JPH0987417A - Electroconductive thin resin molding - Google Patents

Electroconductive thin resin molding

Info

Publication number
JPH0987417A
JPH0987417A JP7244886A JP24488695A JPH0987417A JP H0987417 A JPH0987417 A JP H0987417A JP 7244886 A JP7244886 A JP 7244886A JP 24488695 A JP24488695 A JP 24488695A JP H0987417 A JPH0987417 A JP H0987417A
Authority
JP
Japan
Prior art keywords
resin
fibers
conductive
molded product
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7244886A
Other languages
Japanese (ja)
Inventor
Yasuo Hirano
康雄 平野
Koichi Hashimoto
孝一 橋本
Naoki Kikuchi
直樹 菊池
Ikou Shino
医晃 示野
Keiko Tanaka
桂子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7244886A priority Critical patent/JPH0987417A/en
Publication of JPH0987417A publication Critical patent/JPH0987417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject molding excellent in electroconductivity and rigidity required as a casing material, comprising a matrix resin consisting essentially of a thermoplastic resin and electroconductive fibers of specific length existing in a specific state. SOLUTION: A matrix resin consisting essentially of a thermoplastic resin and an electroconductive composite material prepared by combining (A) electroconductive fibers (preferably carbon fibers having 5-15μm diameter) with (B) carbon black are molded in <=2mm thickness. When the whole resin components are removed from a molding by a method in which a test piece (5cm×5cm) is retained at 40 deg.C for 40 minutes in an atmosphere of a mixed gas of air and nitrogen in the volume ratio of 1:1, heated at 5 deg.C/minute heating rate to 450 deg.C and kept at 450 deg.C for 20 minutes, the average length of the fibers A remaining after the removal is >=0.5mm and the fibers A are three- dimensionally superimposed. The electroconductive composite material comprises preferably 10-40wt.% of the fibers A and 1-20% of the carbon black B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気絶縁性のマト
リックス樹脂に、導電性繊維およびカーボンブラックを
複合した導電性複合材料を用いて成形される薄肉樹脂成
形品に関し、詳細には電子機器用のハウジング・ケーシ
ング等に有用な導電性と曲げ剛性等の力学的特性を兼ね
備えた薄肉の樹脂成形品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-walled resin molded product formed by using a conductive composite material in which a conductive fiber and carbon black are combined with an electrically insulating matrix resin, and more particularly to an electronic device. The present invention relates to a thin-walled resin molded product having electrical conductivity and mechanical properties such as bending rigidity useful for housings and casings.

【0002】[0002]

【従来の技術】電磁波シールド材は、例えば電子機器、
電子装置等を内蔵する電子部品において、その部品のハ
ウジング・ケーシングに利用され、電子部品中の高周波
回路から発生する電磁波が部品外に漏れて他の電子部品
に悪影響を及ぼすことを防止する働きと、他の部品から
発生した電磁波が電子部品内に侵入して誤動作を引き起
こすことを防止する働きを有する。
2. Description of the Related Art Electromagnetic wave shield materials are used for electronic devices,
In electronic parts that incorporate electronic devices, etc., it is used for the housing and casing of the parts and prevents electromagnetic waves generated from the high frequency circuit in the electronic parts from leaking out of the parts and adversely affecting other electronic parts. , Has a function of preventing electromagnetic waves generated from other parts from entering the electronic parts and causing a malfunction.

【0003】プラスチック成形品に単に導電性塗料ある
いは金属メッキを施して電磁波シールド材を製造する
と、外力を受けたときの衝撃で、塗膜やメッキ膜の部分
的剥離が起き、内部回路が短絡してしまうという問題
や、塗装工程やメッキ工程が必要なため製造コストが上
がるという問題があった。これは、帯電防止性能を付与
するための静電塗料にも言えることでもある。
When an electromagnetic wave shielding material is manufactured by simply applying a conductive paint or metal plating to a plastic molded product, the coating film or the plating film is partially peeled off due to the impact when an external force is applied, and the internal circuit is short-circuited. There is a problem that the manufacturing cost increases because the coating process and the plating process are required. This also applies to the electrostatic paint for imparting antistatic performance.

【0004】このような観点から、電磁波シールド材に
は、主に導電性プラスチック材料が利用されている。導
電性プラスチック材料とは、高分子マトリックス中に、
カーボン系、金属系、金属メッキ無機材料系等の導電性
フィラーが配合されたものである。高分子マトリックス
としては、ポリアミド、変性ポリフェニレンエーテル
(PPS)、ポリカーボネート、ポリエステル等熱可塑
性のエンジニアプラスチック材料や、ポリプロピレン、
ポリエチレン、ポリスチレン、ABS樹脂、スチレン系
ブロックコポリマー等汎用の熱可塑性樹脂等、あるいは
エポキシ樹脂、ポリウレタン、フェノール樹脂等の熱硬
化性樹脂等、用途に応じて種々の樹脂が適用されてい
る。
From such a viewpoint, a conductive plastic material is mainly used as the electromagnetic wave shield material. Conductive plastic material is a polymer matrix,
A conductive filler such as a carbon type, a metal type, or a metal plating inorganic material type is blended. As the polymer matrix, thermoplastic engineering plastic materials such as polyamide, modified polyphenylene ether (PPS), polycarbonate and polyester, polypropylene,
Various resins, such as general-purpose thermoplastic resins such as polyethylene, polystyrene, ABS resin and styrene block copolymer, or thermosetting resins such as epoxy resin, polyurethane and phenol resin, are applied depending on the application.

【0005】最近になって、ノート型パソコン、電子手
帳、携帯電話等、携帯用電子機器の目覚ましい普及に伴
い、電磁波シールド材の軽量化、薄肉化が特に要求され
る様になっている。しかし一方では、これらの電子機器
のケーシング材として、簡単に破壊しない程度の剛性、
衝撃性も必要であり、また薄肉化によって、より高いレ
ベルの電磁波シールド性が要求されるため、ケーシング
材の開発が盛んに行われている。
Recently, with the remarkable spread of portable electronic devices such as notebook personal computers, electronic notebooks, mobile phones, etc., it has been particularly required to reduce the weight and thickness of the electromagnetic wave shielding material. However, on the other hand, as a casing material for these electronic devices, rigidity that does not easily break,
Since impact resistance is also required and higher level of electromagnetic wave shielding property is required due to thinning, casing materials have been actively developed.

【0006】その中で、炭素繊維で強化した熱可塑性樹
脂系導電性複合材料は、炭素繊維が軽量で、かつ導電性
を有していることから、ケーシング材を製造する上で好
ましい材料である。一般的に、炭素繊維強化型熱可塑性
樹脂(CFRP)系導電性材料はペレット状で供給さ
れ、射出成形でケーシング成形が行われている。しか
し、ここで以下の様な問題が起こっている。すなわち、
CFRP系導電性材料をペレット状にする工程や、また
その後の射出成形工程において、炭素繊維の切断が頻発
するということである。実際、ケーシング材の中では繊
維長が0.1mm以下になっていることがある。高い電
磁波シールド性を発現させるためには、ケーシング中
で、炭素繊維が不連続であってはならない(常に、隣接
する炭素繊維と接触している必要がある)のに、炭素繊
維の長さが確保できないので、どうしても炭素繊維含量
を多くせざるを得ない。しかし、炭素繊維は高価な材料
であるため製品コストに直接響くこと、また炭素繊維を
多くすることによって成形材料の流動性が極めて悪くな
って成形加工が難しくなる、という問題があった。
Among them, the thermoplastic resin type conductive composite material reinforced with carbon fiber is a preferable material for producing a casing material because the carbon fiber is lightweight and has conductivity. . Generally, a carbon fiber reinforced thermoplastic resin (CFRP) -based conductive material is supplied in the form of pellets, and casing molding is performed by injection molding. However, the following problems are occurring here. That is,
This means that the carbon fibers are frequently cut in the step of pelletizing the CFRP-based conductive material and in the subsequent injection molding step. In fact, in the casing material, the fiber length may be 0.1 mm or less. In order to develop a high electromagnetic wave shielding property, the length of the carbon fiber should not be discontinuous in the casing (although it must always be in contact with the adjacent carbon fiber). Since it cannot be ensured, the carbon fiber content must be increased. However, since carbon fiber is an expensive material, there is a problem that it directly affects the product cost, and that if the amount of carbon fiber is increased, the fluidity of the molding material becomes extremely poor and the molding process becomes difficult.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明では、2
mm以下の薄肉成形品であっても、優れた導電性を示
し、かつケーシング材として必要な剛性を示す導電性薄
肉成形品を提供することを課題とするものである。
Therefore, in the present invention, 2
It is an object of the present invention to provide a conductive thin-walled molded product that exhibits excellent conductivity even if it is a thin-walled molded product having a thickness of not more than mm, and exhibits rigidity required as a casing material.

【0008】[0008]

【課題を解決するための手段】本発明の導電性薄肉樹脂
成形品は、熱可塑性樹脂を主体とするマトリックス樹脂
に導電性繊維およびカーボンブラックが複合された導電
性複合材料からなる厚さ2mm以下の薄肉の樹脂成形品
であって、該成形品から下記方法で樹脂分を除去した後
に残存する導電性繊維の平均長さが0.5mm以上であ
り、かつ該導電性繊維が三次元的に重なり合っていると
ころに要旨を有する。
A conductive thin resin molded article of the present invention has a thickness of 2 mm or less, which is made of a conductive composite material in which conductive fibers and carbon black are compounded in a matrix resin mainly composed of a thermoplastic resin. A thin resin molded article, wherein the average length of the conductive fiber remaining after removing the resin component from the molded article by the following method is 0.5 mm or more, and the conductive fiber is three-dimensionally It has a gist where it overlaps.

【0009】・樹脂分除去方法:空気と窒素の1対1
(体積比)混合雰囲気下で、5cm×5cm(厚みは2
mm以下)の試験片を40℃で40分保持した後、昇温
速度5℃/分で450℃まで加熱し、450℃で20分
保持することによって、試験片から全ての樹脂分を除去
する。
Resin removal method: 1: 1 air and nitrogen
(Volume ratio) 5 cm × 5 cm (thickness is 2
(mm or less) is held at 40 ° C. for 40 minutes, heated to 450 ° C. at a temperature rising rate of 5 ° C./minute, and held at 450 ° C. for 20 minutes to remove all resin components from the test piece. .

【0010】導電性複合材料が、10〜40重量%の導
電性繊維と、1〜20重量%のカーボンブラックを含む
こと、導電性繊維が炭素繊維であること、熱可塑性樹脂
がポリアミド樹脂であることは本発明の好ましい実施態
様である。また、導電性複合材料が、20重量%以下の
熱硬化性樹脂、特にフェノール樹脂を含有すると、薄肉
の成形品であっても反りのほとんどない成形品を製造す
ることができる。
The conductive composite material contains 10 to 40% by weight of conductive fibers and 1 to 20% by weight of carbon black, the conductive fibers are carbon fibers, and the thermoplastic resin is polyamide resin. This is a preferred embodiment of the present invention. Further, when the conductive composite material contains 20% by weight or less of a thermosetting resin, particularly a phenol resin, it is possible to manufacture a molded product having almost no warpage even if it is a thin molded product.

【0011】[0011]

【発明の実施の形態】本発明者らは、高い電磁波シール
ド性と剛性を兼ね備えた薄肉の樹脂成形品を製造するた
め、導電性繊維の長さとその存在状態に着目した。そし
て、成形工程等の間に導電性繊維が切断したとしても、
成形後の製品において、導電性繊維の長さが平均0.5
mm以上あり、かつ繊維が三次元的に重なり合った状態
(連続した状態)であれば、電磁波シールド性と剛性に
優れた薄肉の成形品が得られることを見出し、本発明に
到達したものである。以下、本発明を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In order to manufacture a thin resin molded product having both high electromagnetic wave shielding properties and rigidity, the present inventors have paid attention to the length of conductive fibers and their existing state. And even if the conductive fibers are cut during the molding process, etc.,
The average length of the conductive fibers in the molded product is 0.5.
It was found that a thin-walled molded product excellent in electromagnetic wave shielding property and rigidity can be obtained when the fiber has a size of 3 mm or more and fibers are three-dimensionally overlapped (continuous condition), and the present invention has been achieved. . Hereinafter, the present invention will be described in detail.

【0012】本発明の導電性薄肉樹脂成形品は、熱可塑
性樹脂を主体とするマトリックス樹脂に導電性繊維およ
びカーボンブラックが複合された導電性複合材料からな
るものである。なお本発明では、厚さ2mm以下の成形
品を「薄肉」成形品と定義する。
The electrically conductive thin resin molded product of the present invention is made of an electrically conductive composite material in which electrically conductive fibers and carbon black are compounded in a matrix resin mainly composed of a thermoplastic resin. In the present invention, a molded product having a thickness of 2 mm or less is defined as a "thin-walled" molded product.

【0013】マトリックス樹脂の主体となる熱可塑性樹
脂としては、電子機器用のケーシングに用いられている
公知の熱可塑性樹脂が好ましく利用できる。例えば、ポ
リエチレン、ポリプロピレン等のポリオレフィン系、ポ
リスチレン系、ポリアミド系、変性ポリフェニレンオキ
サイド系、変性ポリフェニレンエーテル(PPS)系、
ポリフェニレンサルファイド系、ポリカーボネート系、
ポリエチレンテレフタレートやポリブチレンテレフタレ
ート等のポリエステル系、ポリカーボネート系、AB
S、AS、AES等の樹脂が挙げられ、これらのうちの
1種を、または2種以上のポリマーをアロイ化して用い
ることができる。
As the thermoplastic resin which is the main component of the matrix resin, a known thermoplastic resin used in casings for electronic devices can be preferably used. For example, polyolefins such as polyethylene and polypropylene, polystyrenes, polyamides, modified polyphenylene oxides, modified polyphenylene ethers (PPS),
Polyphenylene sulfide type, polycarbonate type,
Polyester-based such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate-based, AB
Resins such as S, AS, and AES can be used, and one of these or two or more polymers can be alloyed and used.

【0014】本発明の成形品は一般的に射出成形で製造
されるので、使用する熱可塑性樹脂は、各樹脂の加工に
適した温度においてその溶融粘度が3000ポイズ以下
であるものを選択することが推奨される。成形圧が低く
ても流動性が確保でき、炭素繊維に対する含浸性に優れ
るという利点も享受できるためである。これらの観点か
ら、結晶性の高い樹脂の方が溶融粘度が低いため、本発
明の実施に好適である。なかでも、ポリアミド樹脂は、
成形性(流動性)や成形品の力学的特性等に優れてお
り、炭素繊維やカーボンブラックとのなじみが良いの
で、好ましく用いることができる。ポリアミド樹脂は、
脂肪族、半芳香族に限定されないが、芳香族系で結晶性
が高いものの方が、強度や耐熱性、耐湿性等の点で好ま
しい。
Since the molded article of the present invention is generally manufactured by injection molding, the thermoplastic resin used should have a melt viscosity of 3000 poise or less at a temperature suitable for processing each resin. Is recommended. This is because even if the molding pressure is low, the fluidity can be secured, and the advantage that the carbon fiber is excellent in the impregnation property can be enjoyed. From these viewpoints, a resin having a high crystallinity has a lower melt viscosity, and is therefore suitable for carrying out the present invention. Among them, polyamide resin is
It is excellent in moldability (fluidity) and mechanical properties of a molded product, and has good compatibility with carbon fibers and carbon black, so that it can be preferably used. Polyamide resin is
Although not limited to aliphatic and semi-aromatic, aromatic compounds having high crystallinity are preferable in terms of strength, heat resistance, moisture resistance and the like.

【0015】本発明における導電性複合材料のマトリッ
クス樹脂は、上記熱可塑性樹脂が主体であるが、複合材
料中20重量%以下の範囲であれば熱硬化性樹脂を含有
したポリマーアロイであっても良い。熱硬化性樹脂が少
量共存することによって、成形時の流動性を損なうこと
なく成形品の強度を向上させることができる。また熱硬
化性樹脂とのアロイ化によって、理由は明確ではないが
薄肉成形品の反りが改善されることも見出された。熱硬
化性樹脂としては、不飽和ポリエステル樹脂、ポリイミ
ド樹脂、エポキシ樹脂、フェノール樹脂、ユリア・メラ
ミン樹脂等が利用できる。特に、熱可塑性樹脂としてポ
リアミドを用い、レゾール型フェノール樹脂粉末を添加
して用いると、反りが全くなくなり、かつ優れた剛性を
示す。
The matrix resin of the conductive composite material in the present invention is mainly the above-mentioned thermoplastic resin, but even if it is a polymer alloy containing a thermosetting resin within the range of 20% by weight or less in the composite material. good. The coexistence of a small amount of the thermosetting resin makes it possible to improve the strength of the molded product without impairing the fluidity during molding. It has also been found that the alloying with the thermosetting resin improves the warpage of the thin-walled molded product although the reason is not clear. As the thermosetting resin, unsaturated polyester resin, polyimide resin, epoxy resin, phenol resin, urea / melamine resin and the like can be used. In particular, when polyamide is used as the thermoplastic resin and the resol-type phenol resin powder is added and used, no warpage occurs at all and excellent rigidity is exhibited.

【0016】本発明の導電性複合材料には、導電性繊維
繊維とカーボンブラックが含まれる。導電性繊維は10
〜40重量%、カーボンブラックは1〜20重量%の範
囲で使用することが好ましい。これらの範囲より少ない
と充分な導電性が得られず、電磁波シールド材として不
適であり、多過ぎると成形が困難になる。
The conductive composite material of the present invention contains conductive fiber fibers and carbon black. 10 conductive fibers
It is preferable to use -40% by weight and carbon black in the range of 1-20% by weight. If it is less than these ranges, sufficient conductivity cannot be obtained, and it is unsuitable as an electromagnetic wave shielding material, and if it is too large, molding becomes difficult.

【0017】導電性繊維としては、炭素繊維、ステンレ
ス、アルミニウム、銅や他の合金系等の金属繊維、金属
コート炭素繊維、金属コートガラス繊維等が挙げられ
る。特に本発明では、強度に優れ、かつ安価な炭素繊維
の使用が好ましい。繊維の直径は特に限定されないが、
5〜20μm程度が一般的であり、より好ましくは5〜
15μmである。これらの導電性繊維は、公知のシラン
カップリング剤等の表面処理材で樹脂との親和性を高め
たものであってもよい。
Examples of the conductive fibers include carbon fibers, metal fibers of stainless steel, aluminum, copper and other alloys, metal coated carbon fibers, metal coated glass fibers and the like. Particularly in the present invention, it is preferable to use carbon fiber which is excellent in strength and inexpensive. The diameter of the fiber is not particularly limited,
Generally about 5 to 20 μm, more preferably 5 to 20 μm.
It is 15 μm. These conductive fibers may have a high affinity with the resin by a known surface treatment material such as a silane coupling agent.

【0018】本発明の導電性薄肉樹脂成形品は、成形品
からマトリックス樹脂分を除去した後に残存する導電性
繊維の平均長さが0.5mm以上であり、かつ該導電性
繊維が実質的に、三次元的に重なり合っていなければな
らない。
The conductive thin resin molded article of the present invention has an average length of the conductive fibers remaining after removing the matrix resin component from the molded article of 0.5 mm or more, and the conductive fibers are substantially , Must overlap in three dimensions.

【0019】マトリックス樹脂の除去方法は、空気と窒
素の体積比1対1で混合された雰囲気下で、成形後の試
験片(5cm×5cm、厚みは2mm以下)を40℃で
40分保持した後、昇温速度5℃/分で450℃まで加
熱し、450℃で20分保持する方法を採用する。この
方法によれば、成形品中での導電性繊維の存在状態を変
化させることなく樹脂分のみを除去することができる。
樹脂分を除去した後の導電性繊維の平均長さが0.5m
mより短いと、良好な導電性と、成形品の剛性が発現し
ないため、このような成形品は本発明の範囲外となる。
より好ましい導電性繊維の平均長さは0.8mm以上で
ある。
The matrix resin is removed by holding the molded test piece (5 cm × 5 cm, thickness is 2 mm or less) at 40 ° C. for 40 minutes in an atmosphere in which air and nitrogen are mixed at a volume ratio of 1: 1. After that, a method of heating to 450 ° C. at a temperature rising rate of 5 ° C./min and holding at 450 ° C. for 20 minutes is adopted. According to this method, only the resin component can be removed without changing the existing state of the conductive fibers in the molded product.
The average length of the conductive fibers after removing the resin component is 0.5 m
When the length is shorter than m, good conductivity and rigidity of the molded product are not exhibited, so such a molded product is out of the scope of the present invention.
The more preferable average length of the conductive fibers is 0.8 mm or more.

【0020】また導電性繊維が実質的に、三次元的に重
なり合っていることも導電性発現のための不可欠な条件
である。これは、高い電磁波シールド性を得るには、成
形品中で、導電性繊維が不連続な部分があってはなら
ず、隣接する導電性繊維が接触している必要があるため
である。
It is also an indispensable condition for exhibiting conductivity that the conductive fibers are substantially three-dimensionally overlapped. This is because in order to obtain a high electromagnetic wave shielding property, the conductive fiber must not have a discontinuous portion in the molded product, and the adjacent conductive fibers must be in contact with each other.

【0021】上記要件を満足する導電性薄肉樹脂成形品
を得るためには、導電性複合材料として、長繊維ペレッ
トを用いることが推奨される。長繊維ペレットは、溶融
させたカーボンブラックを含有する熱可塑性樹脂浴中に
連続繊維を通過させ、繊維に樹脂を充分含浸させた後、
冷却して所定の長さに切断することによって得られるも
のである。繊維の長さはペレットの長さと略同等であり
適宜選択できるが、通常10mm前後である。この長繊
維ペレットを使用すれば、複合材料をスクリュー式混練
機等で撹拌しながら調製するといった従来方法に比べ
て、成形前の繊維の長さをかなり長くすることができる
ため、射出成形時に繊維の破断が起こったとしても、成
形後の導電性繊維の平均長さを0.5mm以上にするこ
とができる。そして、繊維長を長く保持することが可能
になったため、導電性繊維を多量に配合しなくても、こ
れらの繊維が成形品中において三次元的に重なり合った
状態で存在するので、良好な電磁波シールド性を呈す
る。
In order to obtain a conductive thin-walled resin molded product satisfying the above requirements, it is recommended to use long fiber pellets as the conductive composite material. Long-fiber pellets are obtained by passing continuous fibers through a thermoplastic resin bath containing melted carbon black and thoroughly impregnating the fibers with resin,
It is obtained by cooling and cutting into a predetermined length. The length of the fiber is approximately equal to the length of the pellet and can be appropriately selected, but is usually around 10 mm. By using this long fiber pellet, the length of the fiber before molding can be made considerably longer than that in the conventional method in which the composite material is prepared by stirring with a screw type kneader, etc. Even if breakage occurs, the average length of the conductive fiber after molding can be 0.5 mm or more. And since it has become possible to maintain a long fiber length, even if a large amount of conductive fibers are not blended, since these fibers exist in a three-dimensionally overlapping state in the molded product, good electromagnetic wave It exhibits a shielding property.

【0022】本発明の導電性薄肉樹脂成形品は、公知の
射出成形法やその他の成形方法で製造することができ、
特に成形条件は限定されず、選択したマトリックス樹
脂、あるいは用途、成形品の大きさ等に応じて適宜設定
すれば良い。また成形材料中には必要に応じて公知の添
加剤や充填材を加えても良く、このような添加剤として
は、酸化防止剤、熱安定剤、紫外線吸収剤、難燃剤、顔
料、着色剤、可塑剤、流動性調製剤等が挙げられ、充填
材としては、ガラス繊維や有機繊維等の非導電性強化繊
維や、無機あるいは有機系フィラーが挙げられる。
The electrically conductive thin resin molded article of the present invention can be manufactured by a known injection molding method or other molding method,
The molding conditions are not particularly limited, and may be appropriately set depending on the selected matrix resin, the application, the size of the molded product, and the like. Known additives and fillers may be added to the molding material as required, and examples of such additives include antioxidants, heat stabilizers, ultraviolet absorbers, flame retardants, pigments, colorants. Examples of the filler include a plasticizer, a fluidity adjusting agent, and the like, and examples of the filler include a nonconductive reinforcing fiber such as glass fiber and organic fiber, and an inorganic or organic filler.

【0023】[0023]

【実施例】以下実施例によって本発明をさらに詳述する
が、下記実施例は本発明を制限するものではなく、前・
後記の趣旨を逸脱しない範囲で変更実施することは全て
本発明の技術範囲に包含される。
The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention.
Modifications and alterations that do not depart from the spirit described below are all included in the technical scope of the present invention.

【0024】実施例1 ポリカーボネート70重量%とポリエチレンテレフタレ
ート30重量%がアロイ化されたアロイポリマー(29
0℃での溶融粘度:1500ポイズ)に、カーボンブラ
ックを6重量%添加して、連続炭素繊維束に溶融含浸さ
せ、直径4.2mmの炭素繊維強化樹脂ストランドを製
造し、これを長さ10mmに切断してペレットを得た。
得られたペレットの炭素繊維含有率は、15重量%であ
った。
Example 1 An alloy polymer (29 in which 70% by weight of polycarbonate and 30% by weight of polyethylene terephthalate were alloyed)
Melt viscosity at 0 ° C .: 1500 poise), 6% by weight of carbon black was added to melt and impregnate a continuous carbon fiber bundle to produce a carbon fiber reinforced resin strand having a diameter of 4.2 mm, and a length of 10 mm. And cut into pellets.
The carbon fiber content of the obtained pellets was 15% by weight.

【0025】このペレットをシリンダー温度290℃の
射出成形機に入れて、金型温度120℃、980kgf
/cm2 の射出圧力で成形を行い、肉厚1.5mm、1
50mm×150mmの平板状成形品を得た。この成形
品から試験片を切出し、曲げ試験による曲げ強度、曲げ
弾性率と体積固有抵抗を測定した。 ・曲げ試験:JIS K7203に準じて測定した。 ・体積固有抵抗:SRIS2301の電圧・電流法に準
じて測定した。
The pellets were placed in an injection molding machine with a cylinder temperature of 290 ° C., and the mold temperature was 120 ° C. and 980 kgf.
Molded with an injection pressure of / cm 2 , wall thickness 1.5 mm, 1
A 50 mm × 150 mm flat plate-shaped molded product was obtained. A test piece was cut out from this molded product, and the bending strength, bending elastic modulus and volume resistivity were measured by a bending test. Bending test: Measured according to JIS K7203. -Volume resistivity: Measured according to the voltage / current method of SRIS2301.

【0026】その結果、得られた成形品の曲げ強度は1
8kgf/mm2 、曲げ弾性率は1050kgf/mm
2 、体積固有抵抗は30Ω・cmであり、剛性および導
電性の両方に優れた成形品が得られた。また、試験片の
樹脂分を除去し、炭素繊維の重なり具合を見たところ、
三次元的に重なり合っており、不連続の部分は認められ
ず、炭素繊維の平均長は0.8mmであった。
As a result, the bending strength of the obtained molded product is 1
8 kgf / mm 2 , flexural modulus is 1050 kgf / mm
2. The volume resistivity was 30 Ω · cm, and a molded product excellent in both rigidity and conductivity was obtained. Moreover, when the resin content of the test piece was removed and the degree of overlap of the carbon fibers was checked,
They were three-dimensionally overlapped, no discontinuous portion was observed, and the average length of the carbon fibers was 0.8 mm.

【0027】・樹脂分除去方法:空気と窒素の1対1
(体積比)混合雰囲気下で、5cm×5cmの試験片を
40℃で40分保持した後、昇温速度5℃/分で450
℃まで加熱し、20分そのままで保持することによっ
て、試験片から全ての樹脂分をきれいに除去した。
Resin removal method: 1: 1 of air and nitrogen
(Volume ratio) After holding a 5 cm × 5 cm test piece at 40 ° C. for 40 minutes in a mixed atmosphere, 450 at a heating rate of 5 ° C./minute.
All resin components were cleanly removed from the test piece by heating to 0 ° C and holding for 20 minutes.

【0028】実施例2 熱可塑性樹脂として、メタキシリレンジアミンとアジピ
ン酸から構成された半芳香族ナイロン「レニー」(三菱
エンジニアリングプラスチックス社製、280℃での溶
融粘度1300ポイズ)を用いた以外は、ほぼ実施例1
と同様にして、直径3.6mm、長さ10mm、炭素繊
維含量30重量%のペレットを製造した。このペレット
を用いて、実施例1と同様にして、肉厚1.5mm、1
50mm×150mmの平板状成形品を得た。実施例1
と同様にして曲げ試験を行ったところ、この成形品の曲
げ強度は、46kgf/mm2 、曲げ弾性率は4070
kgf/mm2 であった。
Example 2 A semi-aromatic nylon "reny" composed of meta-xylylenediamine and adipic acid (manufactured by Mitsubishi Engineering Plastics Co., Ltd., melt viscosity at 280 ° C 1300 poise) was used as the thermoplastic resin. Example 1
Pellets having a diameter of 3.6 mm, a length of 10 mm and a carbon fiber content of 30% by weight were produced in the same manner as in. Using this pellet, a thickness of 1.5 mm and 1 were obtained in the same manner as in Example 1.
A 50 mm × 150 mm flat plate-shaped molded product was obtained. Example 1
When a bending test was performed in the same manner as in 1., the bending strength of this molded product was 46 kgf / mm 2 , and the bending elastic modulus was 4070.
kgf / mm 2 .

【0029】また、電波シールド性は50dB(300
MHz)と良好であった。なお、電波シールド性は、K
EC法(財団法人 関西電子工業振興センター法)に準
じて行い、隔絶されたボックスを平板状成形品で2つに
仕切り、片方に発振子を、もう一方に受信子を入れ、発
振子から電磁波を発生させたときの減衰量である。さら
に、樹脂除去後の繊維を観察したところ、平均長さ1.
5mmの炭素繊維が三次元的に絡み合っていることが確
認された。
The radio wave shielding property is 50 dB (300
MHz) was good. The radio wave shielding property is K
Conducted in accordance with the EC Law (Kansai Electronics Industry Promotion Center Law), the isolated box is partitioned into two flat molded products, one with a resonator and the other with a receiver. Is the amount of attenuation when is generated. Furthermore, when the fibers after resin removal were observed, the average length was 1.
It was confirmed that the 5 mm carbon fibers were three-dimensionally entangled.

【0030】実施例3 実施例2で用いた半芳香族ナイロン「レニー」に、カー
ボンブラック6重量%およびフェノール樹脂を12重量
%添加して、実施例1と同様にして、直径3.6mm、
長さ10mm、炭素繊維含量30重量%、カーボンブラ
ック含量5重量%のペレットを製造した。このペレット
を用いて、実施例1と同様にして、肉厚1.5mm、1
50mm×150mmの平板状成形品を得た。実施例1
と同様にして曲げ試験および電波シールド試験を行った
ところ、この成形品の曲げ強度は、44kgf/mm
2 、曲げ弾性率は4150kgf/mm2 、電波シール
ド性は48dBであった。さらに樹脂除去後の繊維を観
察したところ、平均長さ1.7mmの炭素繊維が三次元
的に絡み合っていることが確認された。
Example 3 6% by weight of carbon black and 12% by weight of phenol resin were added to the semi-aromatic nylon "reny" used in Example 2 and the same as in Example 1, with a diameter of 3.6 mm,
Pellets having a length of 10 mm, a carbon fiber content of 30% by weight and a carbon black content of 5% by weight were produced. Using this pellet, a thickness of 1.5 mm and 1 were obtained in the same manner as in Example 1.
A 50 mm × 150 mm flat plate-shaped molded product was obtained. Example 1
A bending test and a radio wave shield test were performed in the same manner as in 1., and the bending strength of this molded product was 44 kgf / mm.
2 , the flexural modulus was 4150 kgf / mm 2 , and the radio wave shielding property was 48 dB. Further, when the fibers after resin removal were observed, it was confirmed that carbon fibers having an average length of 1.7 mm were three-dimensionally entangled.

【0031】実施例4 実施例2および3で製造したペレットを用いて、肉厚を
1.0mmに薄くした平板状成形品を作製した。反りの
状態を目視で観察したところ、フェノール樹脂が配合さ
れた実施例3のペレットで作製した成形品は全く反りが
認められなかったが、実施例2のペレットで作製した成
形品には若干の反りが生じていた。
Example 4 Using the pellets produced in Examples 2 and 3, a flat-plate molded article having a wall thickness of 1.0 mm was prepared. When the warped state was visually observed, no warpage was observed in the molded product made of the pellets of Example 3 in which the phenol resin was blended, but a slight amount was found in the molded product made of the pellets of Example 2. There was a warp.

【0032】比較例1 実施例2と同じポリアミド樹脂とカーボンブラックを同
量と、長さ10mmの炭素繊維を30重量%になる様に
スクリュー式押出機に入れて、樹脂を加熱溶融させなが
ら、混練した。その後は、実施例2と同様にして、同大
の平板状成形品を作製した。この成形品の曲げ試験結果
は、曲げ強度、44.2kgf/mm2、曲げ弾性率3
960kgf/mm2 、電波シールド性は35dBであ
り、いずれも実施例2に比べて劣っていた。また樹脂分
を除去し、炭素繊維の状態をみたところ、炭素繊維の平
均長さは、0.1mmであり、炭素繊維が不連続な部分
がところどころ存在していた。
Comparative Example 1 The same amount of polyamide resin and carbon black as in Example 2 and the same amount of carbon fibers having a length of 10 mm were put into a screw type extruder so as to be 30% by weight, while heating and melting the resin, Kneaded After that, in the same manner as in Example 2, a flat plate-shaped molded article of the same size was produced. The bending test results of this molded product are as follows: bending strength, 44.2 kgf / mm 2 , bending elastic modulus 3
The radio wave shielding property was 960 kgf / mm 2 , and the radio wave shielding property was 35 dB, which were both inferior to those in Example 2. Further, when the resin content was removed and the state of the carbon fibers was observed, the average length of the carbon fibers was 0.1 mm, and discontinuous portions of the carbon fibers were present in some places.

【0033】[0033]

【発明の効果】本発明は以上の様に構成されており、熱
可塑性樹脂を主体とするマトリックス樹脂からなる導電
性薄肉樹脂成形品において、成形品中の導電性繊維を平
均長さ0.5mm以上で、かつ該繊維を三次元的に重な
り合った状態(連続した状態)で存在させているので、
電磁波シールド性および剛性に優れた薄肉の成形品を提
供することができた。また特に、熱硬化性樹脂の共存に
よって、成形性を悪化させることなく剛性を向上させる
ことができ、しかも反りが全く見られない超薄肉の成形
品を提供することができた。従って、本発明の導電性薄
肉樹脂成形品は、ノート型パソコン、電子手帳、携帯電
話等の携帯用電子機器のハウジング・ケーシング材や、
他の導電性を必要とする薄肉成形品として、非常に有用
である。
EFFECTS OF THE INVENTION The present invention is constituted as described above, and in a conductive thin resin molded product made of a matrix resin mainly composed of a thermoplastic resin, the conductive fibers in the molded product have an average length of 0.5 mm. Above, and since the fibers are present in a three-dimensionally overlapping state (continuous state),
It was possible to provide a thin molded product having excellent electromagnetic wave shielding properties and rigidity. Further, in particular, the coexistence of the thermosetting resin makes it possible to improve the rigidity without deteriorating the moldability, and to provide an ultrathin molded product having no warp. Therefore, the conductive thin resin molded product of the present invention is a housing / casing material of a portable electronic device such as a notebook computer, an electronic notebook, and a mobile phone,
It is very useful as a thin-walled molded product requiring other conductivity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08K 7/02 KCJ C08K 7/02 KCJ C08L 61/06 LMS C08L 61/06 LMS 77/00 KLC 77/00 KLC 101/00 101/00 H05K 9/00 H05K 9/00 X (72)発明者 示野 医晃 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 田中 桂子 神戸市中央区御幸通6丁目1−12 株式会 社神戸製鋼所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08K 7/02 KCJ C08K 7/02 KCJ C08L 61/06 LMS C08L 61/06 LMS 77/00 KLC 77 / 00 KLC 101/00 101/00 H05K 9/00 H05K 9/00 X (72) Inventor Ishino Akira 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works Kobe Research Institute ( 72) Inventor Keiko Tanaka 6-1-12 Miyuki-dori, Chuo-ku, Kobe City Kobe Steel Works, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂を主体とするマトリックス
樹脂に導電性繊維およびカーボンブラックが複合された
導電性複合材料からなる厚さ2mm以下の薄肉の樹脂成
形品であって、該成形品から下記方法で樹脂分を除去し
た後に残存する導電性繊維の平均長さが0.5mm以上
であり、かつ該導電性繊維が三次元的に重なり合ってい
ることを特徴とする導電性薄肉樹脂成形品。 ・樹脂分除去方法:空気と窒素を1対1(体積比)混合
雰囲気下で、試験片(5cm×5cm)を40℃で40
分保持した後、昇温速度5℃/分で450℃まで加熱
し、450℃で20分保持することによって、試験片か
ら全ての樹脂分を除去する。
1. A thin resin molded product having a thickness of 2 mm or less, which is made of a conductive composite material in which conductive fibers and carbon black are mixed in a matrix resin mainly composed of a thermoplastic resin, and the molded product is A conductive thin resin molded article, characterized in that the conductive fibers remaining after removing the resin component by the method have an average length of 0.5 mm or more and the conductive fibers are three-dimensionally overlapped. -Resin removal method: A test piece (5 cm x 5 cm) is 40 at 40 ° C in a mixed atmosphere of air and nitrogen (volume ratio) of 1: 1.
After holding for minutes, the resin is removed from the test piece by heating to 450 ° C. at a temperature rising rate of 5 ° C./minute and holding at 450 ° C. for 20 minutes.
【請求項2】 導電性複合材料が、10〜40重量%の
導電性繊維と、1〜20重量%のカーボンブラックを含
むものである請求項1に記載の導電性薄肉樹脂成形品。
2. The conductive thin-walled resin molded article according to claim 1, wherein the conductive composite material contains 10 to 40% by weight of conductive fibers and 1 to 20% by weight of carbon black.
【請求項3】 導電性繊維が炭素繊維である請求項1ま
たは2に記載の導電性薄肉樹脂成形品。
3. The conductive thin-walled resin molded product according to claim 1, wherein the conductive fiber is carbon fiber.
【請求項4】 熱可塑性樹脂が、ポリアミド樹脂である
請求項1〜3のいずれかに記載の導電性薄肉樹脂成形
品。
4. The electrically conductive thin resin molded product according to claim 1, wherein the thermoplastic resin is a polyamide resin.
【請求項5】 導電性複合材料が、20重量%以下の熱
硬化性樹脂を含有するものである請求項1〜4のいずれ
かに記載の導電性薄肉樹脂成形品。
5. The electroconductive thin-walled resin molded article according to claim 1, wherein the electroconductive composite material contains 20% by weight or less of a thermosetting resin.
【請求項6】 熱硬化性樹脂がフェノール樹脂である請
求項5に記載の導電性薄肉樹脂成形品。
6. The electrically conductive thin resin molded article according to claim 5, wherein the thermosetting resin is a phenol resin.
JP7244886A 1995-09-22 1995-09-22 Electroconductive thin resin molding Pending JPH0987417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7244886A JPH0987417A (en) 1995-09-22 1995-09-22 Electroconductive thin resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7244886A JPH0987417A (en) 1995-09-22 1995-09-22 Electroconductive thin resin molding

Publications (1)

Publication Number Publication Date
JPH0987417A true JPH0987417A (en) 1997-03-31

Family

ID=17125454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7244886A Pending JPH0987417A (en) 1995-09-22 1995-09-22 Electroconductive thin resin molding

Country Status (1)

Country Link
JP (1) JPH0987417A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022265B2 (en) * 2001-12-19 2006-04-04 E. I. Du Pont De Nemours And Company Polyamide resin compositions with electromagnetic interference shielding properties and articles formed therefrom
US7199186B2 (en) 2001-08-08 2007-04-03 Lignyte Co., Ltd. Carbon-phenol resin molding compound
US7999018B2 (en) 2007-04-24 2011-08-16 E. I. Du Pont De Nemours And Company Thermoplastic resin composition having electromagnetic interference shielding properties
CN104497564A (en) * 2014-12-31 2015-04-08 东莞市松燊塑料科技有限公司 Antistatic PA6 modified material and preparation method thereof
CN104559168A (en) * 2014-12-31 2015-04-29 东莞市松燊塑料科技有限公司 Anti-static PA66 modified material and preparation method thereof
JPWO2023032574A1 (en) * 2021-08-31 2023-03-09

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199186B2 (en) 2001-08-08 2007-04-03 Lignyte Co., Ltd. Carbon-phenol resin molding compound
US7022265B2 (en) * 2001-12-19 2006-04-04 E. I. Du Pont De Nemours And Company Polyamide resin compositions with electromagnetic interference shielding properties and articles formed therefrom
US7999018B2 (en) 2007-04-24 2011-08-16 E. I. Du Pont De Nemours And Company Thermoplastic resin composition having electromagnetic interference shielding properties
CN104497564A (en) * 2014-12-31 2015-04-08 东莞市松燊塑料科技有限公司 Antistatic PA6 modified material and preparation method thereof
CN104559168A (en) * 2014-12-31 2015-04-29 东莞市松燊塑料科技有限公司 Anti-static PA66 modified material and preparation method thereof
JPWO2023032574A1 (en) * 2021-08-31 2023-03-09
WO2023032574A1 (en) * 2021-08-31 2023-03-09 ポリプラスチックス株式会社 Electromagnetic wave shielding member

Similar Documents

Publication Publication Date Title
KR101297156B1 (en) High performance emi/rfi shielding polymer composite
US7939167B2 (en) Resin composition
KR102473439B1 (en) Polyphenylene sulfide resin composition, method for preparing the same and injection molded article prepared therefrom
JP2010155993A (en) Resin composition
KR101212671B1 (en) Emi/rfi shielding polymer composite
EP0112197A1 (en) Synergistic effect of metal flake and metal or metal coated fiber on EMI shielding effectiveness of thermoplastics
JP2016540067A (en) Carbon fiber reinforced plastic molding material
JPH0987417A (en) Electroconductive thin resin molding
JPH10195311A (en) Thermoplastic resin molding, material for molding and production of molding
JPH10120798A (en) Electroconductive casing for electronic appliance
JP5173143B2 (en) Electromagnetic wave shielding resin composition and molded product thereof
JPS6013516A (en) Manufacture of multilayer injection molded product with electromagnetic shielding property
JPH11329078A (en) Conductive resin composition and its molding
JPH08311242A (en) Conductive thermosetting resin composition and housing for electric and electronic apparatus
JPH02113068A (en) Electrically conductive thermoplastic resin composition
JP2009108221A (en) Polyamide resin composition for casing of electrical/electronic equipment and casing of electrical/electronic equipment
JP2001261975A (en) Electroconductive thermoplastic resin composition
JPH0763971B2 (en) Conductive resin molding
JP2002220786A (en) Carbon fiber bundle, resin composition, molding compound and molded product using the same
JPS58168300A (en) Electromagnetic shielded molded part
JP2004140255A (en) Electromagnetic wave shield molding
JP3875061B2 (en) Resin composition and molded product
JPS62229999A (en) Electromagnetic shielding polyamide resin molding material
JPH0653688A (en) Molded form for electromagnetic shield
JP2004027097A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030624