JPH10339802A - Optical thin film - Google Patents

Optical thin film

Info

Publication number
JPH10339802A
JPH10339802A JP10141792A JP14179298A JPH10339802A JP H10339802 A JPH10339802 A JP H10339802A JP 10141792 A JP10141792 A JP 10141792A JP 14179298 A JP14179298 A JP 14179298A JP H10339802 A JPH10339802 A JP H10339802A
Authority
JP
Japan
Prior art keywords
thin film
refractive index
optical thin
film
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10141792A
Other languages
Japanese (ja)
Inventor
Atsushi Abe
淳 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10141792A priority Critical patent/JPH10339802A/en
Publication of JPH10339802A publication Critical patent/JPH10339802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnesium fluoride optical thin film having a dense crystalline structure, low refractive index, excellent scratch resistance and mechanical strength by controlling the Knoop hardness of the film to almost the same value. as that of fused quartz. SOLUTION: The Knoop hardness of the magnesium fluoride optical thin film is controlled to almost same as that of fused quartz. To improve stability of the optical characteristics of this optical thin film with time, the Is concn. in the org. compd. is preferably controlled to 3 to 10 wt.%. The obtd. optical thin film has low refractive index. In this optical thin film, since the molecular refraction is decreased (the bond angle is decrease) as a method to decrease the refractive index, changes in the molecular volume due to oxygen ion during sputtering can be suppressed. This means increase in the refractive index in a film produced by IAD method can be avoided (because, when oxygen ion is trapped to increase the molecular volume, the refractive index increases). Thereby, an almost same refractive index as that of MgF2 vapor deposition film can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、反射防止膜等として用
いられる光学薄膜に関し、特にプラスチックレンズ上へ
の形成に好適な光学薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical thin film used as an antireflection film or the like, and more particularly to an optical thin film suitable for forming on a plastic lens.

【0002】[0002]

【従来の技術】従来、光学部品の反射防止膜としては、
屈折率が低く、可視域での吸収が少ないMgF2膜が汎
用されている。このMgF2膜は、ガラスからなる光学
部品用の反射防止膜として真空蒸着法により実用化さ
れ、今日までに至っている。しかし、真空蒸着法により
MgF2膜を形成する場合、蒸着時及び蒸着後に高温
(200〜400℃)で加熱しなければ、光学的及び機
械的性能を十分に満足させることはできない。従って、
光学部品がプラスチックからなる場合、熱変形等の理由
から、強靱なMgF2膜を形成することは非常に困難で
ある。このため、現在のところMgF2膜はプラスチッ
クレンズ等には実用化されていないのが実情である。
2. Description of the Related Art Conventionally, as an antireflection film for optical parts,
MgF 2 films having a low refractive index and low absorption in the visible region are widely used. This MgF 2 film has been put to practical use by a vacuum deposition method as an antireflection film for optical components made of glass, and has been used up to the present. However, when the MgF 2 film is formed by the vacuum deposition method, the optical and mechanical performances cannot be sufficiently satisfied unless heated at a high temperature (200 to 400 ° C.) during and after the deposition. Therefore,
When the optical component is made of plastic, it is very difficult to form a tough MgF 2 film due to thermal deformation and the like. Therefore, at present, the MgF 2 film is not practically used for plastic lenses and the like.

【0003】光学薄膜を常温で形成する試みとしては、
Hollandらが、”L Martinu,H Bi
ederman and L Holland,Vac
uum/vol.35/number 12/p531
〜535/1985”(文献1)の中でスパッタリング
による方法について記載している。Hollandら
は、この文献の中で、「1)スパッタリングガスとして
Arガスを使って作成した膜ではMgF2蒸着膜と同等
の低い屈折率(n=1.38〜1.42)が得られる。
2)スパッタリングで形成したMgF2膜で可視域での
吸収が生じるのは、プラズマ中のF-イオンが基板ホル
ダ側に励起される負のプラズマポテンシャルにより反発
するため、薄膜内に取り込まれるF重量が不足すること
と、プラズマ中での水の解離により励起されたO- イオ
ンとMg+ イオンとの酸化反応により形成されるMgO
による。」と述べている。
Attempts to form an optical thin film at room temperature include:
Holland et al., “L Martinu, H Bi
ederman and L Holland, Vac
um / vol. 35 / number 12 / p531
535/1985 "(Reference 1) describes a method by sputtering. Holland et al. Disclose in this reference that" 1) MgF 2 deposited film is used for a film formed using Ar gas as a sputtering gas. A low refractive index (n = 1.38 to 1.42) equivalent to the above is obtained.
2) The absorption in the visible region of the MgF 2 film formed by sputtering occurs because F ions in the plasma are repelled by the negative plasma potential excited to the substrate holder side, and thus the F weight taken in the thin film. Formed by the oxidation reaction between O ions and Mg + ions excited by the dissociation of water in the plasma
by. "It has said.

【0004】しかし、本発明者らが上記のHollan
dらの文献に基づいて、スパッタリングによってMgF
2膜を作成したところ、Arガスを用いても低屈折率の
薄膜は得られなかった。また、基板ホルダ側にRFのバ
イアスをかけてMgF2膜を作成し、光学特性を検討し
たが、基板側のプラズマポテンシャルが負電位であるか
否かとということと、薄膜の光学特性の間にHolla
ndらが述べているような関係は認められなかった。
[0004] However, the present inventors have proposed the above Hollan.
d, et al., the sputtering of MgF
When two films were formed, a thin film having a low refractive index was not obtained even when Ar gas was used. In addition, an RF bias was applied to the substrate holder to form an MgF 2 film, and the optical characteristics were examined. Holla
The relationship described by nd et al. was not observed.

【0005】この他、MgF2膜を高温処理せずに作成
する方法としては、IAD法(Ion assiste
d deposition)が考えられる。しかし、こ
のIAD法は、分子容を大きくする(イオン半径の大き
いイオンを導入して配位数を高め、充填率を高くする)
方法であるため、得られたMgF2膜の屈折率は蒸着膜
に比べて高くなってしまう。
In addition, as a method of forming an MgF 2 film without performing high-temperature treatment, an IAD method (Ion associate) is used.
d deposition). However, this IAD method increases the molecular volume (introduces ions having a large ionic radius to increase the coordination number and increase the packing ratio).
Because of this method, the refractive index of the obtained MgF 2 film is higher than that of the deposited film.

【0006】更に、IAD法でMgF2膜を作成する場
合、機械的性能を上げるためには、かなり高いイオン電
流密度を必要とするため、イオン損傷による膜の内部応
力の変化に対する影響が大きく、光学特性の経時的安定
性に問題点がある。また、プラスチックレンズ用の低屈
折率膜としては、二酸化ケイ素(SiO2)が用いられ
ることがあるが、SiO2の屈折率はn=1.47程度
と高く、反射率が高くなってしまう。
Furthermore, when an MgF 2 film is formed by the IAD method, a considerably high ion current density is required in order to improve the mechanical performance, and therefore, the change in the internal stress of the film due to ion damage is greatly affected. There is a problem in stability over time of optical characteristics. Further, silicon dioxide (SiO 2 ) is sometimes used as a low refractive index film for a plastic lens, but the refractive index of SiO 2 is as high as about n = 1.47, and the reflectance is high.

【0007】[0007]

【課題を解決するための手段】本発明者は、蒸着法によ
るMgF2膜と同等以上の光学特性及び機械特性を有
し、かつ、高温処理が不要で、プラスチックレンズ等に
も支障なく用いることのできる新規な光学薄膜を得るべ
く、鋭意研究の結果、偶然にもこれまで文献等に報告の
ない硬いフッ化マグネシウム系光学薄膜を初めて成膜す
ることに成功し、本発明を成すに至った。
SUMMARY OF THE INVENTION The present inventor has determined that the present invention has an optical property and a mechanical property equal to or higher than that of a MgF 2 film formed by a vapor deposition method, does not require high-temperature treatment, and can be used for a plastic lens without any trouble. As a result of earnest research, a hard magnesium fluoride-based optical thin film that has not been reported in the literature has been successfully formed for the first time, and the present invention has been achieved. .

【0008】即ち本発明は、「ヌープ硬度が溶融石英と
略同じであることを特徴とするフッ化マグネシウム系光
学薄膜」を提供することにある。このような光学薄膜
は、これまで知られておらず、新規物質である。本発明
の光学薄膜の光学特性の経時安定性を向上させるために
は、無機化合物中のSi濃度を3〜10wt%とすると
良い。この際の各元素の好ましい原子比の範囲は次のよ
うである。
That is, an object of the present invention is to provide a "magnesium fluoride optical thin film characterized in that the Knoop hardness is substantially the same as that of fused quartz." Such an optical thin film has not been known so far and is a novel substance. In order to improve the stability over time of the optical characteristics of the optical thin film of the present invention, the concentration of Si in the inorganic compound is preferably set to 3 to 10% by weight. At this time, the preferable range of the atomic ratio of each element is as follows.

【0009】 F/Mg=(1.3/1)〜(1.6/1) O/Mg=(0.4/1)〜(0.7/1) Si/Mg=(0.1/1)〜(0.3/1) Siを添加する場合、MgF2とSiをプラズマ中で反
応させる方法、具体的にはスパッタリング等によって作
成することができる。スパッタリングの条件は、求める
光学的特性等に応じて適宜設定されるものであるが、例
えば、MgF2とSiをターゲットとし、スパッタリン
グガスとしてArとO2を用いて、バックグランド圧力
を1.1×10-3Pa程度、スパッタリンガス圧6×1
-1Pa程度とすると良い。
F / Mg = (1.3 / 1) to (1.6 / 1) O / Mg = (0.4 / 1) to (0.7 / 1) Si / Mg = (0.1 / 1) to (0.3 / 1) When Si is added, it can be prepared by a method of reacting MgF 2 and Si in plasma, specifically, by sputtering or the like. The sputtering conditions are appropriately set according to the optical characteristics to be obtained. For example, the background pressure is set to 1.1 × with MgF 2 and Si as targets, Ar and O 2 as sputtering gases. About 10 -3 Pa, sputtering gas pressure 6 × 1
It is good to be about 0 -1 Pa.

【0010】[0010]

【作用】本発明の光学薄膜は屈折率が低く、低くなる理
由としては、薄膜を構成する無機化合物の分子屈折の変
化が考えられる。本発明は、屈折率が低くなる方法とし
て、分子屈折を変化させるため(結合角を小さくす
る)、スパッタリング中の酸素イオンによる分子容の変
化を抑制でき、IAD法による膜のように屈折率が高く
ならず(酸素イオンが取り込まれて分子容が大きくなる
と屈折率が高くなる)、MgF2 蒸着膜と同等の屈折率
を得ることができる。
The optical thin film of the present invention has a low refractive index, which may be attributable to a change in the molecular refraction of the inorganic compound constituting the thin film. In the present invention, as a method of lowering the refractive index, since the molecular refraction is changed (the bonding angle is reduced), the change in the molecular volume due to oxygen ions during sputtering can be suppressed, and the refractive index can be reduced as in a film obtained by the IAD method. The refractive index does not increase (the refractive index increases as the molecular volume increases due to the incorporation of oxygen ions), and a refractive index equivalent to that of the MgF 2 deposited film can be obtained.

【0011】次に、本発明の光学薄膜の光学特性の経時
安定性について述べる。光学薄膜をを反射防止膜等とし
て用いるにあたって、屈折率を低い一定の値に保つ必要
がある場合、薄膜中のSi濃度を調整することで屈折率
の経時変化を抑えることができる。本発明者らの検討結
果によれば(具体的なデータは実施例で説明)、薄膜中
のSi濃度が低い場合、Si濃度が高すぎる場合に比べ
てSiOX の割合が低下してSi−F2結合の割合が高
くなる。具体的には、Si濃度を3〜10wt%程度と
することで、屈折率の経時安定性が向上する。この理由
は、Si濃度が低い場合、より結合エネルギーの高いS
i−Fの結合が促進されることにより、Siのダングリ
ングボンドの不動態化が行なわれるものと推測される。
Next, the stability with time of the optical characteristics of the optical thin film of the present invention will be described. When using an optical thin film as an anti-reflection film or the like and it is necessary to keep the refractive index at a low and constant value, the change in the refractive index with time can be suppressed by adjusting the Si concentration in the thin film. According to the study results of the present inventors (specific data will be described in Examples), when the Si concentration in the thin film is low, the ratio of SiO x is reduced as compared with the case where the Si concentration is too high. The proportion of F 2 bonds increases. Specifically, by setting the Si concentration to about 3 to 10 wt%, the stability over time of the refractive index is improved. The reason for this is that when the Si concentration is low, S
It is presumed that passivation of dangling bonds of Si is performed by promoting the bonding of i-F.

【0012】[0012]

【実施例】本発明の光学薄膜の機械的性能を検討した結
果を以下に示す。試料としては、基板は全て青板ガラス
を用い、基板を270℃にして蒸着法でMgF2膜を形
成したもの、常温でMgF2蒸着膜を形成したもの、ス
パッタリングにより本発明の光学薄膜を形成したものを
用意した。密着性については、4〜5kg/cm2での
セロハンテープテストによる引き剥がしテストを行な
い、耐溶剤性については、薄膜表面をシルボン紙にアセ
トンをしみこませて十数回強く拭いた。また、耐擦傷性
については、#0000のスチールウールを使って荷重
800gをかけ、往復50回/30秒こすることを行な
った。これらの試験の結果は次のようになった。
EXAMPLES The results of studying the mechanical performance of the optical thin film of the present invention are shown below. As a sample, the substrate was all blue plate glass, the substrate was formed at 270 ° C. to form an MgF 2 film by vapor deposition, the MgF 2 vapor deposited film was formed at room temperature, and the optical thin film of the present invention was formed by sputtering. I prepared something. For the adhesion, a peeling test was carried out by a cellophane tape test at 4 to 5 kg / cm 2 , and for the solvent resistance, the thin film surface was soaked with acetone in silbon paper and wiped ten or more times. Regarding the abrasion resistance, a load of 800 g was applied using # 0000 steel wool, and rubbing was performed 50 times / 30 seconds. The results of these tests were as follows.

【0013】[0013]

【表1】 [Table 1]

【0014】また、本発明光学薄膜(常温作成)と蒸着
MgF2膜(270℃加熱)とのヌープ硬度を比較した
結果を図1に示す。ヌープ硬度の測定は、明石製作所製
のマイクロビッカース硬度計MVK−G3500ATを
用いて行い、負荷を10g,15g,25gとした。基
板は両者共ホウケイ酸ガラス(青板)を使用した。その
他の比較例として青板単体と溶融石英板の測定結果も併
せて記載した。図1から、本発明の薄膜は、蒸着MgF
2膜(270℃加熱)よりもヌープ硬度が高く、溶融石
英とほぼ同程度の硬度を持つことがわかる。
FIG. 1 shows the results of comparison of the Knoop hardness between the optical thin film of the present invention (prepared at room temperature) and the deposited MgF 2 film (heated to 270 ° C.). The Knoop hardness was measured using a micro Vickers hardness meter MVK-G3500AT manufactured by Akashi Seisakusho, and the load was set to 10 g, 15 g, and 25 g. Both substrates used borosilicate glass (blue plate). As other comparative examples, measurement results of a blue plate alone and a fused quartz plate are also described. From FIG. 1, it can be seen that the thin film of the present invention has
It can be seen that the Knoop hardness is higher than that of the two films (heated at 270 ° C.), and the hardness is almost the same as that of fused quartz.

【0015】[0015]

【発明の効果】以上のように、本発明の光学薄膜は、結
晶構造が緻密であり、低屈折率で、かつヌープ硬度が溶
融石英と略同程度であるために、従来の光学薄膜に比べ
て耐擦傷性や機械的強度が優れた光学薄膜が得られる。
また従来、溶融石英で製造していた光学物品に代えて、
本発明の光学薄膜を形成した物品を代用することも可能
であることから、低コストで効率よく溶融石英と同程度
の硬度を有する光学物品が得られる。
As described above, the optical thin film of the present invention has a dense crystal structure, a low refractive index, and a Knoop hardness which is almost the same as that of fused silica, and therefore is smaller than that of the conventional optical thin film. Thus, an optical thin film having excellent scratch resistance and mechanical strength can be obtained.
Conventionally, instead of optical articles made of fused quartz,
Since the article formed with the optical thin film of the present invention can be substituted, an optical article having the same hardness as fused quartz can be obtained efficiently at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】負荷を変えたときのヌーブ硬度変化を示す図で
ある。
FIG. 1 is a diagram showing a change in the Nuev hardness when a load is changed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ヌープ硬度が溶融石英と略同程度である
ことを特徴とするフッ化マグネシウム系光学薄膜。
1. A magnesium fluoride optical thin film having a Knoop hardness substantially equal to that of fused quartz.
JP10141792A 1998-05-22 1998-05-22 Optical thin film Pending JPH10339802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10141792A JPH10339802A (en) 1998-05-22 1998-05-22 Optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10141792A JPH10339802A (en) 1998-05-22 1998-05-22 Optical thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02414523A Division JP3079580B2 (en) 1990-12-25 1990-12-25 Thin film for optical component, optical component having the same, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JPH10339802A true JPH10339802A (en) 1998-12-22

Family

ID=15300265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10141792A Pending JPH10339802A (en) 1998-05-22 1998-05-22 Optical thin film

Country Status (1)

Country Link
JP (1) JPH10339802A (en)

Similar Documents

Publication Publication Date Title
EP2149540B1 (en) Transparent member, timepiece, and method of manufacturing a transparent member
JP3808917B2 (en) Thin film manufacturing method and thin film
JPH0643304A (en) Antireflection film and optical parts with antireflection film
JP5027980B2 (en) Method for depositing fluorinated silica thin film
CN112501557B (en) Sapphire substrate 1-5 mu m ultra-wideband antireflection film and preparation method thereof
JP3079580B2 (en) Thin film for optical component, optical component having the same, and method of manufacturing the same
JPH10339802A (en) Optical thin film
JP2001319384A (en) Electrode material for forming stamper and thin film for forming stamper
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH10339803A (en) Optical thin film
JPS60130704A (en) Antireflection film for plastic substrate
JPH10282304A (en) Optical thin film
CN112080722A (en) Infrared window anti-reflection protection structure and preparation method thereof
JPH10123303A (en) Antireflection optical parts
JPH07501160A (en) Thin film made of gallium oxide and method for producing the same
JP2003329818A (en) Reflection mirror
JP2001515542A (en) Method for producing optically usable fluoride thin film and thin film thus produced
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JP3509414B2 (en) Reflector and method of manufacturing the same
JPS63172201A (en) Two-layer antireflection coating
CN212293729U (en) Infrared window anti-reflection protection structure
JPH04217203A (en) Multiple-layer anti-reflection film for optical parts made of synthetic resin and manufacture thereof
JP2009093068A (en) Method of manufacturing scratch-resistant article
JP2002202401A (en) Reflection preventing film and plastics optical component equipped with the same
JPH05313001A (en) Reflection preventing film for plastic made optical part

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100421

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110421

LAPS Cancellation because of no payment of annual fees