JPH07180029A - Corrosion resistant material and its production - Google Patents

Corrosion resistant material and its production

Info

Publication number
JPH07180029A
JPH07180029A JP32784893A JP32784893A JPH07180029A JP H07180029 A JPH07180029 A JP H07180029A JP 32784893 A JP32784893 A JP 32784893A JP 32784893 A JP32784893 A JP 32784893A JP H07180029 A JPH07180029 A JP H07180029A
Authority
JP
Japan
Prior art keywords
zirconium
substrate
film
zirconium nitride
resistant material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32784893A
Other languages
Japanese (ja)
Inventor
Haruo Tomari
治夫 泊里
Takenori Nakayama
武典 中山
Kenji Yamamoto
兼司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32784893A priority Critical patent/JPH07180029A/en
Publication of JPH07180029A publication Critical patent/JPH07180029A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides

Abstract

PURPOSE:To produce a corrosion resistant maternal excellent in corrosion resistance by using metal zirconium as a target, subjecting it to sputtering at a prescribed temp. and applying zironium nitride to the surface of a substrate under a prescribed gaseous nitrogen partial pressure. CONSTITUTION:Metal zirconium is used as a target, and by a reactive sputtering method with P (N2)/P (Ar); 0.035, a zirconium nitride film having <=4.6Angstrom lattice constant is formed on the surface of a substrate. At this time, P (Ar)+P (N2) in the case of the sputtering is regulated to 5X to 10<-2> to 5X10<-4>, and as for the substrate temp. at the time of the sputtering, it is regulated to the ordinary temp. to 100 deg.C in the case of ceramic series, and it is regulated to the ordinary temp. to 500 deg.C in the case of metal series.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜電極材料等に汎用さ
れている耐食性材料及びその製造方法に関するものであ
り、詳細には無機材料又は金属材料基板上に窒化ジルコ
ニウムの皮膜を付したものである。本発明により得られ
た耐食性材料は腐食性溶液中であっても優れた耐食性を
示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion resistant material generally used for thin film electrode materials and the like and a method for producing the same, and more particularly to an inorganic material or metal material substrate coated with a zirconium nitride film. is there. The corrosion resistant material obtained according to the present invention exhibits excellent corrosion resistance even in a corrosive solution.

【0002】[0002]

【従来の技術】従来より薄膜を形成する技術としてスパ
ッタリングがよく用いられている。スパッタリングと
は、真空容器内に導入したアルゴン等の不活性ガスをイ
オン化し、そのイオンをターゲットと呼ばれる固体試料
表面に衝撃させ、ターゲットの原子をはじき出して基材
上に付着させる薄膜作成法である。
2. Description of the Related Art Conventionally, sputtering has been often used as a technique for forming a thin film. Sputtering is a method of forming a thin film in which an inert gas such as argon introduced into a vacuum container is ionized, and the ions are bombarded on the surface of a solid sample called a target, and the atoms of the target are ejected and adhered onto a substrate. .

【0003】スパッタリングのうち、反応性スパッタリ
ングとは、スパッタ蒸着の実施と同時にターゲット物質
とスパッタガス成分を化学反応させ、その生成物質を基
材上に薄膜として形成するものであり、金属の窒化物、
酸化物、或は炭化物等の薄膜の形成に広く用いられてい
る。
Among the sputtering methods, the reactive sputtering method is a method in which a target substance and a sputter gas component are chemically reacted with each other at the same time as the sputter deposition is performed, and the generated substance is formed as a thin film on a substrate. ,
It is widely used for forming thin films of oxides or carbides.

【0004】反応性スパッタリングを利用して窒化ジル
コニウム皮膜を形成したものは従来より耐食性材料とし
て用いられており、下記文献(1),(2),(3) にはこの窒化
ジルコニウム皮膜が基材(金属材料等)を保護する防食
皮膜として作用していることについて開示されている。
A zirconium nitride film formed by using reactive sputtering has been conventionally used as a corrosion resistant material. In the following documents (1), (2) and (3), this zirconium nitride film is used as a base material. It is disclosed that it acts as an anticorrosion film for protecting (metal materials and the like).

【0005】(1) U.K.Wiiala et al.,Surface and Coat
ings Tech.,41,(1990),191 (2) L.van Leaven et al.,Surface and Coatings Tec
h.,53,(1992),25 (3) Markke Tavi et al.,Material Sci.Foeum,44& 45,
(1989),15
(1) UKWiiala et al., Surface and Coat
ings Tech., 41, (1990), 191 (2) L. van Leaven et al., Surface and Coatings Tec
h., 53, (1992), 25 (3) Markke Tavi et al., Material Sci. Foeum, 44 & 45,
(1989), 15

【0006】[0006]

【発明が解決しようとする課題】以上の様に窒化ジルコ
ニウムを防食皮膜として利用することについては上記の
様に種々の研究成果が知られているが、従来技術はもっ
ぱら皮膜の欠陥を防止するという方向、即ち欠陥を生じ
ない様な構造上の改良という観点から開発や改良がなさ
れており、窒化ジルコニウム皮膜自身の特性という観点
から詳しく調べられていなかった。これは、皮膜自身の
耐食性よりも、皮膜に生じるピンホール等の欠陥の多少
の方が、防食特性に大きく影響すると考えられていたか
らである。
As described above, various research results have been known regarding the use of zirconium nitride as an anticorrosion coating, but the prior art is exclusively for preventing the defects of the coating. It has been developed and improved in the direction, that is, from the viewpoint of structural improvement that does not cause defects, and has not been examined in detail from the viewpoint of the characteristics of the zirconium nitride film itself. This is because it was believed that some of the defects such as pinholes generated in the coating had a greater effect on the anticorrosion property than the corrosion resistance of the coating itself.

【0007】本発明は上記事情に鑑みてなされたもので
あり、窒化ジルコニウム皮膜自身について検討を行い、
耐食性が向上した窒化ジルコニウム皮膜を有する耐食性
材料及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and the zirconium nitride film itself was examined,
An object of the present invention is to provide a corrosion resistant material having a zirconium nitride coating with improved corrosion resistance and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明に係る耐食性材料
の窒化ジルコニウム皮膜は格子定数が4.60Å以下の
ものである。また本発明に係る耐食性材料の製造方法
は、金属ジルコニウムをターゲットとし、アルゴンガス
分圧に対する窒素ガス分圧の比を0.035以上として
反応性スパッタリングを行なったものである。更にはス
パッタ時のアルゴンガス分圧と窒素ガス分圧の和を5×
10-2〜5×10-4とし、基材温度は、セラミックス系
基材では常温〜100℃、金属系基材では常温〜500
℃とするのが好ましい。
The zirconium nitride film of the corrosion resistant material according to the present invention has a lattice constant of 4.60Å or less. The method for producing a corrosion-resistant material according to the present invention is a method in which reactive sputtering is performed by using metallic zirconium as a target and setting the ratio of the partial pressure of nitrogen gas to the partial pressure of argon gas to 0.035 or more. Furthermore, the sum of the argon gas partial pressure and the nitrogen gas partial pressure during sputtering is 5 ×.
The temperature of the base material is set to 10 −2 to 5 × 10 −4 , and the base material temperature is normal temperature to 100 ° C. for the ceramic base material, and the normal temperature to 500 for the metal base material.
It is preferably set to ° C.

【0009】[0009]

【作用】本発明者らは窒化ジルコニウム皮膜自身の特性
について鋭意検討した結果、皮膜の構造特性が耐食性に
大きく関与していることを見出した。つまり金属窒化物
皮膜の耐食性は、皮膜中の窒素と金属原子の化学組成
比、及び皮膜を構成する化合物の相に大きく依存すると
いう知見を得たのである。皮膜自身の耐食性を著しく向
上させるには、窒化ジルコニウムの場合、窒化ジルコ
ニウムの単相であることとし、皮膜中の窒素とジルコ
ニウムの比が1に近い化合物を合成するのが良い。この
様な窒化ジルコニウム皮膜は格子定数で言うと4.60
Å以下のものに当たる。
The present inventors have made earnest studies on the characteristics of the zirconium nitride coating itself, and as a result, have found that the structural characteristics of the coating have a great influence on the corrosion resistance. That is, it has been found that the corrosion resistance of the metal nitride coating largely depends on the chemical composition ratio of nitrogen and metal atoms in the coating and the phase of the compound constituting the coating. In order to remarkably improve the corrosion resistance of the film itself, in the case of zirconium nitride, it is preferable to use a single phase of zirconium nitride and synthesize a compound in which the ratio of nitrogen to zirconium in the film is close to 1. Such a zirconium nitride film has a lattice constant of 4.60.
Å Hit the following:

【0010】またこの様な皮膜を作製する為には、窒素
分圧が最も重要な条件となることを見出し、この成膜条
件を詳細に調査した。図1はスパッタリング装置の一例
を示すRFマグネトロンスパッタリング装置の模式図で
ある。図中、4は基板(基材)、3は金属ジルコニウム
ターゲット、10はアルゴン+窒素プラズマの領域を示
し、9はジルコニウム粒子である。7は窒素ガスのボン
ベ、8はアルゴンガスのボンベ、5,6は流量計で、夫
々窒素ガス、アルゴンガスの流量を調節する。2は真空
ポンプ、1はRF電源である。
Further, it was found that the nitrogen partial pressure is the most important condition for producing such a film, and the film forming condition was investigated in detail. FIG. 1 is a schematic diagram of an RF magnetron sputtering apparatus showing an example of the sputtering apparatus. In the figure, 4 is a substrate (base material), 3 is a metal zirconium target, 10 is a region of argon + nitrogen plasma, and 9 is a zirconium particle. Reference numeral 7 is a nitrogen gas cylinder, 8 is an argon gas cylinder, and 5 and 6 are flowmeters for adjusting the flow rates of nitrogen gas and argon gas, respectively. 2 is a vacuum pump and 1 is an RF power supply.

【0011】通常、スパッタリングでは窒化ジルコニウ
ム以外にジルコニウムも被覆されるが、皮膜中の窒素比
を増加させて窒化ジルコニウムの単相を形成するには、
スパッタリング時に窒素ガスの分圧を増加させ、プラズ
マ中の窒素を効率よく窒化ジルコニウムの形で皮膜中に
取り込むことが必要である。
Although zirconium is usually coated in addition to zirconium nitride by sputtering, in order to increase the nitrogen ratio in the coating to form a single phase of zirconium nitride,
It is necessary to increase the partial pressure of nitrogen gas during sputtering so that nitrogen in the plasma can be efficiently incorporated into the film in the form of zirconium nitride.

【0012】そこで本発明方法の様にアルゴンガスに対
する窒素ガスのガス圧力の比[P(N2)/P(Ar)]
を0.035以上とすれば、窒素とジルコニウムの比が
1に近い窒化ジルコニウム単相の皮膜が形成できる。ま
たスパッタリングされたジルコニウム原子のプラズマ中
を通過する距離が長い程、プラズマ中の窒素原子とジル
コニウム原子が結合し易くなり、窒化ジルコニウム皮膜
の形成に好適である。
Therefore, as in the method of the present invention, the ratio of the gas pressure of nitrogen gas to argon gas [P (N 2 ) / P (Ar)]
When the ratio is 0.035 or more, a zirconium nitride single-phase film having a nitrogen-zirconium ratio close to 1 can be formed. Further, the longer the distance of the sputtered zirconium atoms passing through the plasma, the easier the bonding of the nitrogen atoms and zirconium atoms in the plasma, which is suitable for forming the zirconium nitride film.

【0013】作製された皮膜中の窒素とジルコニウムの
比は、格子定数から推定することが可能であり、窒素と
ジルコニウムの比が1に近い格子定数4.60Å以下の
窒化ジルコニウム皮膜を形成できる。
The ratio of nitrogen to zirconium in the formed film can be estimated from the lattice constant, and a zirconium nitride film having a lattice constant of 4.60Å or less, in which the ratio of nitrogen to zirconium is close to 1, can be formed.

【0014】P(N2)/P(Ar)ガス圧力比が上記
0.035より小さい場合は、形成された皮膜は窒化ジ
ルコニウムと金属ジルコニウムの混合相となり耐食性が
低いものとなる。
When the P (N 2 ) / P (Ar) gas pressure ratio is smaller than 0.035, the formed film becomes a mixed phase of zirconium nitride and metallic zirconium and has low corrosion resistance.

【0015】尚、P(N2)/P(Ar)ガス圧力比が
0.05より大きい場合は、耐食性は優れたものになる
が、成膜速度が極端に遅くなるため、実際のプロセスに
は不向きである。
If the P (N 2 ) / P (Ar) gas pressure ratio is larger than 0.05, the corrosion resistance will be excellent, but the film forming rate will be extremely slow, so that the actual process will be impractical. Is not suitable for.

【0016】皮膜と基材の密着性は、皮膜に生じる内部
応力、及び皮膜と基材の熱膨張率の差に大きく依存する
と考えられるが、本発明の方法、即ちP(N2)/P(A
r)ガス圧力比0.035以上で作製した皮膜は、基材
が珪酸ガラス、シリコンウエハ、Ti−6Al−4Vの
いずれの場合においても、密着性良く形成されることが
実験により確かめられた。即ち本発明方法では内部応力
の少ない膜が形成されているものと考えられる。
It is considered that the adhesion between the coating and the substrate largely depends on the internal stress generated in the coating and the difference in the coefficient of thermal expansion between the coating and the substrate. However, the method of the present invention, that is, P (N 2 ) / P (A
r) Experiments have confirmed that the film formed with a gas pressure ratio of 0.035 or more is formed with good adhesion regardless of whether the substrate is silicate glass, a silicon wafer, or Ti-6Al-4V. That is, it is considered that the method of the present invention forms a film having less internal stress.

【0017】また上記基材は熱膨張率が、珪酸ガラス:
0.5×10-6/℃、シリコンウエハ:4.15×10
-6/℃、Ti−6Al−4V:9×10-6/℃であり、
窒化ジルコニウム皮膜:7×10-6/℃とは大きく異な
るが、本発明の窒化ジルコニウム皮膜はこれら基材に対
しても剥離することなく密着性良く作製できる。一方、
P(N2)/P(Ar)ガス圧力比が0.035より小さ
い場合で作製された皮膜は、実験によれば基材より容易
に剥離するものであった。
The above-mentioned substrate has a coefficient of thermal expansion of silicate glass:
0.5 × 10 −6 / ° C., silicon wafer: 4.15 × 10
-6 / ° C, Ti-6Al-4V: 9 x 10 -6 / ° C,
Zirconium nitride film: Although it is significantly different from 7 × 10 −6 / ° C., the zirconium nitride film of the present invention can be produced with good adhesion to these substrates without peeling. on the other hand,
According to the experiment, the film produced when the P (N 2 ) / P (Ar) gas pressure ratio was smaller than 0.035 was easily peeled from the substrate.

【0018】またスパッタ時のアルゴンガス分圧と窒素
ガス分圧の和は5×10-2〜5×10-4とするのが望ま
しい。これは5×10-2を超えた場合、スパッタ原子が
基板(基材)に到達せず、成膜ができなくなるためであ
り、一方5×10-4を下回った場合、プラズマが発生せ
ずこの場合も成膜ができなくなるためである。
Further, the sum of the partial pressure of argon gas and the partial pressure of nitrogen gas at the time of sputtering is preferably 5 × 10 -2 to 5 × 10 -4 . This is because when the concentration exceeds 5 × 10 -2 , sputtered atoms do not reach the substrate (base material) and film formation cannot be performed. On the other hand, when the concentration is less than 5 × 10 -4 , plasma is not generated. This is because the film formation cannot be performed in this case as well.

【0019】スパッタ時の基材温度は、セラミックス系
の基材の場合、常温〜100℃が好ましい。100℃を
超える高温では、基材と窒化ジルコニウム皮膜の熱膨張
率の差によって剥離が生じるため、この範囲とした。ま
た金属系の基材の場合、スパッタ時の基材温度は常温〜
500℃が好ましい。この範囲としたのは、500℃を
超えた高温では基材の機械的性質が劣化するからであ
る。
The substrate temperature during sputtering is preferably room temperature to 100 ° C. in the case of a ceramic-based substrate. At a high temperature exceeding 100 ° C., peeling occurs due to the difference in the coefficient of thermal expansion between the base material and the zirconium nitride film, so the range was set to this range. In the case of metal-based substrates, the substrate temperature during sputtering is room temperature to
500 ° C. is preferred. This range is set because the mechanical properties of the base material are deteriorated at a high temperature exceeding 500 ° C.

【0020】尚、本発明においては上述の様に皮膜自身
の改善を主目的として提案しているが、本発明を実際の
部材に適用する場合には、皮膜欠陥をなくす方向或は少
なくする方向の技術を併用する方が、より望ましいこと
は言うまでもない。
In the present invention, the main purpose of the invention is to improve the film as described above. However, when the present invention is applied to actual members, there is a direction to eliminate or reduce film defects. It goes without saying that it is more desirable to use the above technique together.

【0021】[0021]

【実施例】RFマグネトロンスパッタリング装置(図
1)を用い、下記の条件で基板(基材)上に反応性スパ
ッタリング法によって窒化ジルコニウム皮膜を形成した
(試料No.1〜9)。
EXAMPLE A zirconium nitride film was formed on a substrate (base material) by a reactive sputtering method under the following conditions using an RF magnetron sputtering device (FIG. 1) (Sample Nos. 1 to 9).

【0022】基板 :珪酸ガラス ターゲット:金属ジルコニウム スパッタ時のアルゴンガス分圧と窒素ガス分圧の和:5
×10-3torr P(N2)/P(Ar)ガス圧力比:0〜0.06(下記
表1参照) 基板温度:100℃ 成膜時間:2時間
Substrate: Silicate glass Target: Metal zirconium Sum of partial pressures of argon gas and nitrogen gas during sputtering: 5
× 10 −3 torr P (N 2 ) / P (Ar) gas pressure ratio: 0 to 0.06 (see Table 1 below) Substrate temperature: 100 ° C. Film formation time: 2 hours

【0023】各試料皮膜について、X線回折を行ないそ
の構造から格子定数を求め、また生成相の同定を行なっ
た。更に成膜後の皮膜の剥離状況から、密着性の評価を
行なった。また5%塩酸水溶液中で分極測定を行ない、
自然浸漬電位での腐食電流及び不働態保持電流密度を測
定し、腐食電流から腐食速度を求め、これらから皮膜自
身の耐食性を評価した。下記表1にそれらの結果、及び
色調を示す。尚、P(N2)/P(Ar)ガス圧力比が
0.05より大きい場合では、成膜速度が遅いため、試
料の評価ができなかった。
For each sample film, X-ray diffraction was performed to determine the lattice constant from its structure, and the produced phase was identified. Further, the adhesion was evaluated based on the state of peeling of the film after film formation. In addition, polarization measurement was performed in a 5% hydrochloric acid aqueous solution.
The corrosion current at the natural immersion potential and the passivation current density were measured, the corrosion rate was calculated from the corrosion current, and the corrosion resistance of the film itself was evaluated from these. The results and the color tone are shown in Table 1 below. When the P (N 2 ) / P (Ar) gas pressure ratio was greater than 0.05, the sample could not be evaluated because the film formation rate was slow.

【0024】[0024]

【表1】 [Table 1]

【0025】格子定数については、P(N2)/P(A
r)ガス圧力比0.024以下のものの場合、合成され
た窒化ジルコニウムの量が少なかったために、格子定数
を求めることができなかった。
Regarding the lattice constant, P (N 2 ) / P (A
r) In the case where the gas pressure ratio was 0.024 or less, the lattice constant could not be obtained because the amount of synthesized zirconium nitride was small.

【0026】表1に見られる様に、生成相については試
料No.1[P(N2)/P(Ar)比:0]では金属ジ
ルコニウムが合成され、試料No.2〜4[P(N2)/
P(Ar)比:〜0.024]では金属ジルコニウムと
窒化ジルコニウムの混合相が合成された。一方試料N
o.5〜9[P(N2)/P(Ar)比:0.028以
上]では窒化ジルコニウムの単相が合成された。
As can be seen from Table 1, regarding the produced phase, Sample No. In the case of the sample No. 1 [P (N 2 ) / P (Ar) ratio: 0], metallic zirconium was synthesized. 2 to 4 [P (N 2 ) /
A mixed phase of metallic zirconium and zirconium nitride was synthesized at a P (Ar) ratio of about 0.024]. On the other hand, sample N
o. In the case of 5 to 9 [P (N 2 ) / P (Ar) ratio: 0.028 or more], a single phase of zirconium nitride was synthesized.

【0027】腐食速度は、試料No.4〜9ではいずれ
も0.06mm/y以下の小さな値を示したが、試料N
o.4,5では不働態を示さず、不働態保持電流密度
は、1000mV vs Ag/AgClの電位で測定
した時夫々1000μA/cm2,900μA/cm2 と、大
きな値を示した。従ってこの電位においては皮膜の溶出
が著しくなっていることから、電極材料としての利用は
不適当であると考えられる。
Corrosion rates are shown in Sample No. 4 to 9 all showed a small value of 0.06 mm / y or less.
o. No passive state was shown in Nos. 4 and 5, and the passive state holding current density showed large values of 1000 μA / cm 2 and 900 μA / cm 2 respectively when measured at a potential of 1000 mV vs Ag / AgCl. Therefore, the elution of the film is remarkable at this potential, and it is considered inappropriate to use it as an electrode material.

【0028】試料No.6〜9では腐食速度が遅く、且
つ不働態保持電流密度が約1μA/cm2 と小さな値を示
していることから、1000mV vs Ag/AgC
lの電位で使用しても十分な耐食性を示すことが分か
る。
Sample No. In 6 to 9, the corrosion rate is slow and the passive state holding current density shows a small value of about 1 μA / cm 2 , so 1000 mV vs Ag / AgC.
It can be seen that sufficient corrosion resistance is exhibited even when used at a potential of 1.

【0029】また密着性の評価において試料No.2〜
5は不良であったが、試料No.6〜9は良好な密着性
を示した。以上の結果から分る様にP(N2)/P(A
r)ガス圧力比0.035以上で作製した試料No.6
〜9の皮膜は良好な耐食性を示した。
In the evaluation of adhesion, the sample No. 2 to
Although sample No. 5 was defective, sample no. 6-9 showed good adhesiveness. As can be seen from the above results, P (N 2 ) / P (A
r) Sample No. manufactured at a gas pressure ratio of 0.035 or more. 6
The coatings of -9 showed good corrosion resistance.

【0030】この様に良好な耐食性を示す皮膜の格子定
数は4.60Å以下となっており、言い換えれば4.6
0Å以下の格子定数を持つ窒化ジルコニウム皮膜が優れ
た耐食性を示すことが確認された。
As described above, the film having good corrosion resistance has a lattice constant of 4.60 Å or less, in other words, 4.6.
It was confirmed that a zirconium nitride film having a lattice constant of 0Å or less exhibits excellent corrosion resistance.

【0031】[0031]

【発明の効果】本発明に係る耐食性材料においては、皮
膜である窒化ジルコニウムの格子定数を4.60Å以下
としたから、該皮膜自身の耐食性が改善され、優れた耐
食性を示す耐食性材料となる。
INDUSTRIAL APPLICABILITY In the corrosion resistant material according to the present invention, the lattice constant of zirconium nitride, which is a film, is set to 4.60Å or less, so that the corrosion resistance of the film itself is improved and the corrosion resistant material exhibits excellent corrosion resistance.

【0032】また耐食性材料の製造方法においては上記
の様にしたので、耐食性の優れた窒化ジルコニウム皮膜
を有する耐食性材料を製造することができる。従って本
発明により得られた耐食性材料は腐食性溶液中であって
も良好な防食性を示し、腐食環境下でのチャンバーとし
ての使用は勿論、電極用材料等の溶液中で電位をかけて
使用する部材としての適応が可能である。
Further, since the method for producing a corrosion resistant material is as described above, it is possible to produce a corrosion resistant material having a zirconium nitride film excellent in corrosion resistance. Therefore, the corrosion-resistant material obtained by the present invention exhibits good corrosion resistance even in a corrosive solution, and can be used not only as a chamber in a corrosive environment but also by applying a potential in a solution such as an electrode material. It can be applied as a member that operates.

【図面の簡単な説明】[Brief description of drawings]

【図1】RFマグネトロンスパッタリング装置を示す模
式図。
FIG. 1 is a schematic diagram showing an RF magnetron sputtering apparatus.

【符号の説明】[Explanation of symbols]

1 RF電源 2 真空ポンプ 3 ジルコニウムターゲット 4 基板 5,6 流量計 7 窒素ガスボンベ 8 アルゴンガスボンベ 9 ジルコニウム粒子 10 アルゴン+窒素プラズマ 1 RF Power Supply 2 Vacuum Pump 3 Zirconium Target 4 Substrate 5,6 Flowmeter 7 Nitrogen Gas Cylinder 8 Argon Gas Cylinder 9 Zirconium Particle 10 Argon + Nitrogen Plasma

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に窒化ジルコニウム皮膜を被覆
してなる耐食性材料において、 上記窒化ジルコニウムが格子定数4.60Å以下のもの
であることを特徴とする腐食性溶液中で耐食性を示す耐
食性材料。
1. A corrosion resistant material obtained by coating a surface of a base material with a zirconium nitride film, wherein the zirconium nitride has a lattice constant of 4.60 Å or less, and exhibits corrosion resistance in a corrosive solution. .
【請求項2】 基材表面に窒化ジルコニウム皮膜を有す
る耐食性材料を反応性スパッタリング法によって製造す
る方法において、 金属ジルコニウムをターゲットとし、 アルゴンガス分圧に対する窒素ガス分圧の比を0.03
5以上として行なうことを特徴とする耐食性材料の製造
方法。
2. A method for producing a corrosion resistant material having a zirconium nitride film on the surface of a substrate by a reactive sputtering method, wherein metal zirconium is used as a target, and the ratio of the partial pressure of nitrogen gas to the partial pressure of argon gas is 0.03.
A method for producing a corrosion resistant material, characterized in that it is carried out as 5 or more.
【請求項3】 スパッタ時のアルゴンガス分圧と窒素ガ
ス分圧の和を5×10-2〜5×10-4とし、 スパッタ時の基材温度を、セラミックス系基材では常温
〜100℃とし、金属系基材では常温〜500℃として
行う請求項2に記載の耐食性材料の製造方法。
3. The sum of the argon gas partial pressure and the nitrogen gas partial pressure during sputtering is set to 5 × 10 −2 to 5 × 10 −4, and the substrate temperature during sputtering is room temperature to 100 ° C. for a ceramic-based substrate. The method for producing a corrosion resistant material according to claim 2, wherein the temperature of the metal-based substrate is from room temperature to 500 ° C.
JP32784893A 1993-12-24 1993-12-24 Corrosion resistant material and its production Withdrawn JPH07180029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32784893A JPH07180029A (en) 1993-12-24 1993-12-24 Corrosion resistant material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32784893A JPH07180029A (en) 1993-12-24 1993-12-24 Corrosion resistant material and its production

Publications (1)

Publication Number Publication Date
JPH07180029A true JPH07180029A (en) 1995-07-18

Family

ID=18203663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32784893A Withdrawn JPH07180029A (en) 1993-12-24 1993-12-24 Corrosion resistant material and its production

Country Status (1)

Country Link
JP (1) JPH07180029A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6485961B1 (en) * 1996-12-05 2002-11-26 Maxcyte, Inc. Electrodes having a continuous, crystalline metal nitride coating and method of use
US6773669B1 (en) 1995-03-10 2004-08-10 Maxcyte, Inc. Flow electroporation chamber and method
US7029916B2 (en) 2001-02-21 2006-04-18 Maxcyte, Inc. Apparatus and method for flow electroporation of biological samples
US7141425B2 (en) 2001-08-22 2006-11-28 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
US7771984B2 (en) 2004-05-12 2010-08-10 Maxcyte, Inc. Methods and devices related to a regulated flow electroporation chamber
CN106835042A (en) * 2017-01-16 2017-06-13 厦门大学 A kind of preparation method of transition metal nitride ultracapacitor coating material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773669B1 (en) 1995-03-10 2004-08-10 Maxcyte, Inc. Flow electroporation chamber and method
US6485961B1 (en) * 1996-12-05 2002-11-26 Maxcyte, Inc. Electrodes having a continuous, crystalline metal nitride coating and method of use
US6617154B1 (en) * 1996-12-05 2003-09-09 Maxcyte, Inc. Electroporation chamber including an electrode having a continuous, crystalline metal nitride coating
US7029916B2 (en) 2001-02-21 2006-04-18 Maxcyte, Inc. Apparatus and method for flow electroporation of biological samples
US7141425B2 (en) 2001-08-22 2006-11-28 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
US7186559B2 (en) 2001-08-22 2007-03-06 Maxcyte, Inc. Apparatus and method for electroporation of biological samples
US7771984B2 (en) 2004-05-12 2010-08-10 Maxcyte, Inc. Methods and devices related to a regulated flow electroporation chamber
US9546350B2 (en) 2004-05-12 2017-01-17 Maxcyte, Inc. Methods and devices related to a regulated flow electroporation chamber
CN106835042A (en) * 2017-01-16 2017-06-13 厦门大学 A kind of preparation method of transition metal nitride ultracapacitor coating material
CN106835042B (en) * 2017-01-16 2019-02-22 厦门大学 A kind of preparation method of transition metal nitride supercapacitor coating material

Similar Documents

Publication Publication Date Title
JPH05507115A (en) Method and structure for forming alpha Ta in thin film form
KR910009840B1 (en) Corrosion-resistant and heat-resistant amorphous aluminum -based alloy thin film and process for producing the same
JP2816786B2 (en) Al-Ti-based or Al-Ta-based wear-resistant hard film and method for producing the same
JP4512603B2 (en) Halogen gas resistant semiconductor processing equipment components
EP1226030B1 (en) Forming members for shaping a reactive metal and methods for their fabrication
JPH07180029A (en) Corrosion resistant material and its production
Qasim et al. Effects of ion flux density and energy on the composition of TiNx thin films prepared by magnetron sputtering with an anode layer ion source
JP2001342556A (en) Method for manufacturing thin film of alumina crystalline at low temperature
US8404135B2 (en) Plasma cleaning for process chamber component refurbishment
EP1306468A1 (en) Titanium material less susceptible to discoloration and method for production thereof
Janczak-Bienk et al. The influence of the reactive gas flow on the properties of AIN sputter-deposited films
Leach The role of surface films in corrosion and oxidation
Bucher et al. RF reactively sputtered TiN: Characterization and adhesion to materials of technical interest
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
Motohiro et al. Study of angular factors in sputter-deposition using the ion beam method
Ahern The deposition of TiN at less than 150° C by reactive magnetron sputter ion plating
JP3634460B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JP2001335917A (en) Method for producing crystalline alumina thin film at low temperature
JP3634461B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
Stedile et al. Characterization of titanium-aluminum nitride thin films by ion beam techniques and X-ray diffraction
JP3318600B2 (en) Method for producing high-purity cubic boron nitride thin film
JP2526883B2 (en) Thin film titanium nitride-based material
Taguchi et al. Corrosion behavior of chromium nitride films produced by reactive ion plating in sulfuric acid solution
JP3183846B2 (en) Cleaning gas and etching gas
JPH03122267A (en) Thin layer of disoriented aluminium nitride microcrystal formed on a surface and method of forming it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306