JPH10324523A - Production of cobalt oxide fine particulate powder - Google Patents

Production of cobalt oxide fine particulate powder

Info

Publication number
JPH10324523A
JPH10324523A JP10096715A JP9671598A JPH10324523A JP H10324523 A JPH10324523 A JP H10324523A JP 10096715 A JP10096715 A JP 10096715A JP 9671598 A JP9671598 A JP 9671598A JP H10324523 A JPH10324523 A JP H10324523A
Authority
JP
Japan
Prior art keywords
cobalt
cobalt oxide
powder
oxide fine
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10096715A
Other languages
Japanese (ja)
Other versions
JP4277324B2 (en
Inventor
Tatsuya Nakamura
龍哉 中村
Yoshiro Okuda
嘉郎 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP09671598A priority Critical patent/JP4277324B2/en
Publication of JPH10324523A publication Critical patent/JPH10324523A/en
Application granted granted Critical
Publication of JP4277324B2 publication Critical patent/JP4277324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain cobalt oxide fine particulate powder having a uniform particle size distribution and high reactivity. SOLUTION: An aq. cobalt salt soln. is neutralized with an excess aq. alkali soln. to obtain a cobalt hydroxide suspension in which the concn. ratio (R[OH<-> ]/2[Co<2+> ]) of the alkali to the cobalt salt is 1.0-1.2 and the concn. of the excess alkali is <=0.1 M. This suspension is heated to >=60 deg.C and cobalt ions are oxidized by blowing an oxygen-contg. gas to precipitate and form the objective cobalt oxide fine particulate powder having <=0.1 μm average particle diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コバルト酸化物微
粒子粉末の製造法に関し、更に詳しくは、微細粒子且つ
粒度分布が均斉で、反応性の高い酸化コバルト微粒子粉
末を有利に製造する方法にするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing cobalt oxide fine particle powder, and more particularly, to a method for advantageously producing highly reactive cobalt oxide fine powder having fine particles, uniform particle size distribution, and high reactivity. Things.

【0002】[0002]

【従来の技術】近年、コバルト酸化物粒子粉末等の遷移
金属酸化物の粒子粉末は、そのもの単独ではなく、他の
金属酸化物等と混合、焼成して複合酸化物として種々の
用途で利用されている。このような固相反応によって作
成されたものは、主に多結晶体の焼結体であることか
ら、再度粉砕されて粉末とした後、所望の型に成型され
て使用されている。近時、リチウム電池の正極活物質と
して用いられているリチウムコバルト酸化物(LiCo
2 )等がその例である。
2. Description of the Related Art In recent years, transition metal oxide particles such as cobalt oxide particles are not used alone, but are mixed with other metal oxides and baked to be used as composite oxides in various applications. ing. Since what is produced by such a solid-phase reaction is mainly a sintered body of a polycrystal, it is used after being pulverized again into a powder and then molded into a desired mold. Recently, a lithium cobalt oxide (LiCoO) used as a positive electrode active material of a lithium battery has been used.
O 2 ) is an example.

【0003】ところで、酸化コバルト粒子粉末の反応性
が低い場合には、この固相反応の進行が遅いため、高温
で長時間焼成することが必要になる。高温で長時間焼成
すると、一部の金属イオンが蒸発して組成が変動しやす
い、或いは、粒子同士が強固に融着して再粉砕が必要と
なり、エネルギーコストが高くなる、また、粉砕時に粉
砕に用いる媒体が磨耗して混入する等の問題点が指摘さ
れている。
[0003] When the reactivity of the cobalt oxide particles is low, the progress of the solid phase reaction is slow, so that firing at a high temperature for a long time is necessary. When fired at high temperature for a long time, some metal ions evaporate and the composition is apt to fluctuate, or the particles are firmly fused and re-grinding is required, increasing the energy cost. It has been pointed out that the medium used in the method is worn and mixed.

【0004】以上のような背景から、低温、短時間の焼
成によって他の金属酸化物と化合物を形成しやすい反応
性の高いコバルト酸化物粒子粉末が得られる方法が求め
られている。
[0004] In view of the above background, there is a need for a method of obtaining a highly reactive cobalt oxide particle powder which easily forms a compound with another metal oxide by firing at a low temperature for a short time.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる実情に
鑑み、低温、短時間の焼成によって他の金属酸化物と化
合物を形成しやすい反応性の高いコバルト酸化物粒子粉
末を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a highly reactive cobalt oxide particle powder which can easily form a compound with another metal oxide by firing at a low temperature for a short time. And

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の本発明は、コバルト塩の水溶液を過剰のアルカリ水溶
液により中和して、アルカリとコバルト塩との濃度比R
〔OH- 〕/2〔Co2+〕が1.0〜1.2で過剰アル
カリの濃度が0.1M以下である水酸化コバルト懸濁液
を得、次いで該懸濁液を60℃以上に加熱し、該懸濁液
に酸素含有ガスを吹き込みコバルトイオンを酸化し、酸
化コバルト(Co3 4 )の微粒子粉末を沈澱生成させ
ることを特徴とする酸化コバルト微粒子粉末の製造法で
ある。
In order to solve the above-mentioned problems, the present invention is to neutralize an aqueous solution of a cobalt salt with an excess aqueous alkali solution to obtain a concentration ratio R between the alkali and the cobalt salt.
[OH -] / 2 [Co 2+] is obtained cobalt suspension hydroxide concentration of excess alkali is 0.1M or less at 1.0 to 1.2, then the suspension 60 ° C. or higher This is a method for producing fine particles of cobalt oxide, comprising heating and blowing an oxygen-containing gas into the suspension to oxidize the cobalt ions to precipitate and form fine particles of cobalt oxide (Co 3 O 4 ).

【0007】次に、本発明を詳しく説明する。本発明に
おいて使用するコバルト塩としては、硫酸コバルト、塩
化コバルト、硝酸コバルト等が挙げられ、これらは単独
又は2種以上組み合わせて使用することができる。ま
た、本発明において使用するアルカリ水溶液としては、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、
炭酸カリウム等が挙げられ、これらは単独又は2種以上
組み合わせて用いることができる。本発明におけるコバ
ルト(II)水酸化物の懸濁液中の、アルカリとコバルト
塩の濃度比Rは、〔OH-〕/2〔Co2+〕で表して、
R=1.0〜1.2、好ましくは1.01〜1.10で
あること、及び過剰アルカリ濃度が1.0M以下、好ま
しくは0.5以下であることが必要である。Rの値、或
いは過剰アルカリ濃度が上記の範囲外であると、酸化コ
バルト単相の粒子が得られず、混合物となってしまう。
Next, the present invention will be described in detail. Examples of the cobalt salt used in the present invention include cobalt sulfate, cobalt chloride, and cobalt nitrate. These can be used alone or in combination of two or more. Further, the alkaline aqueous solution used in the present invention,
Sodium hydroxide, potassium hydroxide, sodium carbonate,
Potassium carbonate and the like can be mentioned, and these can be used alone or in combination of two or more. The concentration ratio R of the alkali and the cobalt salt in the suspension of the cobalt (II) hydroxide in the present invention is represented by [OH ] / 2 [Co 2+ ].
It is necessary that R = 1.0 to 1.2, preferably 1.01 to 1.10, and the excess alkali concentration be 1.0 M or less, preferably 0.5 or less. If the value of R or the excess alkali concentration is outside the above range, particles of the cobalt oxide single phase will not be obtained, resulting in a mixture.

【0008】本発明におけるコバルト(II)水酸化物の
懸濁液の加熱温度は、60℃以上、好ましくは70℃以
上、より好ましくは70〜95℃であることが必要であ
る。60℃未満であると、酸化コバルト単相の微粒子粉
末が得られず、混合物となってしまうことがある。加熱
温度の上限は特に限定されないが、100℃を越えると
高圧容器が必要となり、装置コストが高くなるとともに
操作も煩雑となり、経済的、工業的でなくなるため、9
5℃程度が好ましい。さらには、本発明における酸化方
法としては、懸濁液中に酸素含有ガス、例えば空気を吹
き込む方法である。酸素含有ガス以外の酸化剤、例えば
過酸化水素等を用いた場合には、酸化コバルト単相の微
粒子粉末を得ることができない。酸化コバルト微粒子粉
末の沈澱生成反応の終点については、その懸濁液中にO
RP電極を導入し、その電位をモニターすることで反応
の進行度合いを逐次追跡し、沈澱生成反応の終点を判定
することができる。反応終点を確認した後、懸濁液を取
り出して、固形分を濾別・乾燥する。
[0008] The heating temperature of the suspension of cobalt (II) hydroxide in the present invention must be 60 ° C or higher, preferably 70 ° C or higher, more preferably 70 to 95 ° C. If the temperature is lower than 60 ° C., fine particles of a cobalt oxide single phase cannot be obtained, and a mixture may be formed. Although the upper limit of the heating temperature is not particularly limited, if the temperature exceeds 100 ° C., a high-pressure vessel is required, which increases the equipment cost, complicates the operation, and is not economical or industrial.
About 5 ° C. is preferable. Further, the oxidation method in the present invention is a method of blowing an oxygen-containing gas, for example, air into the suspension. If an oxidizing agent other than the oxygen-containing gas, such as hydrogen peroxide, is used, it is not possible to obtain fine particles of cobalt oxide single phase. Regarding the end point of the precipitation formation reaction of the cobalt oxide fine particle powder, O
By introducing an RP electrode and monitoring its potential, the degree of progress of the reaction can be sequentially tracked to determine the end point of the precipitation reaction. After confirming the end point of the reaction, the suspension is taken out, and the solid content is filtered off and dried.

【0009】上記の如くして、微粒子粉末、好ましく
は、平均粒子径が0.1μm以下の微粒子粉末であり、
しかもその粒度分布が均斉である酸化コバルトが得られ
る。
As described above, fine particle powder, preferably fine particle powder having an average particle diameter of 0.1 μm or less,
In addition, cobalt oxide having a uniform particle size distribution can be obtained.

【0010】[0010]

【作用】本発明において最も重要な点は、コバルト塩水
溶液と中和以上の過剰なアルカリ水溶液を混合して得ら
れるコバルト(II)水酸化物の懸濁液を加熱しながら、
酸素含有ガスを通気してコバルトイオンを酸化すること
で沈澱生成させることにより、平均粒子径が0.1μm
以下の粒度分布の均斉な酸化コバルト微粒子粉末が得ら
れるという事実である。これは、水溶液中に均一に分散
した水酸化コバルトから酸化コバルトが沈澱生成するた
め、均一核発生と同時に、粒子同士の融着が起こらない
ことに起因しているものと思われる。
The most important point in the present invention is that while heating a suspension of cobalt (II) hydroxide obtained by mixing an aqueous solution of a cobalt salt and an aqueous solution of an alkali that is more than neutralized,
Oxygen-containing gas is passed to oxidize cobalt ions to form precipitates, so that the average particle diameter is 0.1 μm.
This is a fact that a uniform cobalt oxide fine particle powder having the following particle size distribution can be obtained. This is presumably because cobalt oxide precipitates from cobalt hydroxide uniformly dispersed in the aqueous solution, so that uniform nuclei are not generated and fusion of particles does not occur.

【0011】酸素含有ガスを通気する以外の方法、例え
ば過酸化水素等の酸化剤を用いた場合、酸化コバルト単
相の微粒子粉末を得ることができない理由は、その酸化
能が酸素含有ガスと異なるためと考えられ、酸素含有ガ
スの酸化能が酸化コバルト単相の粒子粉末を得ることに
適していることに因るものと思われる。本発明で得られ
る微粒子粉末、特に平均粒子径が0.1μm以下の粒度
分布の均斉な酸化コバルト微粒子粉末を用いて、例えば
Li化合物と固相反応させると、短時間でその反応が完
結する。焼成時の固相反応は、原料粉末粒子同士の接点
での相互拡散によって進行するものと考えられる。平均
粒子径が0.1μm以下のコバルト酸化物微粒子粉末を
用いると、その接触面積が増大し、コバルト原料の反応
性が向上し、焼成時に反応が速やかに進行するために、
短時間でその反応が完結するものと考えられる。
[0011] When an oxidizing agent such as hydrogen peroxide is used instead of passing oxygen-containing gas, for example, the fine particles of cobalt oxide single phase cannot be obtained because the oxidizing ability is different from that of oxygen-containing gas. This is considered to be due to the fact that the oxidizing ability of the oxygen-containing gas is suitable for obtaining a particle powder of a cobalt oxide single phase. When a fine particle powder obtained by the present invention, particularly a uniform cobalt oxide fine particle powder having an average particle diameter of 0.1 μm or less and having a uniform particle size distribution is subjected to a solid phase reaction with, for example, a Li compound, the reaction is completed in a short time. It is considered that the solid phase reaction at the time of firing proceeds by mutual diffusion at the contact point between the raw material powder particles. When the average particle diameter of 0.1 μm or less of the cobalt oxide fine powder is used, the contact area increases, the reactivity of the cobalt raw material improves, and the reaction proceeds rapidly during firing.
It is considered that the reaction is completed in a short time.

【0012】[0012]

【発明の実施の形態】本発明の代表的な実施形態は、次
の通りである。なお、反応生成物微粒子粉末の同定、そ
の結晶構造を、X線回折(RIGAKU, Mn-filtered Fe−K
α,40KV and 20 mA )により調べた。また、微粒
子の形態、粒度分布については透過型電子顕微鏡観察に
より調べ、平均粒子径は、透過型電子顕微鏡写真の粒子
像から統計平均により決定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows. The identification of the reaction product fine particle powder and its crystal structure were performed by X-ray diffraction (RIGAKU, Mn-filtered Fe-K
α, 40 KV and 20 mA). The morphology and particle size distribution of the fine particles were examined by observation with a transmission electron microscope, and the average particle diameter was determined by statistical average from the particle image of the transmission electron microscope photograph.

【0013】<コバルト酸化物の製造>硫酸コバルト
(CoSO4 ・7H2 O)を水2000mlに溶解させて
水溶液とした。この水溶液に0.756Mの水酸化ナト
リウム水溶液2500mlを加えて、コバルト(II)水酸
化物の懸濁液を作成した(R=1.05、過剰NaOH
濃度=0.02M)。この懸濁液を機械的に攪拌しなが
ら80℃まで加熱した。この温度を一定に保ちながら、
懸濁液中に空気を通気して酸化反応を20時間行った。
得られた沈澱物を濾別、水洗した後、60℃にて乾燥さ
せて黒色の微粒子粉末を作成した。得られた黒色粉末
は、図1のX線回折図に示す通り、スピネル型のコバル
ト酸化物Co3 4 であった。その微粒子粉末の粒子構
造を示す透過型電子顕微鏡写真を図2に示したが、粒度
分布は均斉であり、平均粒子径は約0.03μmであっ
た。
[0013] <Production of cobalt oxide> cobalt sulfate (CoSO 4 · 7H 2 O) into an aqueous solution dissolved in water 2000 ml. To this aqueous solution, 2500 ml of a 0.756 M sodium hydroxide aqueous solution was added to prepare a suspension of cobalt (II) hydroxide (R = 1.05, excess NaOH).
Concentration = 0.02M). The suspension was heated to 80 ° C. with mechanical stirring. While keeping this temperature constant,
The oxidation reaction was performed for 20 hours by passing air through the suspension.
The obtained precipitate was separated by filtration, washed with water, and then dried at 60 ° C. to produce black fine particle powder. The obtained black powder was a spinel-type cobalt oxide Co 3 O 4 as shown in the X-ray diffraction diagram of FIG. FIG. 2 shows a transmission electron micrograph showing the particle structure of the fine particle powder. The particle size distribution was uniform and the average particle size was about 0.03 μm.

【0014】<リチウムコバルト酸化物の焼成反応>上
記の如くして得られた平均粒子径0.03μmの酸化コ
バルト微粒子粉末19.96gと炭酸リチウム粉末9.
19g(Li/Coモル比=1.0)を、乳鉢にて機械
的に混合し、得られた混合粉末を空気中750℃に加熱
し6時間反応させた。得られた粉末を再度乳鉢にて粉砕
し、黒色粉末を得た。得られた黒色粉末は、図3のX線
回折図に示す通り、層状岩塩型のリチウムコバルト酸化
物粉末であった。
<Sintering Reaction of Lithium Cobalt Oxide> 19.96 g of cobalt oxide fine powder having an average particle diameter of 0.03 μm obtained as described above and lithium carbonate powder 9.
19 g (Li / Co molar ratio = 1.0) was mechanically mixed in a mortar, and the obtained mixed powder was heated to 750 ° C. in air and reacted for 6 hours. The obtained powder was pulverized again in a mortar to obtain a black powder. The obtained black powder was a layered rock salt type lithium cobalt oxide powder as shown in the X-ray diffraction diagram of FIG.

【0015】[0015]

【実施例】次に、実施例及び比較例並びに応用例を挙げ
本発明を更に詳しく説明するが、これらは何ら本発明を
制限するものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples, Comparative Examples and Application Examples, but these do not limit the present invention at all.

【0016】実施例1〜5、比較例1〜5 実施例1〜5及び比較例1〜3では、アルカリとコバル
ト塩の濃度比R、過剰アルカリ濃度、加熱温度を種々変
化させた以外は、前記発明の実施の形態と同様にして反
応生成物微粒子粉末を得た。比較例4及び5では空気を
通気して酸化反応を行う代わりに、酸化剤として各々過
酸化水素、硝酸イオンをもちいて、反応生成物粉末を得
た。この時の反応生成条件及び得られた反応生成物粉末
の特性を表1に示した。表1から明かなように、実施例
1〜5では、いずれも微細で粒度分布の均斉なスピネル
型のコバルト酸化物微粒子粉末が得られた。比較例1〜
5で得られた粉末は、粒状のコバルト酸化物と薄板状の
オキシ水酸化コバルト〔CoO(OH)〕の混合物、或
いは薄板状のオキシ水酸化コバルト、未反応のコバルト
水酸化物〔Co(OH)2 〕であった。
Examples 1 to 5 and Comparative Examples 1 to 5 In Examples 1 to 5 and Comparative Examples 1 to 3, except that the concentration ratio R of the alkali and the cobalt salt, the excess alkali concentration, and the heating temperature were variously changed. A reaction product fine particle powder was obtained in the same manner as in the embodiment of the invention. In Comparative Examples 4 and 5, a reaction product powder was obtained by using hydrogen peroxide and nitrate ions as oxidizing agents instead of carrying out the oxidation reaction by passing air through. Table 1 shows the reaction conditions and the properties of the obtained reaction product powder. As is clear from Table 1, in Examples 1 to 5, fine spinel-type cobalt oxide fine particle powders having a fine and uniform particle size distribution were obtained. Comparative Examples 1 to
The powder obtained in Step 5 is a mixture of granular cobalt oxide and sheet-like cobalt oxyhydroxide [CoO (OH)], or sheet-like cobalt oxyhydroxide, unreacted cobalt hydroxide [Co (OH) 2 ).

【0017】[0017]

【表1】 [Table 1]

【0018】応用例1〜5、比較応用例1〜5 次に、実施例1〜5及び比較例1〜5で得られた酸化コ
バルト微粒子粉末とリチウム化合物との反応性を前記発
明の実施の形態と同様にして調べた。その結果を表2に
示した。表2の結果より、本発明の実施例1〜5で得ら
れた、微細で粒度分布の均斉なスピネル型のコバルト酸
化物微粒子粉末を用いた場合のみ、低温、短時間の焼成
反応によって層状岩塩型のリチウムコバルト酸化物単相
が得られることが確認された。
Application Examples 1 to 5 and Comparative Application Examples 1 to 5 Next, the reactivity between the cobalt oxide fine particle powders obtained in Examples 1 to 5 and Comparative Examples 1 to 5 and the lithium compound was evaluated in the practice of the invention. It examined similarly to a form. The results are shown in Table 2. From the results in Table 2, only when the fine spinel-type cobalt oxide fine particle powder having a uniform particle size distribution obtained in Examples 1 to 5 of the present invention was used, the layered rock salt was formed by a low-temperature, short-time firing reaction. It was confirmed that a lithium cobalt oxide single phase of the type was obtained.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明によれば、微粒子粉末、特に平均
粒子径が0.1μm以下のコバルト酸化物微粒子粉末が
得られ、しかも粒度分布の均斉なものが得られる。この
コバルト酸化物微粒子粉末を用いると、微細粒子であり
かつ粒度が均斉であることに起因して、他の金属化合物
との反応性が高く、低温、短時間の焼成によって反応を
完結させることができる。即ち、反応性の高いコバルト
酸化物微粒子粉末を提供することが可能となる。
According to the present invention, it is possible to obtain a fine particle powder, particularly a cobalt oxide fine particle powder having an average particle diameter of 0.1 μm or less, and to obtain a uniform particle size distribution. When this cobalt oxide fine particle powder is used, the reactivity with other metal compounds is high due to the fact that it is fine particles and the particle size is uniform, and the reaction can be completed by firing at a low temperature for a short time. it can. That is, it becomes possible to provide a highly reactive cobalt oxide fine particle powder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の実施の形態で得られたスピネル型のコバ
ルト酸化物微粒子粉末のX線回折図である。
FIG. 1 is an X-ray diffraction diagram of a spinel-type cobalt oxide fine particle powder obtained in an embodiment of the present invention.

【図2】発明の実施の形態で得られたスピネル型のコバ
ルト酸化物微粒子粉末の粒子構造を示す電子顕微鏡写真
(40000倍)である。
FIG. 2 is an electron micrograph (× 40000) showing the particle structure of the spinel-type cobalt oxide fine particle powder obtained in the embodiment of the present invention.

【図3】発明の実施の形態で得られた層状岩塩型のリチ
ウムコバルト酸化物粉末のX線回折図である。
FIG. 3 is an X-ray diffraction diagram of a layered rock salt type lithium cobalt oxide powder obtained in the embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コバルト塩の水溶液を過剰のアルカリ水
溶液により中和して、アルカリとコバルト塩との濃度比
R〔OH- 〕/2〔Co2+〕が1.0〜1.2で過剰ア
ルカリの濃度が0.1M以下である水酸化コバルト懸濁
液を得、次いで該懸濁液を60℃以上に加熱し、該懸濁
液に酸素含有ガスを吹き込みコバルトイオンを酸化し、
酸化コバルトの微粒子粉末を沈澱生成させることを特徴
とする酸化コバルト微粒子粉末の製造法。
1. An aqueous solution of a cobalt salt is neutralized with an excess of an aqueous alkali solution, and the concentration ratio of alkali and cobalt salt, R [OH ] / 2 [Co 2+ ], is excessively 1.0 to 1.2. Obtaining a cobalt hydroxide suspension having an alkali concentration of 0.1 M or less, then heating the suspension to 60 ° C. or higher, blowing an oxygen-containing gas into the suspension to oxidize cobalt ions,
A process for producing cobalt oxide fine particle powder, comprising forming a precipitate from cobalt oxide fine particle powder.
【請求項2】 酸化コバルトの平均粒子径が0.1μm
以下である請求項1記載の製造法。
2. The average particle diameter of cobalt oxide is 0.1 μm.
2. The method according to claim 1, wherein:
JP09671598A 1997-03-25 1998-03-24 Method for producing fine powder of cobalt tetraoxide Expired - Fee Related JP4277324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09671598A JP4277324B2 (en) 1997-03-25 1998-03-24 Method for producing fine powder of cobalt tetraoxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9150297 1997-03-25
JP9-91502 1997-03-25
JP09671598A JP4277324B2 (en) 1997-03-25 1998-03-24 Method for producing fine powder of cobalt tetraoxide

Publications (2)

Publication Number Publication Date
JPH10324523A true JPH10324523A (en) 1998-12-08
JP4277324B2 JP4277324B2 (en) 2009-06-10

Family

ID=26432939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09671598A Expired - Fee Related JP4277324B2 (en) 1997-03-25 1998-03-24 Method for producing fine powder of cobalt tetraoxide

Country Status (1)

Country Link
JP (1) JP4277324B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211930A (en) * 2001-01-12 2002-07-31 Sumitomo Metal Mining Co Ltd Method for producing cobalt oxide particles by neutralization method
JP2002321922A (en) * 2001-04-23 2002-11-08 Toyota Central Res & Dev Lab Inc Cobalt hydroxide oxide lamellar particle and its manufacturing method
JP2003002660A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
JP2004002066A (en) * 2002-05-29 2004-01-08 Toda Kogyo Corp Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP2006160571A (en) * 2004-12-08 2006-06-22 Tanaka Chemical Corp Mg SOLID SOLUTION COBALT OXYHYDROXIDE PARTICLE AND ITS PRODUCING METHOD
US7166391B2 (en) 2000-11-15 2007-01-23 Matsushita Electric Industrial Co., Ltd. Cobalt compound for use in alkaline storage battery, method for manufacturing the same, and positive electrode plate of alkaline storage battery employing the same
JP2007126307A (en) * 2005-11-01 2007-05-24 Dainichiseika Color & Chem Mfg Co Ltd Particulate tricobalt tetroxide containing acid component and its manufacturing method
US7438754B2 (en) 2004-09-17 2008-10-21 Mitsui Mining & Smelting Co., Ltd. Cobalt-containing black pigment particulates
JP2009000253A (en) * 2007-06-21 2009-01-08 Canon Inc X-ray image photographing apparatus and x-ray image photographing method
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP2010105833A (en) * 2008-10-28 2010-05-13 Sekko Seiho Kogokin Shinzairyo Kk Method for producing tricobalt tetroxide
JP2010120842A (en) * 2008-10-24 2010-06-03 Soshin Kagaku Sangyo Kk Method for producing tri-metal tetraoxide
CN103624251A (en) * 2013-12-02 2014-03-12 深圳市格林美高新技术股份有限公司 Half-micron cobalt powder, preparation method thereof, cobalt hydroxide powder and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166391B2 (en) 2000-11-15 2007-01-23 Matsushita Electric Industrial Co., Ltd. Cobalt compound for use in alkaline storage battery, method for manufacturing the same, and positive electrode plate of alkaline storage battery employing the same
JP2002211930A (en) * 2001-01-12 2002-07-31 Sumitomo Metal Mining Co Ltd Method for producing cobalt oxide particles by neutralization method
JP4552324B2 (en) * 2001-01-12 2010-09-29 住友金属鉱山株式会社 Method for producing cobalt oxide particles by neutralization method
JP2002321922A (en) * 2001-04-23 2002-11-08 Toyota Central Res & Dev Lab Inc Cobalt hydroxide oxide lamellar particle and its manufacturing method
JP2003002660A (en) * 2001-06-20 2003-01-08 Seimi Chem Co Ltd Method for producing lithium cobalt composite oxide
JP2009120480A (en) * 2001-08-03 2009-06-04 Toda Kogyo Corp Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP2004002066A (en) * 2002-05-29 2004-01-08 Toda Kogyo Corp Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP4553095B2 (en) * 2002-05-29 2010-09-29 戸田工業株式会社 Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
US7438754B2 (en) 2004-09-17 2008-10-21 Mitsui Mining & Smelting Co., Ltd. Cobalt-containing black pigment particulates
JP2006160571A (en) * 2004-12-08 2006-06-22 Tanaka Chemical Corp Mg SOLID SOLUTION COBALT OXYHYDROXIDE PARTICLE AND ITS PRODUCING METHOD
JP4652791B2 (en) * 2004-12-08 2011-03-16 株式会社田中化学研究所 Mg solid solution cobalt oxyhydroxide particles and production method thereof
JP2007126307A (en) * 2005-11-01 2007-05-24 Dainichiseika Color & Chem Mfg Co Ltd Particulate tricobalt tetroxide containing acid component and its manufacturing method
JP2009000253A (en) * 2007-06-21 2009-01-08 Canon Inc X-ray image photographing apparatus and x-ray image photographing method
JP2010120842A (en) * 2008-10-24 2010-06-03 Soshin Kagaku Sangyo Kk Method for producing tri-metal tetraoxide
JP2010105833A (en) * 2008-10-28 2010-05-13 Sekko Seiho Kogokin Shinzairyo Kk Method for producing tricobalt tetroxide
CN103624251A (en) * 2013-12-02 2014-03-12 深圳市格林美高新技术股份有限公司 Half-micron cobalt powder, preparation method thereof, cobalt hydroxide powder and preparation method thereof
CN103624251B (en) * 2013-12-02 2015-09-16 格林美股份有限公司 A kind of half micron cobalt powder and preparation method thereof and cobalt hydroxide powder and preparation method thereof

Also Published As

Publication number Publication date
JP4277324B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4475941B2 (en) Method for producing lithium manganese nickel composite oxide
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
KR101306532B1 (en) Inorganic Compounds
JP5144108B2 (en) Method for producing electrode material, electrode material and battery
JP5021892B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
JP2006503789A (en) Lithium transition metal oxide with gradient in composition of metal components
JPH10324523A (en) Production of cobalt oxide fine particulate powder
JPH11510467A (en) Preparation of lithiated transition metal oxides
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
CN106684374A (en) Preparation method for porous spherical lithium nickel cobalt manganate used as ternary positive electrode material of lithium ion battery
JP4096367B2 (en) Method for producing particulate composition
JP3816305B2 (en) Method for producing cobalt oxide powder
US4308299A (en) Lithiated nickel oxide
JP2002068750A (en) Method of producing tricobalt tetraoxide
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JPH1179752A (en) Nickel oxide particles and their production
JPS5869727A (en) Wet preparation of ferrite fine particle of magnet plumbite type
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JPH11130438A (en) Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
KR101171961B1 (en) Process for preparing Mn3O4
JPS61186219A (en) Production of lead-containing fine powder
JP2004010375A (en) Processes for preparing tricobalt tetraoxide and lithium cobaltate
JP3564322B2 (en) Method for producing lithium manganese composite oxide for secondary battery
CN113921811A (en) Method for preparing doped lithium titanate, doped lithium titanate and lithium ion battery cathode material with doped lithium titanate
CN104755428B (en) Mangano-manganic oxide and its manufacture method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees