JP3875061B2 - Resin composition and molded product - Google Patents

Resin composition and molded product Download PDF

Info

Publication number
JP3875061B2
JP3875061B2 JP2001325252A JP2001325252A JP3875061B2 JP 3875061 B2 JP3875061 B2 JP 3875061B2 JP 2001325252 A JP2001325252 A JP 2001325252A JP 2001325252 A JP2001325252 A JP 2001325252A JP 3875061 B2 JP3875061 B2 JP 3875061B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
film
inorganic filler
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001325252A
Other languages
Japanese (ja)
Other versions
JP2003128943A (en
Inventor
篤 上福
好明 石井
健二郎 大塚
稔 安喜
Original Assignee
大塚化学ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学ホールディングス株式会社 filed Critical 大塚化学ホールディングス株式会社
Priority to JP2001325252A priority Critical patent/JP3875061B2/en
Publication of JP2003128943A publication Critical patent/JP2003128943A/en
Application granted granted Critical
Publication of JP3875061B2 publication Critical patent/JP3875061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は樹脂組成物及び成形品に関する。より詳しくは、本発明は、特定の粒子径と粒度分布とを持つ鱗片状無機充填材を熱可塑性樹脂に配合してなる樹脂組成物及び該樹脂組成物を成形してなる成形品に関する。
【0002】
【従来の技術】
樹脂組成物からなる成形品は、例えば、自動車部品、機械部品、電気電子部品等として広く使用されており、中でも、該成形品の一形態であるフィルムは、銅張積層板等のプリント配線基板用のフレキシブル基材として好適に使用されている。
【0003】
斯かるプリント配線板としては種々の構成が提案されているが、その中でも、基材の片面又は両面に銅箔を積層して銅張積層板とし、その銅箔上に回路パターンを形成したものは極めて高い信頼性を有し、あらゆる電気・電子機器において汎用されている。そして、最近の情報量の飛躍的な増大に伴うコンピュータ等の超高速演算化、携帯電話等の移動体通信機器やパーソナルコンピュータの目覚しい普及等に対応するため、より一層の高性能化及び小型化が要求されている。
【0004】
従来、銅張積層板の基材としては、ガラス布、ガラス不織布、ガラスマット等にエポキシ樹脂を含浸させた所謂ガラエポ基材が主に使用されている。ガラエポ基材は、電気的特性(絶縁破壊電圧、誘電率、誘電正接、体積抵抗値等)、機械的強度、耐熱性、銅箔との接着加工性、熱膨張率、線膨張係数、成形収縮性等、銅張積層板の基材に要求される諸性能を高水準でバランス良く保持する反面、成形加工性等の面で問題があり、更なる小型化の要求には充分対応できない。
【0005】
このため、熱可塑性樹脂の優れた成形加工性に着目し、熱可塑性樹脂からなるフィルムを銅張積層板の基材として用いる試みが種々成されている。しかし、熱可塑性樹脂の採用により小型化は達成できるものの、熱可塑性樹脂単独では、機械的強度や耐熱性が不足し、長期的な耐用性や信頼性に欠けるという問題がある。
【0006】
斯かる問題点に鑑み、熱可塑性樹脂に粉末状又は鱗片状無機充填材を配合することは従来から行われている。銅張積層板の分野でも、例えば、ポリエーテルイミドとポリエーテルケトンとの混合樹脂にタルク、雲母、シリカ等の粉末状又は鱗片状無機充填材を配合した樹脂組成物を成形してなる基材用フィルムが提案されており、これによって、フィルムの機械的強度や耐熱性が図られている。
また、フィルムがカールするのを防止するために、フィルムに銅箔を積層する際に、無機充填材の配合量を適宜選択し、フィルムの線膨張係数を銅箔と同程度に調整することも行われている(特開昭62−149436号公報)。
即ち、粉末状又は鱗片状無機充填材を熱可塑性樹脂に配合することにより、機械的強度や耐熱性に優れ、銅箔と同程度の線膨張係数を有する基材用フィルムが得られることは公知である。
【0007】
【発明が解決しようとする課題】
しかしながら、熱可塑性樹脂への粉末状又は鱗片状無機充填材の配合は、熱可塑性樹脂を成形してなる成形品の柔軟性、特に曲げたわみ、引張伸び等に代表されるたわみ特性や伸び特性の低下を引き起こす。特に銅張積層板の基材用フィルムにおいて、線膨張係数が銅箔と同程度になるように粉末状又は鱗片状無機充填材を配合すると、フィルムの柔軟性がより一層損なわれ、塑性変形が起こり易くなり、銅張積層板用の基材に必須となる長期的な耐用性や信頼性が得られないという問題がある。
【0008】
本発明は上記の問題に鑑みてなされたもので、その目的は熱可塑性樹脂に無機充填材を配合して、機械的強度や耐熱性、線膨張係数の改善が図られつつも、同時にたわみ特性や伸び特性といった柔軟性の低下が抑制された樹脂組成物及び成形品を提供することである。
【0009】
【課題を解決するための手段】
本発明者は鋭意研究を重ねた結果、上記問題を解決できる新規な樹脂組成物を得ることに成功し、本発明を完成した。
【0010】
即ち本発明は、溶融温度が300℃以上である熱可塑性樹脂に、粒子の長径が0.5〜50μmの範囲にあり且つ該粒子全体中粒子長径5〜10μmの粒子の占める数量割合が40〜60%であり、酸性メタケイ酸マグネシウムの含有量が97重量%以上である鱗片状無機充填材を配合してなり、前記熱可塑性樹脂の配合量が50〜95重量%、前記鱗片状無機充填材の配合量が5〜50重量%である樹脂組成物、並びに該樹脂組成物を成形してなる成形品に係る。
【0011】
本発明によれば、上記した特定の範囲の粒子径と粒度分布を持つ鱗片状無機充填材を熱可塑性樹脂に配合された樹脂組成物を成形してなる成形品は、機械的強度や耐熱性等が改善され、且つ、たわみ特性や伸び特性等の柔軟性の低下が抑制される。
【0012】
本発明の成形品は任意の形状とすることができるが、例えば、フィルム形状の成形品は、上記の諸特性を有するため、反り、ねじれ等が発生し難く、折り曲げたり屈曲させても塑性変形による劣化が起こり難く、従って、本発明のフィルム状成形品を、銅張積層板等のプリント配線基板の耐熱性フレキシブル基材として用いる場合に、その線膨張係数を銅箔等の金属導体と同程度になるように調整しても、柔軟性が損なわれにくい。よって、該銅張積層板は、長期間に亘って優れた耐用性が持続し、極めて高い信頼性を実現することができる。
また、本発明の成形品は、銅張積層板等のプリント配線基板の基材用途に限定されず、それ以外の電気・電子部品や自動車部品、機械部品として使用することができる。
【0013】
【発明の実施の形態】
本発明において、樹脂組成物のマトリックスとなる樹脂としては、溶融温度が300℃以上である熱可塑性樹脂を使用する。該熱可塑性樹脂の種類については特に制限されず、公知のものをいずれも使用でき、例えば、ポリケトン系樹脂、ポリエーテルニトリル、ポリベンゾイミダゾール、ポリエーテルサルホン、ポリサルホン、熱可塑性ポリイミド、ポリエーテルイミド、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリアミドイミド、ポリアロマティック樹脂、液晶ポリマー等を挙げることができる。これらの中でも、ポリケトン系樹脂、ポリサルホン、ポリエーテルイミド、熱可塑性ポリイミド、ポリアリレート、液晶ポリマー等が好ましい。
なお、ポリケトン系樹脂には、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトンケトン等が包含され、これらの中でも、ポリエーテルケトンやポリエーテルエーテルケトン等が好ましい。
また、ポリアロマティック樹脂とは芳香族成分(フェニレン基等)を主な構成単位とし、芳香族成分が直接結合しているポリマーであり、例えば、1,4−ポリフェニレン等を挙げることができる。市販品として、例えば、ポリ−X(マクスデム社製)、Parmax(ミシシッピー・ポリマー・テクノロジー社製)等を挙げることができる。
【0014】
溶融温度が300℃以上である熱可塑性樹脂は1種を単独で使用でき又は必要に応じ2種以上を併用できる。2種以上併用する場合としては、二次加工を容易にするという観点からそのうちの1種をポリケトン系樹脂とすることが好ましく、例えば、ポリケトン系樹脂とポリエーテルイミドとの併用、ポリケトン系樹脂とポリフェニレンスルフィドとの併用、ポリケトン系樹脂とポリアリレートとの併用、ポリケトン系樹脂とポリエーテルイミドとポリアリレートとの併用等を挙げることができ、これらの中でも、ポリケトン系樹脂とポリエーテルイミドとの併用(ポリケトン系樹脂を30〜70重量%、好ましくは35〜65重量%使用し、残部をポリエーテルイミドとする)、ポリケトン系樹脂とポリフェニレンスルフィドとの併用(ポリケトン系樹脂を30〜70重量%、好ましくは35〜65重量%使用し、残部をポリフェニレンスルフィドとする)等が特に好ましい。熱可塑性樹脂としては、市販品を使用することもできる。
【0015】
溶融温度が300℃以上である熱可塑性樹脂の配合量は特に限定されず、使用する熱可塑性樹脂の種類、得られる成形品の用途等の各種条件に応じて広い範囲から適宜選択すればよいが、通常樹脂組成物全量の50〜95重量%、好ましくは60〜90重量%とすればよい。
【0016】
溶融温度が300℃以上である熱可塑性樹脂を用いることにより、はんだリフローを施した時に機械物性の低下がない。
【0017】
本発明において使用する無機充填材は、粒子径が0.5〜50μm、好ましくは1〜30μmの範囲の粒子であって、且つ該粒子中で粒子径5〜10μmの粒子の占める割合が40〜60%、好ましくは43〜55%である鱗片状無機充填材を使用する。ここで粒子径5〜10μmの粒子の占める割合は、0.5〜50μmの全粒子数中の5〜10μmの粒子の数量割合を意味する。通常、鱗片状の無機充填材の粒子径には、その形状的な特徴に起因して長径と短径とが存在するが、本明細書では長径を意味するものとする。また、粒子径および粒子径5〜10μmの粒子の含有割合は、レーザー回析式粒度分布測定機(商品名:SALD−2100、(株)島津製作所製)を用い、屈折率1.60−0.05iにて測定した値である。
【0018】
粒子径が0.5〜50μmの範囲であって、粒子径5〜10μmの粒子の含有量が40〜60%の鱗片状無機充填材が含まれている場合は、フィルム状に成形した際に、得られるフィルムの柔軟性の低下が小さく、銅張積層板の基材用フィルムとして好適になる。
【0019】
本発明で使用する鱗片状無機充填材としては、上記特定の粒子径範囲及び粒度分布を持つものであれば特に制限はないが、酸性メタケイ酸マグネシウムを主成分とする鱗片状無機充填材が好ましい。該鱗片状無機充填材における酸性メタケイ酸マグネシウムの含有量は特に制限はないが、通常97重量%以上、好ましくは99重量%以上である。酸性メタケイ酸マグネシウムを主成分とする鱗片状無機充填材は不純物としてアルミニウム、鉄、カルシウム等をそれぞれ微量含んでいても良い。蛍光X線分析による元素分析によれば、不純物の合計量は、酸化物換算で通常0.1〜3.0重量%程度である。
【0020】
上記の特定の粒子径範囲及び粒度分布を持つ鱗片状無機充填材は、市販の鱗片状無機充填材を気流分級機等の公知の分級機で処理し、更に特定の粒子径範囲を持つ2種以上のものを適宜混合することにより製造することが出来る。また、市販品の中から、上記の特定の粒子径範囲及び粒度分布を持つものを選択してもよい。
【0021】
上記の特定の粒子径範囲及び粒度分布を持つ鱗片状無機充填材は、そのまま使用してもよく、また、550〜900℃程度、好ましくは600〜800℃程度の温度下で2〜6時間程度、好ましくは3〜5時間程度焼成した後使用してもよい。
【0022】
特定の粒子径範囲及び粒度分布を持つ鱗片状無機充填材の配合量は特に限定されず、使用する熱可塑性樹脂の種類、得られる成形品の用途等の各種条件に応じて広い範囲から適宜選択すればよいが、通常樹脂組成物全量の5〜50重量%、好ましくは10〜40重量%とすればよい。
【0023】
本発明の樹脂組成物には、その好ましい特性を損なわない範囲で、鱗片状無機充填材以外の無機充填材、例えば、チタン酸カリウム繊維、ワラストナイト等の繊維状無機充填材、アルミナ、シリカ、二酸化チタン、炭酸カルシウム等の粉末状無機充填材等から選ばれる1種又は2種以上が含まれていてもよい。
【0024】
更に本発明の樹脂組成物には、その好ましい特性を損なわない範囲で、例えば、熱安定剤、滑剤、離型剤、顔料、染料、紫外線吸収剤、光安定剤、難燃剤、可塑剤等の公知の樹脂添加剤の1種又は2種以上が含まれていてもよい。
【0025】
本発明の樹脂組成物は、溶融温度が300℃以上である熱可塑性樹脂及び特定の粒子径範囲及び粒度分布を持つ鱗片状無機充填材、更に必要に応じて他の樹脂添加剤を公知の方法に従って混合又は混練することによって製造できる。例えば、粉末、フレーク又はペレット状の各成分を、公知の押出機、混練機等を用いて混合又は混練することにより、ペレット状の本発明樹脂組成物を得ることができる。押出機としては特に制限はないが、例えば、1軸押出機、2軸押出機、多軸押出機等を挙げることができる。混練機としても特に制限はないが、例えば、コニーダー、バンバリーミキサー、加圧ニーダー、2本ロール等を挙げることができる。
【0026】
さらに本発明に係る成形品は、上述のようにして作成した樹脂組成物を、射出成形法、圧縮成形法、押出成形法等の公知の樹脂成形法により、任意の形状の成形品として得ることができる。
【0027】
本発明に係る成形品の実施形態であるフィルムは、例えば、押出成形法に従って成形される。より具体的には、本発明の樹脂組成物を溶融し、Tダイからフィルム状に押出し、このフィルムをロール面上にキャスティングして冷却するキャスティング法(Tダイ法)や、本発明の樹脂組成物を溶融し、リング状ダイからチューブ状に押出したものを空冷又は水冷するチューブラー法等により、未延伸フィルムとして得ることができる。
【0028】
また、本発明に係る成形品の他の実施形態として、上記の方法で得られる未延伸フィルムを、50〜180℃程度の温度下に1軸又は2軸延伸し、必要に応じて融点よりも低い温度で熱固定することにより、延伸フィルムとして得ることができる。
この際、フィルムの厚みは特に制限はないが、フィルムを銅張積層板等のプリント配線基板用のフレキシブル基材として用いる場合には、通常5〜200μm程度、好ましくは20〜150μm程度とすればよい。
【0029】
このフィルムと導体層とを積層することにより、銅張積層板等のプリント配線基板が得られる。より具体的には、例えば、フィルムの片面又は両面に導体層を積層したり、更に4層又はそれ以上の多層構造にすることもできる。
導体層は、電気的良導体からなる層であり、電気的良導体としては特に制限はないが、銅が一般的である。導体層の厚さは特に制限はないが、導体層1層当り、通常5〜50μm程度、好ましくは10〜40μm程度とすればよい。
【0030】
フィルムに導体層を積層する方法としては特に制限されず、公知の方法がいずれも採用でき、例えば、銅箔等の導体金属箔を200℃以上、好ましくは210〜250℃の加熱下に圧着する方法、蒸着や無電解メッキによりフィルム表面に導体層を形成する方法、接着剤層を介してフィルムと導体層とを積層する方法等を挙げることができる。更に、フィルムの形成と導体層の積層とを同時に行うこともできる。
【0031】
本発明の成形品は、上記したプリント配線基板の基材以外の各種電気・電子部品(例えば、電気・電子機器のハウジング、機構部品等)、自動車部品(例えば、内装部品、バンパー等の外装部品等)、機械部品(例えば、機械類の機構部品等)等として、広く使用できる。
【0032】
【発明の効果】
本発明の樹脂組成物及び成形品は、高い機械的強度及び耐熱性を有すると同時に、伸び特性、たわみ特性等の柔軟性に優れたものとなる。また、熱可塑性樹脂本来の特性を損なうことなく、銅箔等の金属導体との接着加工性、はんだ付け性等に優れ、絶縁破壊電圧、誘電率、誘電正接、体積抵抗値等の電気的特性、成形収縮性等が良好で、熱膨張率が低いという種々の好ましい特性も有している。
加えて、本発明の樹脂組成物は、成形加工性に富んだ熱可塑性樹脂をマトリックスとするので、微細且つ複雑な形状の成形品を容易に製造できるという利点をも有している。
【0033】
本発明の成形品は任意の形状とすることができるが、例えば、フィルム形状の成形品は、上記の諸特性を有するため、反り、ねじれ等が発生し難く、折り曲げたり屈曲させても塑性変形による劣化が起こりく、従って、本発明のフィルム状成形品を、銅張積層板等のプリント配線基板の耐熱性フレキシブル基材として用いる場合に、その線膨張係数を銅箔等の金属導体と同程度になるように調整しても、柔軟性が損なわれることはない。よって該銅張積層板は、長期間に亘って優れた耐用性が持続し、極めて高い信頼性を実現することができる。
【0034】
【実施例】
以下に実施例及び比較例を挙げ、本発明を具体的に説明する。本実施例において使用した各成分は、次の通りである。
[マトリックス樹脂]
(1)ポリエーテルエーテルケトン:商品名450G(溶融温度:360℃)、ビクトレックス社製、以下「PEEK」という。
(2)ポリエーテルイミド:商品名ウルテム1000−1000(溶融温度:330℃)、日本GEプラスチックス(株)製、以下「PEI」という。
(3)ポリフェニレンスルフィド:商品名ライトンM2888(溶融温度:310℃)、東レ(株)製、以下「PPS」という。
【0035】
[無機充填材]
(1)本発明品1:鱗片状酸性メタケイ酸マグネシウム、粒子径範囲1.6〜26μm、粒子径5〜10μmの粒子含有量45%。不純物として、Al;0.4重量%、Ca;0.1重量%未満、Fe;0.8重量%(X線蛍光分析、いずれも酸化物換算、以下同じ)を含有する。
(2)本発明品2:鱗片状酸性メタケイ酸マグネシウム(1)を950℃で4時間焼成したもの。
【0036】
(3)比較品1:鱗片状酸性メタケイ酸マグネシウム、粒子径範囲2.9〜14μm、粒子径5〜10μmの粒子含有量64%。不純物として、Al;0.1重量%未満、Ca;0.4重量%、Fe;0.1重量%未満を含有する。
(4)比較品2:鱗片状酸性メタケイ酸マグネシウム、粒子径範囲1.3〜91μm、粒子径5〜10μmの粒子含有量40%。不純物として、Al;0.1重量%未満、Ca;0.6重量%未満、Fe;0.1重量%を含有する。
(5)比較品3:鱗片酸性メタケイ酸マグネシウム、粒子径範囲0.7〜21μm、粒子径5〜10μmの粒子含有量34%。不純物として、Al;0.8重量%、Ca;0.1重量%、Fe;0.9重量%を含有する。
(6)比較品4:天然雲母、粒子径範囲0.7〜12μm、粒子径5〜10μmの粒子含有量30%、商品名FNS、三信鉱工(株)製
【0037】
実施例1〜2及び比較例1〜3
PEEK 38.5重量部とPEI 38.5重量部とを2軸押出機(商品名:KTX46、(株)神戸製鋼所製)のメインホッパーに投入し、350℃で溶融混練した後、サイドフィーダーから表1に示す鱗片状酸性メタケイ酸マグネシウム23重量部を加えて更に溶融混練し、ペレット状の本発明樹脂組成物及び比較用樹脂組成物を製造した。
【0038】
【表1】

Figure 0003875061
【0039】
得られた本発明及び比較用樹脂組成物のペレットを、JIS試験片作製用金型(金型温度130℃)を装着した射出成形機(商品名:JS75、(株)日本製鋼所、シリンダー温度330℃)に投入して射出成形し、各種JIS試験片を製造し、次の性能試験に供した。
【0040】
(1)引張強さ(MPa)及び破断伸び(%):JIS K 7113に準じて測定した。
(2)曲げ強さ(MPa)、曲げ弾性率(GPa)及び曲げたわみ(%):JIS K 7171に準じて測定した。
(3)ノッチ付きアイゾット衝撃値(以下「IZOD」とする、J/m):JIS K7110に準じ、1号試験片で評価した。
なお、引張強さ、破断伸び、曲げ強さ、曲げたわみ及びIZODは、無処理の試験片及び加熱処理(230℃で90分間加熱処理)後の試験片についてそれぞれ測定した。
上記(1)〜(3)の測定項目は、機械的強度の指標となるものである。
【0041】
(4)成形収縮率(%):90.01×49.99×3.20mmの金型にフィルムゲートで成形品を製造し、次式に従って算出した。
成形収縮率(%)=[(金型寸法−成形品寸法)/金型寸法]×100
(5)ニーポイント(MPa):JIS K7171(曲げ試験法)に従って作成した応力−ひずみ線図からもとめた。ニーポイントとは、応力−ひずみ線図に曲がりが生じる点、即ち完全弾性状態から塑性変形及び粘弾性状態に移行する点を意味する。ニーポイントは柔軟性の指標となる物性であり、ニーポイントが低い程、柔軟性に優れている。
結果を表2に示す。
【0042】
【表2】
Figure 0003875061
【0043】
表2から、機械的強度の面からは、本発明品(実施例1〜2)及び比較品(比較例1〜3)とも有意な差はないが、ニーポイントが大きく異なり、本発明品が柔軟性に優れていることが明かである。
【0044】
実施例3及び比較例4
実施例1の本発明樹脂組成物及び比較例1の比較用樹脂組成物を、それぞれ、コートハンガーダイス押出機で押出成形し、厚さ75μmのフィルムを製造した。得られたフィルムを、以下の方法で評価した。結果を表3に示す。
【0045】
(1)フィルム押出加工性:Tダイより引き落とした溶融樹脂を巻き取り、フィルム加工できるものを○、引き取り可能であるが外観不良か又は気泡発生大のものを△、引き取り不可のものを×とした。
(2)屈曲性:フィルムを180度折り曲げ、フィルムが脆性破断するかどうかを調べた。ガラス様に割れるもの及び曲げ部分が一部又は全部破断するものを×、割れや破断の生じないものを○とした。
(3)Cuラミカール性:電解Cu箔35μmとフィルムとを、210℃×30分、10kg/cm2の圧力下でプレス圧着し、得られたCuラミネートフィルムのカール性を測定した。曲率半径200mm以上を○、100〜200mmを△、100mm以下を×とした。
(4)線膨張係数:TAM120熱機械分析装置(商品名:SSC5200Hディスクステーション、セイコーインスツルメンツ(株)製)を使用し、20〜130℃の線膨張係数を測定した。引き取り方向をMD、その直角方向をTDとした。TD/MDが大きい程、異方性が大きいことになる。
(5)TAM伸び:TAM120熱機械分析装置(SSC5200Hディスクステーション)を使用し、5×25mm(厚み:0.1mm)の短冊状試験片に50gの引張荷重下、20〜250℃、5℃/分の昇温速度で伸び(%)を測定した。
(6)半田耐熱性:260℃ハンダ浴中に10秒間浸漬し、フィルムの変性を調べた。変形が大のものを×、変形があるものを△、変形がないか又は僅かなものを○とした。
【0046】
【表3】
Figure 0003875061
【0047】
表3から、本発明品(実施例3)は各種のフィルム特性に優れ、特に、比較品(比較例4)よりも非常に良好なCuラミカール性を有していることが明かである。即ち、実施例3のフィルムは、銅箔と同程度の線膨張係数を有するにもかかわらず、銅箔と積層してもカールを起こすことがなく、しかも良好なのび特性、たわみ特性等を有し、優れた半田耐熱性及び銅箔との接着加工性を有していることが明らかである。
【0048】
実施例4
PEIに代えてPPSを用いる以外は、実施例1と同様に操作し、本発明樹脂組成物のペレットを製造した。
【0049】
比較例5
鱗片状酸性メタケイ酸マグネシウム(1)に代えて天然雲母(比較品4)を使用する以外は、実施例4と同様に操作し、比較用樹脂組成物のペレットを製造した。
実施例4及び比較例5で得られたペレットを用い、JIS試験片を作成し、各種性能試験に供した。結果を表4に示す。
【0050】
【表4】
Figure 0003875061
【0051】
表4から、本発明品(実施例4)は、各種の機械的強度に付いては従来品(比較例5)とほぼ同程度であるが、ニーポイントが極めて良好で、優れた柔軟性を有していることが明かである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition and a molded article. More specifically, the present invention relates to a resin composition obtained by blending a flaky inorganic filler having a specific particle size and particle size distribution with a thermoplastic resin, and a molded product obtained by molding the resin composition.
[0002]
[Prior art]
Molded articles made of the resin composition are widely used as, for example, automobile parts, mechanical parts, electrical and electronic parts, etc. Among them, a film as one form of the molded article is a printed wiring board such as a copper-clad laminate. It is suitably used as a flexible base material.
[0003]
Various configurations have been proposed for such a printed wiring board. Among them, a copper foil is laminated on one or both sides of a base material to form a copper-clad laminate, and a circuit pattern is formed on the copper foil. Has extremely high reliability and is widely used in all electrical and electronic equipment. In order to cope with the ultra-high speed computation of computers and the like due to the recent dramatic increase in the amount of information, the remarkable spread of mobile communication devices such as mobile phones and personal computers, etc. Is required.
[0004]
Conventionally, a so-called glass epoxy base material in which a glass cloth, a glass nonwoven fabric, a glass mat or the like is impregnated with an epoxy resin has been mainly used as a base material for a copper clad laminate. Glass epoxy base materials have electrical characteristics (dielectric breakdown voltage, dielectric constant, dielectric loss tangent, volume resistance, etc.), mechanical strength, heat resistance, bondability with copper foil, thermal expansion coefficient, linear expansion coefficient, molding shrinkage. While maintaining various properties required for a copper-clad laminate base material at a high level and in a well-balanced manner, there are problems in terms of molding processability and the like, and it cannot sufficiently meet the demand for further miniaturization.
[0005]
For this reason, paying attention to the excellent moldability of the thermoplastic resin, various attempts have been made to use a film made of a thermoplastic resin as a base material for a copper-clad laminate. However, although the miniaturization can be achieved by adopting the thermoplastic resin, the thermoplastic resin alone has a problem that it lacks mechanical strength and heat resistance and lacks long-term durability and reliability.
[0006]
In view of such a problem, blending a powdery or scaly inorganic filler with a thermoplastic resin has been conventionally performed. In the field of copper-clad laminates, for example, a base material formed by molding a resin composition in which a mixed resin of polyetherimide and polyetherketone is mixed with a powdery or scaly inorganic filler such as talc, mica, or silica Films have been proposed, whereby the mechanical strength and heat resistance of the film are achieved.
In addition, in order to prevent the film from curling, when laminating the copper foil on the film, the blending amount of the inorganic filler is appropriately selected, and the linear expansion coefficient of the film can be adjusted to the same level as the copper foil. (Japanese Patent Laid-Open No. 62-149436).
That is, it is known that a film for a substrate having excellent mechanical strength and heat resistance and having a linear expansion coefficient comparable to that of a copper foil can be obtained by blending a powdery or scaly inorganic filler into a thermoplastic resin. It is.
[0007]
[Problems to be solved by the invention]
However, the compounding of the powdered or scale-like inorganic filler into the thermoplastic resin, the flexibility of the molded product formed by molding the thermoplastic resin, in particular, the bending characteristics and elongation characteristics represented by bending deflection, tensile elongation, etc. Causes a drop. In particular, in a film for a base material of a copper clad laminate, when a powdery or scaly inorganic filler is blended so that the linear expansion coefficient is the same as that of a copper foil, the flexibility of the film is further impaired, and plastic deformation is reduced. There is a problem that long-term durability and reliability that are essential for a base material for a copper-clad laminate cannot be obtained.
[0008]
The present invention has been made in view of the above problems, and its purpose is to add an inorganic filler to a thermoplastic resin to improve the mechanical strength, heat resistance, and linear expansion coefficient, while at the same time flexing characteristics. Another object of the present invention is to provide a resin composition and a molded product in which a decrease in flexibility such as elongation characteristics is suppressed.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor succeeded in obtaining a novel resin composition capable of solving the above problems, and completed the present invention.
[0010]
That is, according to the present invention, a thermoplastic resin having a melting temperature of 300 ° C. or higher has a volume ratio of 40 to 40% of particles whose major axis is in the range of 0.5 to 50 μm and whose major axis is 5 to 10 μm. 60% and a content of acidic magnesium metasilicate is 97% by weight or more , and a scaly inorganic filler is blended, and the blended amount of the thermoplastic resin is 50 to 95% by weight, the scaly inorganic filler Relates to a resin composition having a blending amount of 5 to 50% by weight and a molded product formed by molding the resin composition.
[0011]
According to the present invention, a molded product obtained by molding a resin composition in which a scaly inorganic filler having a particle size and particle size distribution in a specific range as described above is blended with a thermoplastic resin has mechanical strength and heat resistance. Etc., and a decrease in flexibility such as flexural properties and elongation properties is suppressed.
[0012]
Although the molded product of the present invention can have any shape, for example, the film-shaped molded product has the above-mentioned characteristics, so that warping, twisting, etc. hardly occur, and plastic deformation even when bent or bent. Therefore, when the film-like molded product of the present invention is used as a heat-resistant flexible base material for printed wiring boards such as copper-clad laminates, its linear expansion coefficient is the same as that of a metal conductor such as copper foil. Even if it adjusts so that it may become a grade, a softness | flexibility is hard to be impaired. Therefore, the copper clad laminate can maintain excellent durability over a long period of time and can realize extremely high reliability.
In addition, the molded article of the present invention is not limited to the use as a base material for a printed wiring board such as a copper-clad laminate, and can be used as other electric / electronic parts, automobile parts, and machine parts.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a thermoplastic resin having a melting temperature of 300 ° C. or higher is used as the resin that forms the matrix of the resin composition. The type of the thermoplastic resin is not particularly limited, and any known one can be used. For example, a polyketone resin, polyether nitrile, polybenzimidazole, polyether sulfone, polysulfone, thermoplastic polyimide, polyetherimide , Polyarylate, polyphenylene sulfide, polyphenylene ether, polyamideimide, polyaromatic resin, liquid crystal polymer, and the like. Among these, polyketone resins, polysulfone, polyetherimide, thermoplastic polyimide, polyarylate, liquid crystal polymer, and the like are preferable.
The polyketone resins include polyether ketone, polyether ether ketone, polyether ketone ketone, polyether ether ketone ketone, and among these, polyether ketone and polyether ether ketone are preferable.
The polyaromatic resin is a polymer having an aromatic component (such as a phenylene group) as a main structural unit and directly bonded to the aromatic component, and examples thereof include 1,4-polyphenylene. Examples of commercially available products include Poly-X (manufactured by Maxdem), Parmax (manufactured by Mississippi Polymer Technology), and the like.
[0014]
A thermoplastic resin having a melting temperature of 300 ° C. or higher can be used alone or in combination of two or more as required. When two or more types are used in combination, it is preferable to use one of them as a polyketone resin from the viewpoint of facilitating secondary processing. For example, a combination of a polyketone resin and a polyetherimide, a polyketone resin, Can be used in combination with polyphenylene sulfide, polyketone resin and polyarylate, polyketone resin, polyetherimide and polyarylate, etc. Among them, polyketone resin and polyetherimide (Polyketone-based resin is used in an amount of 30 to 70% by weight, preferably 35 to 65% by weight, and the remainder is polyetherimide), a combined use of polyketone-based resin and polyphenylene sulfide (polyketone-based resin in an amount of 30 to 70% by weight, Preferably 35 to 65% by weight is used, the remainder being polyphenylene sulfide To) and the like are particularly preferred. A commercial item can also be used as a thermoplastic resin.
[0015]
The blending amount of the thermoplastic resin having a melting temperature of 300 ° C. or higher is not particularly limited, and may be appropriately selected from a wide range according to various conditions such as the type of the thermoplastic resin to be used and the use of the obtained molded product. Usually, it may be 50 to 95% by weight, preferably 60 to 90% by weight of the total amount of the resin composition.
[0016]
By using a thermoplastic resin having a melting temperature of 300 ° C. or higher, there is no deterioration in mechanical properties when solder reflow is performed.
[0017]
The inorganic filler used in the present invention is a particle having a particle size of 0.5 to 50 μm, preferably 1 to 30 μm, and the proportion of particles having a particle size of 5 to 10 μm is 40 to 40%. A scaly inorganic filler that is 60%, preferably 43-55%, is used. Here, the proportion of particles having a particle diameter of 5 to 10 μm means the number proportion of particles of 5 to 10 μm in the total number of particles of 0.5 to 50 μm. Usually, the particle diameter of the scaly inorganic filler has a major axis and a minor axis due to its shape characteristics. In this specification, the major axis is meant. The particle size and the content ratio of particles having a particle size of 5 to 10 μm were measured using a laser diffraction particle size distribution analyzer (trade name: SALD-2100, manufactured by Shimadzu Corporation) with a refractive index of 1.60-0. .05i measured value.
[0018]
When the particle diameter is in the range of 0.5 to 50 μm and the content of particles having a particle diameter of 5 to 10 μm is 40 to 60%, the flaky inorganic filler is included. The resulting film has a small decrease in flexibility and is suitable as a film for a substrate of a copper clad laminate.
[0019]
The scale-like inorganic filler used in the present invention is not particularly limited as long as it has the above specific particle size range and particle size distribution, but a scale-like inorganic filler mainly composed of acidic magnesium metasilicate is preferable. . Although there is no restriction | limiting in particular in content of acidic magnesium metasilicate in this scale-like inorganic filler, Usually, 97 weight% or more, Preferably it is 99 weight% or more. The scaly inorganic filler mainly composed of acidic magnesium metasilicate may contain a trace amount of aluminum, iron, calcium and the like as impurities. According to elemental analysis by fluorescent X-ray analysis, the total amount of impurities is usually about 0.1 to 3.0% by weight in terms of oxide.
[0020]
The scale-like inorganic filler having the above specific particle size range and particle size distribution is obtained by treating a commercially available scale-like inorganic filler with a known classifier such as an airflow classifier and further having two specific particle size ranges. It can manufacture by mixing the above suitably. Moreover, you may select what has said specific particle diameter range and particle size distribution from a commercial item.
[0021]
The scaly inorganic filler having the above specific particle size range and particle size distribution may be used as it is, and also at a temperature of about 550 to 900 ° C., preferably about 600 to 800 ° C. for about 2 to 6 hours. , Preferably, it may be used after firing for about 3 to 5 hours.
[0022]
The blending amount of the flaky inorganic filler having a specific particle size range and particle size distribution is not particularly limited, and is appropriately selected from a wide range according to various conditions such as the type of thermoplastic resin to be used and the use of the obtained molded product. Usually, it may be 5 to 50% by weight, preferably 10 to 40% by weight of the total amount of the resin composition.
[0023]
In the resin composition of the present invention, an inorganic filler other than the scaly inorganic filler, for example, a fibrous inorganic filler such as potassium titanate fiber, wollastonite, alumina, silica, and the like, as long as the preferable characteristics are not impaired. 1 type, or 2 or more types chosen from powdery inorganic fillers, such as titanium dioxide and calcium carbonate, etc. may be contained.
[0024]
Furthermore, the resin composition of the present invention includes, for example, heat stabilizers, lubricants, mold release agents, pigments, dyes, ultraviolet absorbers, light stabilizers, flame retardants, plasticizers and the like, as long as the preferable characteristics are not impaired. One kind or two or more kinds of known resin additives may be contained.
[0025]
The resin composition of the present invention is a known method in which a thermoplastic resin having a melting temperature of 300 ° C. or higher, a flaky inorganic filler having a specific particle size range and particle size distribution, and, if necessary, other resin additives are used. Can be produced by mixing or kneading. For example, the pellet-shaped resin composition of the present invention can be obtained by mixing or kneading each component of powder, flakes or pellets using a known extruder, kneader or the like. Although there is no restriction | limiting in particular as an extruder, For example, a single screw extruder, a twin screw extruder, a multi screw extruder etc. can be mentioned. Although there is no restriction | limiting in particular as a kneading machine, For example, a kneader, a Banbury mixer, a pressure kneader, a two roll etc. can be mentioned.
[0026]
Furthermore, the molded product according to the present invention can be obtained as a molded product having an arbitrary shape by a known resin molding method such as an injection molding method, a compression molding method, an extrusion molding method, etc. Can do.
[0027]
The film which is an embodiment of the molded article according to the present invention is molded, for example, according to an extrusion molding method. More specifically, a casting method (T-die method) in which the resin composition of the present invention is melted, extruded from a T-die into a film, and this film is cast on a roll surface and cooled, or the resin composition of the present invention is used. It can be obtained as an unstretched film by a tubular method or the like in which a product is melted and extruded from a ring die into a tube shape by air cooling or water cooling.
[0028]
Moreover, as other embodiment of the molded article which concerns on this invention, the unstretched film obtained by said method is uniaxially or biaxially stretched at the temperature of about 50-180 degreeC, and it is rather than melting | fusing point as needed. By heat fixing at a low temperature, it can be obtained as a stretched film.
At this time, the thickness of the film is not particularly limited, but when the film is used as a flexible substrate for a printed wiring board such as a copper clad laminate, it is usually about 5 to 200 μm, preferably about 20 to 150 μm. Good.
[0029]
By laminating this film and the conductor layer, a printed wiring board such as a copper clad laminate can be obtained. More specifically, for example, a conductor layer may be laminated on one side or both sides of the film, or a multilayer structure having four or more layers may be formed.
The conductor layer is a layer made of a good electrical conductor, and the good electrical conductor is not particularly limited, but copper is generally used. The thickness of the conductor layer is not particularly limited, but is usually about 5 to 50 μm, preferably about 10 to 40 μm per conductor layer.
[0030]
The method for laminating the conductor layer on the film is not particularly limited, and any known method can be employed. For example, a conductor metal foil such as a copper foil is pressure-bonded with heating at 200 ° C. or higher, preferably 210 to 250 ° C. Examples thereof include a method, a method of forming a conductor layer on the film surface by vapor deposition or electroless plating, and a method of laminating the film and the conductor layer via an adhesive layer. Furthermore, film formation and conductor layer lamination can be performed simultaneously.
[0031]
The molded article of the present invention includes various electric / electronic components (for example, housings of electric / electronic devices, mechanism components, etc.) other than the above-mentioned printed wiring board base materials, and automotive parts (for example, interior components, bumper and other exterior components). Etc.), machine parts (for example, mechanical parts of machinery, etc.) and the like.
[0032]
【The invention's effect】
The resin composition and molded product of the present invention have high mechanical strength and heat resistance, and at the same time, have excellent flexibility such as elongation characteristics and deflection characteristics. In addition, it does not impair the original properties of the thermoplastic resin, and is excellent in adhesion processability and solderability with metal conductors such as copper foil, and electrical characteristics such as dielectric breakdown voltage, dielectric constant, dielectric loss tangent, volume resistance value, etc. Also, it has various preferable characteristics such as good mold shrinkage and low thermal expansion coefficient.
In addition, the resin composition of the present invention has an advantage that a molded product having a fine and complicated shape can be easily produced because a thermoplastic resin having a high moldability is used as a matrix.
[0033]
Although the molded product of the present invention can have any shape, for example, the film-shaped molded product has the above-mentioned characteristics, so that warping, twisting, etc. hardly occur, and plastic deformation even when bent or bent. Therefore, when the film-like molded product of the present invention is used as a heat-resistant flexible base material for printed wiring boards such as copper-clad laminates, its linear expansion coefficient is the same as that of a metal conductor such as copper foil. Even if it adjusts so that it may become a grade, a softness | flexibility is not impaired. Therefore, the copper-clad laminate maintains excellent durability over a long period of time and can realize extremely high reliability.
[0034]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. Each component used in the present Example is as follows.
[Matrix resin]
(1) Polyetheretherketone: trade name 450G (melting temperature: 360 ° C.), manufactured by Victrex, hereinafter referred to as “PEEK”.
(2) Polyetherimide: trade name Ultem 1000-1000 (melting temperature: 330 ° C.), manufactured by Japan GE Plastics Co., Ltd., hereinafter referred to as “PEI”.
(3) Polyphenylene sulfide: trade name Ryton M2888 (melting temperature: 310 ° C.), manufactured by Toray Industries, Inc., hereinafter referred to as “PPS”.
[0035]
[Inorganic filler]
(1) Invention product 1: Scale-like acidic magnesium metasilicate, particle size range 1.6-26 μm, particle content 45% of particle size 5-10 μm. As impurities, Al; 0.4 wt%, Ca; less than 0.1 wt%, Fe; 0.8 wt% (X-ray fluorescence analysis, both in terms of oxide, the same applies hereinafter).
(2) Invention product 2: A calcined acidic magnesium metasilicate (1) calcined at 950 ° C. for 4 hours.
[0036]
(3) Comparative product 1: Scale-like acidic magnesium metasilicate, particle size range of 2.9 to 14 μm, particle content of 5 to 10 μm, 64% content. As impurities, Al; less than 0.1 wt%, Ca; 0.4 wt%, Fe; less than 0.1 wt%.
(4) Comparative product 2: Scale-like acidic magnesium metasilicate, particle size range 1.3 to 91 μm, particle content of 5 to 10 μm, 40% content. As impurities, Al; less than 0.1% by weight, Ca; less than 0.6% by weight, Fe; 0.1% by weight.
(5) Comparative product 3: Scaled acid magnesium metasilicate, particle size range 0.7 to 21 μm, particle content 34% of particle size 5 to 10 μm. As impurities, Al; 0.8% by weight; Ca; 0.1% by weight; Fe; 0.9% by weight.
(6) Comparative product 4: Natural mica, particle size range of 0.7-12 μm, particle content of particle size 5-10 μm, 30%, trade name FNS, manufactured by Sanshin Mining Co., Ltd.
Examples 1-2 and Comparative Examples 1-3
38.5 parts by weight of PEEK and 38.5 parts by weight of PEI are put into a main hopper of a twin-screw extruder (trade name: KTX46, manufactured by Kobe Steel Co., Ltd.), melt-kneaded at 350 ° C., and then a side feeder. To 23 parts by weight of scale-like acidic magnesium metasilicate shown in Table 1 were further melt-kneaded to produce pellet-shaped resin compositions of the present invention and comparative resin compositions.
[0038]
[Table 1]
Figure 0003875061
[0039]
An injection molding machine (trade name: JS75, Nippon Steel Co., Ltd., cylinder temperature) in which the pellets of the present invention and comparative resin composition thus obtained were equipped with a mold for preparing JIS test pieces (mold temperature 130 ° C.) 330 ° C.) and injection-molded to produce various JIS test pieces, which were subjected to the next performance test.
[0040]
(1) Tensile strength (MPa) and elongation at break (%): Measured according to JIS K 7113.
(2) Bending strength (MPa), bending elastic modulus (GPa) and bending deflection (%): Measured according to JIS K 7171.
(3) Notched Izod impact value (hereinafter referred to as “IZOD”, J / m): Evaluation was performed using a No. 1 test piece in accordance with JIS K7110.
The tensile strength, elongation at break, bending strength, bending deflection, and IZOD were measured for the untreated test piece and the test piece after heat treatment (heat treatment at 230 ° C. for 90 minutes), respectively.
The measurement items (1) to (3) serve as indicators of mechanical strength.
[0041]
(4) Mold shrinkage (%): A molded product was produced with a film gate on a 90.01 × 49.99 × 3.20 mm mold, and calculated according to the following formula.
Mold shrinkage (%) = [(mold size−molded product dimension) / mold size] × 100
(5) Knee point (MPa): Determined from a stress-strain diagram prepared according to JIS K7171 (bending test method). The knee point means a point where the stress-strain diagram is bent, that is, a point where a transition from a completely elastic state to a plastic deformation and viscoelastic state occurs. Knee point is a physical property indicating flexibility, and the lower the knee point, the better the flexibility.
The results are shown in Table 2.
[0042]
[Table 2]
Figure 0003875061
[0043]
From Table 2, from the viewpoint of mechanical strength, there is no significant difference between the products of the present invention (Examples 1 and 2) and the comparative products (Comparative Examples 1 to 3). It is clear that it is excellent in flexibility.
[0044]
Example 3 and Comparative Example 4
The resin composition of the present invention of Example 1 and the comparative resin composition of Comparative Example 1 were each extruded using a coat hanger die extruder to produce a film having a thickness of 75 μm. The obtained film was evaluated by the following method. The results are shown in Table 3.
[0045]
(1) Film extrudability: rolls up the molten resin drawn off from the T-die, ○ indicates that the film can be processed, ○ indicates that it can be taken out but has poor appearance or large bubble generation, and × indicates that it cannot be taken out did.
(2) Flexibility: The film was bent 180 degrees to examine whether the film was brittlely fractured. Those that were broken like glass and those in which the bent part was partially or wholly broken were rated as x, and those that were not broken or broken were marked as o.
(3) Cu laminar curling property: 35 μm of electrolytic Cu foil and a film were press-pressed at 210 ° C. for 30 minutes under a pressure of 10 kg / cm 2 , and the curling property of the obtained Cu laminate film was measured. A radius of curvature of 200 mm or more was evaluated as ◯, 100 to 200 mm as Δ, and 100 mm or less as ×.
(4) Linear expansion coefficient: TAM120 thermomechanical analyzer (trade name: SSC5200H disk station, manufactured by Seiko Instruments Inc.) was used to measure the linear expansion coefficient at 20 to 130 ° C. The take-up direction was MD, and the perpendicular direction was TD. The larger the TD / MD, the greater the anisotropy.
(5) TAM elongation: Using a TAM120 thermomechanical analyzer (SSC5200H disk station), a strip-shaped test piece of 5 × 25 mm (thickness: 0.1 mm) under a tensile load of 50 g, 20 to 250 ° C., 5 ° C. / The elongation (%) was measured at a heating rate of minutes.
(6) Solder heat resistance: The film was immersed in a 260 ° C. solder bath for 10 seconds, and the modification of the film was examined. The case where the deformation was large was rated as x, the case where there was a deformation as Δ, and the case where there was no deformation or a slight amount as ◯.
[0046]
[Table 3]
Figure 0003875061
[0047]
From Table 3, it is clear that the product of the present invention (Example 3) is excellent in various film properties, and in particular, has a very good Cu ramification property than the comparative product (Comparative Example 4). That is, the film of Example 3 has a linear expansion coefficient comparable to that of the copper foil, but does not cause curling even when laminated with the copper foil, and has good stretch characteristics, deflection characteristics, and the like. It is clear that it has excellent solder heat resistance and bondability with copper foil.
[0048]
Example 4
Except using PPS instead of PEI, it operated similarly to Example 1 and manufactured the resin composition pellet of this invention.
[0049]
Comparative Example 5
A pellet of a comparative resin composition was produced in the same manner as in Example 4 except that natural mica (Comparative Product 4) was used instead of the scaly acidic magnesium metasilicate (1).
Using the pellets obtained in Example 4 and Comparative Example 5, JIS test pieces were prepared and subjected to various performance tests. The results are shown in Table 4.
[0050]
[Table 4]
Figure 0003875061
[0051]
From Table 4, the product of the present invention (Example 4) has almost the same degree of mechanical strength as the conventional product (Comparative Example 5), but the knee point is very good and has excellent flexibility. It is clear that they have.

Claims (3)

溶融温度が300℃以上である熱可塑性樹脂に、粒子長径が0.5〜50μmの範囲にあり且つ該粒子全体中粒子長径5〜10μmの粒子の占める数量割合が40〜60%であり、酸性メタケイ酸マグネシウムの含有量が97重量%以上である鱗片状無機充填材を配合してなり、前記熱可塑性樹脂の配合量が50〜95重量%、前記鱗片状無機充填材の配合量が5〜50重量%である樹脂組成物。The thermoplastic resin having a melting temperature of 300 ° C. or higher has a particle length in the range of 0.5 to 50 μm, and the ratio of the number of particles having a particle length of 5 to 10 μm in the whole particle is 40 to 60%, and is acidic. A scale-like inorganic filler having a content of magnesium metasilicate of 97% by weight or more is blended, the blending amount of the thermoplastic resin is 50 to 95% by weight, and the blending quantity of the scaly inorganic filler is 5 to 5%. A resin composition which is 50% by weight. 前記熱可塑性樹脂が、ポリケトン系樹脂、ポリエーテルニトリル、ポリベンゾイミダゾール、ポリエーテルサルホン、ポリサルホン、熱可塑性ポリイミド、ポリエーテルイミド、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリアミドイミド、ポリアロマティック樹脂及び液晶ポリマーから選ばれる1種又は2種以上の樹脂である請求項1記載の樹脂組成物。 The thermoplastic resin is a polyketone resin, polyether nitrile, polybenzimidazole, polyether sulfone, polysulfone, thermoplastic polyimide, polyetherimide, polyarylate, polyphenylene sulfide, polyphenylene ether, polyamideimide, polyaromatic resin and The resin composition according to claim 1, wherein the resin composition is one or more resins selected from liquid crystal polymers. 請求項1又は2に記載の樹脂組成物を成形してなる成形品。 A molded product formed by molding the resin composition according to claim 1.
JP2001325252A 2001-10-23 2001-10-23 Resin composition and molded product Expired - Lifetime JP3875061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325252A JP3875061B2 (en) 2001-10-23 2001-10-23 Resin composition and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325252A JP3875061B2 (en) 2001-10-23 2001-10-23 Resin composition and molded product

Publications (2)

Publication Number Publication Date
JP2003128943A JP2003128943A (en) 2003-05-08
JP3875061B2 true JP3875061B2 (en) 2007-01-31

Family

ID=19141848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325252A Expired - Lifetime JP3875061B2 (en) 2001-10-23 2001-10-23 Resin composition and molded product

Country Status (1)

Country Link
JP (1) JP3875061B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045892A1 (en) 2009-10-21 2011-04-28 Evonik Degussa Gmbh Polyarylene ether ketone film
DE102011007837A1 (en) 2011-04-21 2012-10-25 Evonik Degussa Gmbh Adhesive-free composite of a polyarylene ether ketone and a metal foil

Also Published As

Publication number Publication date
JP2003128943A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
WO2002018495A1 (en) Resin composition, molded object thereof, and use thereof
TWI681998B (en) Reinforced polyamide moulding compositions and injection mouldings produced therefrom
KR20160016912A (en) Filled polymer compositions for mobile electronic devices
JP2010168559A (en) Polyamide resin composition and molded article comprising the same
EP3240826B1 (en) Polyetherimide compositions, articles made therefrom, and method of manufacture thereof
JP2003026914A (en) Printed wiring board film and printed wiring board
JP2016540067A (en) Carbon fiber reinforced plastic molding material
JP2007302831A (en) Thermoplastic resin composition and molded product
JP2005133047A (en) Composite resin of aromatic polyetheretherketoneketone
JP4777080B2 (en) Polyarylene sulfide resin composition for molded article having box shape and molded article having box shape
JP3851997B2 (en) COMPOSITE MATERIAL COMPOSITION AND COMPOSITE MATERIAL MOLDED BODY
JP3875061B2 (en) Resin composition and molded product
JP2011063707A (en) Housing made of resin
JP2007197715A (en) Heat resistant resin composition and print wiring board
JP2003128944A (en) Resin composition and molded product
JP2007119507A (en) Thermosetting polyimide resin composition and molded product and electronic part using the same
JP2003128931A (en) Resin composition and molded material
JP2022148546A (en) Laminate, and production method thereof
KR101146967B1 (en) Production process tape for film-shaped wiring board
JP4849762B2 (en) Aromatic resin composition, heat-resistant sheet, and flexible circuit board reinforcing sheet
JP2009238919A (en) Sheet for reinforcing flexible printed wiring board, and flexible printed wiring board using same
JP2004266105A (en) Flexible printed wiring board with reinforcing board
JP2016084441A (en) Heat conductive resin composition and molded body containing the same
JP2020193244A (en) Liquid crystalline resin composition, liquid crystalline resin film, method for producing liquid crystalline resin film, liquid crystalline resin film with conductor, and flexible printed wiring board
JP2009108221A (en) Polyamide resin composition for casing of electrical/electronic equipment and casing of electrical/electronic equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Ref document number: 3875061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term