック)が得られることが記載されている。 For example, in Patent Document 1, the base material is made of a metal or a ceramic provided with a metal electrode, and the outermost surface on the base material has 5% by weight or more and less than 60% by weight of tungsten or molybdenum with respect to yttrium oxide. It is described that, by dispersing and forming an yttrium oxide plasma sprayed coating having a porosity of 5% or less, a plasma device component (electrostatic chuck) having a stable low volume resistivity dielectric layer can be obtained. ing.
 また、特許文献2には、酸化アルミニウム等のセラミックス基材表面に、大気プラズマ溶射法により、主成分の酸化アルミニウムと、酸化チタンおよび5A族金属を含む抵抗率調整成分とからなる誘電層を形成することにより、安定した低い体積抵抗率の誘電層を有するプラズマ装置用部品(静電チャック)が得られることが記載されている。 In Patent Document 2, a dielectric layer composed of a main component of aluminum oxide and a resistivity adjusting component containing titanium oxide and a group 5A metal is formed on the surface of a ceramic substrate such as aluminum oxide by an atmospheric plasma spraying method. By doing so, it is described that a plasma device component (electrostatic chuck) having a stable dielectric layer having a low volume resistivity can be obtained.
特開2011-60826号公報JP 2011-60826 A 特開2003-282693号公報JP 2003-282893 A
 しかしながら、上記溶射法によって形成された酸化イットリウムや酸化アルミニウムなどの被膜は、酸化イットリウムや酸化アルミニウムなどの原料粉末を溶融状態で堆積して形成されているため、溶射熱源によって溶融粒子が急冷凝固して付着した際、偏平状態となって堆積した粒子にマイクロクラックが多数発生し、さらに急冷凝固によって発生した歪が各偏平粒子内に残留した状態となって被膜が形成されている。このような状態で酸化イットリウムや酸化アルミニウムなどの皮膜にプラズマ放電で発生した活性ラジカルが照射された場合には、マイクロクラックに活性ラジカルがアタックして、クラックを進展させ、さらに内部歪の開放とともに、さらにクラックが伝播して溶射被膜が欠損してパーティクルの発生を引き起す問題がある。 However, coating films such as yttrium oxide and aluminum oxide formed by the above thermal spraying method are formed by depositing raw material powders such as yttrium oxide and aluminum oxide in a molten state, so that the molten particles are rapidly solidified by the thermal spray heat source. When the particles adhere to each other, a large number of microcracks are generated in the particles deposited in a flat state, and further, strains generated by rapid solidification remain in the respective flat particles to form a film. In such a state, when active radicals generated by plasma discharge are irradiated to a film such as yttrium oxide or aluminum oxide, the active radicals attack the microcracks, and the cracks develop, and further, the internal strain is released. Further, there is a problem that cracks propagate and the sprayed coating is lost to cause generation of particles.
 また、セラミックス溶射被膜を有するプラズマ装置用部品は、偏平粒子が堆積した構造から成るため、研磨仕上げ等を実施しても、表面に不規則な凹凸が残存し、また、エッチング等の処理時に誘電層の表面に存在する粒子が脱粒し、これらに起因するパーティクルの発生が懸念される。 In addition, plasma device parts having ceramic sprayed coatings have a structure in which flat particles are deposited, so that irregular surface irregularities remain on the surface even when polishing finish is performed, and dielectrics are formed during processing such as etching. There is a concern that the particles present on the surface of the layer are shed and particles are generated due to these.
 上記のように、溶射処理によって形成した酸化イットリウムや酸化アルミニウムなどの被膜は、溶融状態での堆積膜であるため、パーティクルの発生源となり易く、製品歩留りの低下を引き起すため、溶射処理による被膜形成では問題を生じ易い。 As described above, the coating film such as yttrium oxide or aluminum oxide formed by the thermal spraying process is a deposited film in the molten state, and therefore tends to be a source of particles and causes a decrease in product yield. Forming is prone to problems.
 さらに、溶射被膜を構成部品に形成する場合、砥粒等を高圧粒体と共に基材表面に吹き付けるブラスト処理を事前に行った表面に溶射被膜を堆積するため、ブラスト処理を実施した構成部品表面にブラスト材(砥粒)の残留片が存在したり、部品表面にブラストによって脆弱な破砕層が形成されたりする。このように部品表面に溶射被膜が堆積しているため、プラズマ放電による温度変化により発生する熱応力により、部品と溶射被膜との界面に応力が作用し、溶射被膜ごと膜剥離が発生し易くなる。特に、ブラスト処理の圧力や砥粒サイズを大きくした場合には、膜剥離の発生が顕著となる。そのため、溶射被膜の寿命は、溶射被膜自体の構成の他に、このブラスト処理の条件によって大きく左右される要因となる。 Furthermore, when forming a thermal spray coating on a component, the thermal spray coating is deposited on the surface that has been subjected to a blasting process in which abrasive grains and the like are sprayed onto the surface of the base material together with the high-pressure grains. Residual pieces of blasting material (abrasive grains) may be present, or a fragile fracture layer may be formed by blasting on the part surface. Since the thermal spray coating is deposited on the surface of the component in this way, the thermal stress generated by the temperature change caused by the plasma discharge causes the stress to act on the interface between the component and the thermal spray coating, and the film is likely to peel off together with the thermal spray coating. . In particular, when the blasting pressure or the abrasive grain size is increased, the occurrence of film peeling becomes significant. For this reason, the life of the thermal spray coating is a factor greatly influenced by the conditions of the blast treatment in addition to the configuration of the thermal spray coating itself.
 上述したように、溶射法で形成した酸化イットリウム被膜中及び部品との界面に欠陥が存在するために、耐プラズマ性や耐食性を有する酸化イットリウム被膜でも溶射法で形成した被膜の長寿命化の観点から大きな問題がある。 As described above, since defects exist in the yttrium oxide film formed by the thermal spraying method and at the interface with the component, even in the case of the yttrium oxide film having plasma resistance and corrosion resistance, the viewpoint of extending the life of the film formed by the thermal spraying method. There is a big problem.
 また、プラズマ溶射の場合、原料として供給される酸化イットリウム粉末の粒径が10~45μm程度と大きいため、形成された溶射被膜中に気孔(ボイド)が最大15%程度発生すると共に、溶射表面の粗さが算術平均粗さRa基準で6~10μm程度と粗大になり、研磨処理による平面化に長時間を要する難点がある。そのような溶射被膜が形成された静電チャックを使用した場合、気孔を通じてプラズマエッチングが進行する。さらに、表面粗さが大きいと、プラズマ放電が溶射面の凸部に集中して叩かれる。このように内部欠陥にプラズマアタックが集中するのに加えて、表面欠陥で溶射被膜が脆くなっているため、溶射被膜の損耗によるパーティクルの発生量が多くなり、プラズマ装置用部品の使用寿命の低下を招く問題点もあった。 In the case of plasma spraying, since the particle diameter of the yttrium oxide powder supplied as a raw material is as large as about 10 to 45 μm, pores (voids) are generated up to about 15% in the formed sprayed coating, and the surface of the sprayed surface The roughness becomes as coarse as about 6 to 10 μm on the basis of the arithmetic average roughness Ra, and there is a problem that a long time is required for planarization by the polishing process. When an electrostatic chuck having such a sprayed coating is used, plasma etching proceeds through the pores. Further, if the surface roughness is large, the plasma discharge is struck by being concentrated on the convex portion of the sprayed surface. In addition to the concentration of plasma attacks on internal defects in this way, the thermal spray coating is brittle due to surface defects, so the amount of particles generated due to wear of the thermal spray coating increases, and the service life of plasma equipment components decreases. There was also a problem that invited.
 すなわち、耐プラズマ性と耐食性との両耐性が必要とされるプラズマ装置用部品においては、溶射法で形成した酸化イットリウム被膜でも被膜欠陥を起因としてパーティクルが発生し易く、装置用部品の交換頻度の増加による生産性の低下やエッチングコストの増加などを招いている。 That is, in plasma device parts that require both plasma resistance and corrosion resistance, particles are likely to be generated due to coating defects even in the case of an yttrium oxide film formed by thermal spraying, and the frequency of replacement of device parts is low. This has led to a decrease in productivity and an increase in etching cost.
 最近の半導体素子においては、特に高集積度を達成するために、配線幅の狭小化(例えば24nm、19nm)が進行している。このように狭小化された配線やそれを有する素子においては、例えば直径40nm程度の極微小粒子(微小パーティクル)が混入しても、配線不良(断線)や素子不良(短絡)などを引起す原因になるため、装置構成部品に起因する微細なパーティクルの発生をより一層厳格に抑制することが強く要求されている。 In recent semiconductor devices, in order to achieve a particularly high degree of integration, the wiring width is being reduced (for example, 24 nm and 19 nm). In such a narrowed wiring or an element having the same, even if ultrafine particles (fine particles) having a diameter of, for example, about 40 nm are mixed, the cause of wiring failure (disconnection) or device failure (short circuit) is caused. For this reason, there is a strong demand to more strictly suppress the generation of fine particles due to device components.
 本発明は上記従来の課題を解決するためになされたものであり、エッチング工程中に被膜自体の耐プラズマ性及び耐食性を向上させてパーティクルの発生を安定かつ有効に抑制し、装置クリーニングや部品の交換などに伴う生産性の低下やエッチングや成膜コストの増加を抑制するとともに、膜剥離を防止し、微細なパーティクルの発生を効果的に抑制して、不純物による汚染を防止することを可能にしたプラズマ装置用部品および再生処理での薬液処理やブラスト処理で部材に腐食や変形等のダメージを与えないプラズマ装置用部品およびその製造方法を提供することを目的としている。 The present invention has been made in order to solve the above-described conventional problems, and improves the plasma resistance and corrosion resistance of the coating itself during the etching process, thereby stably and effectively suppressing the generation of particles, and cleaning the apparatus and parts. It is possible to prevent contamination due to impurities by suppressing the decrease in productivity due to replacement, etc., and increasing the cost of etching and film formation, as well as preventing film peeling and effectively suppressing the generation of fine particles. It is an object of the present invention to provide a plasma device component and a method for manufacturing the plasma device component that do not cause damage such as corrosion or deformation to a member by chemical treatment or blast treatment in a regenerating process.
 本発明の衝撃焼結法により形成された酸化イットリウム被膜を有するプラズマ装置用部品は、酸化イットリウム被膜に1~8質量%のLa,Ce,Sm,Dy,Gd,Er,Ybから選択されたランタノイド系元素の少なくとも1種を酸化物換算で含有した酸化イットリウム被膜を有し、この被膜の厚さが10μm以上であり、被膜の密度が90%以上であり、被膜の単位面積20μm×20μm中に存在する粒界が確認できる粒子の面積率が0~80%である一方、粒界が確認できない粒子の面積率が20~100%であることを特徴とするものである。 A component for a plasma apparatus having an yttrium oxide film formed by the shock sintering method of the present invention is a lanthanoid selected from 1 to 8% by mass of La, Ce, Sm, Dy, Gd, Er, and Yb in an yttrium oxide film. It has an yttrium oxide film containing at least one kind of system element in terms of oxide, the thickness of the film is 10 μm or more, the density of the film is 90% or more, and the unit area of the film is 20 μm × 20 μm The area ratio of particles in which existing grain boundaries can be confirmed is 0 to 80%, while the area ratio of particles in which no grain boundaries can be confirmed is 20 to 100%.
 ランタノイド系元素の酸化物を含む酸化イットリウム被膜は膜厚が10~200μmであり、被膜の密度が99%以上100%以下であることが好ましい。前記の酸化イットリウムおよびランタノイド系元素の酸化物粒子は、粒径が1μm以下の微粒子を含み、前記の粒界が確認できる酸化イットリウム粒子は平均粒径2μm以下であることが好ましい。なお、酸化イットリウムおよびランタノイド系元素の酸化物粒子の全体の平均粒径は5μm以下であることが好ましい。 The yttrium oxide coating containing the oxide of the lanthanoid element has a thickness of 10 to 200 μm, and the coating density is preferably 99% or more and 100% or less. It is preferable that the oxide particles of the yttrium oxide and the lanthanoid element include fine particles having a particle size of 1 μm or less, and the yttrium oxide particles that can confirm the grain boundary have an average particle size of 2 μm or less. The average particle size of the oxide particles of yttrium oxide and lanthanoid elements is preferably 5 μm or less.
 また、前記ランタノイド系元素の酸化物を含む酸化イットリウム被膜をXRD分析したとき、立方晶の最強ピークIcに対する単斜晶の最強ピークImの比(Im/Ic)が0.2~0.6であることが好ましい。さらに、前記ランタノイド系元素の酸化物を含む酸化イットリウム被膜は研磨処理によって表面粗さRaが0.5μm以下とすることが好ましい。 Further, when the yttrium oxide film containing the oxide of the lanthanoid element was subjected to XRD analysis, the ratio (Im / Ic) of the monoclinic strongest peak Im to the cubic strongest peak Ic was 0.2 to 0.6. Preferably there is. Furthermore, it is preferable that the yttrium oxide film containing the oxide of the lanthanoid element has a surface roughness Ra of 0.5 μm or less by polishing treatment.
 本発明の衝撃焼結法によりランタノイド系元素の酸化物を含む酸化イットリウム被膜を形成したプラズマ装置用部品の製造方法は、燃焼フレーム炎に酸化物粒子を含むスラリーを供給する工程と、酸化イットリウム粒子及びランタノイド系元素の酸化物粒子を噴射速度を400~1000m/secにして基材上に噴射させる工程とを具備することを特徴とする製造方法である。 A method for manufacturing a plasma device component in which an yttrium oxide film containing an oxide of a lanthanoid element is formed by the shock sintering method of the present invention includes a step of supplying a slurry containing oxide particles to a combustion flame, and a yttrium oxide particle And a step of injecting the lanthanoid element oxide particles onto the substrate at an injection speed of 400 to 1000 m / sec.
 ここで、酸化イットリウム粒子及びランタノイド系元素の酸化物粒子の平均粒径は0.05~5μmであることが好ましい。ランタノイド系元素の酸化物を含む酸化イットリウム被膜の膜厚は10μm以上であることが好ましい。酸化イットリウム粒子及びランタノイド系元素の酸化物粒子を含むスラリーを燃焼フレーム炎の中心に供給することが好ましい。 Here, the average particle size of the yttrium oxide particles and the lanthanoid element oxide particles is preferably 0.05 to 5 μm. The film thickness of the yttrium oxide film containing an oxide of a lanthanoid element is preferably 10 μm or more. A slurry containing yttrium oxide particles and lanthanoid-based element oxide particles is preferably supplied to the center of the combustion flame.
 本発明のように、被膜形成時に平均粒径が5μm以下であって粒径が1μm以下である微粒子を含む供給粉末を溶融せずに堆積した衝撃焼結法を用いたランタン系元素の酸化物を含む酸化イットリウム被膜によると、偏平状の溶融粒子が生じ難く、粒径が1μm以下の微粒子も堆積させることになり、微小空孔を減らし表面欠陥を低減することができる。 As in the present invention, an oxide of a lanthanum element using an impact sintering method deposited without melting a supply powder containing fine particles having an average particle size of 5 μm or less and a particle size of 1 μm or less at the time of coating formation According to the yttrium oxide film containing, flat molten particles are hardly generated, and fine particles having a particle size of 1 μm or less are also deposited, so that microvoids can be reduced and surface defects can be reduced.
 被膜にLa,Ce,Sm,Dy,Gd,Er,Ybのランタノイド系元素の酸化物を含有した酸化イットリウム被膜は、酸化イットリウム単独の被膜に比べて、高密度化と表面の平滑化とを図ることができるため、被膜の内部欠陥を少なくすることができる。これにより、酸化イットリウム単独で構成される被膜に比べて膜の緻密化を向上させ、被膜を構成する酸化物の結晶構造の安定性が高くなるため、被膜の化学的安定性を向上することができ、耐プラズマ性及び耐食性を向上させることができる。 An yttrium oxide film containing an oxide of a lanthanoid element such as La, Ce, Sm, Dy, Gd, Er, or Yb in the film achieves higher density and smoother surface than the yttrium oxide single film. Therefore, the internal defects of the coating can be reduced. This improves the densification of the film compared to a film composed of yttrium oxide alone, and increases the stability of the crystal structure of the oxide constituting the film, thereby improving the chemical stability of the film. It is possible to improve plasma resistance and corrosion resistance.
 上記ランタノイド元素は金属単体、酸化物、Yとの複合酸化物、いずれででも好適に使用できる。好ましくは、酸化物または複合酸化物である。酸化物または複合酸化物であれば、より耐食性を向上させることが可能になる。 The lanthanoid element can be suitably used as a single metal, an oxide, or a complex oxide with Y 2 O 3 . An oxide or a complex oxide is preferable. If it is an oxide or a complex oxide, it becomes possible to improve corrosion resistance more.
 このような酸化物被膜を、プラズマ放電を利用するプラズマ装置用部品に施すことによって、部品の耐プラズマ性を向上させることができ、パーティクルの発生量や不純物汚染量を抑制することができると共に、再生処理での薬液処理やブラスト処理で部材に腐食や変形等のダメージを与えないため、装置クリーニングや部品交換の回数を大幅に減らすことができる。パーティクル発生量の低減は、プラズマエッチング処理する各種の薄膜、さらにはそれを用いた素子や部品の歩留り向上に大きく寄与する。また、装置クリーニングや部品交換回数の低減は、生産性の向上ならびにエッチングコストや成膜コストの削減に大きく寄与する。 By applying such an oxide coating to a plasma device component using plasma discharge, the plasma resistance of the component can be improved, and the amount of particles generated and the amount of impurity contamination can be suppressed. Since the chemical treatment or blast treatment in the regeneration treatment does not damage the member such as corrosion or deformation, the number of times of cleaning the device or replacing parts can be greatly reduced. The reduction in the amount of generated particles greatly contributes to the improvement of the yield of various thin films to be subjected to plasma etching, as well as elements and components using the thin films. In addition, the reduction in the number of device cleanings and part replacements greatly contributes to the improvement of productivity and the reduction of etching costs and film formation costs.
 本発明によれば、部品から発生する微細なパーティクルの発生が安定的にかつ効果的に抑制され、頻繁な装置クリーニングや部品の交換などに伴う生産性の低下や部品コストの増加を抑制することができ、高集積化された半導体素子の製造にも適用可能であり、稼働率の改善によりエッチングや成膜コストの低減などを図ることも可能であるプラズマ装置用部品およびその製造方法を提供することができる。 According to the present invention, generation of fine particles generated from a component is stably and effectively suppressed, and a decrease in productivity and an increase in component cost due to frequent device cleaning and component replacement are suppressed. The present invention provides a plasma device component that can be applied to the manufacture of highly integrated semiconductor devices and that can reduce the cost of etching and film formation by improving the operating rate, and a method for manufacturing the same. be able to.
本発明のプラズマ装置用部品の断面構造を概略的に図示した断面図である。It is sectional drawing which illustrated schematically the cross-sectional structure of the components for plasma apparatuses of this invention. ランタノイド系酸化物を含む酸化イットリウム被膜の一例を示す顕微鏡組織図である。It is a microscope organization diagram which shows an example of the yttrium oxide film containing a lanthanoid type oxide.
 以下、本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
 本発明の衝撃焼結法により形成された酸化イットリウム被膜を有するプラズマ装置用部品は、酸化イットリウム被膜に1~8質量%のLa,Ce,Sm,Dy,Gd,Er,Ybから選択されたランタノイド系元素の酸化物を含有した被膜を有し、被膜の厚さが10μm以上であり、被膜の密度は90%以上であり、被膜の単位面積20μm×20μm中に存在する粒界が確認できる粒子の面積率が0~80%である一方、粒界が確認できない粒子の面積率が20~100%であることを特徴とするものである。 A component for a plasma apparatus having an yttrium oxide film formed by the shock sintering method of the present invention is a lanthanoid selected from 1 to 8% by mass of La, Ce, Sm, Dy, Gd, Er, and Yb in an yttrium oxide film. Particles having a coating containing an oxide of a system element, having a coating thickness of 10 μm or more, a coating density of 90% or more, and a grain boundary present in a unit area of 20 μm × 20 μm of the coating The area ratio is 0 to 80%, while the area ratio of particles in which no grain boundary can be confirmed is 20 to 100%.
 図1に本発明に係るプラズマ装置用部品としての静電チャック用部品の一構成例を示す。図中、符号1はプラズマ装置用部品であり、2はランタノイド系元素の酸化物を含有した酸化イットリウム被膜、3は基材である。 FIG. 1 shows an example of the structure of an electrostatic chuck component as a plasma device component according to the present invention. In the figure, reference numeral 1 denotes a plasma device component, 2 denotes an yttrium oxide coating containing an oxide of a lanthanoid element, and 3 denotes a substrate.
 酸化イットリウムは単独でも塩素系プラズマアタック、フッ素系プラズマアタック、ラジカルアタック(例えば、活性なFラジカルやClラジカル)に強い耐性を有するが、耐食性を有するLa,Ce,Sm,Dy,Gd,Er,Ybから選択されるランタノイド系元素の酸化物を酸化イットリウムに1~8質量%の割合で含有させた場合には、さらに耐食性を向上させることができる。 Yttrium oxide alone has strong resistance to chlorine-based plasma attack, fluorine-based plasma attack, and radical attack (for example, active F radical and Cl radical), but has corrosion resistance La, Ce, Sm, Dy, Gd, Er, When an oxide of a lanthanoid element selected from Yb is contained in yttrium oxide in a proportion of 1 to 8% by mass, the corrosion resistance can be further improved.
 これらランタノイド系酸化物粒子は酸化イットリウム粒子を結合して粒子界強度を向上させるとともに、研磨仕上げ等において粒子段差を解消する効果を示し、また、被膜の体積抵抗率の調整も可能となる。このランタノイド系元素の酸化物の添加量が1質量%未満の場合、前記効果が十分に発揮されない。一方、添加量が8質量%を超えると、粒界層が厚くなり、被膜強度の低下を招くとともに、粒子段差が顕著となる。より好ましい添加量は2~6質量%である。 These lanthanoid-based oxide particles combine yttrium oxide particles to improve the grain boundary strength, exhibit an effect of eliminating the particle step in the polishing finish, and adjust the volume resistivity of the coating. When the amount of the lanthanoid element oxide added is less than 1% by mass, the above-mentioned effect is not sufficiently exhibited. On the other hand, when the addition amount exceeds 8% by mass, the grain boundary layer becomes thick, leading to a decrease in the film strength and a significant particle step. A more preferable addition amount is 2 to 6% by mass.
 ランタノイド系元素の酸化物を含む酸化イットリウム被膜は、ランタノイド系元素の酸化物を含む酸化イットリウム粒子を有している。例えば、一般的な溶射法で成膜するとランタノイド系元素の酸化物を含む酸化イットリウム粒子を溶かした状態で成膜される。そのため、ランタノイド系元素の酸化物を含む酸化イットリウム粒子は偏平状になっている。それに対し、本発明では被膜組織の単位面積20μm×20μm中に存在する粒界が確認できる粒子の面積率が0~80%である一方、粒界が確認できない粒子の面積率が20~100%であることを特徴としている。 The yttrium oxide film containing an oxide of a lanthanoid element has yttrium oxide particles containing an oxide of a lanthanoid element. For example, when a film is formed by a general thermal spraying method, the film is formed in a state where yttrium oxide particles containing an oxide of a lanthanoid element are dissolved. Therefore, yttrium oxide particles containing an oxide of a lanthanoid element are flat. On the other hand, in the present invention, the area ratio of particles in which the grain boundaries existing in the unit area 20 μm × 20 μm of the coating structure can be confirmed is 0 to 80%, while the area ratio of particles in which the grain boundaries cannot be confirmed is 20 to 100%. It is characterized by being.
 上記粒界が確認できるランタノイド系元素の酸化物を含む酸化イットリウム粒子は拡大写真により確認できる。例えば、走査型電子顕微鏡写真により5000倍の拡大写真を撮る。 The yttrium oxide particles containing an oxide of a lanthanoid element that can confirm the above grain boundary can be confirmed by an enlarged photograph. For example, an enlarged photograph of 5000 times is taken with a scanning electron micrograph.
図2にランタノイド系元素の酸化物を含む酸化イットリウム被膜の一例を示す図(拡大写真)を示した。図中、符号4は粒界が確認できない粒子であり、5は粒界が確認できる粒子である。 FIG. 2 shows an example (enlarged photo) showing an example of an yttrium oxide coating containing an oxide of a lanthanoid element. In the figure, reference numeral 4 is a particle whose grain boundary cannot be confirmed, and 5 is a particle whose grain boundary can be confirmed.
 「粒界が確認できる粒子」は、個々の粒子の粒界がコントラストの差で確認できる。一方、「粒界が確認できない粒子」は、隣り合う粒子同士が結合して個々の粒子の粒界が確認できない。被膜組織の単位面積は20μm×20μmとした。また、この単位面積について任意の3ヵ所測定し、その平均値を「粒界が確認できる粒子」および「粒界が確認できないランタノイド系元素の酸化物を含む粒子」の面積率とする。図2では「粒界が確認できる粒子」の粒子群と「粒界が確認できない粒子」の粒子群が混在している状態である。 “The grain which can confirm a grain boundary” can confirm the grain boundary of each grain by the difference in contrast. On the other hand, “particles whose grain boundaries cannot be confirmed” cannot be confirmed by adjoining particles to each other. The unit area of the coating structure was 20 μm × 20 μm. Further, this unit area is measured at three arbitrary points, and the average value is defined as the area ratio of “particles that can confirm grain boundaries” and “particles that contain oxides of lanthanoid elements whose grain boundaries cannot be confirmed”. In FIG. 2, a particle group of “particles whose grain boundaries can be confirmed” and a particle group of “particles whose grain boundaries cannot be confirmed” are mixed.
 衝撃焼結法は、燃焼フレーム炎により粒子を噴射して成膜する被膜方法であり、粒子が高速度で衝突し、その衝突による粒子の破砕熱で焼結結合して被膜を形成する方法である。そのため、ランタノイド系元素の酸化物を含む酸化イットリウム被膜中の酸化イットリウム粒子は原料粉末の粒形状より破砕形状となった被膜が形成し易くなる傾向がある。 The impact sintering method is a coating method in which particles are jetted by a combustion flame, and the particles collide at a high speed, and a film is formed by sinter bonding with the crushing heat of the particles caused by the collision. is there. Therefore, the yttrium oxide particles in the yttrium oxide film containing the oxide of the lanthanoid element tend to form a crushed film rather than the particle shape of the raw material powder.
 また、ランタノイド系元素の酸化物を含む酸化イットリウム粒子の噴射速度を高速度に制御し粒子が堆積し始める臨界速度以上に加速することにより、ランタノイド系元素の酸化物を含む酸化イットリウム粒子を溶融させずに成膜することができ、原料粉末の粒形状をほぼ維持した膜密度の高いランタノイド系元素の酸化物を含む酸化イットリウム被膜を得ることができる。衝撃焼結法は、高速噴射が可能であるため、「粒界が確認できる粒子」と「粒界が確認できない粒子」が混在した組織が得やすい。 Also, the yttrium oxide particles containing the lanthanoid element oxide are melted by controlling the injection speed of the yttrium oxide particles containing the lanthanoid element oxide to a high speed and accelerating to a speed higher than the critical speed at which the particles start to deposit. Thus, it is possible to obtain a yttrium oxide film containing an oxide of a lanthanoid element having a high film density and substantially maintaining the particle shape of the raw material powder. Since the impact sintering method enables high-speed injection, it is easy to obtain a structure in which “particles whose grain boundaries can be confirmed” and “particles whose grain boundaries cannot be confirmed” are mixed.
 「粒界が確認できる粒子」と「粒界が確認できない粒子」との面積率の合計を100%としたとき、「粒界が確認できる粒子」の面積率が0~80%である一方、「粒界が確認できない粒子」の面積率が20~100%であることが重要である。 When the sum of the area ratios of “particles whose grain boundaries can be confirmed” and “particles whose grain boundaries cannot be confirmed” is 100%, the area ratio of “particles whose grain boundaries can be confirmed” is 0 to 80%, It is important that the area ratio of “particles whose grain boundaries cannot be confirmed” is 20 to 100%.
 衝撃焼結法は、ランタノイド系元素の酸化物を含む酸化イットリウム粒子を高速噴射し、基材に衝突する際の破壊熱で粒子を堆積していく成膜方法である。破壊熱による堆積の際にランタノイド系元素の酸化物を含む酸化イットリウム粒子が熱により結合することにより粒界が確認できないランタノイド系元素の酸化物を含む酸化イットリウム粒子が形成される。 The impact sintering method is a film forming method in which yttrium oxide particles containing an oxide of a lanthanoid-based element are jetted at high speed, and the particles are deposited by destructive heat when colliding with a substrate. When the yttrium oxide particles containing the lanthanoid element oxide are bonded by heat at the time of deposition by the fracture heat, yttrium oxide particles containing the lanthanoid element oxide whose grain boundary cannot be confirmed are formed.
 また、高速噴射を実施することにより、溶射のように原料粉末を溶解して噴射しないため、原料粉末としてのランタノイド系元素の酸化物を含む酸化イットリウム粒子の粉末形状を維持した状態で堆積できる。そのため、膜内部の応力が発生せず、緻密で結合力が強い被膜を形成することができる。 Further, since the raw material powder is not melted and sprayed by spraying at a high speed by spraying, it can be deposited while maintaining the powder shape of the yttrium oxide particles containing the oxide of the lanthanoid element as the raw material powder. As a result, no stress is generated inside the film, and a dense and strong coating can be formed.
 「粒界が確認できる粒子」の面積率が80%を超えると、衝撃による破壊熱が不十分であるため、堆積において急激な冷却状態となり膜の低密度化や結合力が低下し、場合によってはクラックが発生する。「粒界が確認できる粒子」の面積率は0~50%が好ましい。このことは、「粒界が確認できない粒子」の面積率が50~100%の範囲が好ましいことを意味する。 If the area ratio of “particles whose grain boundaries can be confirmed” exceeds 80%, the heat of destruction due to impact is insufficient, so that the deposition becomes abruptly cooled and the density of the film is reduced and the bonding force is reduced. Cracks occur. The area ratio of “particles whose grain boundaries can be confirmed” is preferably 0 to 50%. This means that the area ratio of “particles whose grain boundaries cannot be confirmed” is preferably in the range of 50 to 100%.
 また、ランタノイド系元素の酸化物を含む酸化イットリウム被膜の厚さは10μm以上が必要である。被膜厚さが10μm未満では、ランタノイド系元素の酸化物を含む酸化イットリウム被膜を設ける効果が十分得られず、却って膜はがれの原因となる恐れがある。 Also, the thickness of the yttrium oxide coating containing the oxide of the lanthanoid element needs to be 10 μm or more. If the film thickness is less than 10 μm, the effect of providing an yttrium oxide film containing an oxide of a lanthanoid element cannot be obtained sufficiently, and on the contrary, the film may be peeled off.
 上記ランタノイド系元素の酸化物を含む酸化イットリウム被膜の厚さの上限は特に限定されるものではないが、過度に厚くしてもそれ以上の効果が得られず、またコストアップの要因ともなる。そのため、ランタノイド系元素の酸化物を含む酸化イットリウム被膜の厚さは10~200μmの範囲であり、より好ましい範囲は50~150μmである。 The upper limit of the thickness of the yttrium oxide film containing the oxide of the lanthanoid element is not particularly limited, but if it is excessively thick, no further effect can be obtained, and the cost increases. Therefore, the thickness of the yttrium oxide film containing the oxide of the lanthanoid element is in the range of 10 to 200 μm, and more preferably in the range of 50 to 150 μm.
 また、被膜の密度は90%以上が必要である。被膜の密度とは気孔率の反対の用語であり、密度が90%以上とは、気孔率が10%以下と同じ意味である。 Also, the coating density needs to be 90% or more. The density of the coating is a term opposite to the porosity, and the density of 90% or more has the same meaning as the porosity of 10% or less.
 膜密度の測定方法は、ランタノイド系元素の酸化物を含む酸化イットリウム被膜を膜厚方向に断面組織写真を光学顕微鏡により500倍の拡大写真を撮り、そこに写る気孔の面積率を算出する。具体的には、
「膜密度(%)=100-気孔の面積率」
の算式により被膜密度を算出する。この被膜密度の算出に際しては、組織の単位面積200μm×200μmの面積について分析するものとする。なお、被膜の厚さが薄いときは、合計の単位面積が200μm×200μmとなるまで複数個所測定するものとする。
As a method for measuring the film density, an yttrium oxide film containing an oxide of a lanthanoid element is taken in a film thickness direction, a cross-sectional structure photograph is taken 500 times magnified by an optical microscope, and the area ratio of pores reflected therein is calculated. In particular,
“Membrane density (%) = 100−pore area ratio”
The film density is calculated by the following formula. In calculating the coating density, an area of a unit area 200 μm × 200 μm of the tissue is analyzed. In addition, when the thickness of a film is thin, it shall measure in several places until the total unit area will be 200 micrometers x 200 micrometers.
 被膜密度は90%以上、より好ましくは95%以上、さらには99%以上100%以下であることが好ましい。 The film density is 90% or more, more preferably 95% or more, and further preferably 99% or more and 100% or less.
 ランタノイド系元素の酸化物を含む酸化イットリウム被膜中に気孔(ボイド)が多く存在すると、その気孔からプラズマアタックなどの浸食が進行してランタノイド系元素の酸化物を含む酸化イットリウム被膜の寿命を低下させる。特にランタノイド系元素の酸化物を含む酸化イットリウム被膜表面に気孔が少ないことが重要である。 If there are many voids in the yttrium oxide film containing the oxide of the lanthanoid element, erosion such as plasma attack proceeds from the pores, and the life of the yttrium oxide film containing the oxide of the lanthanoid element is reduced. . In particular, it is important that the surface of the yttrium oxide film containing an oxide of a lanthanoid element has few pores.
 また、ランタノイド系元素の酸化物を含む酸化イットリウム被膜の表面粗さは、研磨処理によってRa0.5μm以下の表面粗さにすることが好ましい。研磨加工後の表面粗さがRa0.5μm以下になると、ウェーハが誘電体層と密着してエッチングの均一性が向上する。一方、研磨加工後の表面粗さがRa0.5μmを超えると、ウェーハが変形して密着性が低下し、エッチング性が不均一となるとともに、パーティクルが発生し易くなる難点がある。 Further, the surface roughness of the yttrium oxide film containing the oxide of the lanthanoid element is preferably set to Ra 0.5 μm or less by polishing treatment. When the surface roughness after the polishing process is Ra 0.5 μm or less, the wafer comes into close contact with the dielectric layer and the etching uniformity is improved. On the other hand, if the surface roughness after the polishing process exceeds Ra 0.5 μm, the wafer is deformed, the adhesion is lowered, the etching property becomes non-uniform, and particles are liable to be generated.
 また、粒界を確認できるランタノイド系元素の酸化物を含む酸化イットリウム粒子の平均粒径は2μm以下、粒界が確認できないランタン系元素の酸化物を含む酸化イットリウム粒子を含めた全体のランタノイド系元素の酸化物を含む酸化イットリウム粒子の平均粒径は5μm以下であることが好ましい。 In addition, the average particle diameter of yttrium oxide particles containing an oxide of a lanthanoid element that can confirm a grain boundary is 2 μm or less, and the entire lanthanoid element including yttrium oxide particles containing an oxide of a lanthanum element that cannot confirm a grain boundary. It is preferable that the average particle diameter of the yttrium oxide particles containing the oxide is 5 μm or less.
 後述するように衝撃焼結法を用いる原料粉末としてのランタノイド系元素の酸化物を含む酸化イットリウム粉末は平均粒径が0.05~5μmの範囲であることが好ましい。原料粉末としてのランタノイド系元素の酸化物を含む酸化イットリウム粒子の平均粒径が5μmを超えると、粒子が衝突した際に破砕されずに飛び散って被膜が形成され難くなり、さらに粒子自体のブラスト作用により被膜にダメージを与えてクラックが発生する恐れがある。 As will be described later, the yttrium oxide powder containing an oxide of a lanthanoid element as a raw material powder using an impact sintering method preferably has an average particle size in the range of 0.05 to 5 μm. When the average particle size of the yttrium oxide particles containing the oxide of the lanthanoid element as the raw material powder exceeds 5 μm, when the particles collide with each other, it becomes difficult to form a coating without being crushed, and the blasting action of the particles themselves May damage the coating and cause cracks.
 また、ランタノイド系元素の酸化物を含む酸化イットリウム粒子が5μm以下になると、微粒子が衝突した際に破砕が適度に進行して破砕による発熱で粒子結合が助長されて被膜が形成され易くなる。その形成された被膜は、粒子間の結合力が大きく、プラズマアタック及びラジカルアタックによる損耗が低減してパーティクル発生量が少なくなり、耐プラズマ性が向上する。 Further, when the yttrium oxide particles containing an oxide of a lanthanoid element are 5 μm or less, crushing proceeds moderately when the fine particles collide, and particle bonding is promoted by heat generated by crushing, so that a film is easily formed. The formed film has a high bonding force between particles, wear due to plasma attack and radical attack is reduced, the amount of generated particles is reduced, and plasma resistance is improved.
 粒子の粒径のより好ましい値は、0.05μm以上3μm以下であるが、0.05μm未満となると、粒子の破砕が進行し難くなり、被膜として形成されるものの、低密度の被膜となって耐プラズマ性及び耐食性が低下するため、微粒子粒径の適用範囲は0.05~5μmであることが好ましい。ただし、0.05μm未満の微粒子がランタノイド系元素の酸化物を含む酸化イットリウム粒子全体の5%未満であれば、被膜形成が悪化しないため、0.05μm未満の微粒子を含有した粉末を使用しても構わない。 A more preferable value of the particle diameter of the particles is 0.05 μm or more and 3 μm or less. When the particle diameter is less than 0.05 μm, the particles are less likely to be crushed and formed as a film, but the film has a low density. Since the plasma resistance and the corrosion resistance are lowered, the application range of the fine particle diameter is preferably 0.05 to 5 μm. However, if the fine particles of less than 0.05 μm are less than 5% of the total yttrium oxide particles containing the oxide of the lanthanoid element, the film formation does not deteriorate, so a powder containing fine particles of less than 0.05 μm is used. It doesn't matter.
 平均粒径の求め方は、図2のような拡大写真を使って行うものとする。粒界が確認できる粒子は、写真に写る個々の粒子においてもっとも長い対角線を粒径とする。粒界が確認できない粒子は、個々の粒子の仮説円を使ってその直径を粒径とする。この作業をそれぞれ50粒、合計100粒子について行いその平均値を平均粒径とする。 The average particle diameter is obtained using an enlarged photograph as shown in FIG. The particle whose grain boundary can be confirmed has the longest diagonal line as the particle size in each particle shown in the photograph. Particles for which grain boundaries cannot be confirmed are determined by using the hypothetical circle of each particle as the diameter. This operation is performed for 50 particles each, for a total of 100 particles, and the average value is defined as the average particle size.
 また、ランタノイド系元素の酸化物を含む酸化イットリウム被膜をXRD分析(X線回折分析)したとき、立方晶(cubic)の最強ピークIcに対する単斜晶(monoclinic)の最強ピークImの比(Im/Ic)が0.2~0.6であることが好ましい。 Further, when the yttrium oxide film containing the oxide of the lanthanoid element was subjected to XRD analysis (X-ray diffraction analysis), the ratio of the monoclinic strongest peak Im to the strongest peak Ic of cubic (Im / Ic) is preferably 0.2 to 0.6.
 上記XRD分析は、2θ法、Cuターゲット、管電圧40kV、管電流40mAで行うものとする。立方晶の最強ピークは、28~30°の間に検出される一方、単斜晶の最強ピークは30~33°の間に検出される。通常、市販されている酸化イットリウム粒子は立方晶である。衝撃焼結法の破壊熱により単斜晶に変化し、単斜晶が増加すると耐プラズマ性が向上するため、単斜晶が増加することは好ましい。 The XRD analysis is performed by the 2θ method, a Cu target, a tube voltage of 40 kV, and a tube current of 40 mA. The strongest peak of the cubic crystal is detected between 28 and 30 °, while the strongest peak of the monoclinic crystal is detected between 30 and 33 °. Usually, commercially available yttrium oxide particles are cubic. It is preferable that the monoclinic crystal is increased because it changes to monoclinic crystal due to the heat of fracture of the impact sintering method, and when the monoclinic crystal is increased, the plasma resistance is improved.
 次に、本発明のプラズマ装置用部品の製造方法について説明する。 Next, a method for manufacturing the plasma device component of the present invention will be described.
 本発明の衝撃焼結法によりランタノイド系元素の酸化物を含む酸化イットリウム被膜を形成したプラズマ装置用部品の製造方法は、燃焼フレーム炎にランタノイド系元素の酸化物を含む酸化イットリウム粒子を含むスラリーを供給する工程と、ランタノイド系元素の酸化物を含む酸化イットリウム粒子を、噴射速度を400~1000m/secにして基材上に噴射させる工程とを具備することを特徴とするものである。 The method of manufacturing a plasma device component in which an yttrium oxide film containing an oxide of a lanthanoid element is formed by the shock sintering method of the present invention includes a slurry containing yttrium oxide particles containing an oxide of a lanthanoid element in a combustion flame. And a step of spraying yttrium oxide particles containing an oxide of a lanthanoid-based element onto a substrate at an injection speed of 400 to 1000 m / sec.
 また、上記ランタノイド系元素の酸化物を含む酸化イットリウム粒子の平均粒径は0.05~5μmであることが好ましい。さらに、ランタノイド系元素の酸化物を含む酸化イットリウム粒子の膜厚は10μm以上であることが好ましい。ランタノイド系元素の酸化物を含む酸化イットリウム粒子を含むスラリーは燃焼フレーム炎の中心に供給することが好ましい。 In addition, the average particle diameter of the yttrium oxide particles containing the oxide of the lanthanoid element is preferably 0.05 to 5 μm. Further, the film thickness of the yttrium oxide particles containing the oxide of the lanthanoid element is preferably 10 μm or more. The slurry containing yttrium oxide particles containing an oxide of a lanthanoid element is preferably supplied to the center of the combustion flame.
 衝撃焼結法は、燃焼フレーム炎中に、ランタノイド系元素の酸化物を含む酸化イットリウム粒子を含むスラリーを供給してランタノイド系元素の酸化物を含む酸化イットリウム粒子を高速噴射させる成膜方法である。 The impact sintering method is a film forming method in which a slurry containing yttrium oxide particles containing an oxide of a lanthanoid element is supplied into a combustion flame, and yttrium oxide particles containing an oxide of a lanthanoid element are injected at high speed. .
 衝撃焼結法を実施する成膜装置は、燃焼源を供給する燃焼源供給口と、そこに接続された燃焼室とを具備している。燃焼室で燃焼源を燃焼させることにより、燃焼フレーム口に燃焼フレーム炎を発生させる。燃焼フレーム炎の近傍にはスラリー供給口が配置されており、スラリー供給口から供給されたランタノイド系元素の酸化物を含む酸化イットリウム粒子スラリーは燃焼フレーム炎からノズルを介して基材に噴射され成膜されていく。 The film forming apparatus for performing the impact sintering method includes a combustion source supply port for supplying a combustion source and a combustion chamber connected thereto. By burning the combustion source in the combustion chamber, a combustion flame is generated at the combustion flame opening. A slurry supply port is disposed in the vicinity of the combustion flame, and the yttrium oxide particle slurry containing the oxide of the lanthanoid element supplied from the slurry supply is injected from the combustion flame to the base material through the nozzle. It will be filmed.
 燃焼源は、酸素、アセチレン、灯油などが使用され、必要に応じ2種以上を用いてもよい。さらに、燃焼フレームの温度は、成膜するランタノイド系元素の酸化物を含む酸化イットリウム粒子の沸点未満となるよう、燃焼源の配合比や冷却ガスの投入量などの燃焼条件の調整を行なう。 As the combustion source, oxygen, acetylene, kerosene or the like is used, and two or more kinds may be used as necessary. Further, the combustion conditions such as the blending ratio of the combustion source and the amount of cooling gas input are adjusted so that the temperature of the combustion flame is less than the boiling point of the yttrium oxide particles containing the oxide of the lanthanoid element to be formed.
 燃焼フレームの温度が原料粒子の沸点以上となる場合は、高速噴射といえども、スラリーとして供給するランタノイド系元素の酸化物を含む酸化イットリウム粒子が蒸発、分解あるいは溶融してしまい、堆積しないか、または堆積しても溶射と同様の形態となってしまう。 If the temperature of the combustion flame is equal to or higher than the boiling point of the raw material particles, the yttrium oxide particles containing oxides of the lanthanoid elements supplied as a slurry evaporate, decompose or melt, even if high-speed injection, do not accumulate, Or even if it deposits, it will become the form similar to thermal spraying.
 衝撃焼結法によりランタノイド系元素の酸化物を含む酸化イットリウム被膜を形成する場合、ランタノイド系元素の酸化物を含む酸化イットリウム粒子の噴射速度が400m/sec以上1000m/sec以下の範囲であることが好ましい。噴射速度が400m/sec未満と遅いと粒子が衝突した際の粉砕が不十分となり膜密度が高い被膜が得られない恐れがある。また、噴射速度が1000m/secを超えると、衝突力が過大になり、ランタノイド系元素の酸化物を含む酸化イットリウム粒子によるブラスト効果が生じ易く、目的とする膜が得られ難い。 When an yttrium oxide film containing an oxide of a lanthanoid element is formed by an impact sintering method, the spray rate of yttrium oxide particles containing an oxide of a lanthanoid element may be in the range of 400 m / sec to 1000 m / sec. preferable. If the spray speed is as low as less than 400 m / sec, the pulverization when the particles collide may be insufficient and a film having a high film density may not be obtained. On the other hand, when the injection speed exceeds 1000 m / sec, the impact force becomes excessive, the blast effect due to the yttrium oxide particles containing the oxide of the lanthanoid element is likely to occur, and the intended film is difficult to obtain.
 ランタノイド系元素の酸化物を含む酸化イットリウム粒子スラリーをスラリー供給口に投入する場合、スラリーが燃焼フレーム炎の中心に噴射されるように供給することが好ましい。 When the yttrium oxide particle slurry containing the oxide of the lanthanoid element is introduced into the slurry supply port, it is preferable to supply the slurry so that the slurry is injected into the center of the combustion flame.
 燃焼フレーム炎の外側に酸化イットリウム粒子スラリーを供給すると噴射速度が安定しない。一部のランタノイド系元素の酸化物を含む酸化イットリウム粒子は燃焼フレーム炎の外側で噴射され、一部は中心まで到達してから噴射される。同じ燃焼フレーム炎でも外側と内側とでは燃焼温度が若干異なる。可及的に同じ温度条件および同じ噴射速度で成膜することにより、「粒界が確認できる粒子」と「粒界が確認できない粒子」とから成る組織の制御が可能となる。 If the yttrium oxide particle slurry is supplied to the outside of the combustion flame, the injection speed will not be stable. Yttrium oxide particles containing oxides of some lanthanoid elements are injected outside the combustion flame, and some are injected after reaching the center. Even with the same flame flame, the combustion temperature differs slightly between the outside and inside. By forming the film under the same temperature conditions and the same injection speed as much as possible, it is possible to control the structure composed of “particles whose grain boundaries can be confirmed” and “particles whose grain boundaries cannot be confirmed”.
 衝撃焼結法は、燃焼フレーム炎により粒子を噴射して成膜する被膜方法であり、粒子が高速度で衝突し、その衝突による粒子の破砕熱で焼結結合して被膜を形成する方法である。そのため、被膜中のランタノイド系元素の酸化物を含む酸化イットリウム粒子は原料粉末の粒形状より破砕形状となった被膜が形成し易くなる傾向がある。 The impact sintering method is a coating method in which particles are jetted by a combustion flame, and the particles collide at a high speed, and a film is formed by sinter bonding with the crushing heat of the particles caused by the collision. is there. For this reason, yttrium oxide particles containing an oxide of a lanthanoid element in the coating tend to form a coating having a crushed shape rather than the particle shape of the raw material powder.
 また、ランタノイド系元素の酸化物を含む酸化イットリウム粒子の噴射速度を高速に制御し粒子が堆積し始める臨界速度以上に加速することにより、ランタノイド系元素の酸化物を含む酸化イットリウム粒子を溶融させずに成膜することができ、膜密度の高いランタン系元素の酸化物を含む酸化イットリウム被膜を得ることができる。衝撃焼結法は、高速噴射が可能であるため「粒界が確認できない粒子」が得やすい。本発明のように粒界が確認できる粒子の面積率が0~80%である一方、粒界が確認できない粒子の面積率が20~100%であるランタノイド系元素の酸化物を含む酸化イットリウム被膜を効率的に得ることができる。 In addition, by controlling the spray speed of yttrium oxide particles containing lanthanoid element oxides at a high speed and accelerating to a critical speed or higher at which particles start to deposit, yttrium oxide particles containing lanthanoid element oxides are not melted. An yttrium oxide film containing an oxide of a lanthanum element having a high film density can be obtained. Since the impact sintering method enables high-speed injection, it is easy to obtain “particles whose grain boundaries cannot be confirmed”. An yttrium oxide coating film containing an oxide of a lanthanoid element in which the area ratio of particles in which grain boundaries can be confirmed as in the present invention is 0 to 80%, while the area ratio of particles in which grain boundaries cannot be confirmed is 20 to 100% Can be obtained efficiently.
 また、「粒界が確認できる粒子」および「粒界が確認できない粒子」の生成割合の制御方法として、ノズルから基材までの噴射距離Lを調整することも効果的である。前述のように衝撃焼結法は、燃焼フレーム炎を使用してランタノイド系元素の酸化物を含む酸化イットリウム粒子を高速噴射し、衝突時の粒子の破壊熱を利用して焼結結合して堆積させる方法である。 It is also effective to adjust the injection distance L from the nozzle to the base material as a method of controlling the generation ratio of “particles whose grain boundaries can be confirmed” and “particles whose grain boundaries cannot be confirmed”. As described above, the impact sintering method uses a combustion flame flame to inject yttrium oxide particles containing an oxide of a lanthanoid element at high speed, and sinter-bond by using the heat of fracture of the particles at the time of collision. It is a method to make.
 一旦、燃焼フレーム炎で温められたランタノイド系元素の酸化物を含む酸化イットリウム粒子を溶融した偏平形状とさせずに成膜するには、噴射距離Lを100~400mmに調整することが好ましい。噴射距離Lが100mm未満では、距離が近すぎてランタノイド系元素の酸化物を含む酸化イットリウム粒子が破砕されずに焼結結合した被膜が得られ難くなる。一方、噴射距離Lが400mmを超えると、離れすぎているため衝撃力が弱くなり目的とするランタノイド系元素の酸化物を含む酸化イットリウム被膜が得られ難い。前述の噴射速度や原料粉末としてのランタノイド系元素の酸化物を含む酸化イットリウム粒子サイズを制御することにより、溶融・未溶融の組織が制御できる。好ましくは、噴射距離Lは100~200mmである。 In order to form a film without melting and flattening the yttrium oxide particles containing the oxide of the lanthanoid element once heated by the combustion flame, it is preferable to adjust the injection distance L to 100 to 400 mm. When the spray distance L is less than 100 mm, it is difficult to obtain a coating in which the yttrium oxide particles containing the oxide of the lanthanoid element are sintered without being crushed because the distance is too short. On the other hand, when the spray distance L exceeds 400 mm, the impact force is weakened because it is too far away, and it is difficult to obtain a target yttrium oxide film containing an oxide of a lanthanoid element. By controlling the spray speed and the size of the yttrium oxide particles containing the oxide of the lanthanoid element as the raw material powder, the melted / unmelted structure can be controlled. Preferably, the injection distance L is 100 to 200 mm.
 ランタノイド系元素の酸化物を含む酸化イットリウム粒子スラリーは、原料粉末として平均粒径が0.05~5μmであるランタノイド系元素の酸化物を含む酸化イットリウム粒子を含有するスラリーが好ましい。スラリー化するための溶媒は、メチルアルコールやエチルアルコールなどの比較的揮発し易い溶媒が好ましい。 The yttrium oxide particle slurry containing the lanthanoid element oxide is preferably a slurry containing yttrium oxide particles containing the lanthanoid element oxide having an average particle size of 0.05 to 5 μm as a raw material powder. The solvent for slurrying is preferably a solvent that is relatively volatile, such as methyl alcohol or ethyl alcohol.
 ランタノイド系元素の酸化物を含む酸化イットリウム粒子は、十分粉砕して粗大粒子が無い状態にしてから溶媒と混合することが好ましい。例えば、粒径が20μm以上の粗大粒子があると均一な膜を得にくくなる。また、スラリー中の酸化イットリウム粒子は30~80vol%が好ましい。適度な流動性を有するスラリーである方が供給口への供給がスムーズとなり、供給量が安定するため均一な膜が得られる。 It is preferable that the yttrium oxide particles containing the oxide of the lanthanoid element are mixed with a solvent after being sufficiently pulverized and free of coarse particles. For example, if there are coarse particles having a particle size of 20 μm or more, it is difficult to obtain a uniform film. The yttrium oxide particles in the slurry are preferably 30 to 80 vol%. When the slurry has an appropriate fluidity, the supply to the supply port becomes smoother and the supply amount is stabilized, so that a uniform film can be obtained.
 このような衝撃焼結法を用いれば、原料粉末(ランタノイド系元素の酸化物を含む酸化イットリウム粒子スラリー)の結晶構造は単斜晶に変化させたランタノイド系元素の酸化物を含む酸化イットリウム被膜を構成することができる。例えば、酸化イットリウムは常温では立方晶である。燃焼フレーム炎のような高温に晒されると結晶構造が変化するが、衝撃焼結法は高速噴射できるので単斜晶に変化させて耐プラズマ性の高いランタノイド系元素の酸化物を含む酸化イットリウム被膜を構成することができる。 If such an impact sintering method is used, the crystal structure of the raw material powder (yttrium oxide particle slurry containing the lanthanoid element oxide) is changed to a monoclinic crystal, and the yttrium oxide film containing the lanthanoid element oxide is formed. Can be configured. For example, yttrium oxide is cubic at room temperature. The crystal structure changes when exposed to high temperatures such as a combustion flame, but the impact sintering method can be sprayed at high speed, so it changes to a monoclinic crystal and contains an oxide of a lanthanoid element with high plasma resistance. Can be configured.
 上記構成によれば、プラズマエッチング装置用部品における耐プラズマ性が著しく向上し、パーティクル低減と不純物汚染の低減、さらに部品使用の長寿命化を可能とする。このため、このようなプラズマエッチング装置用部品を用いたプラズマエッチング装置であれば、プラズマエッチング工程中におけるパーティクルの発生および部品交換回数の低減が可能となる。 According to the above configuration, the plasma resistance of the parts for the plasma etching apparatus is remarkably improved, and it is possible to reduce particles, reduce impurity contamination, and extend the service life of the parts. For this reason, if it is a plasma etching apparatus using such a part for plasma etching apparatuses, it will become possible to generate particles and reduce the number of parts replacement during the plasma etching process.
 また、衝撃焼結法により粒子を高速で吹付け、その衝突エネルギーで粒子を堆積しているため、構成部品に被膜を堆積する場合にはブラスト処理が不要となり、ブラスト材の残留や表面欠陥の発生が無いことにより、被膜の密着性が向上している。これは、粒子の高速衝突で構成部品の表面酸化被膜が破壊され、活性面が露出したことにより、部品表面に直接被膜が形成され、その後の粒子衝突によって粒子破壊による発熱で粒子間において接合が起こり、被膜として形成されるものと考えられる。 In addition, since particles are sprayed at a high speed by the impact sintering method, and the particles are deposited with the impact energy, blasting is not necessary when depositing a coating on a component, and residual blasting material or surface defects The absence of generation improves the adhesion of the coating. This is because the surface oxide film of the component is destroyed by high-speed collision of particles, and the active surface is exposed, so that a film is formed directly on the surface of the part. It is thought that it occurs and is formed as a film.
 したがって、部品上に堆積する酸化イットリウム被膜の剥離によるパーティクルの発生を効果的に抑制することができると共に、装置クリーニングや部品交換の回数を大幅に減少させることができる。また、パーティクル発生量の低減は、半導体製造装置でエッチングや成膜する各種の薄膜、さらにはそれを用いた素子や部品の歩留り向上に大きく寄与する。また、装置クリーニングや部品交換回数の低減、ブラスト処理の不要化による部品の使用寿命の延長は、生産性の向上ならびにエッチングコストの削減に大きく寄与する。 Therefore, the generation of particles due to the peeling of the yttrium oxide film deposited on the parts can be effectively suppressed, and the number of times of device cleaning and part replacement can be greatly reduced. In addition, the reduction in the amount of generated particles greatly contributes to the improvement of the yield of various thin films that are etched and formed by a semiconductor manufacturing apparatus, and further, the elements and components using the thin films. In addition, extending the service life of parts by reducing the number of times of device cleaning and parts replacement and eliminating the need for blasting will greatly contribute to the improvement of productivity and the reduction of etching costs.
 以下、本発明の実施形態について以下の実施例を参照して、より詳細に説明する。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the following examples.
 (実施例1~8および比較例1)
 燃焼フレーム型噴射装置を用いて衝撃焼結法により、アルミナ製基材(300mm×3mm)上に、表1に示す条件で酸化イットリウムに各種の酸化物セラミックスを添加して被膜を形成してプラズマ装置用部品とした。酸化イットリウム粒子及び他の酸化物粒子スラリーの溶媒はいずれもエチルアルコールとした。また、用いる原料粉末はいずれも純度が99.9%以上である高純度酸化物粒子を使用した。また、原料粉末としてのY粒子は立方晶であり、十分な粉砕および篩分けにより10μmを超える粗大粒子がない原料粉末を使用した。
(Examples 1 to 8 and Comparative Example 1)
Plasma is formed by adding various oxide ceramics to yttrium oxide under the conditions shown in Table 1 on an alumina substrate (300 mm x 3 mm) by an impact sintering method using a combustion frame type injection device. It was set as equipment parts. The solvent of yttrium oxide particles and other oxide particle slurries was ethyl alcohol. The raw material powder used was high-purity oxide particles having a purity of 99.9% or more. Further, Y 2 O 3 particles as the raw material powder is cubic, using raw material powder no coarse particles of more than 10μm by sufficient grinding and sieving.
 また、比較例1は平均粒径が14μmである酸化イットリウム粉末を原料として、プラズマ溶射法により成膜したものである。
Figure JPOXMLDOC01-appb-T000001
Comparative Example 1 is a film formed by plasma spraying using yttrium oxide powder having an average particle size of 14 μm as a raw material.
Figure JPOXMLDOC01-appb-T000001
 次に各実施例および比較例において形成した各酸化イットリウム被膜について、膜密度、粒界が確認できる粒子の面積比、粒界が確認できない粒子の面積比、各酸化イットリウム被膜中の粒界が確認できる粒子の平均粒径および結晶構造を分析した。 Next, for each yttrium oxide film formed in each example and comparative example, the film density, the area ratio of the particles where the grain boundary can be confirmed, the area ratio of the particles where the grain boundary cannot be confirmed, the grain boundary in each yttrium oxide film is confirmed The average particle size and crystal structure of the resulting particles were analyzed.
 膜密度は、膜断面の合計の単位面積が200μm×200μmとなるように拡大写真(500倍)を撮り、そこに写る気孔の割合から求めた。また、粒界が確認できる粒子および粒界が確認できない粒子の面積比は、被膜表面における単位面積20μm×20μmの拡大写真(倍率5000倍)を撮り、酸化イットリウム粒子1個の粒界の分かるものを「粒界が確認できる粒子」、粒界が結合して分からないものを「粒界が確認できない粒子」として面積比を求めた。この作業を任意の3ヵ所について行い、その平均値を「粒界が確認できる粒子」および「粒界が確認できない粒子」の面積比(%)とした。また、同じ拡大写真を使用して「粒界が確認できる粒子」の平均粒径を求めた。 The film density was obtained from the ratio of pores appearing in an enlarged photograph (500 times) so that the total unit area of the film cross section was 200 μm × 200 μm. In addition, the area ratio between the particles where the grain boundaries can be confirmed and the particles where the grain boundaries cannot be confirmed is obtained by taking an enlarged photograph (magnification 5000 times) of a unit area of 20 μm × 20 μm on the coating surface to understand the grain boundary of one yttrium oxide particle. The area ratio was determined as “particles whose grain boundaries can be confirmed” and those whose grain boundaries are not bonded and understood as “particles whose grain boundaries cannot be confirmed”. This operation was performed at three arbitrary locations, and the average value was defined as the area ratio (%) of “particles where grain boundaries could be confirmed” and “particles where grain boundaries could not be confirmed”. In addition, the same enlarged photograph was used to determine the average particle size of “particles whose grain boundaries can be confirmed”.
 また、XRD分析法により結晶構造を調査した。XRD分析はCuターゲットを使用し管電圧40kV、管電流40mAの条件で実施し、立方晶の最強ピークIcに対する単斜晶の最強ピークImの比(Im/Ic)を調査した。その結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
In addition, the crystal structure was investigated by XRD analysis. XRD analysis was performed using a Cu target under the conditions of a tube voltage of 40 kV and a tube current of 40 mA, and the ratio of the strongest peak Im of the monoclinic crystal to the strongest peak Ic of the cubic crystal (Im / Ic) was investigated. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 上記表2に示す結果から明らかなように、各実施例に係るランタノイド系元素の酸化物を含む酸化イットリウム被膜は膜密度が高く、「粒界が確認できる粒子」の割合(面積比)が0~80%の範囲内であった。また、衝撃焼結法を用いることにより原料粉末のサイズより、やや小さい粒子となっていた。また、必要以上に溶融されていないので結晶構造も原料粉末と同じであった。 As is clear from the results shown in Table 2 above, the yttrium oxide film containing the oxide of the lanthanoid element according to each example has a high film density, and the ratio (area ratio) of “particles whose grain boundaries can be confirmed” is 0. It was in the range of ˜80%. Moreover, it became the particle | grains a little smaller than the size of raw material powder by using the impact sintering method. Further, since it was not melted more than necessary, the crystal structure was the same as that of the raw material powder.
 また、実施例1~8における酸化イットリウム被膜の表面粗さRaは、いずれも0.5μm以下であった。また、比較例1における被膜の表面粗さRaは3.1μmであった。 In addition, the surface roughness Ra of the yttrium oxide coating in each of Examples 1 to 8 was 0.5 μm or less. Moreover, the surface roughness Ra of the film in Comparative Example 1 was 3.1 μm.
 次に、各実施例および比較例に係るプラズマエッチング装置用部品を、プラズマエッチング装置内に配置し、CF(50sccm)+O(20sccm)+Ar(50sccm)の混合エッチングガスに晒した。エッチングチャンバー内を10mTorrに設定し、出力300W(バイアス100W)として、2時間連続稼働させた後に、各酸化イットリウム被膜に対して、ピーリング評価として、テープ引き剥がし法による脱落付着粒子の付着面積率を測定した。具体的には、各酸化イットリウム被膜に導電性カーボンテープを貼り付けた後にテープを剥がし、テープをSEM観察して125μm×95μmの視野に存在する各酸化イットリウム粒子の面積を測定した。また、前記試験を実施する前後における部品の重量変化を測定し、単位面積当りの重量減少を求めた。その結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
Next, the components for the plasma etching apparatus according to each example and comparative example were placed in the plasma etching apparatus and exposed to a mixed etching gas of CF 4 (50 sccm) + O 2 (20 sccm) + Ar (50 sccm). After setting the inside of the etching chamber to 10 mTorr and continuously operating for 2 hours at an output of 300 W (bias 100 W), as an evaluation of the peeling for each yttrium oxide coating, It was measured. Specifically, after applying a conductive carbon tape to each yttrium oxide film, the tape was peeled off, and the tape was observed with an SEM to measure the area of each yttrium oxide particle existing in a 125 μm × 95 μm visual field. Also, the weight change of the parts before and after the test was measured to determine the weight reduction per unit area. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
 また各酸化イットリウム被膜の体積抵抗率を、室温(25℃)にて、4端子法(JIS K 7194準拠)により測定した結果、1.2~1.5X1012Ω・cmの範囲であった。 Further, the volume resistivity of each yttrium oxide film was measured at room temperature (25 ° C.) by a four-terminal method (conforming to JIS K 7194), and as a result, it was in the range of 1.2 to 1.5 × 10 12 Ω · cm.
 前記表3に示す結果から明らかなように、各実施例に係るプラズマ装置用部品は、プラズマアタックおよびラジカルアタックに対して強い耐性を有することが判明した。プラズマアタックおよびラジカルアタックに対して強い耐性を有するということは、ドライエッチング装置に用いた場合にパーティクルの発生を効果的に抑制できることを意味するものである。これらの効果は、酸化イットリウムにランタン系酸化物を添加した場合にさらに向上している。 As is apparent from the results shown in Table 3, it was found that the plasma device parts according to each example had strong resistance to plasma attack and radical attack. Having strong resistance to plasma attack and radical attack means that the generation of particles can be effectively suppressed when used in a dry etching apparatus. These effects are further improved when a lanthanum oxide is added to yttrium oxide.
 以上の実施例では基材がアルミナセラミックスから成る場合で例示しているが、金属製の基材を使用した場合においても同等の効果が発揮されることが実験により確認されている。 In the above examples, the case where the base material is made of alumina ceramic is exemplified, but it has been confirmed by experiments that the same effect is exhibited even when a metal base material is used.
 以上説明したように、本発明に係るプラズマ装置用部品によれば、構成部品から発生するパーティクルを安定的にかつ効果的に防止できる。また、腐食性ガスの活性ラジカルに対する被膜の腐食が抑制されるため、被膜からのパーティクル発生防止が可能となり、腐食生成物の低減とともに、脱落防止によるパーティクル発生の抑制が可能となる。したがって、プラズマ装置用部品のクリーニングや部品の交換回数を削減することができる。 As described above, according to the plasma device component of the present invention, particles generated from the component can be stably and effectively prevented. Further, since the corrosion of the coating film against the active radicals of the corrosive gas is suppressed, it is possible to prevent the generation of particles from the coating film, and it is possible to suppress the generation of particles by reducing the corrosion products and preventing the falling off. Therefore, it is possible to reduce the number of times of cleaning the plasma device parts and replacing the parts.
1…プラズマ処理装置用部品
2…ランタノイド系元素の酸化物を含む酸化イットリウム被膜
3…基材
4…粒界が確認できないランタノイド系元素の酸化物を含む酸化イットリウム粒子
5…粒界が確認できるランタノイド系元素の酸化物を含む酸化イットリウム粒子
DESCRIPTION OF SYMBOLS 1 ... Plasma processing apparatus component 2 ... Yttrium oxide film 3 containing oxide of lanthanoid element 3 ... Base material 4 ... Yttrium oxide particle containing oxide of lanthanoid element in which grain boundary cannot be confirmed 5 ... Lanthanoid in which grain boundary can be confirmed Yttrium oxide particles containing oxides

Claims (19)

  1. 基材が金属またはセラミックスから成り、この基材上の最表面に形成された酸化イットリウム被膜を有し、この酸化イットリウム被膜は、La,Ce,Sm,Dy,Gd,Er,Ybから成るランタノイド系元素から選択された少なくとも1種を酸化物換算で1~8質量%含有していることを特徴とするプラズマ装置用部品。 The base material is made of metal or ceramic, and has an yttrium oxide film formed on the outermost surface of the base material. The yttrium oxide film is made of La, Ce, Sm, Dy, Gd, Er, Yb. A plasma device component comprising 1 to 8% by mass of at least one element selected from elements in terms of oxide.
  2. 基材が金属またはセラミックスから成り、この基材上の最表面には、膜厚が10μm以上であり、膜密度が90%以上であり、単位面積20μm×20μm中に存在する粒界が確認できる粒子の面積率が0~80%である一方、粒界が確認できない粒子の面積率が20~100%であるランタノイド系元素の酸化物を含む酸化イットリウム被膜を有していることを特徴とする請求項1に記載のプラズマ装置用部品。 The substrate is made of metal or ceramics. On the outermost surface of the substrate, the film thickness is 10 μm or more, the film density is 90% or more, and a grain boundary existing in a unit area of 20 μm × 20 μm can be confirmed. It has an yttrium oxide film containing an oxide of a lanthanoid element having an area ratio of particles of 0 to 80%, and an area ratio of particles having no grain boundary of 20 to 100%. The component for a plasma device according to claim 1.
  3. 基材が金属電極を備えたセラミックスから成り、この基材上の最表面に前記ランタノイド系元素の酸化物を含む酸化イットリウム被膜を有していることを特徴とする請求項1乃至2のいずれか1項に記載のプラズマ装置用部品。 The base material is made of ceramics provided with a metal electrode, and has an yttrium oxide film containing an oxide of the lanthanoid element on the outermost surface of the base material. Item 1. A plasma device component according to item 1.
  4. 前記のランタノイド系元素の酸化物を含む酸化イットリウム被膜は、衝撃焼結法により形成されたランタノイド系元素の酸化物を含む酸化イットリウム被膜であることを特徴とする請求項1乃至3のいずれか1項に記載のプラズマ装置用部品。 4. The yttrium oxide film containing an oxide of a lanthanoid element is an yttrium oxide film containing an oxide of a lanthanoid element formed by an impact sintering method. The plasma device component according to Item.
  5. 前記のランタノイド系元素の酸化物を含む酸化イットリウム被膜を形成する粒子は、全体の平均粒径が5μm以下であることを特徴とする請求項1乃至4のいずれか1項に記載のプラズマ装置用部品。 5. The plasma device according to claim 1, wherein the particles forming the yttrium oxide film containing an oxide of the lanthanoid element have an overall average particle diameter of 5 μm or less. parts.
  6. 前記のランタノイド系元素の酸化物を含む酸化イットリウム被膜を形成する粒子は、粒径が1μm以下の微粒子を含むことを特徴とする請求項1乃至5のいずれか1項に記載のプラズマ装置用部品。 6. The plasma device component according to claim 1, wherein the particles forming the yttrium oxide film containing an oxide of the lanthanoid-based element include fine particles having a particle size of 1 μm or less. .
  7. 前記ランタノイド系元素の酸化物を含む酸化イットリウム被膜は膜厚が10~200μmであり、膜密度が99%以上100%以下であることを特徴とする請求項1乃至6のいずれか1項に記載のプラズマ装置用部品。 7. The yttrium oxide film containing an oxide of the lanthanoid element has a thickness of 10 to 200 μm and a film density of 99% to 100%. For plasma equipment.
  8. 前記の粒界が確認できるランタノイド系元素の酸化物を含む酸化イットリウム粒子は平均粒径が2μm以下であることを特徴とする請求項2に記載のプラズマ装置用部品。 The plasma device component according to claim 2, wherein the yttrium oxide particles containing an oxide of a lanthanoid element in which the grain boundary can be confirmed have an average particle size of 2 μm or less.
  9. 前記ランタノイド系元素の酸化物を含む酸化イットリウム粒子の平均粒径が0.05~5μmであることを特徴とする請求項1乃至8のいずれか1項に記載のプラズマ装置用部品。 9. The plasma device component according to claim 1, wherein an average particle diameter of the yttrium oxide particles containing the oxide of the lanthanoid element is 0.05 to 5 μm.
  10. 前記のランタノイド系元素の酸化物を含む酸化イットリウム被膜を形成する粒子は、平均粒径が1μm以下の微粒子を含み、全体の平均粒径が5μm以下であることを特徴とする請求項1乃至9のいずれか1項に記載のプラズマ装置用部品。 10. The particles forming the yttrium oxide film containing the oxide of the lanthanoid element include fine particles having an average particle size of 1 μm or less, and the overall average particle size is 5 μm or less. The plasma device component according to any one of the above.
  11. 前記ランタノイド系元素の酸化物を含む酸化イットリウム粒子の平均粒径が0.05~5μmであることを特徴とする請求項1乃至10のいずれか1項に記載のプラズマ装置用部品。 The plasma device component according to any one of claims 1 to 10, wherein an average particle diameter of the yttrium oxide particles containing the oxide of the lanthanoid element is 0.05 to 5 µm.
  12. 前記ランタノイド系元素の酸化物を含む酸化イットリウム被膜をXRD分析したとき、立方晶の最強ピークIcに対する単斜晶の最強ピークImの比(Im/Ic)が0.2~0.6であることを特徴とする請求項1乃至11のいずれか1項に記載のプラズマ装置用部品。 When an XRD analysis of the yttrium oxide film containing the oxide of the lanthanoid element is performed, the ratio of the strongest peak Im of the monoclinic crystal to the strongest peak Ic of the cubic crystal (Im / Ic) is 0.2 to 0.6 The component for a plasma device according to any one of claims 1 to 11, wherein:
  13. 前記ランタノイド系元素の酸化物を含む酸化イットリウム被膜は、研磨処理によって表面粗さRaが0.5μm以下にされていることを特徴とする請求項1乃至12のいずれか1項に記載のプラズマ装置用部品。 13. The plasma apparatus according to claim 1, wherein the yttrium oxide film containing the oxide of the lanthanoid element has a surface roughness Ra of 0.5 μm or less by a polishing process. Parts.
  14. 衝撃焼結法によりランタノイド系元素の酸化物を含む酸化イットリウム被膜を形成したプラズマエッチング装置用部品の製造方法において、燃焼フレーム炎にランタノイド系元素の酸化物を含む酸化イットリウム粒子を含むスラリーを供給する工程と、ランタノイド系元素の酸化物を含む酸化イットリウム粒子を噴射速度400~1000m/secで基材上に噴射させる工程とを具備することを特徴とするプラズマ装置用部品の製造方法。 In a method for manufacturing a plasma etching apparatus component in which an yttrium oxide film containing an oxide of a lanthanoid element is formed by impact sintering, a slurry containing yttrium oxide particles containing an oxide of a lanthanoid element is supplied to a combustion flame. And a step of injecting yttrium oxide particles containing an oxide of a lanthanoid element element onto a substrate at an injection speed of 400 to 1000 m / sec.
  15. 前記スラリーに含まれるランタノイド系元素の酸化物を含む酸化イットリウム粒子は、純度が99.9%以上のランタノイド系元素の酸化物を含む酸化イットリウム粒子であることを特徴とする請求項14に記載のプラズマ装置用部品の製造方法。 The yttrium oxide particles containing an oxide of a lanthanoid element contained in the slurry are yttrium oxide particles containing an oxide of a lanthanoid element having a purity of 99.9% or more. A method for manufacturing a plasma device component.
  16. 前記ランタノイド系元素の酸化物を含む酸化イットリウム粒子の平均粒径が0.05~5μmであることを特徴とする請求項14乃至15のいずれか1項に記載のプラズマ装置用部品の製造方法。 16. The method for producing a plasma device component according to claim 14, wherein an average particle diameter of the yttrium oxide particles containing the oxide of the lanthanoid element is 0.05 to 5 μm.
  17. 前記ランタノイド系元素の酸化物を含む酸化イットリウム被膜の膜厚が10μm以上であることを特徴とする請求項14乃至16のいずれか1項に記載のプラズマ装置用部品の製造方法。 17. The method for manufacturing a component for a plasma device according to claim 14, wherein a film thickness of the yttrium oxide film containing the oxide of the lanthanoid element is 10 μm or more.
  18. 前記ランタノイド系元素の酸化物を含む酸化イットリウム粒子を含むスラリーを燃焼フレーム炎の中心に供給することを特徴とする請求項14乃至17のいずれか1項に記載のプラズマ装置用部品の製造方法。 The method for manufacturing a component for a plasma device according to any one of claims 14 to 17, wherein a slurry containing yttrium oxide particles containing an oxide of the lanthanoid element is supplied to the center of the combustion flame.
  19. 前記ランタノイド系元素の酸化物を含む酸化イットリウム粒子を含むスラリーを供給する燃焼フレームの温度は、供給するランタノイド系元素の酸化物を含む酸化イットリウム粒子の沸点未満とすることを特徴とする請求項14乃至18のいずれか1項に記載のプラズマ装置用部品の製造方法。 The temperature of the combustion flame that supplies the slurry containing yttrium oxide particles containing the oxide of the lanthanoid element is less than the boiling point of the yttrium oxide particles containing oxide of the lanthanoid element supplied. The manufacturing method of the components for plasma apparatuses of any one of thru | or 18.
PCT/JP2014/081189 2013-11-29 2014-11-26 Plasma device part and manufacturing method therefor WO2015080134A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015550947A JP6526568B2 (en) 2013-11-29 2014-11-26 Parts for plasma apparatus and method for manufacturing the same
KR1020167013892A KR101807444B1 (en) 2013-11-29 2014-11-26 Plasma device part and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013248235 2013-11-29
JP2013-248235 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080134A1 true WO2015080134A1 (en) 2015-06-04

Family

ID=53199074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081189 WO2015080134A1 (en) 2013-11-29 2014-11-26 Plasma device part and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP6526568B2 (en)
KR (1) KR101807444B1 (en)
WO (1) WO2015080134A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715004B (en) * 2018-04-03 2021-01-01 日商京瓷股份有限公司 Component for plasma processing device, plasma processing device provided with the same, and manufacturing method of component for plasma processing device
KR102371936B1 (en) * 2019-12-04 2022-03-08 한국세라믹기술원 Coating method of semiconductor parts with excellent plasma erosion resistance and mechanical properties
KR102209860B1 (en) * 2020-10-20 2021-01-29 와이엠씨 주식회사 Surface treatment method of internal parts for plasma processing equipment used in manufacturing display panels
KR102439674B1 (en) * 2022-07-25 2022-09-02 주식회사 코닉스 Alumina ceramics material having improvement of plasma-resistant characteristic, and manufacturing apparatus of the alumina ceramics material having improvement of plasma-resistant characteristic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045461A (en) * 1996-07-31 1998-02-17 Kyocera Corp Corrosion resistant member
JP2010064937A (en) * 2008-09-12 2010-03-25 Covalent Materials Corp Ceramic for plasma treatment apparatuses
JP2012191200A (en) * 2011-02-25 2012-10-04 Toshiba Corp Plasma processing apparatus
WO2013176168A1 (en) * 2012-05-22 2013-11-28 株式会社東芝 Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510358B2 (en) * 2002-03-27 2010-07-21 太平洋セメント株式会社 Electrostatic chuck and manufacturing method thereof
JP4780932B2 (en) * 2004-05-25 2011-09-28 京セラ株式会社 Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
JP5284227B2 (en) 2009-09-07 2013-09-11 日本特殊陶業株式会社 Electrostatic chuck and method for manufacturing electrostatic chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045461A (en) * 1996-07-31 1998-02-17 Kyocera Corp Corrosion resistant member
JP2010064937A (en) * 2008-09-12 2010-03-25 Covalent Materials Corp Ceramic for plasma treatment apparatuses
JP2012191200A (en) * 2011-02-25 2012-10-04 Toshiba Corp Plasma processing apparatus
WO2013176168A1 (en) * 2012-05-22 2013-11-28 株式会社東芝 Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus

Also Published As

Publication number Publication date
KR20160075725A (en) 2016-06-29
JPWO2015080134A1 (en) 2017-03-16
JP6526568B2 (en) 2019-06-05
KR101807444B1 (en) 2017-12-08

Similar Documents

Publication Publication Date Title
JP6117195B2 (en) Parts for plasma processing apparatus and method for manufacturing parts for plasma processing apparatus
WO2015151857A1 (en) Plasma-resistant component, method for manufacturing plasma-resistant component, and film deposition device used to manufacture plasma-resistant component
JP5674479B2 (en) Yttrium-containing ceramic coating resistant to reducing plasma
KR101453706B1 (en) Component for plasma etching apparatus and method for manufacturing of component for plasma etching apparatus
JP2012191200A (en) Plasma processing apparatus
CN105492649A (en) Plasma spray coating process enhancement for critical chamber components
TWI546415B (en) Thermal spray powder and coating containing rare earth element and member with the coating
WO2015080134A1 (en) Plasma device part and manufacturing method therefor
KR20080039316A (en) Thermal spray powder and method for forming thermal spray coating
JP5566891B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JP4560387B2 (en) Thermal spray powder, thermal spraying method and thermal spray coating
TWI733897B (en) Materials for spraying
JP6526569B2 (en) Parts for plasma apparatus and method for manufacturing the same
JP7122206B2 (en) thermal spray film
TW202144597A (en) Novel tungsten-based thermal-sprayed coating and thermal-spraying material for obtaining the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550947

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167013892

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14865028

Country of ref document: EP

Kind code of ref document: A1