JPH0995765A - Coating film excellent in corrosion resistances to halogen gas and halogen plasma, and laminated structure formed with the coating film - Google Patents

Coating film excellent in corrosion resistances to halogen gas and halogen plasma, and laminated structure formed with the coating film

Info

Publication number
JPH0995765A
JPH0995765A JP25658295A JP25658295A JPH0995765A JP H0995765 A JPH0995765 A JP H0995765A JP 25658295 A JP25658295 A JP 25658295A JP 25658295 A JP25658295 A JP 25658295A JP H0995765 A JPH0995765 A JP H0995765A
Authority
JP
Japan
Prior art keywords
coating film
halogen
corrosion resistance
plasma
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25658295A
Other languages
Japanese (ja)
Other versions
JP3634460B2 (en
Inventor
Tsugumoto Ikeda
貢基 池田
Atsushi Hisamoto
淳 久本
Takashi Onishi
隆 大西
Masatake Yamamoto
正剛 山本
Katsuhiro Itayama
克広 板山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO KOBELCO TOOL KK
Kobe Steel Ltd
Original Assignee
SHINKO KOBELCO TOOL KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO KOBELCO TOOL KK, Kobe Steel Ltd filed Critical SHINKO KOBELCO TOOL KK
Priority to JP25658295A priority Critical patent/JP3634460B2/en
Priority to PCT/JP1996/002887 priority patent/WO2004076711A1/en
Priority to US08/849,123 priority patent/US6027792A/en
Publication of JPH0995765A publication Critical patent/JPH0995765A/en
Application granted granted Critical
Publication of JP3634460B2 publication Critical patent/JP3634460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coating film constitution which exhibits excellent corrosion resistance to plasma by specifying the atomic ratio of O/Al and specifying the half-width in X-ray diffraction. SOLUTION: This coating film is composed of the oxide of Al. The atm. ratio of O/Al of the thin film layer is >=1.3 to <1.5 and the thin film layer has no peak below the half-width 5 deg. in X-ray diffraction. The stipulation relating to the atomic ratio signifies a slight oxygen lacking state resulted by the stoichiometric ratio (O/Al=3/2=1.5) of Al2 O3 . The term, 'the thin film layer has no peak below the half-width 5 deg.' signifies that the Al oxide is amorphous. The thickness of the coating film is preferably 0.1 to 20μm. The formation of the thin film layer by a sputtering method on an arbitrary base material is an optimum method as an example of the process for production. As a result, the excellent halogen gas corrosion resistance and plasma corrosion resistance is exhibited always stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は腐食性の強いガスま
たはプラズマに対して強い抵抗性を示すコーティング膜
及び積層構造体に関し、詳細には、塩素,臭素,弗素等
のハロゲンまたは該ハロゲン含有化合物ガス(以下ハロ
ゲン系ガスと言う)、更には該ハロゲン系ガス雰囲気で
形成されたハロゲン系プラズマに対して優れた耐食性を
示すコーティング膜及びこのコーティング膜を施した積
層構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating film and a laminated structure having a strong resistance to a highly corrosive gas or plasma, and more specifically to a halogen such as chlorine, bromine or fluorine or a compound containing the halogen. The present invention relates to a coating film having excellent corrosion resistance to a gas (hereinafter referred to as a halogen-based gas) and halogen-based plasma formed in the halogen-based gas atmosphere, and a laminated structure provided with this coating film.

【0002】[0002]

【従来の技術】半導体製造装置においては素子の高集積
化が進み、配線間隔はサブミクロン単位の高精度化が要
求される様になってきた。一方この様な素子では微粒子
や細菌が付着することによる短絡は製品不良の直接的原
因となる為、半導体製造プロセスで使用されるガスや洗
浄水は夫々超高純度であることが要求されている。その
ため真空チャンバー内壁、電極などの反応室構成材料、
或はガス導入配管等についても、不純物ガスや微粒子を
極力発生させることがない様な工夫を払うことが必要に
なっている。
2. Description of the Related Art In semiconductor manufacturing equipment, the integration of elements has advanced, and it has become necessary to improve the accuracy of wiring intervals in submicron units. On the other hand, in such an element, a short circuit due to the adhesion of fine particles and bacteria directly causes product defects, so it is required that the gas and cleaning water used in the semiconductor manufacturing process each have ultra-high purity. . Therefore, the inner wall of the vacuum chamber, reaction chamber materials such as electrodes,
Alternatively, it is necessary to devise a gas introduction pipe and the like so that the impurity gas and the fine particles are not generated as much as possible.

【0003】そこでガス放出性が少ない点及び一般的耐
食性が優れている点などから、ステンレス鋼やアルミニ
ウム合金が賞用されているが、この様な素材であって
も、反応ガスやエッチングガスとして汎用されるハロゲ
ン系ガス或はこれに由来するハロゲン系プラズマによる
腐食は避け難く、例えばこれらの腐食環境に対して優れ
た耐食性を示すTiN,AlN,Al23 等の皮膜を
形成することが提案されている(実公昭61−1355
5、特開平1−312088、特公平5−5387
1)。またステンレス鋼について見ると、例えばオース
テナイト系ステンレス鋼を電解研磨した後、酸化性ガス
雰囲気中で加熱することによって非晶質酸化皮膜を形成
し、表面からのガス放出量を抑制すること(特開昭64
−87760)や、微粒子の発生源になったり不純物の
吸着・放出サイトともなる非金属介在物の量を可及的に
少なくすること(特開昭63−161145)などが知
られている。
For this reason, stainless steel and aluminum alloys are widely used because of their low gas-releasing property and excellent general corrosion resistance. Even such materials are used as reaction gas or etching gas. Corrosion due to commonly used halogen-based gas or halogen-based plasma derived from it is unavoidable. For example, it is possible to form a film of TiN, AlN, Al 2 O 3 or the like that exhibits excellent corrosion resistance against these corrosive environments. Proposed (Actual Public Sho 61-1355)
5, JP-A-1-312088, JP-B-5-5387
1). Further, regarding stainless steel, for example, after austenitic stainless steel is electrolytically polished, it is heated in an oxidizing gas atmosphere to form an amorphous oxide film, thereby suppressing the amount of gas released from the surface (JP 64
-87760), and that the amount of non-metallic inclusions that become a generation source of fine particles and also serve as adsorption / release sites for impurities is reduced as much as possible (Japanese Patent Laid-Open No. 63-161145).

【0004】しかしながら上記TiN,AlN,Al2
3 等の皮膜は膜質によって耐ハロゲン系ガス腐食性に
大きな差が現われ、特に、より腐食性の強い塩化水素ガ
スや弗化水素ガス、更にはハロゲン系プラズマに対して
常に良好な耐食性を発揮させるということはできない様
である。またステンレス鋼についての上記改質技術も上
記の様な強い腐食環境の中では耐食効果が安定しない様
である。そして腐食が始まると腐食生成物がガスの吸着
・放出サイトとなってガス純度の維持が困難になるだけ
でなく、腐食生成物自身が微粒子となって、例えば装置
の内面或は試料表面に付着して汚染する等、種々の不都
合を招く。
However, the above TiN, AlN, Al 2
Coating O 3, appears a large difference in resistant halogen-based gas corrosion by film quality, in particular, more highly corrosive hydrogen chloride gas and hydrogen fluoride gas, and further exhibits always good corrosion resistance against a halogen-based plasma It doesn't seem possible to let them do it. Further, the above-mentioned modification technique for stainless steel also seems to have unstable corrosion resistance effect in the above-mentioned strong corrosive environment. When corrosion starts, the corrosion products become gas adsorption / desorption sites, making it difficult to maintain the gas purity, and the corrosion products themselves become fine particles that adhere to, for example, the inner surface of the device or the sample surface. It causes various inconveniences such as contamination.

【0005】[0005]

【発明が解決しようとする課題】本発明はこの様な事情
に着目してなされたものであって、常に安定して優れた
耐ハロゲン系ガス腐食性及び耐ハロゲン系プラズマ腐食
性を発揮することのできるコーティング膜並びに該コー
ティング膜を施した積層構造体の提供を目的とするもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and always exhibits stable and excellent halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance. An object of the present invention is to provide a coating film that can be used and a laminated structure provided with the coating film.

【0006】[0006]

【課題を解決するための手段】本発明のコーティング膜
とは、Alの酸化物薄膜で構成され、該薄膜層はO/A
lの原子比が1.3以上1.5未満であり、且つX線回
折において半値幅5°以下のピークを有しないものであ
る。原子比に関する上記規定は、A23 の化学量論比
(O/Al=3/2=1.5)より若干酸素欠乏状態で
あることを意味し、また半値幅5°以下のピークを有し
ないとは、該Al酸化物が実質的に非晶質であることを
意味する。本発明のコーティング膜は厚さ0.1〜20
μmであることが望ましく、またその製造方法の一例と
しては、任意の基材上に、スパッタリング法で形成する
ことが最適方法として説明される。
The coating film of the present invention comprises an oxide thin film of Al, and the thin film layer is O / A.
The atomic ratio of l is 1.3 or more and less than 1.5 and does not have a peak with a half width of 5 ° or less in X-ray diffraction. The above stipulation regarding the atomic ratio means that the oxygen deficiency state is slightly less than the stoichiometric ratio of A 2 O 3 (O / Al = 3/2 = 1.5), and a peak with a half width of 5 ° or less Not having means that the Al oxide is substantially amorphous. The coating film of the present invention has a thickness of 0.1 to 20.
It is desirable that the film thickness is μm, and as an example of the manufacturing method thereof, the optimum method is to form the film on any base material by the sputtering method.

【0007】[0007]

【発明の実施の形態】アルミニウム酸化物を金属材料等
の保護皮膜として利用することは、既述の如く公知であ
る(実公昭61−13555等)が、先に述べた様に膜
質によって耐食性が左右されるという問題があったた
め、膜質と耐食性の関係について種々検討した。その結
果耐ハロゲン系ガス腐食性及び耐ハロゲン系プラズマ腐
食性を安定して有効に発揮させるためには、化学量論比
に対して若干酸素不足気味とする(図1参照)と共に、
アルミニウム酸化物薄膜の膜質としては、X線回折にお
いて半値幅5°以下のピークを有しない(図2参照)、
即ち実質的に非晶質であることが必要であることを見出
した。これに対しO/Alが1.5以上、即ち酸素過剰
気味のアルミニウム酸化物皮膜とすると、酸素過剰サイ
トがハロゲン系ガスやハロゲン系プラズマによる腐食の
起点となり、早期腐食を招く。従ってO/Alの原子比
は1.5未満とするが、酸素が欠乏し過ぎると、酸素と
結合しない金属Alが存在することがあり、この場合は
金属Alが優先的腐食を受けるので、O/Alは少なく
とも1.3以上、好ましくは1.4以上とすることが推
奨される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The use of aluminum oxide as a protective film for a metal material or the like is known as described above (Jitsuko Sho 61-13555, etc.). However, as described above, the corrosion resistance depends on the film quality. Since there was a problem of being affected by this, various studies were made on the relationship between film quality and corrosion resistance. As a result, in order to stably and effectively exhibit the halogen-based gas corrosion resistance and the halogen-based plasma corrosion resistance, a slight oxygen deficiency with respect to the stoichiometric ratio (see FIG. 1),
The film quality of the aluminum oxide thin film does not have a peak with a half width of 5 ° or less in X-ray diffraction (see FIG. 2),
That is, it was found that it is necessary to be substantially amorphous. On the other hand, if the aluminum oxide film has O / Al of 1.5 or more, that is, an oxygen-excessive aluminum oxide film, the oxygen-excessive site becomes a starting point of corrosion by the halogen-based gas or halogen-based plasma, leading to early corrosion. Therefore, the atomic ratio of O / Al is set to less than 1.5, but if oxygen is deficient too much, there may be metallic Al that does not bond with oxygen. In this case, metallic Al is preferentially corroded, so It is recommended that / Al is at least 1.3 or more, preferably 1.4 or more.

【0008】また全体が結晶質且つ多結晶体である様な
膜、或は図3に示す如く結晶質の部分と非晶質の部分が
混在する様な膜では、結晶質同士の粒界或は結晶質と非
結晶質の界面部分がハロゲン系ガスやハロゲン系プラズ
マによって選択的に腐食され、クラックやピンホールを
生じ、やがては保護すべき基板のダメージを招く。
Further, in the case of a film that is entirely crystalline and polycrystalline, or a film in which a crystalline portion and an amorphous portion are mixed as shown in FIG. The crystalline and non-crystalline interface part is selectively corroded by the halogen-based gas or halogen-based plasma to generate cracks and pinholes, and eventually damage the substrate to be protected.

【0009】尚アルミニウム酸化物膜を単結晶体として
形成したときは上記の様な選択的腐食は回避できるが、
全体が非晶質であるものに比べると、耐弗素プラズマ性
が総体的に劣る他、成膜時の残留膜応力が大きい為、使
用前(コーティング直後)及び使用中にコーティング層
の剥離や割れを生じ易い。従って全体を実質的に非晶質
とすることがもっとも有利であることが確認された。
When the aluminum oxide film is formed as a single crystal, the selective corrosion as described above can be avoided.
Compared to those that are entirely amorphous, fluorine plasma resistance is generally inferior and the residual film stress during film formation is large, so peeling or cracking of the coating layer before use (immediately after coating) and during use Is likely to occur. Therefore, it was confirmed that it is most advantageous to make the whole substantially amorphous.

【0010】非晶質アルミニウム酸化物膜の厚さは本発
明を制限しないが、0.1μm未満であると、基板表面
を完全に被覆することが困難で、被覆欠陥を内在して基
板に部分的な腐食を招くので、0.1μm以上が好まし
い。より好ましくは0.5μm以上である。一方上限に
ついては、膜厚の増大に伴って耐食効果が向上する反
面、膜にかかる絶対的な応力が増加してコーティング層
の剥離や割れを招き易くなるので、安全性という観点か
らは20μm以下とすることが望まれる。
The thickness of the amorphous aluminum oxide film does not limit the present invention. However, if it is less than 0.1 μm, it is difficult to completely cover the surface of the substrate, and a coating defect may be inherently present on the substrate. 0.1 μm or more is preferable because it causes a general corrosion. More preferably, it is 0.5 μm or more. On the other hand, with respect to the upper limit, the corrosion resistance effect is improved as the film thickness is increased, but the absolute stress applied to the film is increased and the peeling or cracking of the coating layer is easily caused. Is desired.

【0011】非晶質アルミニウム酸化物膜の形成方法と
しては、特に制限される訳ではないが、スパッタリング
法または真空蒸着法等のPVD法が特に好ましく、この
方法であれば、成膜条件を制御することにより、非晶質
アルミニウム酸化物膜を均一に形成して良好な耐弗素プ
ラズマ性を享受することができる。尚スパッタリング法
としても特に制限されないが、代表的にはRF(高周
波)マグネトロンスパッタリング法が、また真空蒸着法
としては特にイオンアシスト真空蒸着法を採用すること
が望まれる。これらに対しイオンプレーティング法や化
学蒸着法等を採用すると結晶性アルミニウム酸化物膜が
生成し易く、また組成ズレ等の問題を生じる恐れがあっ
て好ましくない場合がある。
The method for forming the amorphous aluminum oxide film is not particularly limited, but a PVD method such as a sputtering method or a vacuum deposition method is particularly preferable. With this method, the film forming conditions are controlled. By doing so, an amorphous aluminum oxide film can be uniformly formed and good fluorine plasma resistance can be enjoyed. The sputtering method is not particularly limited, but it is typically desired to adopt the RF (radio frequency) magnetron sputtering method, and particularly to adopt the ion assisted vacuum evaporation method as the vacuum evaporation method. On the other hand, if an ion plating method, a chemical vapor deposition method, or the like is adopted, a crystalline aluminum oxide film is likely to be formed, and a problem such as composition deviation may occur, which is not preferable in some cases.

【0012】本発明の非晶質アルミニウム酸化物膜によ
って被覆することが望まれる基材については一切制限し
ないが、代表的なものを示すと、Al,Mg,鋼などの
各種金属材料の他、Si,Al,Ti等の酸化物,炭化
物,窒化物,ほう化物などのセラミックス類、更にはプ
ラスチックス類などが挙げられる。またその形状も板,
棒,線,管など、目的・用途に応じて広範な適用が可能
である。
The substrate desired to be coated with the amorphous aluminum oxide film of the present invention is not limited at all, but representative examples thereof include various metallic materials such as Al, Mg and steel, Examples thereof include oxides such as Si, Al and Ti, carbides, nitrides, ceramics such as borides, and plastics. Also its shape is a plate,
A wide range of applications such as rods, wires, pipes, etc. are possible depending on the purpose and application.

【0013】[0013]

【実施例】種々の基板材料上に気相成膜法によってアル
ミニウムの酸化物被覆層を形成した。また、比較のため
無処理材も供試した。被覆材についてX線光電子分光析
法(XPS)による組成分析を行なうと共に、X線回折
法により結晶構造を調査した。これら材料の耐ハロゲン
系ガス腐食性を評価するため、5%塩素−アルゴン混合
ガス中、400℃、240分のガス腐食試験を行ない、
試験後の外観により耐食性を評価した。また、500
℃、RF出力350WでのNF3 プラズマ照射試験を延
べ500分行ない、試験後の外観により耐プラズマ腐食
性を評価した。評価結果を表1に示す。
Example An aluminum oxide coating layer was formed on various substrate materials by a vapor deposition method. In addition, untreated materials were also tested for comparison. The composition of the coating material was analyzed by X-ray photoelectron spectroscopy (XPS), and the crystal structure was investigated by X-ray diffraction. In order to evaluate the halogen-based gas corrosion resistance of these materials, a gas corrosion test was performed at 400 ° C. for 240 minutes in a 5% chlorine-argon mixed gas,
The corrosion resistance was evaluated by the appearance after the test. Also, 500
An NF 3 plasma irradiation test was performed at a temperature of 350 ° C. and an RF output of 350 W for a total of 500 minutes, and the plasma corrosion resistance was evaluated by the appearance after the test. Table 1 shows the evaluation results.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より明らかな様に本発明の規定条件を
すべて満たすNo.1〜8の実施例では、いずれの腐食
試験でも優れた耐食性を示している。No.3について
は被覆膜厚が薄いため、またNo.6については基板材
料が低合金鋼であるため、夫々若干耐食性は劣るもの
の、総合的には、十分な耐食性を有している。
As is clear from Table 1, No. 1 which satisfies all the specified conditions of the present invention. Examples 1 to 8 show excellent corrosion resistance in any corrosion test. No. For No. 3, the coating film thickness is thin, and therefore No. 3 With respect to No. 6, since the substrate material is a low alloy steel, the corrosion resistance is slightly inferior, but in general, it has sufficient corrosion resistance.

【0016】これに対して比較例No.9では、被覆層
膜厚が少ないため、No.10ではO/Alの比率が高
いため、No.11〜13については結晶質の混在とO
/Al比が不適切であることのため、夫々耐食性は不十
分であり、No.14、15の無処理材は特にプラズマ
中での耐食性が極めて劣っている。
On the other hand, in Comparative Example No. In No. 9, since the coating layer thickness is small, No. In No. 10, since the O / Al ratio is high, No. For 11 to 13, the mixture of crystalline and O
Since the / Al ratio is inadequate, the corrosion resistance is insufficient, respectively. The untreated materials 14 and 15 have extremely poor corrosion resistance especially in plasma.

【0017】[0017]

【発明の効果】本発明は以上の様に構成されたものであ
り、ハロゲン系ガス、ハロゲン系プラズマに対して優れ
た耐食性を示すコーティング膜構成及び当該膜の施され
た積層構造体が提供された。
The present invention is configured as described above, and provides a coating film structure having excellent corrosion resistance against halogen-based gas and halogen-based plasma, and a laminated structure provided with the film. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアルミニウム酸化物膜のXPSに
よる深さ方向成分分析結果(ガラス基板上に成膜、膜厚
5μm)。
FIG. 1 is a result of XPS depth component analysis of an aluminum oxide film according to the present invention (deposition on a glass substrate, film thickness 5 μm).

【図2】本発明に係るアルミニウム酸化物膜のX線回折
パターン(ガラス基板上に成膜、膜厚5μm)。
FIG. 2 is an X-ray diffraction pattern of an aluminum oxide film according to the present invention (deposition on a glass substrate, film thickness 5 μm).

【図3】結晶質混在のアルミニウム酸化物膜のX線回折
パターン(ガラス基板上に成膜、膜厚5μm)。
FIG. 3 is an X-ray diffraction pattern of a crystalline aluminum oxide film (film formation on a glass substrate, film thickness 5 μm).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 隆 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 山本 正剛 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 板山 克広 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Onishi 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Co., Ltd. Kobe Research Institute (72) Inventor Masago Yamamoto Takatsuka, Nishi-ku, Kobe-shi, Hyogo Prefecture 1-5-5 Taiwan Kobe Works, Kobe Steel Co., Ltd. (72) Inventor Katsuhiro Itayama 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works, Kobe Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Alの酸化物を主体とする薄膜で構成さ
れ、O/Alの原子比が1.3以上1.5未満であり、
X線回折において半値幅が5°以下のピークを有しない
ものであることを特徴とする耐ハロゲン系ガス腐食性及
び耐ハロゲン系プラズマ腐食性に優れたコーティング
膜。
1. A thin film composed mainly of an oxide of Al, having an O / Al atomic ratio of 1.3 or more and less than 1.5,
A coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, characterized in that it has no half-value width peak of 5 ° or less in X-ray diffraction.
【請求項2】 厚さが0.1〜20μmである請求項1
に記載のコーティング膜。
2. The thickness is 0.1 to 20 μm.
The coating film according to 1.
【請求項3】 請求項1または2に記載されたコーティ
ング膜を基材上に形成したものであることを特徴とする
積層構造体。
3. A laminated structure comprising the coating film according to claim 1 or 2 formed on a substrate.
JP25658295A 1995-10-03 1995-10-03 Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film Expired - Lifetime JP3634460B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25658295A JP3634460B2 (en) 1995-10-03 1995-10-03 Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
PCT/JP1996/002887 WO2004076711A1 (en) 1995-10-03 1996-10-03 Coating film excellent in the resistance to corrosion with halogen-containing gases and plasmas, laminated structure coated therewith, and process for the production of both
US08/849,123 US6027792A (en) 1995-10-03 1996-10-03 Coating film excellent in resistance to halogen-containing gas corrosion and halogen-containing plasma corrosion, laminated structure coated with the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25658295A JP3634460B2 (en) 1995-10-03 1995-10-03 Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film

Publications (2)

Publication Number Publication Date
JPH0995765A true JPH0995765A (en) 1997-04-08
JP3634460B2 JP3634460B2 (en) 2005-03-30

Family

ID=17294641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25658295A Expired - Lifetime JP3634460B2 (en) 1995-10-03 1995-10-03 Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film

Country Status (1)

Country Link
JP (1) JP3634460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528894A (en) * 2007-06-01 2010-08-26 エルジー・ケム・リミテッド Composite film and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528894A (en) * 2007-06-01 2010-08-26 エルジー・ケム・リミテッド Composite film and manufacturing method thereof

Also Published As

Publication number Publication date
JP3634460B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
KR101304082B1 (en) Corrosion resistant multilayer member
US6875477B2 (en) Method for coating internal surface of plasma processing chamber
JP3072738B2 (en) Method for improving the morphology of refractory metal film
JP2001164354A (en) Member inside plasma treatment chamber, and manufacturing method therefor
KR100212906B1 (en) Process for producing oxide films and chemical deposition apparatus therefor
US6406799B1 (en) Method of producing anti-corrosion member and anti-corrosion member
JP2004003022A (en) Plasma treatment container inside member
US6524731B1 (en) Corrosion-resistant member and method of producing the same
JP2003321760A (en) Interior member of plasma processing container and manufacturing method
JP2739129B2 (en) Manufacturing method of composite member
JPH0995765A (en) Coating film excellent in corrosion resistances to halogen gas and halogen plasma, and laminated structure formed with the coating film
JP5031259B2 (en) Corrosion resistant member, method for manufacturing the same, and semiconductor / liquid crystal manufacturing apparatus using the same
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
WO2021065327A1 (en) Corrosion-resistant member
JPH0995766A (en) Coating film excellent in corrosion resistances to halogen gas and halogen plasma, and laminated structure formed with the coating film
JP2007107100A (en) Composite film-covered member in plasma treatment container and method for manufacturing the same
KR20230027298A (en) Erosion-resistant metal fluoride coated articles, methods of making and using them
JPH11279761A (en) Corrosion resistant member
JP3784180B2 (en) Corrosion resistant material
JP3684259B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH07180029A (en) Corrosion resistant material and its production
JP4212737B2 (en) Corrosion-resistant member against halogen-based corrosive gas
JPS62151555A (en) Corrosion resistant film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

EXPY Cancellation because of completion of term