JPS61186219A - Production of lead-containing fine powder - Google Patents

Production of lead-containing fine powder

Info

Publication number
JPS61186219A
JPS61186219A JP60024438A JP2443885A JPS61186219A JP S61186219 A JPS61186219 A JP S61186219A JP 60024438 A JP60024438 A JP 60024438A JP 2443885 A JP2443885 A JP 2443885A JP S61186219 A JPS61186219 A JP S61186219A
Authority
JP
Japan
Prior art keywords
lead
powder
fine powder
precipitant
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60024438A
Other languages
Japanese (ja)
Other versions
JPH0251847B2 (en
Inventor
Shinichi Shirasaki
信一 白崎
Toichi Takagi
東一 高城
Kouhei Ametani
飴谷 公兵
Koichi Shimizu
晃一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Denki Kagaku Kogyo KK filed Critical National Institute for Research in Inorganic Material
Priority to JP60024438A priority Critical patent/JPS61186219A/en
Publication of JPS61186219A publication Critical patent/JPS61186219A/en
Publication of JPH0251847B2 publication Critical patent/JPH0251847B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce lead-containing fine powder having high purity and uniform composition and particle size, by reacting an acidic solution or suspension containing various kinds of metals with a precipitant, calcining the resultant precipitate, mixing with a lead compound powder, and calcining the mixture. CONSTITUTION:An acidic solution and/or suspension containing various kinds of metals constituting the objective lead-containing oxide is added with <=60vol% precipitation assistant such as methanol, acetone, etc., and then with a precipitant such as ammonium carbonate, methylamine, etc. The pH of the mixture is adjusted to 5.5-10.5 to effect the reaction of the components, and the resultant precipitate is washed with ethanol, acetone, etc. to remove impurities, and calcined at 450-1,200 deg.C to obtain powder. The powder is mixed with a lead compound powder such as PbO, Pb3O4, etc., and calcined at 600-1,000 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は易焼結性鉛含有微粉末の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing easily sinterable lead-containing fine powder.

一般的に鉛含有酸化物には、強誘電材料・圧電材料・焦
電(A料など■レフ1−ロセラミツクスとして有用なも
のが多い。
In general, many lead-containing oxides are useful as ferroelectric materials, piezoelectric materials, pyroelectric materials (A materials, etc.), and are useful as ref.1-roceramics.

エレクトロセラミック部品の小型化、高性能化に伴い高
純度で粒径分布の狭い反応性の高い微粉末原料に対する
要求が高まっている。たとえばドクターブレード法など
により薄膜を形成する際には、表面粗さなどを改善し、
また膜の品質向上のために優れた微粉末を必要とするか
らである。
As electroceramic components become smaller and more sophisticated, there is an increasing demand for highly reactive fine powder raw materials with high purity and narrow particle size distribution. For example, when forming a thin film using the doctor blade method, it is necessary to improve the surface roughness, etc.
This is also because excellent fine powder is required to improve the quality of the film.

(従来の技術) 従来、鉛含有酸化物粉末の製造方法としては、鉛含有酸
化物を構成すべき各種金属を含有する酸化物、炭酸塩な
どの化合物粉末を目的組成となるように秤量混合後、仮
焼し、さらに粉砕仮焼による固相反応を何度も繰り返し
て製造するいわゆる同相法がある。
(Prior art) Conventionally, a method for producing lead-containing oxide powder involves weighing and mixing compound powders such as oxides and carbonates containing various metals that should constitute the lead-containing oxide so as to have the desired composition. There is a so-called in-phase method in which a solid phase reaction involving calcination, pulverization, and calcination is repeated many times.

この方法では粉砕時に混入する不純物のために高純度の
粉末の製造が困難であった。また粉砕によって効率よく
製造できる粉末の粒径は、数μm程度が限界であり、し
かもその粒径も不均一となりやすく反応性に劣る欠点が
あった。
With this method, it was difficult to produce highly pure powder due to impurities mixed in during pulverization. Furthermore, the particle size of the powder that can be efficiently produced by pulverization is limited to a few micrometers, and the particle size tends to be non-uniform, resulting in poor reactivity.

これらの同相法の欠点を改良する方法どして、溶液を出
発原料どして粉末を製造する共沈法が知られていて、こ
の方法によれば一般に粒度分布の狭い微粉末が得られる
利点はある。
Co-precipitation is a known method for improving the disadvantages of these in-phase methods, in which powder is produced using a solution as a starting material.This method generally has the advantage of producing fine powder with a narrow particle size distribution. There is.

(発明が解決しようとJ−る問題点) 鉛含有微粉末の調製に有用な共沈法の適用についても、
鉛含有酸化物を構成すべぎ金属のうち、たとえばMOな
どは、出発原料溶液中に生成させる沈澱の溶解度が大き
いので溶出によって目的組成が得られ動く沈澱pHを1
2程度まで高める必要があり、この際水酸化す]〜リウ
ムの如ぎを用いれば高p l−1を保持できるわ【プで
はあるが不純物としてのNah曹昆入する欠点を伴いま
た、カヂオン不純物を入れないめにはアンモニア水など
を用いるを可とするがアンモニア水で保持できる11 
+−1は高々rl1110,5程度が限界であるため溶
出を防ぐには不充分であった。
(Problems to be solved by the invention) Regarding the application of coprecipitation method useful for preparing lead-containing fine powder,
Among the metals that should constitute the lead-containing oxide, for example, MO has a high solubility in the precipitate formed in the starting material solution, so the desired composition can be obtained by elution, and the pH of the moving precipitate can be reduced to 1.
It is necessary to increase the concentration to about 2, and in this case, if hydroxide is used, a high p l-1 can be maintained. To prevent impurities from entering, it is possible to use ammonia water, but ammonia water can hold it11.
+-1 had a limit of about rl1110.5, which was insufficient to prevent elution.

このような動点についての有効な解決を与えることが本
発明の目的である。
It is an object of the present invention to provide an effective solution for such moving points.

(問題点を解決覆るための手段) 発明者ら゛は共沈する際に溶出しやすい成分を含有する
鉛含有酸化物微粉末の製造方法について研究を行い、本
発明に到達した。
(Means for solving and overcoming the problems) The inventors conducted research on a method for producing a lead-containing oxide fine powder containing components that are easily eluted during coprecipitation, and arrived at the present invention.

鉛含有微粉末の製造にあたって、 鉛含有酸化物を構成すべき各種金属を含有する酸性の溶
液及び/又は懸濁液を、沈澱助剤の存在下に、沈澱剤と
反応させ、得られた沈澱物を450〜1200℃で仮焼
して粉末を1qる工程、前記工程で得られた粉末に鉛化
合物粉末を添加混合する工程および 前記各工程を経て得られた粉末混合物を温度600〜1
000℃で焼成する工程の 各工程を結合することを特徴とする鉛含有微粉末の製造
法である。
In producing lead-containing fine powder, an acidic solution and/or suspension containing various metals to constitute the lead-containing oxide is reacted with a precipitant in the presence of a precipitation aid, and the resulting precipitate is A step of calcining the product at 450 to 1200°C to obtain 1 q of powder, a step of adding and mixing lead compound powder to the powder obtained in the above step, and a step of heating the powder mixture obtained through each of the above steps to a temperature of 600 to 1 q.
This is a method for producing lead-containing fine powder, which is characterized by combining the steps of firing at 000°C.

本発明でいう鉛含有酸化物を構成すべき各種金属の具体
例としてはPb、Zr、Ti 、tVlo。
Specific examples of various metals constituting the lead-containing oxide in the present invention include Pb, Zr, Ti, and tVlo.

Nb、Mn、Sn、Zn、Sb、AA、Fe。Nb, Mn, Sn, Zn, Sb, AA, Fe.

Ta、Co、Ni、Bi、W、li、sr、Ba。Ta, Co, Ni, Bi, W, li, sr, Ba.

Ca、Se、La、Cu、Y、Yll、le、R8゜C
dおよびInなどがあげられる。
Ca, Se, La, Cu, Y, Yll, le, R8°C
Examples include d and In.

鉛含有酸化物を構成すべき各種金属成分を含有する酸性
の溶液としては特に限定されないが、その例としては硝
酸溶液、塩酸溶液、硫酸溶液などの無機酸溶液、しゆう
酸溶液、ぎ酸溶液などの有機酸溶液またはこれらの混合
溶液などがあげられる。
Acidic solutions containing various metal components that should constitute lead-containing oxides are not particularly limited, but examples include inorganic acid solutions such as nitric acid solutions, hydrochloric acid solutions, and sulfuric acid solutions, oxalic acid solutions, and formic acid solutions. Examples include organic acid solutions such as and mixed solutions thereof.

溶液の調製法としては、各種塩類を水に溶解する一般的
方法が用いられる。
As a method for preparing the solution, a general method of dissolving various salts in water is used.

次に本発明でいう懸濁液とは、液体中に固体粒子が均一
に分散しているものを指し、たとえば微細な沈澱粒子が
均一に分散したゾル状液などがあげられる。
Next, the suspension as used in the present invention refers to a liquid in which solid particles are uniformly dispersed, and includes, for example, a sol-like liquid in which fine precipitated particles are uniformly dispersed.

次に沈澱助剤としては、メタノール、エタノールなどの
アルコール類アセ1〜ンなどのケi〜ン類、ベンゼント
ルエン、キシレン、トリクレン、クロロセン、過酸化水
素水などがあげられるが、沈澱物の溶解度を低下させる
物質であれば適用可能である。なお沈澱助剤は、上掲し
たところのうち1種又は2種以上を混合して用い1qる
Next, examples of precipitation aids include alcohols such as methanol and ethanol, alcohols such as acetone, benzene toluene, xylene, trichlene, chlorocene, hydrogen peroxide, etc., but the solubility of the precipitate It is applicable to any substance that reduces the The precipitation aid is used in an amount of 1 q of the above-mentioned ones or a mixture of two or more.

沈澱助剤の添加量は、鉛含有酸化物を構成すべき各種金
属を含有する酸性の溶液及び/又は懸濁液に含まれる金
属成分によって異なるが、金属成分の95モル%以上が
沈澱する量が適当であり、一般に沈澱生成槽内の内容物
量(容量)の60容量%以下、好ましくは10〜50容
量%である。この添加量は沈澱剤との反応pHによって
もかわるが一般にpHが低いほど溶出を防ぐ!こめに必
要な添加量は増加する。
The amount of precipitation aid added varies depending on the metal components contained in the acidic solution and/or suspension containing various metals that are to constitute the lead-containing oxide, but it should be an amount that precipitates 95 mol% or more of the metal components. is appropriate, and is generally 60% by volume or less, preferably 10 to 50% by volume of the content (volume) in the precipitation tank. The amount added varies depending on the pH of the reaction with the precipitant, but in general, the lower the pH, the more the elution is prevented! The amount of addition required for rice increases.

次に沈澱剤としては、アンモニア水などの無機塩基、炭
酸アンモニウム、しゆう酸アンモニウムなどの各種塩類
やメチルアミン、エチルアミンなどの有機塩基などがあ
げられる。
Examples of the precipitant include inorganic bases such as aqueous ammonia, various salts such as ammonium carbonate and ammonium oxalate, and organic bases such as methylamine and ethylamine.

反応pHは5.5以上が好ましくpH7以上がさらに好
ましい。
The reaction pH is preferably 5.5 or higher, more preferably 7 or higher.

pl−1の上限についてはたとえばアンモニア水で効率
的に維持できるpHの上限は10.5程度である。
Regarding the upper limit of pl-1, for example, the upper limit of pH that can be efficiently maintained with aqueous ammonia is about 10.5.

共沈方法としては、沈澱助剤及び沈澱剤でp +−+を
保持した共沈槽内に充分攪拌を行ないながら、鉛含有酸
化物を構成すべき各種金属を含有する酸性の溶液及び/
又は懸濁液をlIN霧するなどの方法で導入する方法が
好ましい。
As for the coprecipitation method, an acidic solution containing various metals to constitute the lead-containing oxide and/or is placed in a coprecipitation tank in which p +-+ is maintained with a precipitation aid and a precipitant, with sufficient stirring.
Alternatively, it is preferable to introduce the suspension by a method such as lIN atomization.

かくして得られる沈澱物はろ過などの方法によって溶液
部分を除去する。   ” 沈澱物の洗浄は沈澱生成ど同−条件又はそれよりもp 
Hの高い沈澱剤及び/又は沈澱助剤を含む水溶液を用い
ることが洗浄工程中の溶出を防ぐため好ましい。
The solution portion of the precipitate thus obtained is removed by a method such as filtration. ” Cleaning of the precipitate should be carried out under the same conditions as the precipitate formation, or even better.
It is preferable to use an aqueous solution containing a precipitant and/or precipitation aid with high H content in order to prevent elution during the washing step.

洗浄は沈澱物中の0℃−やNOs ”’などの不純物を
除去するため充分性なうことが望ましく、また不純物除
去後、エタノールやアt? l−ンなとで洗浄すること
によって沈澱粒子同志の凝集を防ぐことも有効である。
It is desirable that the washing be sufficient to remove impurities such as 0°C and NOs in the precipitate, and after removing the impurities, the precipitated particles can be removed by washing with ethanol or atmospheric water. It is also effective to prevent comrades from clumping together.

乾燥を行なう場合の方法としては通常の加熱乾燥、真空
乾燥の他噴霧乾燥方法、振動流動乾燥法、ドラムドライ
A7−乾燥法、フィルムエバポレーター乾燥法などの方
法がある。
Drying methods include conventional heating drying, vacuum drying, spray drying, vibration fluidized drying, drum drying A7-drying, film evaporator drying, and the like.

粉末同志の凝集を防ぐことは微粉末を得る際に重要であ
るがこの点仮焼の前及び/又は後にボールミル、振動ボ
ールミル、ジェットミルなどによる解砕を行なうことは
有効である。
Preventing agglomeration of powders is important when obtaining fine powder, and in this respect it is effective to perform crushing using a ball mill, vibrating ball mill, jet mill, etc. before and/or after calcination.

仮焼温度は450℃より低い温度のとき沈澱物中の水分
などの除去が不充分であり次に述べる工程において秤量
仕込みする際に目的組成とすることが回動となる。また
、1200℃より高い場合には粉末同志の焼結などによ
る凝集が起こり反応性が低下覆る訓点があり、またエネ
ルギー的にも高温での仮焼は実際的でない。
When the calcination temperature is lower than 450°C, removal of moisture in the precipitate is insufficient, and rotation is required to achieve the desired composition when weighing and charging in the next step. Further, if the temperature is higher than 1200° C., agglomeration occurs due to sintering of powders, resulting in decreased reactivity, and calcining at high temperatures is not practical in terms of energy.

従って仮焼温度は450〜1200℃が好ましり600
〜1000℃がさらに好ましい。
Therefore, the calcination temperature is preferably 450 to 1200°C.
-1000 degreeC is more preferable.

次の工程で用いる鉛化合物としては、酸化鉛(PI) 
0. PI] 304 ) 、炭酸鉛、塩基性炭酸鉛水
酸化鉛、しゆう酸鉛、ぎ酸鉛などが挙げられる。
The lead compound used in the next step is lead oxide (PI).
0. PI] 304), lead carbonate, basic lead carbonate, lead hydroxide, lead oxalate, lead formate, and the like.

鉛化合物粉末の粉末特性としては、混合性のよい微粉末
が好ましい。
Regarding the powder characteristics of the lead compound powder, a fine powder with good mixability is preferable.

混合方法としては通常使用される方法、例えば乳鉢やボ
ールミルなどの混合機によることができる。なお乾式混
合」;りもアルコール、アセ1〜ンなどを用いた湿式混
合の方が効率も良く好ましい。
The mixing method may be a commonly used method, for example, using a mixer such as a mortar or a ball mill. Note that wet mixing using limo alcohol, acetin, etc. is more efficient and preferable.

鉛化合物粉末の混合量は目的とする相を形成する化学問
論量よりも8モル%以下の過剰量を混合することが目的
とする組形成のため及び粉末の反応性を高めるために有
効である。
The amount of lead compound powder to be mixed is 8 mol% or less in excess of the chemical stoichiometric amount to form the desired phase, which is effective for forming the desired group and increasing the reactivity of the powder. be.

次に焼成工程の処理温度が600℃より低いと反応の効
率が低く一方1000℃より高い温度では鉛化合物が融
解などを起こしやすく粉末同志の固い凝集を形成しやす
く微粉末となりにくい。したがって焼成温度は600〜
1000 ’Cを要し、そのうち700〜900℃がよ
り好ましくなかでも750〜850℃が一層好ましい。
Next, if the treatment temperature in the firing step is lower than 600°C, the efficiency of the reaction will be low, while if the temperature is higher than 1000°C, the lead compound will easily melt and form hard agglomerates of powders, making it difficult to form fine powders. Therefore, the firing temperature is 600~
1000'C, more preferably 700-900°C, and most preferably 750-850°C.

(実施例) 実施例1 金属濃度1.02モル/βの塩化ジルコニル水溶液と金
属濃度1.63モル/βの四塩化チタン水溶液を、Zr
:丁1の原子比で0,125 :  0,4375とな
るように混合し、該溶液に金属MO粉末及び金属Mn粉
末をr:  :MO:Mnの原子比で30:10:1と
なるように攪拌しながら加え、紫色溶液を得た。
(Example) Example 1 A zirconyl chloride aqueous solution with a metal concentration of 1.02 mol/β and a titanium tetrachloride aqueous solution with a metal concentration of 1.63 mol/β were mixed with Zr.
:Mn is mixed in an atomic ratio of 0,125:0,4375, and the metal MO powder and metal Mn powder are mixed in the solution so that the atomic ratio of :MO:Mn is 30:10:1. was added to the solution with stirring to obtain a purple solution.

これとは別に水酸化ニオブ沈澱を用いて金属製8一 度0.422m01 /βのニオブのしゆう耐酸性溶液
を調製した。
Separately, an acid-resistant solution of niobium of 0.422 m01/β was prepared using niobium hydroxide precipitate.

このニオブのしゆう耐酸性溶液中のニオブ金属1モルに
対してしゆう酸三水和物(H2C204・2H20)を
390gの割合でニオブのしゆう耐酸性溶液に添加し、
さらに前記Zr 、Ti 、M(]およびMnを含む紫
色溶液をNb:MUの原子比で2:1となるように添加
し茶褐色溶液を得た。
Adding 390 g of oxalic acid trihydrate (H2C204.2H20) to the acid-resistant solution of niobium per mole of niobium metal in the acid-resistant solution of niobium,
Further, the purple solution containing Zr 2 , Ti 2 , M(] and Mn was added at an atomic ratio of Nb:MU of 2:1 to obtain a brownish brown solution.

この溶液をエタノール(沈澱助剤)及びアンモニア水(
沈澱剤)でp l−19,0に保持された共沈槽内に攪
拌しながら噴霧して沈澱を生成させた。このときのエタ
ノール(沈澱助剤)の添加量は、共沈槽内の内容物に対
して50容量%であった。
This solution was mixed with ethanol (precipitation aid) and aqueous ammonia (
The mixture was sprayed with stirring into a co-precipitation tank maintained at PL-19.0 using a precipitant (precipitant) to form a precipitate. The amount of ethanol (precipitation aid) added at this time was 50% by volume based on the content in the coprecipitation tank.

生成した沈澱をろ過し、次にエタノール50容量%を含
むpH1iのアンモニア水を用いて洗浄し、得られた沈
澱物を温度80℃で乾燥した。
The generated precipitate was filtered and then washed with aqueous ammonia of pH 1i containing 50% by volume of ethanol, and the resulting precipitate was dried at a temperature of 80°C.

ろ液中に溶出する金属成分を分析したが溶出は認められ
なかった。乾燥物を解砕後、温度900℃で1時間仮焼
して粉末を得た。この粉末を走査型電子顕微鏡で観察し
たところ粒径0.3μm程度のそろった微粉末であった
The metal components eluted into the filtrate were analyzed, but no elution was observed. After crushing the dried material, it was calcined at a temperature of 900° C. for 1 hour to obtain a powder. When this powder was observed with a scanning electron microscope, it was found to be a fine powder with a uniform particle size of about 0.3 μm.

この粉末96.2600(]に対して酸化鉛(Pb 0
)223.2000(]をアセ]・ンを用いて湿式混合
したのち温度780℃で1時間焼成して鉛含有酸化物粉
末を得た。この粉末は走査型電子顕微鏡観察の結果0.
3μm程度の非常に粒度のそろった微粉末であつ 1.
:。
Lead oxide (Pb 0
)223.2000() was wet mixed using ace]・n and then calcined at a temperature of 780°C for 1 hour to obtain a lead-containing oxide powder.As a result of scanning electron microscopy observation, this powder had a lead-containing oxide powder.
It is a fine powder with a very uniform particle size of about 3 μm. 1.
:.

また不純物分析を行なったところ炭素、塩素及び不純物
金属は10ppm以下で高純度であることが判明した。
Further, an impurity analysis revealed that carbon, chlorine, and impurity metals were 10 ppm or less, indicating high purity.

この粉末の反応性を評価するためにこの微粉末3.0g
を成形圧力1000K (] / ciで直径20mm
φのディスク状に成形し、温度1150℃で1時間焼結
を行なった。
3.0g of this fine powder to evaluate the reactivity of this powder.
Molding pressure 1000K (] / ci and diameter 20mm
It was formed into a disk shape of φ and sintered at a temperature of 1150° C. for 1 hour.

その結果、焼結密度は7,94 (] / cIllで
あり、はぼ理論密度の焼結体を得た。
As a result, the sintered body had a sintered density of 7.94 (]/cIll, which was approximately the theoretical density).

比較例1 実施例1においてエタノール(沈澱助剤)を添加しない
以外は同様にして沈澱を生成させた。ろ液を分析したと
ころM(+が26モル%溶出していることがわかった。
Comparative Example 1 A precipitate was produced in the same manner as in Example 1 except that ethanol (precipitation aid) was not added. Analysis of the filtrate revealed that 26 mol% of M(+ was eluted.

このように沈澱助剤を加えない場合には多量の溶出があ
り目的組成とすることはできない。
As described above, if a precipitation aid is not added, a large amount of elution occurs and the desired composition cannot be obtained.

実施例2 実施例1で用い!:Zr 、Ti 、M(1、Mnおよ
びNbを含む茶褐色溶液にざらに金属濃度1.01モル
/βの塩化ストロンチウム水溶液をZr:Srの原子比
で0.125 :  0,05となる」;うに混合して
溶液を調製した。
Example 2 Used in Example 1! : Zr, Ti, M (1, strontium chloride aqueous solution with a metal concentration of 1.01 mol/β is added to a brown solution containing Mn and Nb at a Zr:Sr atomic ratio of 0.125: 0.05); A solution was prepared by mixing the sea urchins.

これにより実施例1と同一の操作でZr、Ti。As a result, Zr and Ti were obtained by the same operation as in Example 1.

Mfl 、 Mn 、 NllおよびSrを含む仮焼粉
末を得!こ 。
Obtain calcined powder containing Mfl, Mn, Nll and Sr! child .

この場合も沈澱生成の際のる液中の金属成分の溶出は認
められなかった。
In this case as well, no elution of metal components from the liquid during precipitation formation was observed.

得られた粉末は粒径0.3μm程度の粒度のそろった微
粉末であつIC6 この微粉末101.441gに対して一酸化鉛(Pb 
O)  212.0400(]をアセトンを用いて湿式
混合したのち温度180℃で1時間焼成して鉛含有酸化
物微粉末を得た。
The obtained powder is a fine powder with a uniform particle size of about 0.3 μm, and has an IC6 value of lead monoxide (Pb) per 101.441 g of this fine powder.
O) 212.0400() was wet-mixed using acetone and then fired at a temperature of 180° C. for 1 hour to obtain a lead-containing oxide fine powder.

この粉末の特性は実施例1とほぼ同様であった。The properties of this powder were almost the same as in Example 1.

(発明の効果) 本発明は沈澱生成時に沈澱助剤を用いることにより従来
アンモニア水などの沈澱剤だけでは沈澱生成が困難であ
ったアルカリ土類金属などを含む原液から効率的に沈澱
を生成することが可能である。従って高純度で組成の均
一性の高い粒径の均一な易焼結性鉛含有酸化物微粉末が
得られる。
(Effects of the Invention) By using a precipitation aid during precipitation generation, the present invention can efficiently produce a precipitate from a stock solution containing alkaline earth metals, etc., which was previously difficult to produce using only a precipitant such as aqueous ammonia. Is possible. Therefore, easily sinterable lead-containing oxide fine powder with high purity, highly uniform composition, and uniform particle size can be obtained.

Claims (1)

【特許請求の範囲】 1、鉛含有微粉末の製造にあたって、 鉛含有酸化物を構成すべき各種金属を含有 する酸性の溶液及び/又は懸濁液を、沈澱助剤の存在下
に、沈澱剤と反応させ、得られた沈澱物を450〜12
00℃で仮焼して粉末を得る工程、 前記工程で得られた粉末に鉛化合物粉末を 添加混合する工程および 前記各工程を経て得られた粉末混合物を温 度600〜1000℃で焼成する工程 の各工程を結合することを特徴とする鉛含有微粉末の製
造法。
[Claims] 1. In the production of lead-containing fine powder, an acidic solution and/or suspension containing various metals to constitute a lead-containing oxide is added to a precipitating agent in the presence of a precipitating agent. The precipitate obtained was reacted with 450-12
A step of calcining at 00°C to obtain a powder, a step of adding and mixing lead compound powder to the powder obtained in the above step, and a step of firing the powder mixture obtained through each of the above steps at a temperature of 600 to 1000°C. A method for producing lead-containing fine powder, which is characterized by combining each process.
JP60024438A 1985-02-13 1985-02-13 Production of lead-containing fine powder Granted JPS61186219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60024438A JPS61186219A (en) 1985-02-13 1985-02-13 Production of lead-containing fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60024438A JPS61186219A (en) 1985-02-13 1985-02-13 Production of lead-containing fine powder

Publications (2)

Publication Number Publication Date
JPS61186219A true JPS61186219A (en) 1986-08-19
JPH0251847B2 JPH0251847B2 (en) 1990-11-08

Family

ID=12138149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60024438A Granted JPS61186219A (en) 1985-02-13 1985-02-13 Production of lead-containing fine powder

Country Status (1)

Country Link
JP (1) JPS61186219A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232217A (en) * 1985-04-08 1986-10-16 Natl Inst For Res In Inorg Mater Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPS63156054A (en) * 1986-12-17 1988-06-29 株式会社デンソー Manufacture of polycomponent ceramics
JPS63156056A (en) * 1986-12-17 1988-06-29 株式会社デンソー Manufacture of high permittivity ceramics
JPS63233036A (en) * 1987-03-23 1988-09-28 科学技術庁無機材質研究所長 Manufacture of polycomponent ceramics
JPS63248774A (en) * 1987-04-03 1988-10-17 科学技術庁無機材質研究所長 Manufacture of polycomponent ceramics
JPS63291844A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of optical ceramics
JPS63291843A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of optical ceramics
JPS6479060A (en) * 1987-09-22 1989-03-24 Mitsui Mining & Smelting Co Production of compound oxide ceramics
JPH01259583A (en) * 1988-04-11 1989-10-17 Mitsui Toatsu Chem Inc Synthesis of pb-ba-zr-ti uniform oxide powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153119A (en) * 1984-08-21 1986-03-17 Denki Kagaku Kogyo Kk Lead-containing oxide powder and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153119A (en) * 1984-08-21 1986-03-17 Denki Kagaku Kogyo Kk Lead-containing oxide powder and its preparation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232217A (en) * 1985-04-08 1986-10-16 Natl Inst For Res In Inorg Mater Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPS63156054A (en) * 1986-12-17 1988-06-29 株式会社デンソー Manufacture of polycomponent ceramics
JPS63156056A (en) * 1986-12-17 1988-06-29 株式会社デンソー Manufacture of high permittivity ceramics
JPS63233036A (en) * 1987-03-23 1988-09-28 科学技術庁無機材質研究所長 Manufacture of polycomponent ceramics
JPS63248774A (en) * 1987-04-03 1988-10-17 科学技術庁無機材質研究所長 Manufacture of polycomponent ceramics
JPS63291844A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of optical ceramics
JPS63291843A (en) * 1987-05-26 1988-11-29 Nippon Denso Co Ltd Production of optical ceramics
JPS6479060A (en) * 1987-09-22 1989-03-24 Mitsui Mining & Smelting Co Production of compound oxide ceramics
JPH01259583A (en) * 1988-04-11 1989-10-17 Mitsui Toatsu Chem Inc Synthesis of pb-ba-zr-ti uniform oxide powder

Also Published As

Publication number Publication date
JPH0251847B2 (en) 1990-11-08

Similar Documents

Publication Publication Date Title
JP4992003B2 (en) Method for producing metal oxide fine particles
JPS63156057A (en) Manufacture of high density perovskite ceramics
JP2008522946A (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
JPS61186219A (en) Production of lead-containing fine powder
JPS61186223A (en) Production of fine powder of dielectric material
JPH0246531B2 (en)
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JPH0255375B2 (en)
JPS6016373B2 (en) Method for manufacturing perovskite-type lead-containing composite oxide
JPH0769645A (en) Production of lead-containing multiple oxide
JPH07118017A (en) Production of lanthanum manganite powder
JPS6227328A (en) Production of easily sinterable powdery starting material for perovskite and its solid solution
JPS61186220A (en) Production of fine powder of lead-containing oxide
JPS61251516A (en) Production of perovskite type oxide
JPS61163118A (en) Process for preparing raw material powder of easily sinterable perovskite by wet powder dispersion process
JPS61122121A (en) Production of rare earth metal oxide powder
JP3681550B2 (en) Rare earth oxide and method for producing the same
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JP3254693B2 (en) Preparation of hydrated zirconia sol and zirconia powder
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH0316918A (en) Production of zirconia oxide powder
JPH0558629A (en) Production of perovskite-type lead oxide
JPH0427166B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term