JPH10256257A - Formation of bump electrode of semiconductor device - Google Patents

Formation of bump electrode of semiconductor device

Info

Publication number
JPH10256257A
JPH10256257A JP9055776A JP5577697A JPH10256257A JP H10256257 A JPH10256257 A JP H10256257A JP 9055776 A JP9055776 A JP 9055776A JP 5577697 A JP5577697 A JP 5577697A JP H10256257 A JPH10256257 A JP H10256257A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor device
film
laser beam
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9055776A
Other languages
Japanese (ja)
Other versions
JP3307850B2 (en
Inventor
Kazuhiko Matsumura
和彦 松村
Masaaki Niwa
正昭 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP05577697A priority Critical patent/JP3307850B2/en
Publication of JPH10256257A publication Critical patent/JPH10256257A/en
Application granted granted Critical
Publication of JP3307850B2 publication Critical patent/JP3307850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

PROBLEM TO BE SOLVED: To enable easy formation of a bump electrode only on an aluminum electrode requiring the bump electrode in a semiconductor device and also to enable suppression of deterioration of a plating solution. SOLUTION: A native oxide film 2 on a surface of an aluminum electrode 1 is removed. Thereafter, in order to prevent re-formation of a native oxide film, a semiconductor device 3 is immersed into an alkaline solution containing Ni, a laser beam 9 is emitted on the aluminum electrode 1 requiring a bump electrode to locally heat only the vicinity of the electrode and to form an Ni particle film 5. The device is washed with pure water, immersed into an electroless nickel plating solution, the laser beam 9 is emitted on the aluminum electrode 1 requiring a bump electrode, and then an Ni film 6 is formed by an electroless nickel plating process. The device is washed with pure water. Thereafter the device is immersed into an electroless Au-plating solution, the laser beam 9 is emitted on the Al electrode 1 requiring the bump electrode, and then an Au film 7 is formed by the electroless plating process. Local heating by irradiation with the laser beam 9 enables a plating reaction to advance only on the Al electrode 1 requiring the bump electrode, whereby the bump electrode can be formed and also deterioration of the plating solution can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置をフリ
ップチップ方式やTAB方式を用いて実装する場合に必
要な突起電極を形成する半導体装置の突起電極形成方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a projection electrode of a semiconductor device for forming a projection electrode necessary for mounting a semiconductor device by using a flip chip method or a TAB method.

【0002】[0002]

【従来の技術】従来、半導体装置は、通常外部と電気的
な接続をするための外部電極を有しており、通常、樹脂
パッケージ等にパッケージングする場合は、この外部電
極に金属ワイヤーを接続する。外部電極には、半導体素
子の配線に用いられるAlが用いられている。近年、電
子機器の小型化,高機能化の要求から、従来の樹脂パッ
ケージに変わり、TCP(Tape Carrier
PKG)や、さらにベアチップを直接回路基板に実装す
るフリップチップ方式等の高密度実装技術が必要とされ
ている。これらの実装技術に用いる半導体装置の外部電
極には、図4に示すような、突起電極を必要とする。
2. Description of the Related Art Conventionally, a semiconductor device usually has an external electrode for making an electrical connection to the outside. Usually, when packaging in a resin package or the like, a metal wire is connected to the external electrode. I do. For the external electrodes, Al used for wiring of the semiconductor element is used. In recent years, in response to demands for miniaturization and high performance of electronic equipment, the conventional resin package has been replaced with a TCP (Tape Carrier).
PKG) and a high-density mounting technology such as a flip chip method in which a bare chip is directly mounted on a circuit board. The external electrodes of the semiconductor device used for these mounting techniques require projecting electrodes as shown in FIG.

【0003】図4は突起電極を有する従来の半導体装置
の断面図である。図4において、1は外部電極となるA
l電極、3は半導体装置、4は保護膜、5はNi粒子
膜、6はNi膜、7はAu膜である。この半導体装置3
は、外部電極となるAl電極1上に、Ni粒子膜5,N
i膜6,さらにAu膜7を形成して突起電極を設けてい
る。ここで、Ni膜6およびAu膜7は無電解めっき法
により形成している。この半導体装置3をベアチップ実
装する場合には、上記の突起電極を直接回路基板にフリ
ップチップ実装で接続したり、またTCPにパッケージ
ングする。
FIG. 4 is a sectional view of a conventional semiconductor device having a bump electrode. In FIG. 4, reference numeral 1 denotes an external electrode A
1 electrode, 3 is a semiconductor device, 4 is a protective film, 5 is a Ni particle film, 6 is a Ni film, and 7 is an Au film. This semiconductor device 3
A Ni particle film 5 and an N
The i-film 6 and the Au film 7 are formed to provide the protruding electrodes. Here, the Ni film 6 and the Au film 7 are formed by an electroless plating method. When the semiconductor device 3 is mounted on a bare chip, the above-mentioned protruding electrodes are directly connected to a circuit board by flip-chip mounting or packaged on a TCP.

【0004】この図4の半導体装置の突起電極の形成方
法について図5を参照しながら説明する。図5は従来の
半導体装置の突起電極形成方法を示す工程断面図であ
る。図5(a)に示すように、突起電極形成前には、A
l電極1の表面に自然酸化膜2が形成されているため、
まず、リン酸や水酸化ナトリウムの水溶液中に浸漬する
ウエットエッチング工程によって、Al電極1の表面に
形成された自然酸化膜2の除去を行う(図5(b))。
[0004] A method for forming the protruding electrodes of the semiconductor device of FIG. 4 will be described with reference to FIG. FIG. 5 is a process sectional view showing a conventional method for forming a bump electrode of a semiconductor device. As shown in FIG. 5A, before forming the protruding electrode, A
Since the natural oxide film 2 is formed on the surface of the electrode 1,
First, the natural oxide film 2 formed on the surface of the Al electrode 1 is removed by a wet etching step of dipping in an aqueous solution of phosphoric acid or sodium hydroxide (FIG. 5B).

【0005】つぎに、Ni粒子膜5を形成する。これ
は、前の工程によって除去した自然酸化膜2のAl電極
1上への再形成を防止するために、80℃に保持したN
iを含有するアルカリ性(pH9〜10)の溶液中に6
0秒浸漬することにより、Alと溶液中のNiイオンの
置換反応を利用してAl電極1の表面に膜厚300〜5
00ÅのNi粒子膜5を形成する(図5(c))。
Next, a Ni particle film 5 is formed. This is because the natural oxide film 2 removed in the previous step is prevented from being re-formed on the Al electrode 1 and is kept at 80 ° C.
6 in an alkaline (pH 9 to 10) solution containing i.
By immersing for 0 second, a thickness of 300 to 5 is applied to the surface of the Al electrode 1 by utilizing a substitution reaction between Al and Ni ions in the solution.
A Ni particle film 5 having a thickness of 00 ° is formed (FIG. 5C).

【0006】つぎに、ヒータで90℃に加熱保持した無
電解Niめっき液中に半導体装置3を10分間浸漬する
無電解Niめっき工程を行う。ここでは、前の工程で形
成したNi粒子膜5が無電解Niめっき液中で触媒とし
て作用し、無電解Niめっき液の自己還元反応によりN
i粒子膜5上にNiが自己析出し、Ni膜6が形成され
る(図5(d))。
Next, an electroless Ni plating step is performed in which the semiconductor device 3 is immersed in an electroless Ni plating solution heated and maintained at 90 ° C. by a heater for 10 minutes. Here, the Ni particle film 5 formed in the previous step acts as a catalyst in the electroless Ni plating solution, and N 2 is formed by a self-reduction reaction of the electroless Ni plating solution.
Ni is self-precipitated on the i-particle film 5, and a Ni film 6 is formed (FIG. 5D).

【0007】つぎに、ヒータで80℃に加熱保持した無
電解Auめっき液中に半導体装置3を20分間浸漬する
無電解Auめっき工程を行う。これは、Ni膜6単独で
はNiの酸化膜のために接続性が悪いため、接続性を高
める目的で、Au膜7をNiと無電解Auめっき液中の
Auイオンとの置換反応によって形成する(図5
(e))。
Next, an electroless Au plating step of immersing the semiconductor device 3 in an electroless Au plating solution heated and maintained at 80 ° C. by a heater for 20 minutes is performed. This is because the Ni film 6 alone has poor connectivity due to the oxide film of Ni, and for the purpose of enhancing the connectivity, the Au film 7 is formed by a substitution reaction between Ni and Au ions in the electroless Au plating solution. (FIG. 5
(E)).

【0008】[0008]

【発明が解決しようとする課題】上記従来の半導体装置
の突起電極形成方法では、エッチング液やめっき前処理
液や無電解めっき液に半導体装置3を浸漬するために、
半導体装置3上のすべてのAl電極1上に無電解めっき
により突起電極が形成されるため、突起電極を形成しな
いAl電極1においては、レジストによりAl電極1の
表面を被覆するためのフォトリソグラフィ工程が必要と
なり、工程が複雑化するという問題点を有していた。ま
た、無電解めっき液を一定温度で保持するための長時間
加熱により、めっき液の劣化が進行し易いという問題点
を有していた。
In the above-mentioned conventional method for forming a bump electrode of a semiconductor device, the semiconductor device 3 is immersed in an etching solution, a plating pretreatment solution or an electroless plating solution.
Since the protruding electrodes are formed on all of the Al electrodes 1 on the semiconductor device 3 by electroless plating, a photolithography process for covering the surface of the Al electrodes 1 with a resist is applied to the Al electrodes 1 on which no protruding electrodes are formed. Is required, and the process becomes complicated. In addition, there has been a problem that the plating solution is easily deteriorated by heating for a long time to maintain the electroless plating solution at a constant temperature.

【0009】本発明の目的は、突起電極を必要とするA
l電極上にのみ容易に突起電極を形成することができる
とともに、めっき液の劣化を抑制することができる半導
体装置の突起電極形成方法を提供することである。
It is an object of the present invention to provide an A
It is an object of the present invention to provide a method for forming a protruding electrode of a semiconductor device, which can easily form a protruding electrode only on an electrode and can suppress deterioration of a plating solution.

【0010】[0010]

【課題を解決するための手段】請求項1記載の半導体装
置の突起電極形成方法は、無電界めっき法によって半導
体装置のAl電極上に金属膜からなる突起電極を形成す
る半導体装置の突起電極形成方法であって、無電解めっ
き液に浸漬した半導体装置のAl電極上にレーザー光を
照射して突起電極となる金属膜を形成することを特徴と
する。
According to a first aspect of the present invention, there is provided a method for forming a projecting electrode of a semiconductor device, comprising forming a projecting electrode made of a metal film on an Al electrode of the semiconductor device by electroless plating. A method comprising irradiating a laser beam onto an Al electrode of a semiconductor device immersed in an electroless plating solution to form a metal film to be a protruding electrode.

【0011】この方法により、レーザー光を照射したA
l電極付近のみの無電解めっき液が加熱されて、無電界
めっき反応が進行して突起電極が形成されるため、レー
ザー光を照射しないAl電極上には突起電極は形成され
ず、容易に突起電極を必要とするAl電極上にのみ突起
電極を形成することができるとともに、無電解めっき液
は突起電極の形成付近のみが局部加熱されるため、無電
解めっき液の劣化を抑制することができる。
According to this method, the laser beam irradiated A
Since the electroless plating solution only near the electrode is heated and the electroless plating reaction proceeds to form a protruding electrode, no protruding electrode is formed on the Al electrode that is not irradiated with laser light, and the protruding electrode is easily formed. A protruding electrode can be formed only on an Al electrode that requires an electrode, and since the electroless plating solution is locally heated only in the vicinity of the formation of the protruding electrode, deterioration of the electroless plating solution can be suppressed. .

【0012】請求項2記載の半導体装置の突起電極形成
方法は、請求項1記載の半導体装置の突起電極形成方法
において、形成すべき突起電極と対応する位置にレーザ
ー光の透過孔を設けたマスクを用いて、レーザー光をマ
スク上から透過孔を介してAl電極上に照射するように
している。この方法により、レーザー光を照射しながら
レーザー光を移動させても、突起電極を形成しないAl
電極等のマスクの透過孔に対応していない半導体装置上
の領域にはレーザー光が照射されず、突起電極を必要と
するAl電極上にのみ順次連続的に照射して突起電極を
形成することができるため、処理時間を短縮することが
できる。
According to a second aspect of the present invention, there is provided a method of forming a protruding electrode for a semiconductor device according to the first aspect, wherein a mask is provided with a laser beam transmission hole at a position corresponding to the protruding electrode to be formed. Is used to irradiate the laser beam from above the mask onto the Al electrode through the transmission hole. According to this method, even if the laser beam is moved while irradiating the laser beam, the Al
Areas on the semiconductor device that do not correspond to the transmission holes of the mask, such as electrodes, are not irradiated with laser light, and the projection electrodes are formed by sequentially and continuously irradiating only the Al electrodes that require the projection electrodes. Therefore, the processing time can be reduced.

【0013】請求項3記載の半導体装置の突起電極形成
方法は、請求項1または2記載の半導体装置の突起電極
形成方法において、半導体装置のAl電極上へのレーザ
ー光の照射中に、形成される突起電極へのレーザー光の
入射光と突起電極の表面からのレーザー光の反射光との
光路差により突起電極の高さを測定し、この測定値が所
望の値となるように突起電極を形成するようにしてい
る。
According to a third aspect of the present invention, in the method of forming a bump electrode of a semiconductor device according to the first or second aspect, the bump is formed during the irradiation of the Al electrode of the semiconductor device with laser light. The height of the protruding electrode is measured by the optical path difference between the incident light of the laser beam on the protruding electrode and the reflected light of the laser beam from the surface of the protruding electrode, and the height of the protruding electrode is measured so that the measured value becomes a desired value. It is formed.

【0014】この方法により、突起電極を形成中に、形
成される突起電極の高さを測定し、無電解めっきによる
突起電極の析出量を制御して、高さ精度の高い突起電極
を形成することができる。
According to this method, the height of the formed protruding electrode is measured during the formation of the protruding electrode, and the amount of the protruding electrode deposited by electroless plating is controlled to form the protruding electrode with high height accuracy. be able to.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。 〔第1の実施の形態〕まず、本発明の第1の実施の形態
について説明する。図1は本発明の第1の実施の形態に
おける半導体装置の突起電極形成方法を示す工程断面図
である。図1において、1はAl電極、2は自然酸化
膜、3は半導体装置、4は保護膜、5はNi粒子膜、6
はNi膜、7はAu膜、8はレーザー光源、9はレーザ
ー光である。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] First, a first embodiment of the present invention will be described. FIG. 1 is a process sectional view showing a method for forming a bump electrode of a semiconductor device according to a first embodiment of the present invention. In FIG. 1, 1 is an Al electrode, 2 is a natural oxide film, 3 is a semiconductor device, 4 is a protective film, 5 is a Ni particle film, 6
Is a Ni film, 7 is an Au film, 8 is a laser light source, and 9 is a laser beam.

【0016】図1(a)に示すように、突起電極形成前
には、Al電極1の表面に自然酸化膜2が形成されてい
るため、まず、リン酸や水酸化ナトリウムの水溶液中に
浸漬するウエットエッチング工程によって、Al電極1
の表面に形成された自然酸化膜2の除去を行う(図1
(b))。この後、純水により洗浄を行う。つぎに、図
1(c)に示すように、突起電極を必要とするAl電極
1上にNi粒子膜5を形成する。図1(b)の工程によ
って自然酸化膜2を除去したが、その後、純水により洗
浄することで再度Al電極1上に自然酸化膜が形成され
やすくなるため、このAl電極1上への自然酸化膜の再
形成を防止するために、Niを含有するアルカリ性(p
H9〜10)の溶液中に半導体装置3を浸漬し、レーザ
ー光源8(アルゴンレーザー:5W)よりレーザー光9
を突起電極を必要とするAl電極1に30秒間照射す
る。このレーザー光9の照射によって、照射されたAl
電極1の周辺部のみの局部加熱により液温を80℃に加
熱し、Alと溶液中のNiイオンの置換反応を利用して
Al電極1の表面に膜厚300〜500ÅのNi粒子膜
5を形成する。このNi粒子膜5の形成後、純水により
洗浄を行う。
As shown in FIG. 1A, before the formation of the protruding electrodes, the natural oxide film 2 is formed on the surface of the Al electrode 1, so that it is first immersed in an aqueous solution of phosphoric acid or sodium hydroxide. Al electrode 1 by the wet etching process
Of the native oxide film 2 formed on the surface of FIG.
(B)). Thereafter, cleaning is performed with pure water. Next, as shown in FIG. 1 (c), a Ni particle film 5 is formed on the Al electrode 1 which requires a projection electrode. Although the natural oxide film 2 is removed by the process of FIG. 1B, the natural oxide film is easily formed on the Al electrode 1 again by washing with pure water. In order to prevent re-formation of the oxide film, an alkaline solution containing Ni (p
The semiconductor device 3 is immersed in a solution of H9 to H9, and a laser light source 8 (argon laser: 5 W) is used for laser light 9.
Is irradiated for 30 seconds to the Al electrode 1 which needs the protruding electrode. By the irradiation of the laser light 9, the irradiated Al
The liquid temperature is heated to 80 ° C. by local heating of only the peripheral portion of the electrode 1, and a Ni particle film 5 having a thickness of 300 to 500 ° is formed on the surface of the Al electrode 1 by utilizing a substitution reaction between Al and Ni ions in the solution. Form. After the formation of the Ni particle film 5, cleaning is performed with pure water.

【0017】つぎに、図1(d)に示すように、突起電
極を必要とするAl電極1上にレーザー光9を照射し、
無電解めっき法によるNi膜6を形成する。図1(c)
の工程において形成されたNi粒子膜5が、レーザー光
9の照射による無電解Niめっき液の局部加熱による無
電解Niめっきの析出反応の触媒として作用すること
で、無電解Niめっき液の自己還元反応によりNi粒子
膜5上にNiが自己析出し、Ni膜6が形成される。具
体的には、半導体装置3を無電解Niめっき液に浸漬
し、レーザー光源8(アルゴンレーザー:6W)よりレ
ーザー光9を2〜5分間照射してAl電極1の周辺部の
みの局部加熱により液温を90℃に加熱することで、A
l電極1上に0.8〜2.0μmのNi膜6を形成す
る。このNi膜6の形成後、純水により洗浄を行う。
Next, as shown in FIG. 1 (d), a laser beam 9 is irradiated on the Al electrode 1 which needs a protruding electrode.
A Ni film 6 is formed by an electroless plating method. FIG. 1 (c)
The Ni particle film 5 formed in the step (1) acts as a catalyst for the deposition reaction of the electroless Ni plating by local heating of the electroless Ni plating solution by the irradiation of the laser light 9, whereby the self-reduction of the electroless Ni plating solution is performed. Ni self-precipitates on the Ni particle film 5 by the reaction, and the Ni film 6 is formed. Specifically, the semiconductor device 3 is immersed in an electroless Ni plating solution, irradiated with a laser beam 9 from a laser light source 8 (argon laser: 6 W) for 2 to 5 minutes, and locally heated only around the Al electrode 1. By heating the liquid temperature to 90 ° C, A
A Ni film 6 having a thickness of 0.8 to 2.0 μm is formed on the electrode 1. After the formation of the Ni film 6, cleaning is performed with pure water.

【0018】つぎに、図1(e)に示すように、突起電
極を必要とするAl電極1上にレーザー光9を照射し、
無電解めっき法によるAu膜7を形成する。具体的に
は、半導体装置3を無電解Auめっき液に浸漬し、レー
ザー光源8(アルゴンレーザー:6W)よりレーザー光
9を5分間照射してAl電極1の周辺部のみの局部加熱
により液温を90℃に加熱することで、Al電極1上の
Ni膜6上に0.1〜0.2μmのAu膜8を形成す
る。
Next, as shown in FIG. 1 (e), a laser beam 9 is irradiated on the Al electrode 1 which needs a protruding electrode.
An Au film 7 is formed by an electroless plating method. Specifically, the semiconductor device 3 is immersed in an electroless Au plating solution, irradiated with laser light 9 from a laser light source 8 (argon laser: 6 W) for 5 minutes, and heated locally by heating only the periphery of the Al electrode 1. Is heated to 90 ° C. to form an Au film 8 of 0.1 to 0.2 μm on the Ni film 6 on the Al electrode 1.

【0019】なお、Ni粒子膜5,Ni膜6およびAu
膜7を形成する場合のレーザーのパワー密度は、104
〜105 W/cm2 とする。この実施の形態によれば、
突起電極を必要とするAl電極1にレーザー光源8より
レーザー光9を照射することで、レーザー光9が照射さ
れたAl電極1の周辺部のめっき前処理液(Ni粒子膜
5形成用のNi含有のアルカリ性溶液),無電解Niめ
っき液,無電解Auめっき液が局部加熱されて、突起電
極の形成が進行するために、突起電極を形成しないAl
電極1をレジストで被覆するためのフォトリソグラフィ
工程等を用いることなく、容易に、突起電極を必要とす
るAl電極1のみに突起電極を形成することができる。
しかも、突起電極を形成する電極周辺部の無電解めっき
液のみが局部加熱されるために、無電解めっき液の劣化
を抑制することができる。
The Ni particle film 5, the Ni film 6, and the Au film
The power density of the laser when forming the film 7 is 10 4
And ~10 5 W / cm 2. According to this embodiment,
By irradiating the laser light 9 from the laser light source 8 to the Al electrode 1 requiring the protruding electrode, a plating pretreatment liquid (Ni for forming the Ni particle film 5) around the Al electrode 1 irradiated with the laser light 9 is formed. Containing alkaline solution), the electroless Ni plating solution, and the electroless Au plating solution are locally heated, and the formation of the protruding electrodes proceeds.
A protruding electrode can be easily formed only on the Al electrode 1 that requires a protruding electrode without using a photolithography process or the like for covering the electrode 1 with a resist.
In addition, since only the electroless plating solution around the electrodes forming the protruding electrodes is locally heated, deterioration of the electroless plating solution can be suppressed.

【0020】なお、この第1の実施の形態の場合、図1
(c),(d),(e)の各工程において、1つのAl
電極1の照射終了毎に、レーザー光9の照射を一時スト
ップし、つぎのAl電極1に位置合わせしてから再び照
射を始めることになる。 〔第2の実施の形態〕つぎに、本発明の第2の実施の形
態について説明する。図2は本発明の第2の実施の形態
における半導体装置の突起電極形成方法の特徴点を示す
工程断面図である。
In the case of the first embodiment, FIG.
In each of the steps (c), (d) and (e), one Al
Each time the irradiation of the electrode 1 is completed, the irradiation of the laser beam 9 is temporarily stopped, the irradiation is started again after the alignment with the next Al electrode 1 is performed. [Second Embodiment] Next, a second embodiment of the present invention will be described. FIG. 2 is a process sectional view showing the features of the method for forming a bump electrode of a semiconductor device according to the second embodiment of the present invention.

【0021】この第2の実施の形態では、レーザー光9
の照射方法のみが第1の実施の形態と異なり、その他は
第1の実施の形態と同様である。以下、主に第1の実施
の形態と異なる特徴点について説明する。例えば、図1
(e)のAu膜7を形成する工程において、図2に示す
ように、突起電極を必要とするAl電極1の位置に対応
してレーザー光9を透過する透過孔を設けたマスク10
を半導体装置3上に設置し、これを無電解Auめっき液
に浸漬し、マスク10の透過孔を通してAl電極1にレ
ーザー光9を照射する。そして、レーザー光9を照射し
ながらレーザー光9を移動させて順次Al電極1上を照
射して、突起電極を必要とする全てのAl電極1上にA
u膜7を形成する。ここで、レーザー光9を照射しなが
らレーザー光9を移動させても、マスク10によって透
過孔に対応していない半導体装置3上の領域にはレーザ
ー光9が照射されず、突起電極を形成しないAl電極1
にはめっき処理は施されない。なお、Ni粒子膜5およ
びNi膜6を形成する工程でも、同様にマスク10を用
いて、レーザー光9を照射しながらレーザー光9を移動
させて順次Al電極1上を照射し、突起電極を必要とす
る全てのAl電極1上にNi粒子膜5,Ni膜6を形成
すればよい。ここでは、マスク10に設けた透過孔は、
形成すべき突起電極と同じサイズにしている。
In the second embodiment, the laser light 9
Only the irradiation method is different from the first embodiment, and the other is the same as the first embodiment. Hereinafter, features that are different from the first embodiment will be mainly described. For example, FIG.
In the step (e) of forming the Au film 7, as shown in FIG. 2, a mask 10 provided with a transmission hole for transmitting a laser beam 9 corresponding to the position of the Al electrode 1 requiring a protruding electrode.
Is placed on a semiconductor device 3, which is immersed in an electroless Au plating solution, and the Al electrode 1 is irradiated with a laser beam 9 through a transmission hole of a mask 10. Then, while irradiating the laser beam 9, the laser beam 9 is moved to sequentially irradiate the Al electrode 1, and A is projected on all the Al electrodes 1 which need the protruding electrodes.
A u film 7 is formed. Here, even if the laser light 9 is moved while irradiating the laser light 9, a region on the semiconductor device 3 that does not correspond to the transmission hole by the mask 10 is not irradiated with the laser light 9, and no projection electrode is formed. Al electrode 1
Is not plated. In the step of forming the Ni particle film 5 and the Ni film 6, the laser light 9 is similarly moved while irradiating the laser light 9 using the mask 10 to irradiate the Al electrode 1 sequentially, thereby forming the protrusion electrode. The Ni particle film 5 and the Ni film 6 may be formed on all necessary Al electrodes 1. Here, the transmission holes provided in the mask 10 are:
It has the same size as the projection electrode to be formed.

【0022】この第2の実施の形態によれば、第1の実
施の形態の効果に加え、Al電極1上にレーザー光9を
照射する際に、突起電極を必要とするAl電極1の位置
に対応して透過孔を設けたマスク10を用いることによ
り、レーザー光9を照射しながらレーザー光9を移動さ
せても、突起電極を形成しないAl電極1等のマスク1
0の透過孔に対応していない半導体装置3上の領域には
レーザー光9が照射されず、突起電極を必要とするAl
電極1上にのみ順次連続的に照射して突起電極となる膜
を形成することができるため、第1の実施の形態のよう
に、1つのAl電極1の照射終了毎に、レーザー光9の
照射を一時ストップし、つぎのAl電極1に位置合わせ
してから再び照射を始める場合に比べて、処理時間を短
縮することができる。
According to the second embodiment, in addition to the effects of the first embodiment, the position of the Al electrode 1 that requires a protruding electrode when the Al electrode 1 is irradiated with the laser beam 9 By using a mask 10 provided with a transmission hole corresponding to the above, even if the laser light 9 is moved while irradiating the laser light 9, a mask 1 such as an Al electrode 1 which does not form a projection electrode is formed.
The laser light 9 is not irradiated to the region on the semiconductor device 3 which does not correspond to the transmission hole of No.
Since it is possible to form a film serving as a protruding electrode by sequentially and continuously irradiating only the electrode 1, the laser beam 9 is emitted every time the irradiation of one Al electrode 1 is completed as in the first embodiment. The processing time can be reduced as compared with the case where the irradiation is temporarily stopped, the position is adjusted to the next Al electrode 1, and the irradiation is started again.

【0023】なお、レーザー光9を照射する際、マスク
10が半導体装置3とともにめっき液等に浸漬されてい
ると、レーザー光9を移動中にも連続してめっき液等に
照射され、めっき液等の劣化が進行するため、マスク1
0はめっき液等の液面から出ている方が好ましい。 〔第3の実施の形態〕つきに、本発明の第3の実施の形
態について説明する。図3は本発明の第3の実施の形態
における半導体装置の突起電極形成方法の特徴点を示す
工程断面図である。図3において、11はプリズム、1
2は受光素子である。
When the mask 10 is immersed in a plating solution or the like together with the semiconductor device 3 when irradiating the laser beam 9, the plating solution or the like is continuously irradiated while the laser beam 9 is moving. Since the deterioration such as progresses, the mask 1
It is preferable that 0 comes out of the surface of the plating solution or the like. [Third Embodiment] A third embodiment of the present invention will be described. FIG. 3 is a process sectional view showing the features of the method for forming a bump electrode of a semiconductor device according to the third embodiment of the present invention. In FIG. 3, reference numeral 11 denotes a prism, 1
2 is a light receiving element.

【0024】この第3の実施の形態では、第1の実施の
形態あるいは第2の実施の形態におけるレーザー光9を
照射する工程において、Al電極1上に形成される膜か
らのレーザー光9の反射光をプリズム11を介して受光
素子12で測定することにより、Al電極1上に形成さ
れる膜の高さを測定し、突起電極の高さを制御するよう
にしている。なお、プリズム11および受光素子12
は、めっき液等の液面よりも上方に位置している。
In the third embodiment, in the step of irradiating the laser beam 9 in the first embodiment or the second embodiment, the laser beam 9 from the film formed on the Al electrode 1 is used. By measuring the reflected light with the light receiving element 12 via the prism 11, the height of the film formed on the Al electrode 1 is measured, and the height of the protruding electrode is controlled. The prism 11 and the light receiving element 12
Is located above the level of the plating solution or the like.

【0025】例えば、図3では、Ni膜6を形成する際
に、レーザー源8より照射されたレーザー光9が、プリ
ズム11を透過してAl電極上1のNi膜6に到達す
る。このNi膜6の表面で反射したレーザー光9がプリ
ズム11で反射され受光素子12に到達する。この受光
素子12に到達したレーザー光9の受光量により、無電
解めっきにより析出したNi膜6の高さの測定を行う。
これは、めっき開始時のめっき面からのレーザー光9の
反射光の受光量を基準にして、常に一定の受光量となる
ように受光素子12が移動した距離を測定することによ
り、高さの測定を行う。この測定値を見ながら形成され
るNi膜6の高さを制御する。また、Au膜7(図1,
図2参照)の形成中においても同様にして高さを制御
し、最終的な突起電極の高さを精度の高いものとするこ
とができる。なお、Ni粒子膜5を形成する際にも同様
に高さを測定しながら制御してもよい。
For example, in FIG. 3, when the Ni film 6 is formed, the laser light 9 emitted from the laser source 8 passes through the prism 11 and reaches the Ni film 6 on the Al electrode 1. The laser light 9 reflected on the surface of the Ni film 6 is reflected by the prism 11 and reaches the light receiving element 12. The height of the Ni film 6 deposited by electroless plating is measured based on the amount of the laser light 9 that has reached the light receiving element 12.
This is because the height of the height is measured by measuring the distance that the light receiving element 12 has moved so that the light receiving amount is always constant with reference to the amount of reflected light of the laser light 9 from the plating surface at the start of plating. Perform the measurement. The height of the formed Ni film 6 is controlled while observing the measured values. The Au film 7 (FIG. 1,
The height can be controlled in the same manner even during the formation of (see FIG. 2), and the final height of the protruding electrode can be made highly accurate. When forming the Ni particle film 5, the height may be measured and controlled in the same manner.

【0026】この第3の実施の形態によれば、第1ある
いは第2の実施の形態の効果に加え、突起電極を形成中
に、突起電極を構成する膜の高さを測定することによ
り、無電解めっきによる突起電極の析出量を制御して高
さ精度の高い突起電極を形成することができる。なお、
第1,第2,第3の実施の形態では、レーザー光源8と
してアルゴンレーザーを使用したが、これに限られるも
のではなく、二酸化炭素レーザー、YAGレーザー、ガ
ラスレーザー、ヘリウム・ネオンレーザー、Cuイオン
レーザー、クリプトンレーザー、半導体レーザー、エキ
シマレーザー、色素レーザー等を使用してもよい。
According to the third embodiment, in addition to the effects of the first and second embodiments, the height of the film constituting the projecting electrode is measured during the formation of the projecting electrode. By controlling the amount of deposition of the projecting electrode by electroless plating, a projecting electrode with high height accuracy can be formed. In addition,
In the first, second, and third embodiments, an argon laser is used as the laser light source 8, but the present invention is not limited to this, and a carbon dioxide laser, a YAG laser, a glass laser, a helium-neon laser, a Cu ion Lasers, krypton lasers, semiconductor lasers, excimer lasers, dye lasers and the like may be used.

【0027】[0027]

【発明の効果】本発明の半導体装置の突起電極形成方法
は、無電解めっき液に浸漬した半導体装置のAl電極上
にレーザー光を照射して突起電極となる金属膜を形成す
ることにより、レーザー光を照射したAl電極付近のみ
の無電解めっき液が加熱されて、無電界めっき反応が進
行して突起電極が形成されるため、レーザー光を照射し
ないAl電極上には突起電極は形成されず、容易に突起
電極を必要とするAl電極上にのみ突起電極を形成する
ことができるとともに、無電解めっき液は突起電極の形
成付近のみが局部加熱されるため、無電解めっき液の劣
化を抑制することができる。
According to the method of forming a bump electrode of a semiconductor device of the present invention, a laser beam is irradiated on an Al electrode of a semiconductor device immersed in an electroless plating solution to form a metal film to be a bump electrode. Since the electroless plating solution only near the irradiated Al electrode is heated and the electroless plating reaction proceeds to form a protruding electrode, no protruding electrode is formed on the Al electrode that is not irradiated with laser light. In addition to being able to easily form a protruding electrode only on an Al electrode that requires a protruding electrode, the electroless plating solution is locally heated only in the vicinity of the formation of the protruding electrode, thereby suppressing deterioration of the electroless plating solution. can do.

【0028】さらに、形成すべき突起電極と対応する位
置にレーザー光の透過孔を設けたマスクを用いて、レー
ザー光をマスク上から透過孔を介してAl電極上に照射
することにより、レーザー光を照射しながらレーザー光
を移動させても、突起電極を形成しないAl電極等のマ
スクの透過孔に対応していない半導体装置上の領域には
レーザー光が照射されず、突起電極を必要とするAl電
極上にのみ順次連続的に照射して突起電極を形成するこ
とができるため、処理時間を短縮することができる。
Further, by using a mask provided with a laser light transmission hole at a position corresponding to the projecting electrode to be formed, the laser light is irradiated from above the mask onto the Al electrode through the transmission hole. Even if the laser beam is moved while irradiating the laser beam, a region on the semiconductor device that does not correspond to the transmission hole of the mask such as an Al electrode that does not form a projection electrode is not irradiated with the laser beam, and a projection electrode is required. Since the projection electrode can be formed by sequentially and continuously irradiating only the Al electrode, the processing time can be shortened.

【0029】また、半導体装置のAl電極上へのレーザ
ー光の照射中に、形成される突起電極の高さを測定し、
この測定値が所望の値となるように突起電極の析出量を
制御することにより、高さ精度の高い突起電極を形成す
ることができる。
Further, during the irradiation of the Al electrode of the semiconductor device with the laser beam, the height of the projection electrode formed is measured,
By controlling the deposition amount of the protruding electrode so that the measured value becomes a desired value, a protruding electrode with high height accuracy can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における半導体装置
の突起電極形成方法を示す工程断面図である。
FIG. 1 is a process sectional view illustrating a method for forming a bump electrode of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態における半導体装置
の突起電極形成方法の特徴点を示す工程断面図である。
FIG. 2 is a process cross-sectional view showing a feature of a method for forming a bump electrode of a semiconductor device according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態における半導体装置
の突起電極形成方法の特徴点を示す工程断面図である。
FIG. 3 is a process cross-sectional view showing a feature of a method for forming a bump electrode of a semiconductor device according to a third embodiment of the present invention.

【図4】突起電極を有する従来の半導体装置の断面図で
ある。
FIG. 4 is a cross-sectional view of a conventional semiconductor device having a protruding electrode.

【図5】従来の半導体装置の突起電極形成方法を示す工
程断面図である。
FIG. 5 is a process sectional view showing a method for forming a bump electrode of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 Al電極 2 自然酸化膜 3 半導体装置 4 保護膜 5 Ni粒子膜 6 Ni膜 7 Au膜 8 レーザー光源 9 レーザー光 10 マスク 11 プリズム 12 受光素子 DESCRIPTION OF SYMBOLS 1 Al electrode 2 Natural oxide film 3 Semiconductor device 4 Protective film 5 Ni particle film 6 Ni film 7 Au film 8 Laser light source 9 Laser beam 10 Mask 11 Prism 12 Light receiving element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無電界めっき法によって半導体装置のA
l電極上に金属膜からなる突起電極を形成する半導体装
置の突起電極形成方法であって、 無電解めっき液に浸漬した前記半導体装置のAl電極上
にレーザー光を照射して前記突起電極となる金属膜を形
成することを特徴とする半導体装置の突起電極形成方
法。
1. A method of manufacturing a semiconductor device using an electroless plating method.
1. A method of forming a protruding electrode of a semiconductor device, comprising forming a protruding electrode made of a metal film on an electrode, wherein the protruding electrode is formed by irradiating a laser beam onto an Al electrode of the semiconductor device immersed in an electroless plating solution. A method for forming a bump electrode of a semiconductor device, comprising forming a metal film.
【請求項2】 形成すべき突起電極と対応する位置にレ
ーザー光の透過孔を設けたマスクを用いて、レーザー光
を前記マスク上から前記透過孔を介してAl電極上に照
射する請求項1記載の半導体装置の突起電極形成方法。
2. A laser beam is irradiated from above the mask onto the Al electrode through the transmission hole, using a mask having a laser light transmission hole provided at a position corresponding to the projection electrode to be formed. The method for forming a bump electrode of a semiconductor device according to the above.
【請求項3】 半導体装置のAl電極上へのレーザー光
の照射中に、形成される突起電極へのレーザー光の入射
光と前記突起電極の表面からのレーザー光の反射光との
光路差により前記突起電極の高さを測定し、この測定値
が所望の値となるように前記突起電極を形成する請求項
1または2記載の半導体装置の突起電極形成方法。
3. A laser device according to claim 1, wherein the laser beam is irradiated on the Al electrode of the semiconductor device by an optical path difference between the incident light of the laser beam on the formed protruding electrode and the reflected light of the laser beam from the surface of the protruding electrode. 3. The method according to claim 1, wherein the height of the bump electrode is measured, and the bump electrode is formed such that the measured value is a desired value.
JP05577697A 1997-03-11 1997-03-11 Method for forming bump electrode of semiconductor device Expired - Fee Related JP3307850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05577697A JP3307850B2 (en) 1997-03-11 1997-03-11 Method for forming bump electrode of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05577697A JP3307850B2 (en) 1997-03-11 1997-03-11 Method for forming bump electrode of semiconductor device

Publications (2)

Publication Number Publication Date
JPH10256257A true JPH10256257A (en) 1998-09-25
JP3307850B2 JP3307850B2 (en) 2002-07-24

Family

ID=13008297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05577697A Expired - Fee Related JP3307850B2 (en) 1997-03-11 1997-03-11 Method for forming bump electrode of semiconductor device

Country Status (1)

Country Link
JP (1) JP3307850B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060634A3 (en) * 2003-12-15 2006-02-16 California Inst Of Techn Method and system for forming a film of material using plasmon assisted chemical reactions
US7998538B2 (en) 2003-12-15 2011-08-16 California Institute Of Technology Electromagnetic control of chemical catalysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060634A3 (en) * 2003-12-15 2006-02-16 California Inst Of Techn Method and system for forming a film of material using plasmon assisted chemical reactions
US7504136B2 (en) 2003-12-15 2009-03-17 California Institute Of Technology Method and system for forming a film of material using plasmon assisted chemical reactions
US7998538B2 (en) 2003-12-15 2011-08-16 California Institute Of Technology Electromagnetic control of chemical catalysis

Also Published As

Publication number Publication date
JP3307850B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
US7841781B2 (en) Methods and apparatuses for providing a hermetic sealing system for an optical transceiver module
JPH11266068A (en) Wiring substrate and its manufacture
JPH11186432A (en) Semiconductor package and its manufacture
US5907786A (en) Process for manufacturing a flip-chip integrated circuit
JPH08264749A (en) Method for forming conductive path on substrate including recessed portion
JP3307850B2 (en) Method for forming bump electrode of semiconductor device
JPH07161919A (en) Semiconductor device and its manufacture
KR100784497B1 (en) Film substrate of semiconductor package and manufacturing method thereof
JP2002299553A (en) Module and its manufacturing method
KR19990005679A (en) Manufacturing method of package for flip chip mounting
JP3773603B2 (en) Manufacturing method of semiconductor laser device
EP4007091B1 (en) Semiconductor laser drive device, electronic apparatus, and method for manufacturing semiconductor laser drive device
WO2021044816A1 (en) Semiconductor laser driving device, electronic equipment, and method of manufacturing semiconductor laser driving device
JP2000150771A (en) Electronic part, electrode surface treatment thereof and its device
JP2002164368A (en) Bump-forming method and plating apparatus
JPH02253626A (en) Mounting of semiconductor chip
KR100581784B1 (en) Process and arrangement for the selective metallization of 3d structures
JPH07161773A (en) Manufacture of tape carrier for tab plated with tin electrolessly
JP2001274277A (en) Printed wiring substrate with projection electrode and its manufacturing method
JPH06112275A (en) Manufacture of circuit wiring board provided with terminal for mounting circuit component
JP2000012726A (en) Formation of bump electrode on semiconductor mounting board
JPH033551B2 (en)
JPH04107933A (en) Manufacture of semiconductor device
JPH10261644A (en) Manufacture of solder bump
KR19990011139A (en) VISAI Semiconductor Lead Frame and Manufacturing Method Thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees