JP2006253343A - Thermoelectric element integrating electrode, and its manufacturing process - Google Patents

Thermoelectric element integrating electrode, and its manufacturing process Download PDF

Info

Publication number
JP2006253343A
JP2006253343A JP2005066556A JP2005066556A JP2006253343A JP 2006253343 A JP2006253343 A JP 2006253343A JP 2005066556 A JP2005066556 A JP 2005066556A JP 2005066556 A JP2005066556 A JP 2005066556A JP 2006253343 A JP2006253343 A JP 2006253343A
Authority
JP
Japan
Prior art keywords
thermoelectric
electrode
thermoelectric element
thermoelectric material
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005066556A
Other languages
Japanese (ja)
Other versions
JP4524383B2 (en
Inventor
Keizo Kobayashi
慶三 小林
Toshiyuki Nishio
敏幸 西尾
Ryoji Funahashi
良次 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005066556A priority Critical patent/JP4524383B2/en
Publication of JP2006253343A publication Critical patent/JP2006253343A/en
Application granted granted Critical
Publication of JP4524383B2 publication Critical patent/JP4524383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric element having an electrode independent from the kind of thermoelectric material while suppressing reaction of the electrode and a thermoelectric material. <P>SOLUTION: A conductive electrode material having a hole and a thermoelectric material are bonded through the hole of the thermoelectric material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体であるp型、n型の熱電材料と電極を接合して一体化した熱電素子に関するものであり、更に詳しくは、電極に導電性の材料を用い、電極の中に穴を作りこむことによって半導体との接触を改善したことを特徴とする熱電素子及びその製造方法に関するものである。本発明の電極と一体化した熱電素子は、電気抵抗の低い熱電半導体と電極間に生じる接触抵抗を低減させることにより、高効率の熱電変換素子を提供することを可能とするものである。また、熱電素子が破損などのトラブルに陥った際に、これまでは、モジュール全体の交換が必要であったが、本発明では、本発明の熱電材料と電極を一体化した熱電素子を使用することによって、トラブルの発生した素子のみ交換することが可能になる等の利点が得られる熱電素子を提供するものである。   The present invention relates to a thermoelectric element in which a p-type and n-type thermoelectric material, which is a semiconductor, and an electrode are joined and integrated, and more specifically, a conductive material is used for the electrode, and a hole is formed in the electrode. The present invention relates to a thermoelectric element and a method for manufacturing the thermoelectric element characterized in that the contact with a semiconductor is improved by manufacturing. The thermoelectric element integrated with the electrode of the present invention makes it possible to provide a highly efficient thermoelectric conversion element by reducing the contact resistance generated between the thermoelectric semiconductor having a low electric resistance and the electrode. In addition, when the thermoelectric element falls into trouble such as breakage, it has been necessary to replace the entire module so far. In the present invention, the thermoelectric element in which the thermoelectric material of the present invention and the electrode are integrated is used. Accordingly, it is an object of the present invention to provide a thermoelectric element that can provide advantages such as the ability to replace only a troubled element.

特性に優れる熱電素子は、半導体や酸化物から構成されているものが多く、モジュールを作製する際には、素子を接合するための電極が不可欠である。低融点の金属をベースにした熱電材料においては、ハンダなどの低融点金属を利用して銅やニッケルなどの金属電極が半導体や酸化物に接合されている場合が多い。しかし、半導体や酸化物のように250℃以上の高温で利用される熱電素子においては、ハンダなどの低融点金属が利用できないため、半導体や酸化物と電極との接合が問題であった。   Many thermoelectric elements having excellent characteristics are composed of semiconductors or oxides, and an electrode for joining the elements is indispensable when a module is manufactured. In thermoelectric materials based on low melting point metals, metal electrodes such as copper and nickel are often joined to semiconductors and oxides using low melting point metals such as solder. However, in a thermoelectric element that is used at a high temperature of 250 ° C. or higher such as a semiconductor or an oxide, a low melting point metal such as solder cannot be used.

このような、ハンダを利用しない電極の作製方法としては、ガスデポジション法(気体堆積法)により非導電性の基材表面に電極や半導体層を形成する方法(特許文献1)や、電極用銀ペーストを用いた電極(特許文献2)、あるいは金属板と金属箔を層状構造にして電極とする技術(特許文献3)、が開発されている。しかし、これらの方法においても、半導体や酸化物と金属電極との異種材料の接合部分での抵抗を低減することは難しくなっており、当技術分野では、そのような熱電素子と電極の接合に関する問題点を解決することができる新しい熱電素子の開発が強く要請されていた。   As a method for manufacturing such an electrode without using solder, a method of forming an electrode or a semiconductor layer on the surface of a non-conductive substrate by a gas deposition method (gas deposition method) (Patent Document 1), An electrode using silver paste (Patent Document 2) or a technique (Patent Document 3) in which a metal plate and a metal foil are used to form a layered structure has been developed. However, even in these methods, it is difficult to reduce the resistance at the junction between different materials of a semiconductor or an oxide and a metal electrode. In this technical field, it is related to the junction between such a thermoelectric element and an electrode. There has been a strong demand for the development of new thermoelectric elements that can solve the problems.

特開2001−250991号公報Japanese Patent Laid-Open No. 2001-250991 特開2002−232023号公報JP 2002-232023 A 特開2002−368294号公報JP 2002-368294 A

このような状況下にあって、本発明者らは、上記従来技術に鑑みて、半導体や酸化物などの熱電素子を電気伝導性に優れる導電物質に、密着性をよく接合させる新しい方法及び手段を開発することを目標として鋭意研究した結果、電極として用いる導電性物質に穴を作り込み、熱電材料を電極材料の穴の中に充填することによって接触抵抗を低減できることを見出し、本発明を完成した。すなわち、本発明は、電気伝導性に優れる導電物質と熱電材料を一体的に接合した熱電素子を提供することを目的とするものである。また、本発明は、熱電材料に穴を有する導電性の電極を用いることにより、電極と熱電材料との抵抗を低減しながら電気回路を形成することを可能とする熱電素子及びその作製方法を提供することを目的とするものである。   Under such circumstances, in view of the above-described conventional technology, the present inventors have developed a new method and means for bonding a thermoelectric element such as a semiconductor or an oxide to a conductive material having excellent electrical conductivity with good adhesion. As a result of diligent research with the goal of developing an electrode, it was found that contact resistance can be reduced by making holes in the conductive material used as electrodes and filling the holes in the electrode material with thermoelectric materials. did. That is, an object of the present invention is to provide a thermoelectric element in which a conductive material having excellent electrical conductivity and a thermoelectric material are integrally joined. In addition, the present invention provides a thermoelectric element and a method for manufacturing the thermoelectric element that can form an electric circuit while reducing the resistance between the electrode and the thermoelectric material by using a conductive electrode having a hole in the thermoelectric material. It is intended to do.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)穴を有する導電性の電極材料と熱電材料とが電極材料の穴を介して接合されていることを特徴とする熱電素子。
(2)電極材料が、板状の導電性のある材料に1又は2以上の穴をあけた電極材料である上記(1)に記載の熱電素子。
(3)電極材料が、導電性のある繊維状の素材を加工した穴のある電極材料である上記(1)に記載の熱電素子。
(4)導電性の電極材料が、金属である上記(1)から(3)のいずれかに記載の熱電素子。
(5)電極材料が、金属製メッシュである上記(1)に記載の熱電素子。
(6)熱電材料が、酸化物である上記(1)から(5)のいずれかに記載の熱電素子。
(7)穴を有する導電性の電極材料と熱電材料を通電により接合することを特徴とする熱電素子の作製方法。
(8)電極材料と熱電材料をパルス通電焼結により接合する上記(7)に記載の熱電素子の作製方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A thermoelectric element characterized in that a conductive electrode material having a hole and a thermoelectric material are joined through a hole in the electrode material.
(2) The thermoelectric element according to (1), wherein the electrode material is an electrode material in which one or two or more holes are formed in a plate-like conductive material.
(3) The thermoelectric element according to (1), wherein the electrode material is an electrode material having a hole formed by processing a conductive fibrous material.
(4) The thermoelectric element according to any one of (1) to (3), wherein the conductive electrode material is a metal.
(5) The thermoelectric element according to (1), wherein the electrode material is a metal mesh.
(6) The thermoelectric element according to any one of (1) to (5), wherein the thermoelectric material is an oxide.
(7) A method for manufacturing a thermoelectric element, wherein a conductive electrode material having holes and a thermoelectric material are joined by energization.
(8) The method for producing a thermoelectric element according to (7), wherein the electrode material and the thermoelectric material are joined by pulsed current sintering.

次に、本発明について更に詳細に説明する。
本発明の熱電素子は、穴を有する導電性の電極材料と熱電材料とを電極材料の穴を介して一体化したことを特徴とするものであり、好適には、例えば、金属性ワッシャー等の板状の導電性材料や、金網等の導電性のある繊維状の素材と熱電材料とを、それらの電極材料に形成した穴を介して一体化したことを特徴とするものである。本発明に用いる穴を有する導電性材料としては、金属、セラミックス、炭素など、熱電材料より電気抵抗の小さな材料が利用できる。また、穴を有する導電性材料の強度を改善するために、非導電性の繊維や粒子を混合した複合材料であっても、複合材料の電気抵抗が熱電材料の電気抵抗より小さければ利用することができる。
Next, the present invention will be described in more detail.
The thermoelectric element of the present invention is characterized in that a conductive electrode material having a hole and a thermoelectric material are integrated through a hole in the electrode material. Preferably, for example, a metal washer or the like is used. A plate-like conductive material or a conductive fibrous material such as a wire mesh and a thermoelectric material are integrated through a hole formed in the electrode material. As the conductive material having holes used in the present invention, a material having a smaller electric resistance than a thermoelectric material such as metal, ceramics, and carbon can be used. Also, in order to improve the strength of conductive materials with holes, even composite materials mixed with non-conductive fibers and particles should be used if the electrical resistance of the composite material is smaller than the electrical resistance of the thermoelectric material Can do.

導電性材料の穴を開ける方法については、特に限定しないが、金属材料の加工に利用されている旋盤やボール盤などの機械加工による穴あけや、繊維状の導電性物質を編みこんで穴を開ける方法などが利用できる。また、市販されている金属製ワッシャーや、網、フィルターなどを利用することができる。穴の大きさや量については、特に限定しないが、電極と熱電材料との密着性を考慮して適宜選定する必要がある。なお、加熱あるいは冷却時には、熱電材料と電極との熱膨張差による応力が発生するため、熱電材料の強度が低い場合には、電極の穴を多くすることが好ましい。これにより、応力が分散され、ひとつの穴に作用する応力が小さくなり、割れが発生しにくくなる。本発明では、導電性を有する材料の穴の形状及び構造、穴の数等は、その使用目的等に応じて任意に設計することができる。   There are no particular restrictions on the method of drilling holes in conductive materials, but drilling by machining such as lathes and drilling machines used for processing metal materials, and methods of drilling holes by braiding fibrous conductive materials. Etc. are available. Also, commercially available metal washers, nets, filters, etc. can be used. The size and amount of the hole are not particularly limited, but should be appropriately selected in consideration of the adhesion between the electrode and the thermoelectric material. In addition, since stress due to a difference in thermal expansion between the thermoelectric material and the electrode is generated during heating or cooling, it is preferable to increase the number of holes in the electrode when the strength of the thermoelectric material is low. As a result, the stress is dispersed, the stress acting on one hole is reduced, and cracks are less likely to occur. In the present invention, the shape and structure of the holes of the conductive material, the number of holes, and the like can be arbitrarily designed according to the purpose of use.

本発明では、熱電素子材料として、例えば、Bi−Te、Mg−Si、Mn−Si、Fe−Si、Cr−Si、Si−Ge、Pb−Te、Fe−V−Al、カルコゲナイト、スクッテルダイト、フィルドスクッテルダイト、炭化ホウ素、層状コバルト酸化物等の材料が例示されるが、これらに制限されるものではなく、任意の材料を使用することができる。熱電材料と穴のある導電性電極との接合方法は、加熱による接合が一般的であるが、本発明では、特に、熱電材料は、電気抵抗が高いものの、電気が流れる半導体や酸化物などであり、通電により発生するジュール加熱を利用して、これらを電極と接合する方法が効果的である。また、電極を加熱により軟化させ、熱電材料と接合する方法でも効率的な接合を行うことができる。いずれのプロセスにおいても、電極と熱電材料が化学的に反応すると熱電材料の特性が低下するため、低温でかつ短時間で接合することが好ましい。   In the present invention, as the thermoelectric element material, for example, Bi-Te, Mg-Si, Mn-Si, Fe-Si, Cr-Si, Si-Ge, Pb-Te, Fe-V-Al, chalcogenite, skutterudite Examples thereof include, but are not limited to, materials such as filled skutterudite, boron carbide, and layered cobalt oxide, and any material can be used. As a method of joining a thermoelectric material and a conductive electrode having a hole, joining by heating is generally used. However, in the present invention, in particular, a thermoelectric material has a high electrical resistance, but is made of a semiconductor or oxide through which electricity flows. There is an effective method in which these are joined to the electrode using Joule heating generated by energization. Further, efficient bonding can be performed by a method in which the electrode is softened by heating and bonded to a thermoelectric material. In any process, when the electrode and the thermoelectric material chemically react, the characteristics of the thermoelectric material are deteriorated. Therefore, it is preferable to perform bonding at a low temperature in a short time.

電極材料に比べて、熱電材料の方が熱による膨張、収縮量が小さいため、電極材料の穴の中に熱電材料を充填することによって、いわゆる“焼きばめ”のように、熱電材料と電極との密着性が大きく改善される。電極表面に凹凸をつけ、熱電材料との接合を行うと、電極との剥離が生じるが、穴を利用することによって剥離は生じなくなる。また、穴の数を増やすことによって、1つの穴に生じる応力が小さくなり、クラックなどの発生も防止することができる。   Compared to electrode materials, thermoelectric materials have less expansion and contraction due to heat, so by filling the holes in the electrode material with thermoelectric materials, thermoelectric materials and electrodes can be used as a so-called “shrink fit”. Adhesion with is greatly improved. When the surface of the electrode is made uneven and bonded to the thermoelectric material, peeling from the electrode occurs, but peeling does not occur by using the hole. Further, by increasing the number of holes, the stress generated in one hole is reduced, and the occurrence of cracks can be prevented.

本発明では、電極材料と熱電材料との具体的な接合方法は、特に限定しないが、電極も熱電材料も電気を通す材料であるため、通電を利用した成形が好ましい。電気を利用した接合方法としては、パルス通電焼結技術を利用した接合方法が既に知られているが、このような技術を利用することで、短時間の加熱・冷却が行えるため、融点差の大きな電極との接合も可能になる。加熱時の雰囲気は、特に限定しないが、電極材料に金属を利用する場合には、金属表面の酸化が電気抵抗の増加につながるため、真空中あるいは不活性ガス雰囲気での処理が好ましい。一般的に、熱電材料の電気抵抗は電極材料よりも大きいため、通電を利用した成形では、熱電材料の温度が型よりも高温となり、電極材料部分は、より低温で熱電材料に圧着されることになり、化学的な反応を抑制することが可能となる。   In the present invention, a specific joining method between the electrode material and the thermoelectric material is not particularly limited. However, since both the electrode and the thermoelectric material are materials that conduct electricity, molding using electric current is preferable. As a joining method using electricity, a joining method using a pulse current sintering technique is already known, but by using such a technique, heating and cooling can be performed in a short time, so that the melting point difference is reduced. Bonding with large electrodes is also possible. The atmosphere during heating is not particularly limited. However, when a metal is used as the electrode material, oxidation in the metal surface leads to an increase in electrical resistance, and thus treatment in a vacuum or an inert gas atmosphere is preferable. In general, the electric resistance of a thermoelectric material is greater than that of an electrode material. Therefore, in molding using energization, the temperature of the thermoelectric material is higher than that of the mold, and the electrode material portion is pressed against the thermoelectric material at a lower temperature. It becomes possible to suppress a chemical reaction.

熱電材料は、電極との接合時に、加熱雰囲気から酸素や窒素を受け取ったり、吐き出したりする場合がある。これは、熱電材料の特性低下につながるため、この場合には、電極を接合した後に熱処理によって改善する方法を採用することができる。これは、一般的な熱電材料の作製時にも利用されている手法であり、本技術においても利用することができる。特に、酸化物系熱電材料では、電極接合時に酸素欠損が発生するが、大気中で加熱することにより、特性の改善を行うことができる。   The thermoelectric material may receive or exhale oxygen and nitrogen from the heating atmosphere when bonded to the electrode. This leads to deterioration of the characteristics of the thermoelectric material. In this case, a method of improving by heat treatment after joining the electrodes can be adopted. This is a technique that is also used when producing a general thermoelectric material, and can also be used in the present technology. In particular, in an oxide thermoelectric material, oxygen vacancies are generated at the time of electrode bonding, but characteristics can be improved by heating in the atmosphere.

熱電材料は、溶解や粉末冶金的な手法で合成されるが、粉末形状の熱電材料が一般的である。この粉末を素子に成形する際には、一般の粉末冶金的手法が利用可能であり、焼結プロセスで成形される。本発明においても、一般的な粉末冶金的プロセスが利用でき、その作製方法は、特に限定されない。本発明では、熱電材料の粉末を焼結する際に、穴を有する電極材料と接合することで両者を強固に接合することが可能となる。なお、溶解で作製された熱電材料においても、穴を有する電極材料と接合することが可能である。   Thermoelectric materials are synthesized by melting or powder metallurgical techniques, and powder thermoelectric materials are common. When this powder is formed into an element, a general powder metallurgy technique can be used, and the powder is formed by a sintering process. Also in the present invention, a general powder metallurgical process can be used, and the manufacturing method is not particularly limited. In the present invention, when the powder of the thermoelectric material is sintered, the two can be firmly joined by joining with the electrode material having a hole. Note that a thermoelectric material manufactured by melting can be bonded to an electrode material having holes.

従来の熱電素子では、例えば、モジュールを作製する際に、ハンダなどの低融点金属を利用して銅やニッケルなどの金属電極を接合していたが、半導体や酸化物のように250℃以上の高温で利用される熱電素子においては、熱電材料と電極とを高い精度で接合することが難しくなるという問題があった。これに対して、本発明では、電極材料と熱電材料とを電極材料に形成した穴を介して一体的に接合して熱電素子を構成するので、電極と熱電材料との密着性が大きく向上すること、従来材のような剥離の問題がないこと、クラックの発生を防止できること、250℃以上の高温でも利用可能であること、電極材料と熱電材料との組み合わせの自由度が大きく向上すること、及び熱電材料の特性を低下させることなく接合できること、等の利点が得られる。   In a conventional thermoelectric element, for example, when a module is manufactured, a metal electrode such as copper or nickel is bonded using a low melting point metal such as solder. A thermoelectric element used at a high temperature has a problem that it is difficult to join the thermoelectric material and the electrode with high accuracy. In contrast, in the present invention, since the thermoelectric element is configured by integrally joining the electrode material and the thermoelectric material through the holes formed in the electrode material, the adhesion between the electrode and the thermoelectric material is greatly improved. That there is no problem of peeling as in the conventional material, that it is possible to prevent the occurrence of cracks, that it can be used even at a high temperature of 250 ° C. or higher, that the degree of freedom of the combination of the electrode material and the thermoelectric material is greatly improved, In addition, advantages such as being able to join without degrading the properties of the thermoelectric material can be obtained.

本発明により、(1)酸化物、半導体、金属などの熱電材料の種類を選ばず、熱電材料に電極を取り付けることが可能となる、(2)これにより、従来ハンダなどの接合材で固定されていた熱電材料をスローアウェイ方式で交換することを実現することができる、(3)すなわち、従来の方式では熱電材料を用いた熱電変換モジュールが何らかの原因で一部損壊した場合、全体を交換する必要があったが、熱電材料と電極が一体化することによって損傷を受けた素子のみを交換することができる、(4)これにより、熱電材料のランニングコストが低減するばかりでなく、メンテナンス性を大幅に改善することが可能になる、(5)更に、環境負荷の大きな鉛や希少金属などを用いなくても電極の形成が実現でき、環境に調和した熱電モジュールを提供することができる、(6)また、金網などを電極にすることにより、任意の形状に熱電モジュールを切り出すことが可能となり、複雑形状の熱源の形状に合わせた熱電モジュールの成形が可能になる、(7)これにより、熱を効率的に電気に変換することが可能となり、熱電モジュールの効率改善を図ることができる、という効果が奏される。   According to the present invention, (1) it is possible to attach an electrode to a thermoelectric material regardless of the type of the thermoelectric material such as oxide, semiconductor, metal, etc. (2) Thereby, it is fixed with a bonding material such as conventional solder. It is possible to replace the existing thermoelectric material by the throw-away method. (3) In other words, in the conventional method, when the thermoelectric conversion module using the thermoelectric material is partially damaged for some reason, the whole is replaced. Although it was necessary, only the element damaged by the integration of the thermoelectric material and the electrode can be replaced. (4) This not only reduces the running cost of the thermoelectric material, but also improves maintainability. (5) Furthermore, the formation of electrodes can be realized without using environmentally hazardous lead or rare metals, and the thermoelectric module is harmonized with the environment. (6) In addition, by using a wire mesh as an electrode, it becomes possible to cut out a thermoelectric module into an arbitrary shape, and it is possible to mold a thermoelectric module that matches the shape of a complex heat source. (7) Thereby, it becomes possible to efficiently convert heat into electricity, and the effect of improving the efficiency of the thermoelectric module is achieved.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

n型酸化物系熱電材料であるLa−Ni−O化合物粉末1.75gを、内径10mmの黒鉛製の型に充填し、上下に内径3mmで外径10mm、厚み0.8mmの市販ステンレス製ワッシャーを電極として挟んで、真空中にて、パルス通電焼結装置により、型温度が800℃にて焼結及び電極の接合を行った。   A 1.75 g La-Ni-O compound powder, which is an n-type oxide thermoelectric material, is filled into a graphite mold having an inner diameter of 10 mm, and a commercially available stainless steel washer having an inner diameter of 3 mm, an outer diameter of 10 mm, and a thickness of 0.8 mm. Was sandwiched as an electrode, and sintering and electrode joining were performed at a mold temperature of 800 ° C. in a vacuum using a pulse current sintering apparatus.

得られた成形体は、外径10mmで高さ5mmの成形体であり、成形体の両端にはステンレス製ワッシャーが強固に接合されていた。熱電材料は、黒色を呈しており、成形時の酸素欠損は観察されなかった。ワッシャーの孔の中には酸化物熱電材料が充填されており、焼結されていた。上下のワッシャー間での電気抵抗は約10Ωであった。   The obtained molded body was a molded body having an outer diameter of 10 mm and a height of 5 mm, and stainless steel washers were firmly joined to both ends of the molded body. The thermoelectric material was black and no oxygen deficiency was observed during molding. The washer holes were filled with oxide thermoelectric material and sintered. The electrical resistance between the upper and lower washers was about 10Ω.

得られた成形体を500℃に加熱し、室温まで冷却しても、ワッシャー部の剥離は認められず、電極と熱電材料は強固に接合していることが分かった。   Even when the obtained molded body was heated to 500 ° C. and cooled to room temperature, the washer was not peeled off, and it was found that the electrode and the thermoelectric material were firmly bonded.

p型酸化物熱電材料であるCa−Co−O化合物粉末1.25gを、内径10mmの黒鉛製の型に充填し、上下に内径3mmで外径10mm、厚み0.8mmの市販ステンレス製ワッシャーを2枚ずつ電極として挟んで、真空中にて、パルス通電焼結装置により、型温度が700℃にて焼結及び電極の接合を行った。   1.25 g of Ca—Co—O compound powder, which is a p-type oxide thermoelectric material, is filled in a graphite mold having an inner diameter of 10 mm, and a commercially available stainless steel washer having an inner diameter of 3 mm, an outer diameter of 10 mm, and a thickness of 0.8 mm. Two pieces were sandwiched as electrodes, and sintering and electrode joining were performed in a vacuum at a mold temperature of 700 ° C. using a pulse current sintering apparatus.

得られた成形体は、外径10mmで高さ5mmの成形体であり、成形体の両端にはステンレス製のワッシャーが強固に接合されていた。熱電材料は、黒色を呈しており、成形時の酸素欠損は観察されなかった。ワッシャーの孔の中には酸化物熱電材料が充填されており、焼結されていた。上下のワッシャー間での電気抵抗は約20Ωであった。   The obtained molded body was a molded body having an outer diameter of 10 mm and a height of 5 mm, and stainless steel washers were firmly joined to both ends of the molded body. The thermoelectric material was black and no oxygen deficiency was observed during molding. The washer holes were filled with oxide thermoelectric material and sintered. The electrical resistance between the upper and lower washers was about 20Ω.

得られた成形体を大気中にて500℃に加熱し、室温まで冷却しても、ワッシャー間及びワッシャーと酸化物の間での剥離は認められず、電極材料と熱電材料は強固に接合していることが分かった。図1に、ワッシャーを電極にした熱電素子の形状及び外観を示す。   Even when the obtained molded body was heated to 500 ° C. in the air and cooled to room temperature, no separation between the washer and between the washer and the oxide was observed, and the electrode material and the thermoelectric material were firmly bonded. I found out. FIG. 1 shows the shape and appearance of a thermoelectric element using a washer as an electrode.

p型及びn型のBi−Te系熱電材料を外径6mmで高さ5mmに加工し、メッシュ間隔約2mmで線径0.3mmのステンレス製金網の上にのせ、上下を黒鉛製のパンチで挟み、真空中にて、パルス通電焼結装置により加圧通電を行った。電流は100Hzの直流パルスを用いた。   Process p-type and n-type Bi-Te thermoelectric materials to an outer diameter of 6 mm and a height of 5 mm, place them on a stainless steel wire mesh with a mesh interval of about 2 mm and a wire diameter of 0.3 mm, and top and bottom with a graphite punch. In a vacuum, energization with pressure was performed by a pulse current sintering apparatus. The current used was a 100 Hz DC pulse.

熱電材料は、金網の中に押し込まれており、熱電材料と金網の分離はできず、両者は強固に接合していることが分かった。この成形体を100℃まで加熱して、室温まで冷却しても金網と熱電材料との分離は認められなかった。図2に、金網(メッシュ)を電極にした熱電素子の形状及び外観を示す。   It was found that the thermoelectric material was pushed into the wire mesh, and the thermoelectric material and the wire mesh could not be separated, and both were firmly joined. Even when this molded body was heated to 100 ° C. and cooled to room temperature, separation of the wire mesh and the thermoelectric material was not observed. FIG. 2 shows the shape and appearance of a thermoelectric element using a wire mesh (mesh) as an electrode.

p型熱電材料であるBi−Te−Sb化合物粉末2gを、内径10mmの黒鉛製の型に充填し、上下を外径10mmで内径5mm、高さ2mmのSiC粒子5vol%を含むアルミ製リングで挟み、真空中にて、パルス通電焼結により焼結及び接合を行った。40MPaにて加圧を行いながら、型温度が400℃にて成形を行った。   An aluminum ring containing 5 vol% of SiC particles having an outer diameter of 10 mm, an inner diameter of 5 mm, and a height of 2 mm, filled with 2 g of Bi-Te-Sb compound powder as a p-type thermoelectric material in a graphite mold having an inner diameter of 10 mm. Sintering and joining were performed by pulse electric current sintering in a vacuum. Molding was performed at a mold temperature of 400 ° C. while applying pressure at 40 MPa.

得られた成形体は、アルミリングと熱電材料が強固に接合しており、大気中にて100℃まで加熱し、室温まで冷却しても分離することはなかった。   The obtained molded body was firmly bonded with the aluminum ring and the thermoelectric material, and was not separated even when heated to 100 ° C. in the atmosphere and cooled to room temperature.

以上詳述したように、本発明は、穴のある電極と一体化した熱電素子及びその作製方法に係るものであり、本発明により、熱電材料と電極を一体化した熱電素子を提供することができる。それにより、従来、モジュール単位で取り引きされてきた熱電変換モジュールに対して、素子単位での利用が可能となる。すなわち、従来は、モジュールの基板に熱電材料が強固に接合されてきたが、本発明の技術により、熱電素子に電極を直接形成することが可能となる。そのため、素子をはめ込めば、モジュールとしての機能を持たせることが可能となる。また、熱電材料の電極には、貴金属や接合材が利用されてきたが、本発明の技術は、電極の形状により熱電材料と電極を接合させるものであり、貴金属や接合材を必要としない。本発明の熱電素子は、低融点の接合材を使用しないため、高温まで安定した使用が可能であると同時に、貴金属などの使用がないことから、熱電素子の低価格化も実現できる等の従来材にない利点を有する。   As described above in detail, the present invention relates to a thermoelectric element integrated with an electrode having a hole and a method for manufacturing the same. According to the present invention, a thermoelectric element in which a thermoelectric material and an electrode are integrated can be provided. it can. Thereby, it becomes possible to use the thermoelectric conversion module that has been conventionally traded in module units in element units. That is, conventionally, a thermoelectric material has been firmly bonded to a module substrate, but the technique of the present invention makes it possible to directly form an electrode on a thermoelectric element. Therefore, if an element is inserted, it becomes possible to have a function as a module. Further, noble metals and bonding materials have been used for thermoelectric material electrodes, but the technology of the present invention joins thermoelectric materials and electrodes depending on the shape of the electrodes, and does not require noble metals or bonding materials. Since the thermoelectric element of the present invention does not use a low-melting-point bonding material, it can be used stably up to a high temperature, and at the same time, since no precious metal is used, the thermoelectric element can be reduced in price. Has advantages not found in materials.

ワッシャーを電極にした熱電素子の形状及び外観(実施例1、実施例2)を示す。The shape and external appearance (Example 1, Example 2) of the thermoelectric element which used the washer as an electrode are shown. メッシュを電極にした熱電素子の形状及び外観(実施例3)を示す。The shape and external appearance (Example 3) of the thermoelectric element which used the mesh as the electrode are shown.

Claims (8)

穴を有する導電性の電極材料と熱電材料とが電極材料の穴を介して接合されていることを特徴とする熱電素子。   A thermoelectric element characterized in that a conductive electrode material having a hole and a thermoelectric material are joined through a hole in the electrode material. 電極材料が、板状の導電性のある材料に1又は2以上の穴をあけた電極材料である請求項1に記載の熱電素子。   The thermoelectric element according to claim 1, wherein the electrode material is an electrode material in which one or two or more holes are formed in a plate-like conductive material. 電極材料が、導電性のある繊維状の素材を加工した穴のある電極材料である請求項1に記載の熱電素子。   The thermoelectric element according to claim 1, wherein the electrode material is an electrode material having a hole obtained by processing a conductive fibrous material. 導電性の電極材料が、金属である請求項1から3のいずれかに記載の熱電素子。   The thermoelectric element according to claim 1, wherein the conductive electrode material is a metal. 電極材料が、金属製メッシュである請求項1に記載の熱電素子。   The thermoelectric element according to claim 1, wherein the electrode material is a metal mesh. 熱電材料が、酸化物である請求項1から5のいずれかに記載の熱電素子。   The thermoelectric element according to any one of claims 1 to 5, wherein the thermoelectric material is an oxide. 穴を有する導電性の電極材料と熱電材料を通電により接合することを特徴とする熱電素子の作製方法。   A method for manufacturing a thermoelectric element, wherein a conductive electrode material having a hole and a thermoelectric material are joined by energization. 電極材料と熱電材料をパルス通電焼結により接合する請求項7に記載の熱電素子の作製方法。   The method for producing a thermoelectric element according to claim 7, wherein the electrode material and the thermoelectric material are joined by pulse electric current sintering.
JP2005066556A 2005-03-10 2005-03-10 Thermoelectric element with integrated electrode and method for producing the same Expired - Fee Related JP4524383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066556A JP4524383B2 (en) 2005-03-10 2005-03-10 Thermoelectric element with integrated electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066556A JP4524383B2 (en) 2005-03-10 2005-03-10 Thermoelectric element with integrated electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006253343A true JP2006253343A (en) 2006-09-21
JP4524383B2 JP4524383B2 (en) 2010-08-18

Family

ID=37093513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066556A Expired - Fee Related JP4524383B2 (en) 2005-03-10 2005-03-10 Thermoelectric element with integrated electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP4524383B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150007A1 (en) * 2007-06-07 2008-12-11 Sumitomo Chemical Company, Limited Thermoelectric conversion module and thermoelectric heat generation system
JP2020053572A (en) * 2018-09-27 2020-04-02 アイシン高丘株式会社 Manufacturing method of thermoelectric module, thermoelectric element, and thermoelectric module
KR20200140015A (en) * 2019-06-05 2020-12-15 엘지이노텍 주식회사 Thermo electric element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153809B (en) * 2010-10-19 2014-12-03 霍夫曼-拉罗奇有限公司 External packaging device for safeguarding at least one packaging item during transportation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221353A (en) * 1994-02-08 1995-08-18 Isuzu Motors Ltd Thermoelectric element
JPH09260731A (en) * 1996-03-19 1997-10-03 Kubota Corp Thermoelectric element and manufacture thereof
JPH104218A (en) * 1996-06-14 1998-01-06 Isuzu Motors Ltd Porous structure thermoelectric element and manufacture thereof
JP2004186572A (en) * 2002-12-05 2004-07-02 Mitsubishi Heavy Ind Ltd Thermoelectric transduction material and thermoelectric transducer
JP2006080232A (en) * 2004-09-08 2006-03-23 Matsushita Electric Works Ltd Process for manufacturing thermoelectric conversion element, and thermoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221353A (en) * 1994-02-08 1995-08-18 Isuzu Motors Ltd Thermoelectric element
JPH09260731A (en) * 1996-03-19 1997-10-03 Kubota Corp Thermoelectric element and manufacture thereof
JPH104218A (en) * 1996-06-14 1998-01-06 Isuzu Motors Ltd Porous structure thermoelectric element and manufacture thereof
JP2004186572A (en) * 2002-12-05 2004-07-02 Mitsubishi Heavy Ind Ltd Thermoelectric transduction material and thermoelectric transducer
JP2006080232A (en) * 2004-09-08 2006-03-23 Matsushita Electric Works Ltd Process for manufacturing thermoelectric conversion element, and thermoelectric conversion element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150007A1 (en) * 2007-06-07 2008-12-11 Sumitomo Chemical Company, Limited Thermoelectric conversion module and thermoelectric heat generation system
JP2008305987A (en) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd Thermoelectric conversion module
JP2020053572A (en) * 2018-09-27 2020-04-02 アイシン高丘株式会社 Manufacturing method of thermoelectric module, thermoelectric element, and thermoelectric module
KR20200140015A (en) * 2019-06-05 2020-12-15 엘지이노텍 주식회사 Thermo electric element
KR102618305B1 (en) * 2019-06-05 2023-12-28 엘지이노텍 주식회사 Thermo electric element

Also Published As

Publication number Publication date
JP4524383B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
Zhang et al. Thermoelectric devices for power generation: recent progress and future challenges
EP2377175B1 (en) Method for fabricating thermoelectric device
JP5212937B2 (en) Thermoelectric conversion element, thermoelectric module including the thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
US9601679B2 (en) Thermoelectric module and method of manufacturing the same
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
JP4969589B2 (en) Peltier element purification process and Peltier element
JP2012522380A (en) Thermoelectric conversion element, electrode material and manufacturing method thereof
US20170125658A1 (en) Thermoelectric Conversion Element and Thermoelectric Conversion Module
JP2003133600A (en) Thermoelectric conversion member and manufacturing method therefor
JP2011003559A (en) Thermoelectric conversion module
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
JP4584035B2 (en) Thermoelectric module
KR20170102300A (en) Electrical and thermal contacts for bulk tetra headlight materials and methods for making the same
JP2012049185A (en) Ceramic member and method for producing the same
JP4524383B2 (en) Thermoelectric element with integrated electrode and method for producing the same
JPWO2014084163A1 (en) Mg-Si-based thermoelectric conversion material and manufacturing method thereof, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module
JPH0555640A (en) Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JP4584034B2 (en) Thermoelectric module
US9343425B1 (en) Methods for bonding substrates with transient liquid phase bonds by spark plasma sintering
JP6668645B2 (en) Thermoelectric conversion module and method of manufacturing the same
US9960335B2 (en) Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
CN110098312B (en) Connection method of segmented thermoelectric material
JP6382093B2 (en) Thermoelectric conversion element and thermoelectric conversion module
KR20200054539A (en) Anti-diffusion layer of thermoelectric material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees