JPH104218A - Porous structure thermoelectric element and manufacture thereof - Google Patents

Porous structure thermoelectric element and manufacture thereof

Info

Publication number
JPH104218A
JPH104218A JP8154163A JP15416396A JPH104218A JP H104218 A JPH104218 A JP H104218A JP 8154163 A JP8154163 A JP 8154163A JP 15416396 A JP15416396 A JP 15416396A JP H104218 A JPH104218 A JP H104218A
Authority
JP
Japan
Prior art keywords
type
fesi
phase
porous
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8154163A
Other languages
Japanese (ja)
Inventor
Masayuki Kato
雅之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP8154163A priority Critical patent/JPH104218A/en
Publication of JPH104218A publication Critical patent/JPH104218A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous structure thermoelectric element, having a short heat treatment time for formation of βphase and a simple manufacturing process, and the manufacturing method of the above-mentioned thermoelectric element. SOLUTION: In a porous structure thermoelectric element 1 provided with a β-FeSi2 phase p-n type element 2 and α-FeSi2 phase p-type electrode parts 4 and 5, a p-n type element forming part is formed by adding accelerator for changing phase to the α-FeSi2 which is adjusted to p-type and n-type. An α-FeSi2 electrode forming part, which is adjusted to p-type and n-type, is formed directly above the p-n type element forming part, and then the electrode forming part is sintered and solidified, and heat treatment is conducted on the above- mentioned p-n type element forming part for the purpose of changing to β-phase from α-phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポーラス構造熱電
素子及びその製造方法に係り、特に、FeSi2 を用い
たポーラス構造熱電素子及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric element having a porous structure and a method for manufacturing the same, and more particularly, to a thermoelectric element having a porous structure using FeSi 2 and a method for manufacturing the same.

【0002】[0002]

【従来の技術】通気性のあるポーラス構造素子体中に可
燃性ガスを流し込み、その可燃性ガスの出口(下流)側
のポーラス構造素子体表面において燃焼させる。これに
よって、可燃性ガスの燃焼部(下流側)は、火炎によっ
て高温になる。通常は、高温側から低温側への熱伝搬に
よって温度勾配が形成されるが、この場合、熱伝搬とは
逆の方に低温のガスが常に供給されているため熱伝搬は
起こらず、可燃性ガスの入口(上流)側と可燃性ガスの
出口(下流)側との温度差は通常のバルク体(塊)より
も大きくなるという理論が提案されている。この現象を
熱電発電に応用することで発電効率を向上させる方法が
行われている(特開平7−221353号公報など)。
2. Description of the Related Art A combustible gas is poured into a porous structure element having air permeability, and is burned on the surface of the porous structure element at the outlet (downstream) side of the combustible gas. As a result, the combustion portion (downstream side) of the combustible gas becomes hot due to the flame. Normally, a temperature gradient is formed by heat propagation from the high-temperature side to the low-temperature side.In this case, heat propagation does not occur because the low-temperature gas is always supplied in the opposite direction to the heat propagation, and flammable A theory has been proposed that the temperature difference between the gas inlet (upstream) side and the combustible gas outlet (downstream) side is larger than that of a normal bulk body (lumps). A method of improving the power generation efficiency by applying this phenomenon to thermoelectric power generation has been performed (Japanese Patent Application Laid-Open No. Hei 7-221353).

【0003】現有する熱電材料中、このポーラス燃焼に
最適な材料として、高温大気中で安定なFeSi2 が挙
げられる。FeSi2 を用いたポーラス構造熱電素子の
作製方法として、球状粉末を焼結する方法がある。
[0003] Among the existing thermoelectric materials, the most suitable material for the porous combustion is FeSi 2 which is stable in a high-temperature atmosphere. As a method of manufacturing a porous thermoelectric element using FeSi 2 , there is a method of sintering a spherical powder.

【0004】この時、温度差によって発電した電力を取
り出すべくFeSi2 ポーラス構造素子体に電極を取り
付けて(接合して)いるが、この電極は集電効果のある
低抵抗な材料であることは勿論のこと、可燃性ガスを通
気させるべく多孔質の構造を有していることが必要であ
る。また、電極材料として、FeSi2 と熱膨張係数が
同じ材料がベストであることは言うまでもないが、熱膨
張係数が完全に同一な材料はなく、熱膨張係数が同程度
のステンレス(例えば、SUS304)などを用いてい
る。
At this time, an electrode is attached (joined) to the FeSi 2 porous structure element to take out the electric power generated by the temperature difference, but this electrode is a low-resistance material having a current collecting effect. Needless to say, it is necessary to have a porous structure to allow a combustible gas to pass therethrough. Needless to say, as the electrode material, a material having the same thermal expansion coefficient as FeSi 2 is the best, but there is no material having a completely identical thermal expansion coefficient, and stainless steel having the same thermal expansion coefficient (for example, SUS304) And so on.

【0005】ステンレスをFeSi2 ポーラス構造素子
体の電極として用いる場合、熱膨張係数の違いによる応
力を緩和すべくメッシュ状にしている。
[0005] When stainless steel is used as the electrode of the FeSi 2 porous structure element, the mesh is formed in order to reduce the stress due to the difference in thermal expansion coefficient.

【0006】メッシュ状電極の概観を図3に示す。FIG. 3 shows an overview of the mesh electrode.

【0007】図3に示すように、メッシュ状の電極24
は、線材24a,24bを直交させて編込んでなるもの
であり、直交する線材24aと線材24bとは接触して
いるだけである。このため、メッシュ状の電極24を用
いた場合、電極24自体の内部抵抗が大きくなり、低出
力化する。
[0007] As shown in FIG.
Is made by weaving the wires 24a and 24b perpendicularly, and the wires 24a and 24b which are perpendicular to each other are only in contact with each other. For this reason, when the mesh-shaped electrode 24 is used, the internal resistance of the electrode 24 itself increases, and the output is reduced.

【0008】敢えて直交する線材24aと線材24bと
を溶接した場合、電極24自体の内部抵抗は小さくなる
が、縦横への伸縮性がなくなり、応力緩和ができなくな
ると共に、FeSi2 ポーラス構造素子体との接合もで
きなくなる。
[0008] When the wires 24a and 24b, which are orthogonal to each other, are welded, the internal resistance of the electrode 24 itself is reduced, but the stretchability in the vertical and horizontal directions is lost, so that the stress cannot be relaxed and the FeSi 2 porous structure element is not formed. Cannot be joined.

【0009】メッシュ状の電極24とFeSi2 ポーラ
ス構造素子体とを接合する場合、その接触が点接触であ
ると共に、異種材料の接合であるため、その接合部の抵
抗は大きくなってしまう。すなわち、FeSi2 ポーラ
ス構造熱電素子の本来の出力が得られていなかった。
When the mesh electrode 24 is joined to the FeSi 2 porous structure element, the contact is a point contact and the joining is made of different materials, so that the resistance of the joint becomes large. That is, the original output of the FeSi 2 porous thermoelectric element was not obtained.

【0010】[0010]

【発明が解決しようとする課題】ここで、FeSi2
ーラス構造熱電素子においては、α−FeSi2 からな
る電極部とβ−FeSi2 からなる素子部とを一体に形
成したものがある。このFeSi2 ポーラス構造熱電素
子の場合、素子部と電極部との組成が同じであるため、
熱膨張係数も当然同じとなり、接合部における応力は発
生しない。
BRIEF Problems to be Solved] Here, in the FeSi 2 porous structure thermoelectric elements, there is integrally formed with an element portion consisting of the electrode portion and the beta-FeSi 2 consisting of alpha-FeSi 2. In the case of this FeSi 2 porous structure thermoelectric element, since the composition of the element part and the electrode part is the same,
Naturally, the coefficient of thermal expansion is the same, and no stress occurs at the joint.

【0011】また、電極部と素子部とを一体に形成して
あるため、接合部における電極部と素子部との接触は、
ほぼ面接触に近く、接合部における抵抗も小さくなる。
すなわち、メッシュ状の電極を用いたFeSi2 ポーラ
ス構造熱電素子における問題点が解消され、FeSi2
ポーラス構造熱電素子の本来の出力を得ることができる
はずである。
Further, since the electrode portion and the element portion are integrally formed, the contact between the electrode portion and the element portion at the joint portion is
It is almost close to surface contact, and the resistance at the junction is also small.
That is, the problem in the FeSi 2 porous structure thermoelectric element using the mesh electrode is solved, and the FeSi 2
The original output of the porous thermoelectric element should be able to be obtained.

【0012】従来のFeSi2 ポーラス構造熱電素子の
概観を図4に示す。
FIG. 4 shows an outline of a conventional FeSi 2 porous thermoelectric element.

【0013】図4に示すように、従来のFeSi2 ポー
ラス構造熱電素子11は、円板状部11aと横断面ほぼ
半円形状の一対の脚部11b、11cとで構成される。
As shown in FIG. 4, the conventional thermoelectric element 11 having a porous structure of FeSi 2 has a disc-shaped portion 11a and a pair of legs 11b and 11c having a substantially semicircular cross section.

【0014】円板状部11aおよび脚部11b、11c
は、pn型素子部12で構成されており、脚部11bお
よび脚部11cの下端部には、p型電極部14、n型電
極部15がそれぞれ形成されている。pn型素子部12
は、p型素子部12aとn型素子部12bとで構成さ
れ、pn接合部13を介して接合されている。
Disc-shaped part 11a and legs 11b, 11c
Is composed of a pn-type element portion 12, and a p-type electrode portion 14 and an n-type electrode portion 15 are formed at lower ends of the leg portions 11b and 11c, respectively. pn type element section 12
Is composed of a p-type element section 12a and an n-type element section 12b, and is joined via a pn junction section 13.

【0015】従来のFeSi2 ポーラス構造熱電素子の
製造方法のチャート図を図5に示す。
FIG. 5 is a chart showing a method for manufacturing a conventional thermoelectric element having a porous structure of FeSi 2 .

【0016】図5に示すように、FeSi2 ポーラス構
造熱電素子11を作製するための原料粉末はα−FeS
2 粉末であり、α−FeSi2 粉末を型内に充填した
後に圧縮成形してなるα−FeSi2 ポーラス体を焼結
し、ポーラス焼結体を作製する。このポーラス焼結体を
FeSi2 ポーラス構造熱電素子11とするためには、
α−FeSi2 からなる素子形成部をβ−FeSi2
相変態させねばならない。このため、ポーラス構造の焼
結体に熱処理(例えば、大気中、850℃)を施してい
る。
As shown in FIG. 5, the raw material powder for producing the FeSi 2 porous structure thermoelectric element 11 is α-FeS
An α-FeSi 2 porous body, which is an i 2 powder and is formed by filling an α-FeSi 2 powder into a mold and then compression molding, is sintered to produce a porous sintered body. In order to make this porous sintered body a FeSi 2 porous thermoelectric element 11,
The element forming portion made of α-FeSi 2 must be transformed into β-FeSi 2 . For this reason, the sintered body having the porous structure is subjected to heat treatment (for example, at 850 ° C. in the air).

【0017】しかしながら、従来のポーラス構造熱電素
子11の製造方法においては、α−FeSi2 粉末を圧
縮成形後、焼結固化して形成したα−FeSi2 ポーラ
ス焼結体をα相からβ相へと相変態させるための熱処理
に大変長い時間(例えば、50hr)を必要とした。
However, in the conventional method for manufacturing the porous thermoelectric element 11, the α-FeSi 2 porous sintered body formed by compression-molding the α-FeSi 2 powder and then sintering and solidifying is converted from the α phase to the β phase. A very long time (for example, 50 hours) was required for the heat treatment for phase transformation.

【0018】また、その際に、α−FeSi2 からなる
電極形成部もβ−FeSi2 に同時に相変態されるた
め、α−FeSi2 からなる電極部14、15とβ−F
eSi2 からなる素子部12とを一体に形成する場合に
おいては、α−FeSi2 からなる素子形成部をβ−F
eSi2 に相変態させる際に同時に相変態されたβ−F
eSi2 からなる電極形成部に、再度熱処理を加えて、
α−FeSi2 に再変態させる方法がとられている。
Further, at that time, alpha-FeSi 2 made of the electrode forming portion for also simultaneously phase transformation beta-FeSi 2, the electrode portion 14, 15 made of α-FeSi 2 β-F
In the case where the element portion 12 made of eSi 2 is integrally formed, the element formation portion made of α-FeSi 2 is formed as β-F
β-F phase-transformed simultaneously with phase transformation to eSi 2
Heat treatment is again applied to the electrode forming portion made of eSi 2 ,
A method of retransforming into α-FeSi 2 has been adopted.

【0019】すなわち、元々はα−FeSi2 からなる
電極形成部をβ−FeSi2 に変態させ、再度、α−F
eSi2 に変態させるという非効率的な工程を経てポー
ラス構造熱電素子を作製していた。
[0019] That is, originally to transform the electrode forming portion consisting of alpha-FeSi 2 in beta-FeSi 2, again, alpha-F
A porous thermoelectric element has been manufactured through an inefficient process of transforming into eSi 2 .

【0020】そこで本発明は、上記課題を解決し、β相
化のための熱処理時間が短く、かつ、製造工程が簡易な
ポーラス構造熱電素子及びその製造方法を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a porous thermoelectric element having a short heat treatment time for β phase formation and a simple manufacturing process, and a method for manufacturing the same.

【0021】[0021]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、β−FeSi2 相のpn型素子部
と、α−FeSi2 相のp型とn型の電極部とを備えた
ポーラス構造熱電素子において、p型とn型に調整した
α−FeSi2 に相変態促進材をそれぞれ添加してpn
型素子形成部を形成し、そのpn型素子形成部の直上
に、p型とn型に調整したα−FeSi2 で電極形成部
をそれぞれ形成し、その後、焼結固化すると共に、上記
pn型素子形成部のみをα相からβ相に相変態するため
の熱処理を施したものである。
In order to solve the above-mentioned problems, the invention of claim 1 comprises a pn-type element portion of β-FeSi 2 phase, and a p-type and n-type electrode portion of α-FeSi 2 phase. In the porous thermoelectric element having the above structure, the phase transformation accelerating material is added to the α-FeSi 2 adjusted to the p-type and the n-type, respectively.
Forming a mold element forming part, forming an electrode forming part with α-FeSi 2 adjusted to p-type and n-type immediately above the pn-type element forming part, and then sintering and solidifying the pn-type element forming part. The heat treatment for transforming only the element formation portion from the α phase to the β phase is performed.

【0022】請求項2の発明は、β−FeSi2 相のp
n型素子部と、α−FeSi2 相のp型とn型の電極部
とを備えたポーラス構造熱電素子の製造方法において、
p型とn型に調整したα−FeSi2 に相変態促進材を
それぞれ添加してpn型素子形成部を形成し、そのpn
型素子形成部の直上に、p型とn型に調整したα−Fe
Si2 で電極形成部をそれぞれ形成し、その後、焼結固
化すると共に、上記pn型素子形成部のみをα相からβ
相に相変態するための熱処理を施すようにしたものであ
る。
The invention according to claim 2 is characterized in that the β-FeSi 2 phase
In a method of manufacturing a porous thermoelectric element having an n-type element portion and α-FeSi 2 phase p-type and n-type electrode portions,
A phase transformation accelerating material is added to each of α-FeSi 2 adjusted to p-type and n-type to form a pn-type element forming portion,
Immediately above the mold element formation part, α-Fe adjusted to p-type and n-type
Each of the electrode forming portions is formed of Si 2 , and then sintered and solidified, and only the pn-type element forming portion is changed from the α phase to the β phase.
Heat treatment for phase transformation into a phase is performed.

【0023】請求項3の発明は、上記相変態促進材が、
Pd、Cu、Au、Ruから選択される1種または2種
以上の混合体である請求項1または請求項2記載のポー
ラス構造熱電素子の製造方法である。
According to a third aspect of the present invention, the phase transformation accelerating material is
3. The method for producing a porous thermoelectric element according to claim 1, wherein the porous thermoelectric element is one or a mixture of two or more kinds selected from Pd, Cu, Au, and Ru.

【0024】請求項4の発明は、上記相変態促進材の添
加量が、0.5〜6wt%である請求項1乃至請求項3
記載のポーラス構造熱電素子の製造方法である。
According to a fourth aspect of the present invention, the amount of the phase transformation accelerator added is 0.5 to 6% by weight.
It is a manufacturing method of the porous thermoelectric element of the description.

【0025】上記数値範囲を限定した理由を以下に述べ
る。
The reason for limiting the above numerical range will be described below.

【0026】上記相変態促進材の添加量を0.5〜6w
t%と限定した理由は、相変態促進材の添加量が0.5
wt%より少ないと原料の成分純度のため測定上限界が
あるからであり、相変態促進材の添加量が6wt%より
多いと熱電素子の熱起電力が急激に減少するからであ
る。
The addition amount of the above-mentioned phase transformation accelerator is 0.5 to 6 watts.
The reason for limiting to t% is that the amount of the phase transformation accelerator added is 0.5%.
If the amount is less than wt%, there is a limit in the measurement due to the purity of the components of the raw material, and if the amount of the phase transformation accelerating material is more than 6 wt%, the thermoelectromotive force of the thermoelectric element sharply decreases.

【0027】以上の構成によれば、p型とn型に調整し
たα−FeSi2 に相変態促進材をそれぞれ添加してp
n型素子形成部を形成し、そのpn型素子形成部の直上
に、p型とn型に調整したα−FeSi2 で電極形成部
をそれぞれ形成し、その後、焼結固化すると共に、pn
型素子形成部のみをα相からβ相に相変態するための熱
処理を施すため、β相化のための熱処理時間が短く、か
つ、製造工程が簡易なポーラス構造熱電素子を得ること
ができる。
According to the above-described structure, the p-type and n-type α-FeSi 2 are each added with a phase transformation accelerator to add
An n-type element forming part is formed, and an electrode forming part is formed directly above the pn-type element forming part with α-FeSi 2 adjusted to p-type and n-type.
Since heat treatment for transforming only the mold element forming portion from the α phase to the β phase is performed, a porous thermoelectric element having a short heat treatment time for the β phase and a simple manufacturing process can be obtained.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0029】本発明のポーラス構造熱電素子の概観を図
1に示す。
FIG. 1 shows an overview of the porous thermoelectric element of the present invention.

【0030】図1に示すように、本発明のFeSi2
ーラス構造熱電素子1は、円板状部1aと、その円板状
部1aから下方へ一体的に延出された横断面ほぼ半円形
状の一対の脚部1b、1cとで構成される。そして、脚
部1b、1cの間には、所定の幅を有してスリット状隙
間部が形成される。
As shown in FIG. 1, a thermoelectric element 1 having a porous structure of FeSi 2 according to the present invention has a disk-shaped portion 1a and a substantially semicircular cross-section integrally extending downward from the disk-shaped portion 1a. It is composed of a pair of legs 1b and 1c having a shape. A slit-shaped gap having a predetermined width is formed between the legs 1b and 1c.

【0031】円板状部1aおよび脚部1b、1cの大部
分は、pn型素子部2で構成されており、脚部1bの下
端部および脚部1cの下端部はp型電極部4、n型電極
部5で構成されている。pn型素子部2は、p型素子部
2aとn型素子部2bとで構成され、pn接合部3を介
して接合されている。
Most of the disc-shaped portion 1a and the legs 1b, 1c are constituted by a pn-type element portion 2, and the lower end of the leg 1b and the lower end of the leg 1c are formed by a p-type electrode portion 4, It is composed of an n-type electrode unit 5. The pn-type element section 2 includes a p-type element section 2a and an n-type element section 2b, and is joined via a pn junction section 3.

【0032】p型素子部2aおよびn型素子部2bは、
p型、n型にそれぞれ調整されたα−FeSi2 球状粉
末に、Pd、Cu、Au、Ruから選択される1種また
は2種以上の相変態促進材を添加してなる混合体で構成
される。また、p型電極部4およびn型電極部5は、p
型、n型にそれぞれ調整されたα−FeSi2 球状粉末
で構成される。
The p-type element section 2a and the n-type element section 2b
It is composed of a mixture of α-FeSi 2 spherical powders adjusted to p-type and n-type and one or more phase transformation accelerators selected from Pd, Cu, Au, and Ru added thereto. You. Further, the p-type electrode unit 4 and the n-type electrode unit 5
It is composed of α-FeSi 2 spherical powder adjusted to a type and an n-type, respectively.

【0033】p型素子部2a、n型素子部2b、p型電
極部4、およびn型電極部5を構成するα−FeSi2
球状粉末の粒径は特に限定しないが、150〜250μ
mの粒径のものが特に好ましい。
Α-FeSi 2 constituting the p-type element section 2a, the n-type element section 2b, the p-type electrode section 4, and the n-type electrode section 5
Although the particle size of the spherical powder is not particularly limited,
Those having a particle size of m are particularly preferred.

【0034】p型素子部2aおよびn型素子部2bに添
加される相変態促進材の添加量は、0.5〜6wt%が
望ましく、特に、2wt%が好ましい。
The amount of the phase transformation accelerating material added to the p-type element portion 2a and the n-type element portion 2b is preferably 0.5 to 6% by weight, and particularly preferably 2% by weight.

【0035】次に、本発明の製造方法を説明する。Next, the manufacturing method of the present invention will be described.

【0036】本発明のポーラス構造熱電素子の製造方法
を図2に示す。
FIG. 2 shows a method for manufacturing a porous thermoelectric element according to the present invention.

【0037】図2に示すように、先ず、ポーラス構造熱
電素子の形状とニアネットシェイプの所定の型内に、p
型素子部2aおよびn型素子部2bを構成する原料粉末
として、p型およびn型にそれぞれ調整されたα−Fe
Si2 球状粉末(例えば、粒径が150〜250μm)
に、相変態促進材(例えば、2wt%のPd)を添加し
てなる混合粉末を充填する。次に、その混合粉末の上
に、p型電極部4およびn型電極部5を構成する原料粉
末として、p型およびn型にそれぞれ調整されたα−F
eSi2 球状粉末(例えば、粒径が150〜250μ
m)を充填する。
As shown in FIG. 2, first, the shape of the porous thermoelectric element and p
Α-Fe adjusted to p-type and n-type, respectively, as a raw material powder constituting the n-type element portion 2a and the n-type element portion 2b
Si 2 spherical powder (for example, particle size of 150 to 250 μm)
Is filled with a mixed powder obtained by adding a phase transformation accelerating material (for example, 2 wt% of Pd). Next, on the mixed powder, α-F adjusted to p-type and n-type, respectively, as a raw material powder constituting the p-type electrode portion 4 and the n-type electrode portion 5.
eSi 2 spherical powder (for example, having a particle size of 150 to 250 μm)
m).

【0038】次に、それぞれの粉末が充填された型に圧
縮成形を施し、α−FeSi2 ポーラス体を作製する。
その後、そのα−FeSi2 ポーラス体に焼結(例え
ば、PAS、ホットプレスなど)を施し、α−FeSi
2 ポーラス焼結体を作製する。
Next, the mold filled with each powder is subjected to compression molding to produce an α-FeSi 2 porous body.
Thereafter, the α-FeSi 2 porous body is sintered (for example, PAS, hot press, etc.) to obtain α-FeSi 2
A two- porous sintered body is produced.

【0039】α−FeSi2 ポーラス焼結体におけるp
型素子部2aおよびn型素子部2bは、依然としてα相
であるため、β相化するための熱処理(例えば、大気
中、850℃、1hr)を施す。ここで、p型素子部2
aおよびn型素子部2bには、相変態促進材が添加され
ているため、この熱処理によって容易にβ相化するが、
p型電極部4およびn型電極部5には、相変態促進材が
添加されていないため、この熱処理によってβ相化せず
α相のままである。
P in the α-FeSi 2 porous sintered body
Since the mold element portion 2a and the n-type element portion 2b are still in the α phase, they are subjected to a heat treatment (for example, at 850 ° C., 1 hour in the air) for changing to the β phase. Here, the p-type element section 2
Since the phase transformation promoting material is added to the a and n-type element parts 2b, the β-phase is easily formed by this heat treatment.
Since the p-type electrode portion 4 and the n-type electrode portion 5 do not contain a phase transformation accelerating material, they remain in the α phase without being converted to the β phase by this heat treatment.

【0040】すなわち、α−FeSi2 ポーラス焼結体
に一度の熱処理を施すだけで、ポーラス構造熱電素子の
素子部と電極部とを同時に形成することができる。この
ため、ポーラス構造熱電素子の製造工程が簡易になると
共に、熱処理時間も大幅に短縮され、低コストでポーラ
ス構造熱電素子を作製することができる。
That is, the element portion and the electrode portion of the porous thermoelectric element can be formed simultaneously by performing only one heat treatment on the α-FeSi 2 porous sintered body. For this reason, the manufacturing process of the porous thermoelectric element is simplified, the heat treatment time is significantly reduced, and the porous thermoelectric element can be manufactured at low cost.

【0041】[0041]

【実施例】【Example】

(実施例1)p型素子部の原料粉末として2wt%Pd
添加p型α−FeSi2 (化学組成:Fe0.91Mn0.09
Si2 )粉末、n型素子部の原料粉末として2wt%P
d添加n型α−FeSi2 (化学組成:Fe0.97Co
0.03Si2 )粉末、p型電極部の原料粉末としてp型α
−FeSi2 粉末、n型電極部の原料粉末としてn型α
−FeSi2 粉末を用い、順次、所定の型内に充填した
後、圧縮成形を施す。
(Example 1) 2 wt% Pd as raw material powder for p-type element portion
Added p-type α-FeSi 2 (chemical composition: Fe 0.91 Mn 0.09
Si 2 ) powder, 2 wt% P as raw material powder for n-type element part
d-added n-type α-FeSi 2 (chemical composition: Fe 0.97 Co
0.03 Si 2 ) powder, p-type α as raw material powder for p-type electrode part
-FeSi 2 powder, n-type α as raw material powder for n-type electrode part
-Compression molding is performed after sequentially filling a predetermined mold using FeSi 2 powder.

【0042】粉末を圧縮成形してなるα−FeSi2
ーラス体を、PASにて焼結を施し、α−FeSi2
ーラス焼結体を作製する。
The α-FeSi 2 porous body obtained by compression-molding the powder is sintered by PAS to produce an α-FeSi 2 porous sintered body.

【0043】α−FeSi2 ポーラス焼結体に、大気
中、850℃、1hrの熱処理を施して、ポーラス構造
熱電素子における素子部をα相からβ相に相変態させ、
α−FeSi2 電極を有したβ−FeSi2 ポーラス構
造熱電素子を作製した。
The α-FeSi 2 porous sintered body is subjected to a heat treatment at 850 ° C. for 1 hour in the air to transform the element portion of the porous thermoelectric element from α phase to β phase.
A β-FeSi 2 porous structure thermoelectric element having an α-FeSi 2 electrode was manufactured.

【0044】この時、α−FeSi2 電極を有したβ−
FeSi2 ポーラス構造熱電素子における円板状部の直
径は20mm、厚さは2mm、脚部の高さは2mm、お
よび電極部の厚さは2mmである。
At this time, the β-electrode having the α-FeSi 2 electrode
The diameter of the disc-shaped portion in the FeSi 2 porous structure thermoelectric element is 20 mm, the thickness is 2 mm, the height of the leg portion is 2 mm, and the thickness of the electrode portion is 2 mm.

【0045】(比較例1)p型素子部の原料粉末として
p型α−FeSi2 (化学組成:Fe0.91Mn0.09Si
2 )粉末、n型素子部の原料粉末としてn型α−FeS
2 (化学組成:Fe0.97Co0.03Si2 )粉末を用
い、所定の型内に充填した後、圧縮成形を施す。
Comparative Example 1 p-type α-FeSi 2 (chemical composition: Fe 0.91 Mn 0.09 Si) was used as the raw material powder for the p-type element portion.
2 ) Powder, n-type α-FeS as raw material powder for n-type element part
After using i 2 (chemical composition: Fe 0.97 Co 0.03 Si 2 ) powder and filling it into a predetermined mold, compression molding is performed.

【0046】粉末を圧縮成形してなるα−FeSi2
ーラス体を、PASにて焼結を施し、α−FeSi2
ーラス焼結体を作製する。
The α-FeSi 2 porous body obtained by compression molding the powder is sintered by PAS to produce an α-FeSi 2 porous sintered body.

【0047】α−FeSi2 ポーラス焼結体に、大気
中、850℃、50hrの熱処理を施して、ポーラス構
造熱電素子における素子部をα相からβ相に相変態させ
ると共に、p型とn型にそれぞれ調整したSUS304
からなるメッシュ状の電極をそれぞれの素子部に接合し
て、ステンレス電極を有したβ−FeSi2 ポーラス構
造熱電素子を作製した。
The α-FeSi 2 porous sintered body is subjected to a heat treatment at 850 ° C. for 50 hours in the air to transform the element portion of the porous thermoelectric element from the α phase to the β phase. SUS304 adjusted to each
Were joined to the respective element parts to produce a β-FeSi 2 porous thermoelectric element having a stainless steel electrode.

【0048】この時、ステンレス電極を有したβ−Fe
Si2 ポーラス構造熱電素子における円板状部の直径は
20mm、厚さは2mm、脚部の高さは2mm、および
電極部の厚さは2mmである。
At this time, β-Fe having a stainless steel electrode
The diameter of the disc-shaped portion in the Si 2 porous structure thermoelectric element is 20 mm, the thickness is 2 mm, the height of the leg portion is 2 mm, and the thickness of the electrode portion is 2 mm.

【0049】実施例1および比較例1におけるポーラス
構造熱電素子の熱電特性の測定結果を表1に示す。熱電
特性は、熱電素子の温度差が700℃の時の値を評価し
た。
Table 1 shows the measurement results of the thermoelectric characteristics of the porous thermoelectric elements in Example 1 and Comparative Example 1. As the thermoelectric characteristics, values when the temperature difference between the thermoelectric elements was 700 ° C. were evaluated.

【0050】[0050]

【表1】 [Table 1]

【0051】表1に示すように、熱電素子の温度差が7
00℃の時において、実施例1のポーラス構造熱電素子
は、0.35Vの電圧が生じ、電力は26(Wm/
2 )を示した。これは、電極部にα−FeSi2 を用
いることにより、素子と電極部との間の良好な接合(低
接触抵抗、熱膨張率がほぼ等しいことによる低歪み)が
得られるためであり、これによって得られる電力が向上
する。
As shown in Table 1, the temperature difference between the thermoelectric elements was 7
At a temperature of 00 ° C., the porous thermoelectric element of Example 1 generates a voltage of 0.35 V and the power is 26 (Wm /
m 2 ). This is because, by using α-FeSi 2 for the electrode portion, good junction (low contact resistance, low distortion due to almost equal thermal expansion coefficients) between the element and the electrode portion can be obtained. The resulting power is improved.

【0052】これに対して、比較例1のポーラス構造熱
電素子は、電圧は0.35Vが生じるものの、電力は1
9(Wm/m2 )に止まった。
On the other hand, in the porous thermoelectric element of Comparative Example 1, although a voltage of 0.35 V was generated, the power was 1
It stopped at 9 (Wm / m 2 ).

【0053】また、SUS304メッシュなどの金属材
料をβ−FeSi2 ポーラス構造熱電素子の電極として
用いる場合、α−FeSi2 をβ相化する際の熱処理時
において、雰囲気を高真空下に保持しないと酸化劣化し
てしまう。これに対して、α−FeSi2 をβ−FeS
2 ポーラス構造熱電素子の電極として用いる場合、大
気中で熱処理を施しても酸化劣化は生じない。すなわ
ち、雰囲気制御が不要で容易な熱処理となる。
Further, when a metal material such as SUS304 mesh is used as an electrode of a β-FeSi 2 porous thermoelectric element, the atmosphere must be kept under a high vacuum during the heat treatment for converting α-FeSi 2 into β phase. It is oxidatively deteriorated. On the other hand, α-FeSi 2 is replaced with β-FeS
When used as an electrode for i 2 porous structure thermoelectric elements, there is no oxidative degradation by heat treatment in air. That is, the heat treatment can be easily performed without controlling the atmosphere.

【0054】[0054]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0055】(1) 素子部を構成するα−FeSi2
中に、相変態促進材を添加しているため、β相化のため
の熱処理時間の大幅な短縮を図ることができる。
(1) α-FeSi 2 constituting the element section
Since the phase transformation accelerating material is added therein, the heat treatment time for β-phase conversion can be significantly reduced.

【0056】(2) 素子部と電極部との組成が異なる
ため、1回の熱処理を施すことによってα相からβ相に
相変態する部分とそうでない部分とを形成することがで
きる。
(2) Since the compositions of the element portion and the electrode portion are different, a portion that undergoes a phase transformation from the α phase to the β phase and a portion that does not are formed can be formed by performing a single heat treatment.

【0057】(3) 製造工程が簡易になるため、低コ
ストでポーラス構造熱電素子を作製することができる。
(3) Since the manufacturing process is simplified, a porous thermoelectric element can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポーラス構造熱電素子の概観を示す図
である。
FIG. 1 is a view showing an overview of a porous thermoelectric element of the present invention.

【図2】本発明のポーラス構造熱電素子の製造方法のチ
ャート図である。
FIG. 2 is a chart of a method for manufacturing a porous thermoelectric element of the present invention.

【図3】メッシュ状の電極の部分拡大図である。FIG. 3 is a partially enlarged view of a mesh electrode.

【図4】従来のポーラス構造熱電素子の概観を示す図で
ある。
FIG. 4 is a diagram showing an overview of a conventional porous thermoelectric element.

【図5】従来のポーラス構造熱電素子の製造方法のチャ
ート図である。
FIG. 5 is a chart of a conventional method for manufacturing a porous thermoelectric element.

【符号の説明】[Explanation of symbols]

1 ポーラス構造熱電素子 1a 円板状部 1b、1c 脚部 2 pn型素子部 2a p型素子部 2b n型素子部 3 pn接合部 4 p型電極部 5 n型電極部 DESCRIPTION OF SYMBOLS 1 Porous thermoelectric element 1a Disc-shaped part 1b, 1c Leg part 2 pn-type element part 2a p-type element part 2b n-type element part 3 pn junction part 4 p-type electrode part 5 n-type electrode part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 β−FeSi2 相のpn型素子部と、α
−FeSi2 相のp型とn型の電極部とを備えたポーラ
ス構造熱電素子において、p型とn型に調整したα−F
eSi2 に相変態促進材をそれぞれ添加してpn型素子
形成部を形成し、そのpn型素子形成部の直上に、p型
とn型に調整したα−FeSi2 で電極形成部をそれぞ
れ形成し、その後、焼結固化すると共に、上記pn型素
子形成部のみをα相からβ相に相変態するための熱処理
を施したことを特徴とするポーラス構造熱電素子。
A pn-type element portion of β-FeSi 2 phase;
In a porous thermoelectric element having p-type and n-type electrode portions of -FeSi 2 phase, α-F adjusted to p-type and n-type
A phase transformation accelerating material is added to each of eSi 2 to form a pn-type element forming portion, and an electrode forming portion is formed directly above the pn-type element forming portion with α-FeSi 2 adjusted to p-type and n-type. Then, the porous structure thermoelectric element is sintered and solidified and subjected to a heat treatment for transforming only the pn-type element forming portion from the α phase to the β phase.
【請求項2】 β−FeSi2 相のpn型素子部と、α
−FeSi2 相のp型とn型の電極部とを備えたポーラ
ス構造熱電素子の製造方法において、p型とn型に調整
したα−FeSi2 に相変態促進材をそれぞれ添加して
pn型素子形成部を形成し、そのpn型素子形成部の直
上に、p型とn型に調整したα−FeSi2 で電極形成
部をそれぞれ形成し、その後、焼結固化すると共に、上
記pn型素子形成部のみをα相からβ相に相変態するた
めの熱処理を施すようにしたことを特徴とするポーラス
構造熱電素子の製造方法。
2. A pn-type element portion of β-FeSi 2 phase,
In a method for manufacturing a porous thermoelectric element having p-type and n-type electrode portions of -FeSi 2 phase, a phase transformation accelerating material is added to α-FeSi 2 adjusted to p-type and n-type, respectively. An element formation portion is formed, and an electrode formation portion is formed directly above the pn type element formation portion with α-FeSi 2 adjusted to p-type and n-type, and then sintered and solidified. A method for manufacturing a porous thermoelectric element, wherein a heat treatment for transforming only a formation portion from an α phase to a β phase is performed.
【請求項3】 上記相変態促進材が、Pd、Cu、A
u、Ruから選択される1種または2種以上の混合体で
ある請求項1または請求項2記載のポーラス構造熱電素
子の製造方法。
3. The method according to claim 2, wherein the phase transformation promoting material is Pd, Cu, A
The method for producing a porous thermoelectric element according to claim 1, wherein the method is one or a mixture of two or more kinds selected from u and Ru.
【請求項4】 上記相変態促進材の添加量が、0.5〜
6wt%である請求項1乃至請求項3記載のポーラス構
造熱電素子の製造方法。
4. The addition amount of the phase transformation accelerator is 0.5 to 0.5.
4. The method for producing a porous thermoelectric element according to claim 1, wherein the content is 6 wt%.
JP8154163A 1996-06-14 1996-06-14 Porous structure thermoelectric element and manufacture thereof Pending JPH104218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8154163A JPH104218A (en) 1996-06-14 1996-06-14 Porous structure thermoelectric element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8154163A JPH104218A (en) 1996-06-14 1996-06-14 Porous structure thermoelectric element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH104218A true JPH104218A (en) 1998-01-06

Family

ID=15578217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8154163A Pending JPH104218A (en) 1996-06-14 1996-06-14 Porous structure thermoelectric element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH104218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253343A (en) * 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Thermoelectric element integrating electrode, and its manufacturing process
US7397609B2 (en) 2005-11-29 2008-07-08 Eastman Kodak Company Imaging apparatus
JP2008305986A (en) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd Thermoelectric conversion module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253343A (en) * 2005-03-10 2006-09-21 National Institute Of Advanced Industrial & Technology Thermoelectric element integrating electrode, and its manufacturing process
JP4524383B2 (en) * 2005-03-10 2010-08-18 独立行政法人産業技術総合研究所 Thermoelectric element with integrated electrode and method for producing the same
US7397609B2 (en) 2005-11-29 2008-07-08 Eastman Kodak Company Imaging apparatus
JP2008305986A (en) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd Thermoelectric conversion module
EP2159854A1 (en) * 2007-06-07 2010-03-03 Sumitomo Chemical Company, Limited Thermoelectric conversion module
EP2159854A4 (en) * 2007-06-07 2011-12-07 Sumitomo Chemical Co Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP4858976B2 (en) Composite thermoelectric conversion material
JPH1197750A (en) Thermoelectric material, its manufacturing method, and thermoelectric generation system
JPH104218A (en) Porous structure thermoelectric element and manufacture thereof
CN104646671A (en) Method for preparing Cu2Se-based thermoelectric power generation components and parts at ultrahigh speed
CN105702847A (en) Method for increasing performance of BiTeSe-based N-type semiconductor thermoelectric material
JP6414137B2 (en) Thermoelectric conversion element
JPH0969653A (en) Thermoelectric material and its manufacturing method
JP5201691B2 (en) Oxygen-containing intermetallic compound thermoelectric conversion material and thermoelectric conversion element to thermoelectric conversion module
JPH06144825A (en) Production of thermoelectric element
JPH08335721A (en) Method of manufacturing porous thermal generator element
JPH1154805A (en) Integrally molded thermoelectric element and its manufacture
CN104362249A (en) Layered electrode matched with Mg-Si-Sn-based thermoelectric element and connecting technology thereof
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JP4253878B2 (en) Silicon-germanium-based thermoelectric material and method for producing the same
JPH11274578A (en) Method for manufacturing thermoelectric conversion material and thermoelectric conversion module
CN109817800A (en) A kind of preparation method of electrode and NbFeSb/Mo thermoelectricity knot
JPH11112037A (en) Thermionic element and method for forming electrode of the same
JP3463396B2 (en) Thermoelectric conversion material
JP3482734B2 (en) Thermoelectric element
JP3185429B2 (en) Manufacturing method of thermoelectric generator
JPH11186615A (en) Semiconductor thermo-electrical material
JP2818851B2 (en) Method for manufacturing boron phosphide-based semiconductor device
Subramanyam et al. Development and experimental study of copper selenide based thermo-electric material by the method of powder metallurgy
JPH0794787A (en) Thrmoelectric transducer