JPH10339803A - Optical thin film - Google Patents

Optical thin film

Info

Publication number
JPH10339803A
JPH10339803A JP10141793A JP14179398A JPH10339803A JP H10339803 A JPH10339803 A JP H10339803A JP 10141793 A JP10141793 A JP 10141793A JP 14179398 A JP14179398 A JP 14179398A JP H10339803 A JPH10339803 A JP H10339803A
Authority
JP
Japan
Prior art keywords
film
thin film
optical thin
refractive index
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10141793A
Other languages
Japanese (ja)
Inventor
Atsushi Abe
淳 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10141793A priority Critical patent/JPH10339803A/en
Publication of JPH10339803A publication Critical patent/JPH10339803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnesium-fluoride optical thin film which has superior adhesive strength and is useable even at a place where a load is placed by preventing the film from peeling against a specific load in a sticking strength test using a scratch tester and forming it by a nonheating method. SOLUTION: The film is prevented from peeling against a load of 40 gf in a sticking strength test using a scratch tester and formed by a nonheating method. To improve temporal stability of optical characteristics of this optical thin film, the Is density in an inorganic compound is preferably 3 to 10 wt.%. This optical thin film has a low refractive index. This optical thin film can suppresses variation in molecular weight due to oxygen ions during sputtering since molecular refraction is varied (made small in coupling angle) as a method for lowering the refracting index, and the refractive index does not become large unlike a film by an IAD method (increases when the molecular volume becomes large as oxygen ions re taken in), thereby obtaining a refractive index close to that of an MgF2 vapor-deposited film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、反射防止膜等として用
いられる光学薄膜に関し、特にプラスチックレンズ上へ
の形成に好適な光学薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical thin film used as an antireflection film or the like, and more particularly to an optical thin film suitable for forming on a plastic lens.

【0002】[0002]

【従来の技術】従来、光学部品の反射防止膜としては、
屈折率が低く、可視域での吸収が少ないMgF2膜が汎
用されている。このMgF2膜は、ガラスからなる光学
部品用の反射防止膜として真空蒸着法により実用化さ
れ、今日までに至っている。しかし、真空蒸着法により
MgF2膜を形成する場合、蒸着時及び蒸着後に高温
(200〜400℃)で加熱しなければ、光学的及び機
械的性能を十分に満足させることはできない。従って、
光学部品がプラスチックからなる場合、熱変形等の理由
から、高耐久性を有するMgF2膜を形成することは非
常に困難である。このため、現在のところMgF2膜は
プラスチックレンズ等には実用化されていないのが実情
である。
2. Description of the Related Art Conventionally, as an antireflection film for optical parts,
MgF 2 films having a low refractive index and low absorption in the visible region are widely used. This MgF 2 film has been put to practical use by a vacuum deposition method as an antireflection film for optical components made of glass, and has been used up to the present. However, when the MgF 2 film is formed by the vacuum deposition method, the optical and mechanical performances cannot be sufficiently satisfied unless heated at a high temperature (200 to 400 ° C.) during and after the deposition. Therefore,
When the optical component is made of plastic, it is very difficult to form a highly durable MgF 2 film because of thermal deformation and the like. Therefore, at present, the MgF 2 film is not practically used for plastic lenses and the like.

【0003】光学薄膜を常温で形成する試みとしては、
Hollandらが、”L Martinu,H Bi
ederman and L Holland,Vac
uum/vol.35/number 12/p531
〜535/1985”(文献1)の中でスパッタリング
による方法について記載している。Hollandら
は、この文献の中で、「1)スパッタリングガスとして
Arガスを使って作成した膜ではMgF2蒸着膜と同等
の低い屈折率(n=1.38〜1.42)が得られる。
2)スパッタリングで形成したMgF2膜で可視域での
吸収が生じるのは、プラズマ中のF-イオンが基板ホル
ダ側に励起される負のプラズマポテンシャルにより反発
するため、薄膜内に取り込まれるF重量が不足すること
と、プラズマ中での水の解離により励起されたO- イオ
ンとMg+ イオンとの酸化反応により形成されるMgO
による。」と述べている。
Attempts to form an optical thin film at room temperature include:
Holland et al., “L Martinu, H Bi
ederman and L Holland, Vac
um / vol. 35 / number 12 / p531
535/1985 "(Reference 1) describes a method by sputtering. Holland et al. Disclose in this reference that" 1) MgF 2 deposited film is used for a film formed using Ar gas as a sputtering gas. A low refractive index (n = 1.38 to 1.42) equivalent to the above is obtained.
2) The absorption in the visible region of the MgF 2 film formed by sputtering occurs because F ions in the plasma are repelled by the negative plasma potential excited to the substrate holder side, and thus the F weight taken in the thin film. Formed by the oxidation reaction between O ions and Mg + ions excited by the dissociation of water in the plasma
by. "It has said.

【0004】しかし、本発明者らが上記のHollan
dらの文献に基づいて、スパッタリングによってMgF
2膜を作成したところ、Arガスを用いても低屈折率の
薄膜は得られなかった。また、基板ホルダ側にRFのバ
イアスをかけてMgF2膜を作成し、光学特性を検討し
たが、基板側のプラズマポテンシャルが負電位であるか
否かとということと、薄膜の光学特性の間にHolla
ndらが述べているような関係は認められなかった。
[0004] However, the present inventors have proposed the above Hollan.
d, et al., the sputtering of MgF
When two films were formed, a thin film having a low refractive index could not be obtained even when Ar gas was used. In addition, an RF bias was applied to the substrate holder to form an MgF 2 film, and the optical characteristics were examined. Holla
The relationship described by nd et al. was not observed.

【0005】この他、MgF2膜を高温処理せずに作成
する方法としては、IAD法(Ion assiste
d deposition)が考えられる。しかし、こ
のIAD法は、分子容を大きくする(イオン半径の大き
いイオンを導入して配位数を高め、充填率を高くする)
方法であるため、得られたMgF2膜の屈折率は蒸着膜
に比べて高くなってしまう。
In addition, as a method of forming an MgF 2 film without performing high-temperature treatment, an IAD method (Ion associate) is used.
d deposition). However, this IAD method increases the molecular volume (introduces ions having a large ionic radius to increase the coordination number and increase the packing ratio).
Because of this method, the refractive index of the obtained MgF 2 film is higher than that of the deposited film.

【0006】更に、IAD法でMgF2膜を作成する場
合、機械的性能を上げるためには、かなり高いイオン電
流密度を必要とするため、イオン損傷による膜の内部応
力の変化に対する影響が大きく、光学特性の経時的安定
性に問題点がある。また、プラスチックレンズ用の低屈
折率膜としては、二酸化ケイ素(SiO2)が用いられ
ることがあるが、SiO2の屈折率はn=1.47程度
と高く、反射率が高くなってしまう。
Furthermore, when an MgF 2 film is formed by the IAD method, a considerably high ion current density is required in order to improve the mechanical performance, and therefore, the change in the internal stress of the film due to ion damage is greatly affected. There is a problem in stability over time of optical characteristics. Further, silicon dioxide (SiO 2 ) is sometimes used as a low refractive index film for a plastic lens, but the refractive index of SiO 2 is as high as about n = 1.47, and the reflectance is high.

【0007】[0007]

【課題を解決するための手段】本発明者は、蒸着法によ
るMgF2膜と同等以上の光学特性及び機械特性を有
し、かつ、高温処理が不要で、プラスチックレンズ等に
も支障なく用いることのできる光学薄膜を得るべく、鋭
意研究の結果、偶然にも、これまで文献等に報告のない
密着性に優れたフッ化マグネシウム系薄膜を初めて成膜
することに成功し、本発明を成すに至った。
SUMMARY OF THE INVENTION The present inventor has determined that the present invention has an optical property and a mechanical property equal to or higher than that of a MgF 2 film formed by a vapor deposition method, does not require high-temperature treatment, and can be used for a plastic lens without any trouble. As a result of diligent research to obtain an optical thin film that can be formed, we have fortunately succeeded in forming the first magnesium fluoride-based thin film with excellent adhesion that has not been reported in the literature, and achieved the present invention. Reached.

【0008】即ち、本発明は第一に「スクラッチテスタ
を用いた付着強度試験で少なくとも40gfの荷重で剥
離しないことを特徴とする非加熱法で形成されたフッ化
マグネシウム系光学薄膜(請求項1)」を提供する。こ
のような光学薄膜は、これまで知られておらず、新規な
物質である。本発明の光学薄膜の光学特性の経時安定性
を向上させるためには、無機化合物中のSi濃度を3〜
10wt%とすると良い。この際の各元素の好ましい原
子比の範囲は次のようである。
That is, the present invention firstly provides a "magnesium fluoride-based optical thin film formed by a non-heating method, which does not peel off under a load of at least 40 gf in an adhesion strength test using a scratch tester. )"I will provide a. Such an optical thin film has not been known so far and is a novel substance. In order to improve the stability over time of the optical characteristics of the optical thin film of the present invention, the concentration of Si in the inorganic compound should be 3 to
It is good to be 10 wt%. At this time, the preferable range of the atomic ratio of each element is as follows.

【0009】 F/Mg=(1.3/1)〜(1.6/1) O/Mg=(0.4/1)〜(0.7/1) Si/Mg=(0.1/1)〜(0.3/1) Siを添加した場合、MgF2とSiをプラズマ中で反
応させる方法、具体的にはスパッタリング等によって作
成することができる。スパッタリングの条件は、求める
光学的特性等に応じて適宜設定されるものであるが、例
えば、MgF2とSiをターゲットとし、スパッタリン
グガスとしてArとO2を用いて、バックグランド圧力
を1.1×10-3Pa程度、スパッタリンガス圧6×1
-1Pa程度とすると良い。
F / Mg = (1.3 / 1) to (1.6 / 1) O / Mg = (0.4 / 1) to (0.7 / 1) Si / Mg = (0.1 / 1) to (0.3 / 1) When Si is added, it can be prepared by a method of reacting MgF2 and Si in a plasma, specifically, by sputtering or the like. The sputtering conditions are appropriately set according to the optical characteristics to be obtained. For example, the background pressure is set to 1.1 by using MgF 2 and Si as targets, using Ar and O 2 as sputtering gases. About × 10 -3 Pa, sputtering gas pressure 6 × 1
It is good to be about 0 -1 Pa.

【0010】[0010]

【作用】本発明の光学薄膜の屈折率は低く、低くなる理
由としては、薄膜を構成する無機化合物の分子屈折の変
化が考えられる。本発明では、屈折率を低くする方法と
して、分子屈折を変化させるため(結合角を小さくす
る)、スパッタリング中の酸素イオンによる分子容の変
化を抑制でき、IAD法による膜のように屈折率が高く
ならず(酸素イオンが取り込まれて分子容が大きくなる
と屈折率が高くなる)、MgF2蒸着膜と同等の屈折率
を得ることができる。
The refractive index of the optical thin film of the present invention is low, which may be attributable to a change in the molecular refraction of the inorganic compound constituting the thin film. In the present invention, as a method of lowering the refractive index, since the molecular refraction is changed (the bonding angle is reduced), the change in the molecular volume due to oxygen ions during sputtering can be suppressed, and the refractive index can be reduced as in a film obtained by the IAD method. The refractive index does not increase (the refractive index increases as the molecular volume increases due to the incorporation of oxygen ions), and a refractive index equivalent to that of the MgF 2 deposited film can be obtained.

【0011】次に、本発明の光学薄膜の光学特性の経時
安定性について述べる。光学薄膜を反射防止膜等として
用いるにあたって、屈折率を低い一定の値に保つ必要が
ある場合、薄膜中のSi濃度を調整することで屈折率の
経時変化を抑えることができる。本発明者らの検討結果
によれば(具体的なデータは実施例で説明)、薄膜中の
Si濃度が低い場合、Si濃度が高すぎる場合に比べて
SiOX の割合が低下してSi−F2結合の割合が高く
なる。具体的には、Si濃度を3〜10wt%程度とす
ることで、屈折率の経時安定性が向上する。この理由
は、Si濃度が低い場合、より結合エネルギーの高いS
i−Fの結合が促進されることにより、Siのダングリ
ングボンドの不動態化が行なわれるものと推測される。
Next, the stability with time of the optical characteristics of the optical thin film of the present invention will be described. When the optical thin film is used as an anti-reflection film or the like and it is necessary to keep the refractive index at a low and constant value, it is possible to suppress the change over time of the refractive index by adjusting the Si concentration in the thin film. According to the study results of the present inventors (specific data will be described in Examples), when the Si concentration in the thin film is low, the ratio of SiO x is reduced as compared with the case where the Si concentration is too high. The proportion of F 2 bonds increases. Specifically, by setting the Si concentration to about 3 to 10 wt%, the stability over time of the refractive index is improved. The reason for this is that when the Si concentration is low, S
It is presumed that passivation of dangling bonds of Si is performed by promoting the bonding of i-F.

【0012】[0012]

【実施例】本発明の光学薄膜の機械的性能を検討した結
果を以下に示す。試料としては、基板は全て青板ガラス
を用い、基板を270℃にして蒸着法でMgF2 膜を形
成したもの、常温でMgF2蒸着膜を形成したもの、ス
パッタリングにより本発明の光学薄膜を形成したものを
用意した。密着性については、4〜5kg/cm2での
セロハンテープテストによる引き剥がしテストを行な
い、耐溶剤性については、薄膜表面をシルボン紙にアセ
トンをしみこませて十数回強く拭いた。また、耐擦傷性
については、#0000のスチールウールを使って荷重
800gをかけ、往復50回/30秒こすることを行な
った。これらの試験の結果は次のようになった。
EXAMPLES The results of studying the mechanical performance of the optical thin film of the present invention are shown below. As a sample, the substrate was all blue plate glass, the substrate was formed at 270 ° C. to form an MgF 2 film by vapor deposition, the MgF 2 vapor deposited film was formed at room temperature, and the optical thin film of the present invention was formed by sputtering. I prepared something. For the adhesion, a peeling test was carried out by a cellophane tape test at 4 to 5 kg / cm 2 , and for the solvent resistance, the thin film surface was soaked with acetone in silbon paper and wiped ten or more times. Regarding the abrasion resistance, a load of 800 g was applied using # 0000 steel wool, and rubbing was performed 50 times / 30 seconds. The results of these tests were as follows.

【0013】[0013]

【表1】 [Table 1]

【0014】本発明の光学薄膜(常温作成)と蒸着Mg
2(270℃加熱)の基板に対する付着強度を調べた
結果を図2(フッ化マグネシウム系光学薄膜),図1
(MgF2膜)に示す。基板は両者共ホウケイ酸ガラス
(青板)を使用し、付着強度の測定は、スクラッチテス
タSST−100(島津製作所製)を用いて行った。測
定条件は、スクラッチ速度:10μm/sec,カート
リッジ振幅:100μm,最大付加:50gf,負荷速
度:2μm/secとした。
The optical thin film of the present invention (prepared at room temperature) and deposited Mg
F 2 2 (magnesium fluoride optical thin film) The results of examining the bond strength to the substrate of (270 ° C. heating), 1
(MgF 2 film). Both substrates used borosilicate glass (blue plate), and the adhesion strength was measured using a scratch tester SST-100 (manufactured by Shimadzu Corporation). The measurement conditions were as follows: scratch speed: 10 μm / sec, cartridge amplitude: 100 μm, maximum addition: 50 gf, load speed: 2 μm / sec.

【0015】図2に示されるように、本発明の光学薄膜
は、40gfまで荷重を増加させても膜は剥離しなかっ
た。しかし、MgF2膜については、図1からわかるよ
うに、10gfから膜が破砕し始め、24gfで完全に
剥離した。以上の結果から、本発明の光学薄膜は、従来
のMgF2膜よりも格段に機械的強度が優れていると言
える。
As shown in FIG. 2, the optical thin film of the present invention did not peel even when the load was increased to 40 gf. However, regarding the MgF 2 film, as can be seen from FIG. 1, the film started to be crushed at 10 gf and completely peeled off at 24 gf. From the above results, it can be said that the optical thin film of the present invention has much better mechanical strength than the conventional MgF 2 film.

【0016】[0016]

【発明の効果】以上のように、本発明の光学薄膜は、密
着性が従来の光学薄膜に比べて優れており、40gfの
荷重に対しても膜が剥離することがない。従って、荷重
のかかる部位に対しても使用可能な光学薄膜が得られ
る。また、本発明の光学薄膜を有する光学物品の様々な
使用環境での使用が可能となった。
As described above, the optical thin film of the present invention has better adhesion than the conventional optical thin film, and does not peel off even under a load of 40 gf. Therefore, an optical thin film that can be used even for a portion where a load is applied can be obtained. Further, the optical article having the optical thin film of the present invention can be used in various use environments.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、従来のMgF2蒸着膜の付着強度の測定結
果を示すグラフである。
FIG. 1 is a graph showing the measurement results of the adhesion strength of a conventional MgF 2 deposited film.

【図2】は、本発明のフッ化マグネシウム系光学薄膜の
付着強度の測定結果を示すグラフである。
FIG. 2 is a graph showing the measurement results of the adhesion strength of the magnesium fluoride-based optical thin film of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スクラッチテスタを用いた付着強度試験
で少なくとも40gfの荷重で剥離しないことを特徴と
する非加熱法で形成されたフッ化マグネシウム系光学薄
膜。
1. A magnesium fluoride-based optical thin film formed by a non-heating method, which does not peel off under a load of at least 40 gf in an adhesion strength test using a scratch tester.
JP10141793A 1998-05-22 1998-05-22 Optical thin film Pending JPH10339803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10141793A JPH10339803A (en) 1998-05-22 1998-05-22 Optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10141793A JPH10339803A (en) 1998-05-22 1998-05-22 Optical thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02414523A Division JP3079580B2 (en) 1990-12-25 1990-12-25 Thin film for optical component, optical component having the same, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JPH10339803A true JPH10339803A (en) 1998-12-22

Family

ID=15300285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10141793A Pending JPH10339803A (en) 1998-05-22 1998-05-22 Optical thin film

Country Status (1)

Country Link
JP (1) JPH10339803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820318A (en) * 2014-01-31 2015-08-05 精工爱普生株式会社 Pixel electrode, display device, method of manufacturing pixel electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820318A (en) * 2014-01-31 2015-08-05 精工爱普生株式会社 Pixel electrode, display device, method of manufacturing pixel electrode
US20150221739A1 (en) * 2014-01-31 2015-08-06 Seiko Epson Corporation Pixel electrode, display device, method of manufacturing pixel electrode

Similar Documents

Publication Publication Date Title
JP3808917B2 (en) Thin film manufacturing method and thin film
CN105607159A (en) Preparation method for large-angle multiband infrared high antireflection film system
JPH0643304A (en) Antireflection film and optical parts with antireflection film
CN112501557B (en) Sapphire substrate 1-5 mu m ultra-wideband antireflection film and preparation method thereof
JP5027980B2 (en) Method for depositing fluorinated silica thin film
JPH10339803A (en) Optical thin film
JP3079580B2 (en) Thin film for optical component, optical component having the same, and method of manufacturing the same
JP2001319384A (en) Electrode material for forming stamper and thin film for forming stamper
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH10282304A (en) Optical thin film
JPH10339802A (en) Optical thin film
JPH0781978A (en) Water-repellent antireflection film in glass optical parts
JPH04217203A (en) Multiple-layer anti-reflection film for optical parts made of synthetic resin and manufacture thereof
JPH05313001A (en) Reflection preventing film for plastic made optical part
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JPH07301703A (en) Antireflection film for high precision optical parts
JP2003329818A (en) Reflection mirror
JP3353948B2 (en) Beam splitter
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JPS63172201A (en) Two-layer antireflection coating
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JPH03255401A (en) Formation of mgf2 film on plastic substrate
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JP3509414B2 (en) Reflector and method of manufacturing the same
JP2001108802A (en) Antireflection film