WO2023032574A1 - Electromagnetic wave shielding member - Google Patents

Electromagnetic wave shielding member Download PDF

Info

Publication number
WO2023032574A1
WO2023032574A1 PCT/JP2022/029772 JP2022029772W WO2023032574A1 WO 2023032574 A1 WO2023032574 A1 WO 2023032574A1 JP 2022029772 W JP2022029772 W JP 2022029772W WO 2023032574 A1 WO2023032574 A1 WO 2023032574A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive filler
electromagnetic wave
wave shielding
liquid crystalline
shielding member
Prior art date
Application number
PCT/JP2022/029772
Other languages
French (fr)
Japanese (ja)
Inventor
昭宏 長永
真奈 中村
光博 望月
宏光 青藤
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2023517301A priority Critical patent/JPWO2023032574A1/ja
Priority to CN202280058304.6A priority patent/CN117882502A/en
Publication of WO2023032574A1 publication Critical patent/WO2023032574A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to electromagnetic shielding members.
  • Liquid crystalline resins represented by liquid crystalline polyester resins, have well-balanced mechanical strength, heat resistance, chemical resistance, electrical properties, etc., and are widely used as high-performance engineering plastics due to their excellent dimensional stability. It's being used. Further, for example, Patent Document 1 discloses a liquid crystal polyester resin composition having excellent moldability, and a molded article obtained by molding the liquid crystal polyester resin composition has excellent electromagnetic wave shielding properties and electrical insulation properties. , it is also disclosed that it is useful for members related to electronic equipment.
  • a liquid crystalline resin composition can be mentioned as a candidate for the conductive material as described above.
  • the conventional liquid crystalline resin compositions do not have sufficient electromagnetic wave shielding properties, and their high melt viscosities lead to insufficient moldability.
  • the present invention has been made to solve the above problems, and its object is to provide an electromagnetic shielding member molded from a liquid crystalline resin composition having excellent moldability and having excellent electromagnetic shielding properties. It is in.
  • a molded body of a liquid crystalline resin composition containing a liquid crystalline resin, a fibrous conductive filler, and a granular conductive filler, and the fibrous conductive filler and the granular conductive filler is within a predetermined range, the mass ratio of the content of the fibrous conductive filler to the content of the granular conductive filler is within a predetermined range, and the predetermined electromagnetic shielding property is within a predetermined range
  • the present invention provides the following.
  • An electromagnetic wave shielding member comprising a molding of a liquid crystalline resin composition containing (A) a liquid crystalline resin, (B) a fibrous conductive filler, and (C) a granular conductive filler.
  • the total content of the (B) fibrous conductive filler and the (C) granular conductive filler is 15 to 60% by mass
  • the mass ratio of the content of the fibrous conductive filler (B) to the content of the granular conductive filler (C) is 0.30 to 22.0
  • the electromagnetic wave shielding member has an electromagnetic wave shielding property of 35 dB or more at a frequency of 100 MHz, as measured according to the KEC method.
  • the total content of the (B) fibrous conductive filler and the (C) granular conductive filler is 20 to 50% by mass;
  • the (B) fibrous conductive filler is carbon fiber, The electromagnetic wave shielding member according to (1) or (2), wherein the (C) granular conductive filler is carbon black.
  • the (D) non-conductive filler is selected from the group consisting of talc, mica, glass flakes, silica, glass beads, glass balloons, potassium titanate whiskers, calcium silicate whiskers, milled glass fibers, and glass fibers.
  • an electromagnetic shielding member that is molded from a liquid crystalline resin composition that is excellent in moldability and that is excellent in electromagnetic shielding properties.
  • the electromagnetic wave shielding member of the present invention comprises a molded body of a liquid crystalline resin composition containing (A) a liquid crystalline resin, (B) a fibrous conductive filler, and (C) a granular conductive filler.
  • the total content of the (B) fibrous conductive filler and the (C) granular conductive filler is 15 to 60% by mass, and the content of the (C) granular conductive filler
  • the mass ratio of the content of the fibrous conductive filler (B) is 0.30 to 22.0, and the electromagnetic wave shielding property at a frequency of 100 MHz, measured according to the KEC method, is 35 dB or more.
  • the electromagnetic wave shielding member according to the present invention is molded from a liquid crystalline resin composition having excellent moldability, and has excellent electromagnetic wave shielding properties.
  • the electromagnetic shielding member according to the present invention has an electromagnetic shielding property of 35 dB or more at a frequency of 100 MHz, which is measured according to the KEC method, and is excellent in electromagnetic shielding property.
  • the electromagnetic shielding property is preferably 37 dB or more, more preferably 38 dB or more.
  • the electromagnetic wave shielding member of the present invention can be suitably used for applications requiring excellent electromagnetic wave shielding properties.
  • audio equipment parts e.g., audio, laser disc (registered trademark), compact disc, digital video disc, etc.
  • Office computer-related parts Office computer-related parts, telephone-related parts, facsimile-related parts, printer/copier-related parts such as print heads and transfer rolls, cleaning jigs, motor parts, microscope parts, binocular parts, camera parts, watch parts, etc.
  • alternator terminals for light dimmers, motor core sealing materials, insulator parts, power seat gear housings, thermostat bases for air conditioners, air conditioner panel switch substrates, Horn terminals, insulating plates for electrical parts, lamp housings, ignition device cases, air pressure sensors, fuse connectors, vehicle speed sensors, and other automotive and vehicle related parts; It can be particularly suitably used for information communication-related parts such as chip antennas, wireless LAN antennas, ETC (Electric Toll Collection System) antennas, and satellite communication antennas.
  • ETC Electronic Toll Collection System
  • the (A) liquid crystalline resin used in the present invention refers to a melt-processable polymer having a property capable of forming an optically anisotropic melt phase.
  • the anisotropic melt phase properties can be confirmed by conventional polarimetry using crossed polarizers. More specifically, confirmation of the anisotropic molten phase can be carried out by using a Leitz polarizing microscope and observing the molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times.
  • a liquid crystalline polymer applicable to the present invention normally transmits polarized light and exhibits optical anisotropy when inspected between crossed polarizers even in a molten state.
  • the type of (A) liquid crystalline resin as described above is not particularly limited, and aromatic polyesters and/or aromatic polyesteramides are preferable. Polyesters that partially contain aromatic polyesters and/or aromatic polyesteramides in the same molecular chain are also within the scope.
  • the liquid crystalline resin is preferably at least about 2.0 dl/g, more preferably 2.0 to 10.0 dl/g when dissolved in pentafluorophenol at 60° C. at a concentration of 0.1% by mass. of logarithmic viscosity (I.V.) is preferably used.
  • the aromatic polyester or aromatic polyester amide as (A) the liquid crystalline resin applicable to the present invention particularly preferably contains a structural unit derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof. It is an aromatic polyester or an aromatic polyester amide having as a constituent component.
  • Polyester mainly composed of structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof; (2) Mainly (a) structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof A polyester consisting of a structural unit derived from at least one selected from the group consisting of; (3) Mainly (a) structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof and (c) a structural unit derived from at least one selected from the group consisting of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof.
  • Amide; (5) A group consisting mainly of (a) structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic hydroxyamines, aromatic diamines, and derivatives thereof (c) a structural unit derived from at least one selected from the group consisting of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; and (d) and a structural unit derived from at least one selected from the group consisting of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof.
  • a molecular weight modifier may be used in combination with the above constituents, if necessary.
  • Preferred examples of specific compounds constituting (A) the liquid crystalline resin applicable to the present invention include aromatic hydroxycarboxylic acids such as 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxy Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcinol, compounds represented by the following general formula (I), and compounds represented by the following general formula (II) ; 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and aromatics such as compounds represented by the following general formula (III) dicarboxylic acids; p-aminophenol, p-phenylenediamine, N-acetyl-p-aminophenol and other aromatic amines.
  • X A group selected from alkylene (C 1 to C 4 ), alkylidene, —O—, —SO—, —SO 2 —, —S—, and —CO—.
  • the liquid crystalline resin (A) used in the present invention can be prepared by a known method using a direct polymerization method or a transesterification method from the above monomer compound (or a mixture of monomers), and usually a melt polymerization method. , a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, or a combination of two or more thereof is used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is preferably used.
  • the above-mentioned compounds having ester-forming ability may be used for polymerization as they are, or may be modified from precursors to derivatives having said ester-forming ability in the pre-polymerization stage.
  • catalysts can be used in these polymerizations, and representative ones include potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, tris ,4-pentanedionato)cobalt (III), and organic compound catalysts such as 1-methylimidazole and 4-dimethylaminopyridine.
  • the amount of catalyst used is generally about 0.001 to 1% by weight, preferably about 0.01 to 0.2% by weight, based on the total weight of the monomers.
  • Polymers produced by these polymerization methods can be further increased in molecular weight by solid phase polymerization in which heating is performed under reduced pressure or in an inert gas, if necessary.
  • the melt viscosity of (A) the liquid crystalline resin obtained by the above method is not particularly limited. In general, those having a melt viscosity at a molding temperature of 3 Pa ⁇ s or more and 500 Pa ⁇ s or less at a shear rate of 1000 sec ⁇ 1 can be used. However, if the viscosity is too high per se, the fluidity will be greatly deteriorated, which is not preferable.
  • the liquid crystalline resin (A) may be a mixture of two or more liquid crystalline resins.
  • the content of (A) the liquid crystalline resin is preferably 40 to 85% by mass, more preferably 50 to 80% by mass, and even more preferably 60.5 to 80% by mass. It is 79.5% by mass.
  • the content of component (A) is within the above range, it is preferable in terms of fluidity, heat resistance, and the like.
  • the liquid crystalline resin composition according to the present invention contains a fibrous conductive filler.
  • a fibrous conductive filler can be used individually by 1 type or in combination of 2 or more types.
  • the average fiber length of the fibrous conductive filler is not particularly limited, and from the viewpoint of conductivity, it may be, for example, 50 ⁇ m or more and 10 mm, 80 ⁇ m or more and 8 mm, or 100 ⁇ m or more and 7 mm.
  • the average fiber length of the fibrous conductive filler is obtained by taking 10 stereomicroscopic images of the fibrous conductive filler from a CCD camera into a PC and using an image measuring device to perform image processing. Therefore, the average of the values obtained by measuring the fiber lengths of 100 fibrous conductive fillers, that is, a total of 1000 fibrous conductive fillers, is adopted for each stereoscopic microscope image.
  • the average fiber length of the fibrous conductive filler (B) in the liquid crystalline resin composition is the fibrous conductive filler remaining after incineration by heating the liquid crystalline resin composition at 500 ° C. for 4 hours. Measured by applying the method.
  • the fiber diameter of the fibrous conductive filler is not particularly limited, and from the viewpoint of conductivity, it may be, for example, 0.2 to 15 ⁇ m, 0.25 to 13 ⁇ m, or 0.3 to 11 ⁇ m.
  • the fiber diameter of the fibrous conductive filler (B) is determined by observing the fibrous conductive filler with a scanning electron microscope and determining the fiber diameter of 30 fibrous conductive fillers. Take the average of the measured values.
  • the fiber diameter of the (B) fibrous conductive filler in the liquid crystalline resin composition is determined by the above method for the fibrous conductive filler remaining after incineration by heating the liquid crystalline resin composition at 500 ° C. for 4 hours. is measured by applying
  • fibrous conductive fillers examples include carbon fibers; conductive fibers such as metal fibers; inorganic fibrous substances, etc., coated with metals such as nickel and copper to impart conductivity. , carbon fiber is preferable from the viewpoint of conductivity.
  • carbon fibers examples include PAN-based carbon fibers made from polyacrylonitrile and pitch-based carbon fibers made from pitch.
  • metal fibers examples include fibers made of mild steel, stainless steel, steel and its alloys, copper, brass, aluminum and its alloys, titanium, lead, and the like. These metal fibers may be coated with other metals to provide further conductivity if required due to their conductivity.
  • inorganic fibrous substances examples include glass fiber, milled glass fiber, asbestos fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate whisker, calcium silicate whisker ( fibrous wollastonite) and the like.
  • the liquid crystalline resin composition according to the present invention contains a granular conductive filler.
  • Granular conductive fillers can be used singly or in combination of two or more.
  • the median diameter of the particulate conductive filler is not particularly limited, and from the viewpoint of conductivity, it may be, for example, 10 nm or more and 50 ⁇ m or less, 15 nm or more and 20 ⁇ m or less, or 18 nm or more and 10 ⁇ m or less.
  • the median diameter refers to the volume-based median value measured by a laser diffraction/scattering particle size distribution measurement method.
  • Granular conductive fillers include carbon black, granular metal powders (e.g., aluminum, iron, copper), granular conductive ceramics (e.g., zinc oxide, tin oxide, indium tin oxide) and the like. Carbon black is preferred from the viewpoint of properties. Carbon black is not particularly limited as long as it is generally available for coloring resins. Generally, carbon black contains lumps formed by agglomeration of primary particles. A large number of bumps (fine bumpy projections (fine irregularities) formed by agglomeration of carbon black) are less likely to occur on the surface of the molded product. When the content of particles having a particle size of 50 ⁇ m or more is 20 ppm or less, the smoothness of the surface of the molded article tends to be high. A preferable content is 5 ppm or less.
  • the total content of (B) the fibrous conductive filler and (C) the granular conductive filler is 15 to 60% by mass, preferably 20 to 50% by mass, in the liquid crystalline resin composition of the present invention. %, more preferably 20.5 to 39.5% by mass.
  • the total content is 15% by mass or more, it is easy to obtain a molded article with improved electromagnetic wave shielding properties.
  • the total content is 60% by mass or less, the fluidity of the liquid crystalline resin composition is likely to be improved, and a liquid crystalline resin composition having excellent moldability can be easily obtained.
  • the mass ratio of the content of the fibrous conductive filler (B) to the content of the granular conductive filler (C) is 0.30 to 22.0, preferably 0.40 to 21.0. Yes, more preferably 0.50 to 20.0.
  • the mass ratio is 0.30 or more, the fluidity of the liquid crystalline resin composition is likely to be improved, and a liquid crystalline resin composition having excellent molding processability is easily obtained, and a molded article having improved electromagnetic wave shielding properties is obtained. Easy to get.
  • the mass ratio is 20.0 or less, it is easy to obtain a molded article with improved electromagnetic wave shielding properties.
  • the liquid crystalline resin composition according to the present invention may contain a non-conductive filler.
  • a non-conductive filler can be used individually by 1 type or in combination of 2 or more types.
  • Non-conductive fillers include, for example, plate-shaped non-conductive fillers, granular non-conductive fillers, and fibrous non-conductive fillers.
  • the median diameter of the plate-shaped non-conductive filler is not particularly limited, and may be, for example, 10 to 100 ⁇ m, 12 to 50 ⁇ m, or 14 to 30 ⁇ m. From the viewpoint of electromagnetic wave shielding properties, the electromagnetic wave shielding member according to the present invention has a volume resistivity that is an index of conductivity, regardless of the thickness of the molded body, even if it is composed of a molded body having a complicated shape. is preferably small.
  • the plate-shaped non-conductive filler has a median diameter of 10 to 100 ⁇ m, the thickness dependence of the electrical conductivity of the molded article is likely to be reduced, and a molded article having a small variation in volume resistivity regardless of the thickness is easily obtained.
  • Plate-shaped non-conductive fillers include, for example, talc, mica, glass flakes, and the like.
  • the median diameter of the granular non-conductive filler is not particularly limited, and may be, for example, 0.3 to 50 ⁇ m, 0.4 to 25 ⁇ m, or 0.5 to 5.0 ⁇ m.
  • the median diameter of the granular non-conductive filler is 0.3 to 50 ⁇ m, the thickness dependence of the conductivity of the molded body is likely to be reduced, and the molded body with small fluctuations in volume resistivity is easily obtained regardless of the thickness. .
  • Granular non-conductive fillers include, for example, silica, quartz powder, glass beads, glass balloons, glass powder, calcium silicate, aluminum silicate, kaolin, clay, diatomaceous earth, silicates such as wollastonite; , titanium oxide, zinc oxide and alumina; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; silicon carbide; silicon nitride;
  • the average fiber length of the fibrous non-conductive filler is not particularly limited, and may be, for example, 50 ⁇ m to 10 mm, 80 ⁇ m to 7 mm, or 100 ⁇ m to 4 mm.
  • the fiber diameter of the fibrous non-conductive filler is not particularly limited, and may be, for example, 0.2 to 15 ⁇ m, 0.25 to 13 ⁇ m, or 0.3 to 11 ⁇ m.
  • the fiber diameter of the fibrous non-conductive filler is 0.2 to 15 ⁇ m, the thickness dependence of the conductivity of the molded article is easily reduced, and a molded article with small volume resistivity fluctuation regardless of the thickness can be obtained.
  • the average fiber length of the fibrous non-conductive filler and the fiber diameter of the fibrous non-conductive filler are each the values measured in the same manner as described above for (B) the fibrous conductive filler. Take the average.
  • fibrous non-conductive fillers examples include glass fiber, milled glass fiber, asbestos fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate whisker, silica
  • fibrous non-conductive fillers include glass fiber, milled glass fiber, asbestos fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate whisker, silica
  • inorganic fibrous substances such as calcium acid whiskers (fibrous wollastonite).
  • the (D) non-conductive filler is preferably talc, because the thickness dependence of the conductivity of the molded body is more likely to be reduced, and a molded body with small fluctuations in volume resistivity is more likely to be obtained regardless of the thickness.
  • the content of the non-conductive filler in the liquid crystalline resin composition of the present invention is preferably 2 to 8% by mass, more preferably 2.3 to 7.7% by mass, and still more It is preferably 2.5 to 7.5% by mass.
  • the content is 2 to 8% by mass, the fluidity of the liquid crystalline resin composition is likely to be improved, and a liquid crystalline resin composition having excellent moldability can be easily obtained.
  • the liquid crystalline resin composition of the present invention may contain other polymers, other fillers, and known substances generally added to synthetic resins, such as antioxidants and ultraviolet absorbers, as long as they do not impair the effects of the present invention.
  • Other ingredients such as stabilizers such as agents, antistatic agents, flame retardants, coloring agents such as dyes and pigments, lubricants, crystallization accelerators, crystal nucleating agents, release agents, etc. may be added as appropriate according to the required performance. can be done.
  • Other components may be used singly or in combination of two or more.
  • polymers include, for example, epoxy group-containing copolymers. Other polymers may be used singly or in combination of two or more.
  • fillers refer to fillers other than (B) fibrous conductive fillers, (C) granular conductive fillers, and (D) non-conductive fillers, for example, (B) components and ( C) Conductive fillers other than the component can be mentioned. Other fillers may be used singly or in combination of two or more. Examples of conductive fillers other than components (B) and (C) include plate-like conductive fillers.
  • the method for preparing the liquid crystalline resin composition of the present invention is not particularly limited.
  • the components (A) to (C), optionally the component (D), and optionally at least one of the other components are blended, and these are melted using a single-screw or twin-screw extruder.
  • the liquid crystalline resin composition is prepared by kneading.
  • the liquid crystalline resin composition of the present invention obtained as described above preferably has a melt viscosity of 180 Pa ⁇ sec or less, more preferably 145 Pa ⁇ sec or less, from the viewpoint of fluidity when melted and moldability. and more preferably 140 Pa ⁇ sec or less.
  • the melt viscosity is a value obtained by a measurement method according to ISO 11443 under the conditions of a cylinder temperature 10 to 20° C. higher than the melting point of the liquid crystalline resin and a shear rate of 1000 sec ⁇ 1 .
  • the stirring torque reached a predetermined value, nitrogen was introduced to increase the pressure from reduced pressure to normal pressure to pressurized state, the polymer was discharged from the bottom of the polymerization vessel, and the strand was pelletized to obtain pellets.
  • the obtained pellets were heat-treated at 300° C. for 2 hours in a nitrogen stream to obtain the desired polymer.
  • the obtained polymer had a melting point of 336° C. and a melt viscosity at 350° C. of 19.0 Pa ⁇ s.
  • the melt viscosity of the polymer was measured in the same manner as the melt viscosity measurement method described below.
  • HBA 4-hydroxybenzoic acid
  • HNA 2-hydroxy-6-naphthoic acid
  • TA 1,4-phenylene dicarboxylic acid
  • BP 4,4'-dihydroxybiphenyl
  • APAP N-acetyl-p-aminophenol
  • Metal catalyst potassium acetate catalyst
  • 110 mg Acylating agent acetic anhydride
  • the temperature of the reaction system was raised to 140° C., and the reaction was carried out at 140° C. for 1 hour. After that, the temperature was further raised to 360°C over 5.5 hours, and the pressure was reduced to 5 Torr (that is, 667 Pa) over 20 minutes to distill off acetic acid, excess acetic anhydride, and other low-boiling components. Melt polymerization was performed. After the stirring torque reaches a predetermined value, nitrogen is introduced to increase the pressure from reduced pressure to normal pressure to pressurized state, the polymer is discharged from the bottom of the polymerization vessel, and the strand is pelletized to obtain the target polymer as pellets.
  • Talc Crown talc PP (manufactured by Matsumura Sangyo Co., Ltd., talc, median diameter 14.6 ⁇ m) ⁇ Mica: AB-25S (manufactured by Yamaguchi Mica Co., Ltd., mica, median diameter 25.0 ⁇ m)
  • Silica Denka fused silica FB-5SDC (manufactured by Denka Co., Ltd., silica, median diameter 4.0 ⁇ m)
  • ⁇ Glass fiber ECS03T-786H (man
  • compositions of Examples have low melt viscosities and high fluidity, so it is confirmed that they are excellent in moldability. It was confirmed that the molded article obtained was excellent in electromagnetic wave shielding properties.

Abstract

Provided is an electromagnetic wave shielding member having excellent electromagnetic wave shielding properties, which is formed from a liquid crystalline resin composition having excellent moldability. This electromagnetic wave shielding member formed from a liquid crystalline resin composition having a liquid crystalline resin (A), a fibrous conductive filler (B), and a granular conductive filler (C), wherein the total content of the fibrous conductive filler (B) and the granular conductive filler (C) is 15-60 mass%, the mass ratio of the content of the fibrous conductive filler (B) to the content of the granular conductive filler (C) is 0.30-22.0, and the electromagnetic wave shielding member has an electromagnetic wave shielding property of at least 35 dB at a frequency of 100 MHz, as measured according to the KEC method.

Description

電磁波シールド部材Electromagnetic wave shielding material
 本発明は、電磁波シールド部材に関する。 The present invention relates to electromagnetic shielding members.
 液晶性ポリエステル樹脂に代表される液晶性樹脂は、優れた機械的強度、耐熱性、耐薬品性、電気的性質等をバランス良く有し、優れた寸法安定性も有するため高機能エンジニアリングプラスチックとして広く利用されている。また、例えば、特許文献1には、成形性に優れる液晶ポリエステル樹脂組成物が開示されており、当該液晶ポリエステル樹脂組成物を成形して得られる成形品は、電磁波シールド性、電気絶縁性に優れ、電子機器に係る部材等に有用であることも開示されている。 Liquid crystalline resins, represented by liquid crystalline polyester resins, have well-balanced mechanical strength, heat resistance, chemical resistance, electrical properties, etc., and are widely used as high-performance engineering plastics due to their excellent dimensional stability. It's being used. Further, for example, Patent Document 1 discloses a liquid crystal polyester resin composition having excellent moldability, and a molded article obtained by molding the liquid crystal polyester resin composition has excellent electromagnetic wave shielding properties and electrical insulation properties. , it is also disclosed that it is useful for members related to electronic equipment.
特開2008-111010号公報Japanese Patent Application Laid-Open No. 2008-111010
 近年、LTEから5Gへの移行に伴い、コネクター、伝送基板、アンテナ等の多くの製品において、信号伝達速度及び信号精度の大幅な向上が必要になっている。高速通信に関連してコネクター材料等の導電性材料が開発される中で、電磁波シールド形成によるノイズ対策として、複雑な形状を付与することが可能な熱可塑性導電性材料の重要性がクローズアップされている。 In recent years, with the transition from LTE to 5G, it has become necessary to significantly improve signal transmission speed and signal accuracy in many products such as connectors, transmission boards, and antennas. As conductive materials such as connector materials are being developed in connection with high-speed communication, the importance of thermoplastic conductive materials that can be given complex shapes as noise countermeasures by forming electromagnetic wave shields has been highlighted. ing.
 上述のような導電性材料の候補として、液晶性樹脂組成物が挙げられる。しかし、本発明者らの検討によれば、従来の液晶性樹脂組成物では、電磁波シールド性が十分ではなく、また、溶融粘度が高いことから、成形加工性が十分ではない。本発明は、上記課題を解決するためになされたものであり、その目的は、成形加工性に優れる液晶性樹脂組成物から成形され、かつ、電磁波シールド性に優れた電磁波シールド部材を提供することにある。 A liquid crystalline resin composition can be mentioned as a candidate for the conductive material as described above. However, according to the studies of the present inventors, the conventional liquid crystalline resin compositions do not have sufficient electromagnetic wave shielding properties, and their high melt viscosities lead to insufficient moldability. The present invention has been made to solve the above problems, and its object is to provide an electromagnetic shielding member molded from a liquid crystalline resin composition having excellent moldability and having excellent electromagnetic shielding properties. It is in.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、液晶性樹脂と、繊維状導電性充填剤と、粒状導電性充填剤と、を含有する液晶性樹脂組成物の成形体からなり、繊維状導電性充填剤と粒状導電性充填剤との合計の含有量が所定の範囲であり、粒状導電性充填剤の含有量に対する繊維状導電性充填剤の含有量の質量比が所定の範囲であり、所定の電磁波シールド性が所定の範囲である電磁波シールド部材を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。 The inventors have conducted extensive research to solve the above problems. As a result, a molded body of a liquid crystalline resin composition containing a liquid crystalline resin, a fibrous conductive filler, and a granular conductive filler, and the fibrous conductive filler and the granular conductive filler is within a predetermined range, the mass ratio of the content of the fibrous conductive filler to the content of the granular conductive filler is within a predetermined range, and the predetermined electromagnetic shielding property is within a predetermined range The inventors have found that the above problems can be solved by using a certain electromagnetic wave shielding member, and have completed the present invention. More specifically, the present invention provides the following.
 (1) (A)液晶性樹脂と、(B)繊維状導電性充填剤と、(C)粒状導電性充填剤と、を含有する液晶性樹脂組成物の成形体からなる電磁波シールド部材であって、
 前記(B)繊維状導電性充填剤と前記(C)粒状導電性充填剤との合計の含有量は、15~60質量%であり、
 前記(C)粒状導電性充填剤の含有量に対する前記(B)繊維状導電性充填剤の含有量の質量比は、0.30~22.0であり、
 前記電磁波シールド部材は、KEC法に準拠して測定される、周波数100MHzにおける電磁波シールド性が35dB以上である電磁波シールド部材。
(1) An electromagnetic wave shielding member comprising a molding of a liquid crystalline resin composition containing (A) a liquid crystalline resin, (B) a fibrous conductive filler, and (C) a granular conductive filler. hand,
The total content of the (B) fibrous conductive filler and the (C) granular conductive filler is 15 to 60% by mass,
The mass ratio of the content of the fibrous conductive filler (B) to the content of the granular conductive filler (C) is 0.30 to 22.0,
The electromagnetic wave shielding member has an electromagnetic wave shielding property of 35 dB or more at a frequency of 100 MHz, as measured according to the KEC method.
 (2) 前記(B)繊維状導電性充填剤と前記(C)粒状導電性充填剤との合計の含有量は、20~50質量%であり、
 前記(C)粒状導電性充填剤の含有量に対する前記(B)繊維状導電性充填剤の含有量の質量比は、0.50~20.0である(1)に記載の電磁波シールド部材。
(2) the total content of the (B) fibrous conductive filler and the (C) granular conductive filler is 20 to 50% by mass;
The electromagnetic wave shielding member according to (1), wherein the mass ratio of the content of the fibrous conductive filler (B) to the content of the granular conductive filler (C) is 0.50 to 20.0.
 (3) 前記(B)繊維状導電性充填剤は、炭素繊維であり、
 前記(C)粒状導電性充填剤は、カーボンブラックである(1)又は(2)に記載の電磁波シールド部材。
(3) The (B) fibrous conductive filler is carbon fiber,
The electromagnetic wave shielding member according to (1) or (2), wherein the (C) granular conductive filler is carbon black.
 (4) 前記液晶性樹脂組成物は、更に、(D)非導電性充填剤を含有する(1)~(3)のいずれかに記載の電磁波シールド部材。 (4) The electromagnetic wave shielding member according to any one of (1) to (3), wherein the liquid crystalline resin composition further contains (D) a non-conductive filler.
 (5) 前記(D)非導電性充填剤の含有量は、2~8質量%である(1)~(4)のいずれかに記載の電磁波シールド部材。 (5) The electromagnetic wave shielding member according to any one of (1) to (4), wherein the content of the (D) non-conductive filler is 2 to 8% by mass.
 (6) 前記(D)非導電性充填剤は、タルク、マイカ、ガラスフレーク、シリカ、ガラスビーズ、ガラスバルーン、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー、ミルドガラスファイバー、及びガラス繊維からなる群より選択される1種以上である(4)又は(5)に記載の電磁波シールド部材。 (6) The (D) non-conductive filler is selected from the group consisting of talc, mica, glass flakes, silica, glass beads, glass balloons, potassium titanate whiskers, calcium silicate whiskers, milled glass fibers, and glass fibers. The electromagnetic wave shielding member according to (4) or (5), which is one or more selected.
 (7) 前記(D)非導電性充填剤は、タルク、マイカ、シリカ、及びガラス繊維からなる群より選択される1種以上である(4)~(6)のいずれかに記載の電磁波シールド部材。 (7) The electromagnetic wave shield according to any one of (4) to (6), wherein the (D) non-conductive filler is one or more selected from the group consisting of talc, mica, silica, and glass fiber. Element.
 本発明によれば、成形加工性に優れる液晶性樹脂組成物から成形され、かつ、電磁波シールド性に優れた電磁波シールド部材を提供することができる。 According to the present invention, it is possible to provide an electromagnetic shielding member that is molded from a liquid crystalline resin composition that is excellent in moldability and that is excellent in electromagnetic shielding properties.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Embodiments of the present invention will be described below. In addition, this invention is not limited to the following embodiment.
<電磁波シールド部材>
 本発明の電磁波シールド部材は、(A)液晶性樹脂と、(B)繊維状導電性充填剤と、(C)粒状導電性充填剤と、を含有する液晶性樹脂組成物の成形体からなり、前記(B)繊維状導電性充填剤と前記(C)粒状導電性充填剤との合計の含有量は、15~60質量%であり、前記(C)粒状導電性充填剤の含有量に対する前記(B)繊維状導電性充填剤の含有量の質量比は、0.30~22.0であり、KEC法に準拠して測定される、周波数100MHzにおける電磁波シールド性が35dB以上である。本発明に係る電磁波シールド部材は、成形加工性に優れる液晶性樹脂組成物から成形され、かつ、電磁波シールド性に優れる。
<Electromagnetic wave shielding material>
The electromagnetic wave shielding member of the present invention comprises a molded body of a liquid crystalline resin composition containing (A) a liquid crystalline resin, (B) a fibrous conductive filler, and (C) a granular conductive filler. , The total content of the (B) fibrous conductive filler and the (C) granular conductive filler is 15 to 60% by mass, and the content of the (C) granular conductive filler The mass ratio of the content of the fibrous conductive filler (B) is 0.30 to 22.0, and the electromagnetic wave shielding property at a frequency of 100 MHz, measured according to the KEC method, is 35 dB or more. The electromagnetic wave shielding member according to the present invention is molded from a liquid crystalline resin composition having excellent moldability, and has excellent electromagnetic wave shielding properties.
 本発明に係る電磁波シールド部材は、KEC法に準拠して測定される、周波数100MHzにおける電磁波シールド性が35dB以上であり、電磁シールド性に優れる。上記電磁シールド性は、好ましくは37dB以上であり、より好ましくは38dB以上である。 The electromagnetic shielding member according to the present invention has an electromagnetic shielding property of 35 dB or more at a frequency of 100 MHz, which is measured according to the KEC method, and is excellent in electromagnetic shielding property. The electromagnetic shielding property is preferably 37 dB or more, more preferably 38 dB or more.
 本発明の電磁波シールド部材は、優れた電磁波シールド性が要求される用途に好適に用いることができ、具体的には、各種ケース、ギヤーケース、LEDパッケージ及びLEDランプ関連部品、コネクター、リレーケース、スイッチ、バリコンケース、光ピックアップレンズホルダー、光ピックアップスライドベース、ランプリフレクター、各種端子板、変成器、プリント配線板、液晶パネル枠、パワーモジュール及びそのハウジング、プラスチック磁石、半導体、液晶ディスプレー部品、投影機等のランプカバー、FDDキャリッジ、FDDシャーシ、アクチュエーター、シャーシ等のHDD部品、コンピューター関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン部品、ヘアードライヤー部品、炊飯器部品、電子レンジ部品、音響部品、音声機器部品(例えば、オーディオ、レーザーディスク(登録商標)、コンパクトディスク、デジタルビデオディスク等)、照明部品、冷蔵庫部品、エアコン部品等に代表される家庭・事務電気製品部品;オフィスコンピューター関連部品、電話機関連部品、ファクシミリ関連部品、印字ヘッドまわり及び転写ロール等のプリンター・複写機関連部品、洗浄用治具、モーター部品、顕微鏡部品、双眼鏡部品、カメラ部品、時計部品等に代表される光学機器・精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディマー用ポテンショメーターベース、モーターコア封止材、インシュレーター用部材、パワーシートギアハウジング、エアコン用サーモスタットベース、エアコンパネルスィッチ基板、ホーンターミナル、電装部品絶縁板、ランプハウジング、点火装置ケース、空気圧センサー、ヒューズ用コネクター、車速センサー等の自動車・車両関連部品;パソコンハウジング、携帯電話ハウジング、携帯電話基地局のアンテナケース、情報通信分野におけるチップアンテナ、無線LAN用アンテナ、ETC(エレクトロリックトールコレクションシステム)用アンテナ、衛星通信用アンテナ等の情報通信関連部品等に特に好適に用いることができる。 The electromagnetic wave shielding member of the present invention can be suitably used for applications requiring excellent electromagnetic wave shielding properties. Specifically, various cases, gear cases, LED packages and LED lamp related parts, connectors, relay cases, Switches, variable condenser cases, optical pickup lens holders, optical pickup slide bases, lamp reflectors, various terminal boards, transformers, printed wiring boards, liquid crystal panel frames, power modules and their housings, plastic magnets, semiconductors, liquid crystal display parts, projectors Lamp covers, FDD carriages, FDD chassis, actuators, HDD parts such as chassis, electrical and electronic parts represented by computer-related parts; VTR parts, TV parts, iron parts, hair dryer parts, rice cooker parts, electronics Range parts, acoustic parts, audio equipment parts (e.g., audio, laser disc (registered trademark), compact disc, digital video disc, etc.), lighting parts, refrigerator parts, air conditioner parts, etc. Household and office electrical product parts; Office computer-related parts, telephone-related parts, facsimile-related parts, printer/copier-related parts such as print heads and transfer rolls, cleaning jigs, motor parts, microscope parts, binocular parts, camera parts, watch parts, etc. Optical equipment and precision machinery related parts; alternator terminals, alternator connectors, IC regulators, potentiometer bases for light dimmers, motor core sealing materials, insulator parts, power seat gear housings, thermostat bases for air conditioners, air conditioner panel switch substrates, Horn terminals, insulating plates for electrical parts, lamp housings, ignition device cases, air pressure sensors, fuse connectors, vehicle speed sensors, and other automotive and vehicle related parts; It can be particularly suitably used for information communication-related parts such as chip antennas, wireless LAN antennas, ETC (Electric Toll Collection System) antennas, and satellite communication antennas.
[(A)液晶性樹脂]
 本発明で使用する(A)液晶性樹脂とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
[(A) liquid crystalline resin]
The (A) liquid crystalline resin used in the present invention refers to a melt-processable polymer having a property capable of forming an optically anisotropic melt phase. The anisotropic melt phase properties can be confirmed by conventional polarimetry using crossed polarizers. More specifically, confirmation of the anisotropic molten phase can be carried out by using a Leitz polarizing microscope and observing the molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. A liquid crystalline polymer applicable to the present invention normally transmits polarized light and exhibits optical anisotropy when inspected between crossed polarizers even in a molten state.
 上記のような(A)液晶性樹脂の種類としては特に限定されず、芳香族ポリエステル及び/又は芳香族ポリエステルアミドであることが好ましい。また、芳香族ポリエステル及び/又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。(A)液晶性樹脂としては、60℃でペンタフルオロフェノールに濃度0.1質量%で溶解したときに、好ましくは少なくとも約2.0dl/g、更に好ましくは2.0~10.0dl/gの対数粘度(I.V.)を有するものが好ましく使用される。 The type of (A) liquid crystalline resin as described above is not particularly limited, and aromatic polyesters and/or aromatic polyesteramides are preferable. Polyesters that partially contain aromatic polyesters and/or aromatic polyesteramides in the same molecular chain are also within the scope. (A) The liquid crystalline resin is preferably at least about 2.0 dl/g, more preferably 2.0 to 10.0 dl/g when dissolved in pentafluorophenol at 60° C. at a concentration of 0.1% by mass. of logarithmic viscosity (I.V.) is preferably used.
 本発明に適用できる(A)液晶性樹脂としての芳香族ポリエステル又は芳香族ポリエステルアミドは、特に好ましくは、芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる少なくとも1種に由来する構成単位を構成成分として有する芳香族ポリエステル又は芳香族ポリエステルアミドである。 The aromatic polyester or aromatic polyester amide as (A) the liquid crystalline resin applicable to the present invention particularly preferably contains a structural unit derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof. It is an aromatic polyester or an aromatic polyester amide having as a constituent component.
 より具体的には、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる少なくとも1種に由来する構成単位からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、からなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、からなるポリエステル;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、からなるポリエステルアミド;
(5)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体からなる群より選ばれる少なくとも1種に由来する構成単位と、からなるポリエステルアミド等が挙げられる。更に上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
More specifically,
(1) Polyester mainly composed of structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof;
(2) Mainly (a) structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof A polyester consisting of a structural unit derived from at least one selected from the group consisting of;
(3) Mainly (a) structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof and (c) a structural unit derived from at least one selected from the group consisting of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof. a polyester consisting of;
(4) A group consisting mainly of (a) structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic hydroxyamines, aromatic diamines, and derivatives thereof and (c) a structural unit derived from at least one selected from the group consisting of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof. Amide;
(5) A group consisting mainly of (a) structural units derived from at least one selected from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof, and (b) aromatic hydroxyamines, aromatic diamines, and derivatives thereof (c) a structural unit derived from at least one selected from the group consisting of aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and derivatives thereof; and (d) and a structural unit derived from at least one selected from the group consisting of aromatic diols, alicyclic diols, aliphatic diols, and derivatives thereof. Furthermore, a molecular weight modifier may be used in combination with the above constituents, if necessary.
 本発明に適用できる(A)液晶性樹脂を構成する具体的化合物の好ましい例としては、4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸;2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)で表される化合物、及び下記一般式(II)で表される化合物等の芳香族ジオール;1,4-フェニレンジカルボン酸、1,3-フェニレンジカルボン酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、及び下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン、N-アセチル-p-アミノフェノール等の芳香族アミン類が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(X:アルキレン(C~C)、アルキリデン、-O-、-SO-、-SO-、-S-、及び-CO-より選ばれる基である。)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y:-(CH-(n=1~4)及び-O(CHO-(n=1~4)より選ばれる基である。)
Preferred examples of specific compounds constituting (A) the liquid crystalline resin applicable to the present invention include aromatic hydroxycarboxylic acids such as 4-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxy Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4'-dihydroxybiphenyl, hydroquinone, resorcinol, compounds represented by the following general formula (I), and compounds represented by the following general formula (II) ; 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and aromatics such as compounds represented by the following general formula (III) dicarboxylic acids; p-aminophenol, p-phenylenediamine, N-acetyl-p-aminophenol and other aromatic amines.
Figure JPOXMLDOC01-appb-C000001
(X: A group selected from alkylene (C 1 to C 4 ), alkylidene, —O—, —SO—, —SO 2 —, —S—, and —CO—.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y: a group selected from —(CH 2 ) n —(n=1 to 4) and —O(CH 2 ) n O—(n=1 to 4).)
 本発明に用いられる(A)液晶性樹脂の調製は、上記のモノマー化合物(又はモノマーの混合物)から直接重合法やエステル交換法を用いて公知の方法で行うことができ、通常は溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。エステル形成能を有する上記化合物類はそのままの形で重合に用いてもよく、また、重合の前段階で前駆体から該エステル形成能を有する誘導体に変性されたものでもよい。これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等の金属塩系触媒、1-メチルイミダゾール、4-ジメチルアミノピリジン等の有機化合物系触媒が挙げられる。触媒の使用量は一般にはモノマーの全質量に対して約0.001~1質量%、特に約0.01~0.2質量%が好ましい。これらの重合方法により製造されたポリマーは更に必要があれば、減圧又は不活性ガス中で加熱する固相重合法により分子量の増加を図ることができる。 The liquid crystalline resin (A) used in the present invention can be prepared by a known method using a direct polymerization method or a transesterification method from the above monomer compound (or a mixture of monomers), and usually a melt polymerization method. , a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, or a combination of two or more thereof is used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is preferably used. The above-mentioned compounds having ester-forming ability may be used for polymerization as they are, or may be modified from precursors to derivatives having said ester-forming ability in the pre-polymerization stage. Various catalysts can be used in these polymerizations, and representative ones include potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, tris ,4-pentanedionato)cobalt (III), and organic compound catalysts such as 1-methylimidazole and 4-dimethylaminopyridine. The amount of catalyst used is generally about 0.001 to 1% by weight, preferably about 0.01 to 0.2% by weight, based on the total weight of the monomers. Polymers produced by these polymerization methods can be further increased in molecular weight by solid phase polymerization in which heating is performed under reduced pressure or in an inert gas, if necessary.
 上記のような方法で得られた(A)液晶性樹脂の溶融粘度は特に限定されない。一般には成形温度での溶融粘度が剪断速度1000sec-1で3Pa・s以上500Pa・s以下のものが使用可能である。しかし、それ自体あまり高粘度のものは流動性が非常に悪化するため好ましくない。なお、上記(A)液晶性樹脂は2種以上の液晶性樹脂の混合物であってもよい。 The melt viscosity of (A) the liquid crystalline resin obtained by the above method is not particularly limited. In general, those having a melt viscosity at a molding temperature of 3 Pa·s or more and 500 Pa·s or less at a shear rate of 1000 sec −1 can be used. However, if the viscosity is too high per se, the fluidity will be greatly deteriorated, which is not preferable. The liquid crystalline resin (A) may be a mixture of two or more liquid crystalline resins.
 本発明の液晶性樹脂組成物において、(A)液晶性樹脂の含有量は、好ましくは40~85質量%であり、より好ましくは50~80質量%であり、更により好ましくは60.5~79.5質量%である。(A)成分の含有量が上記範囲内であると、流動性、耐熱性等の点で好ましい。 In the liquid crystalline resin composition of the present invention, the content of (A) the liquid crystalline resin is preferably 40 to 85% by mass, more preferably 50 to 80% by mass, and even more preferably 60.5 to 80% by mass. It is 79.5% by mass. When the content of component (A) is within the above range, it is preferable in terms of fluidity, heat resistance, and the like.
[(B)繊維状導電性充填剤]
 本発明に係る液晶性樹脂組成物には、繊維状導電性充填剤が含まれる。繊維状導電性充填剤は、1種単独で又は2種以上組み合わせて使用することができる。
[(B) fibrous conductive filler]
The liquid crystalline resin composition according to the present invention contains a fibrous conductive filler. A fibrous conductive filler can be used individually by 1 type or in combination of 2 or more types.
 (B)繊維状導電性充填剤の平均繊維長は、特に限定されず、導電性の観点から、例えば、50μm以上10mmでよく、80μm以上8mmでも、100μm以上7mmでもよい。なお、本明細書において、(B)繊維状導電性充填剤の平均繊維長としては、繊維状導電性充填剤の実体顕微鏡画像10枚をCCDカメラからPCに取り込み、画像測定機によって画像処理手法により、実体顕微鏡画像1枚ごとに100本の繊維状導電性充填剤、即ち、合計1000本の繊維状導電性充填剤について繊維長を測定した値の平均を採用する。液晶性樹脂組成物中の(B)繊維状導電性充填剤の平均繊維長は、液晶性樹脂組成物を500℃で4時間の加熱により灰化して残存した繊維状導電性充填剤について、上記方法を適用することで測定される。 (B) The average fiber length of the fibrous conductive filler is not particularly limited, and from the viewpoint of conductivity, it may be, for example, 50 μm or more and 10 mm, 80 μm or more and 8 mm, or 100 μm or more and 7 mm. In this specification, (B) the average fiber length of the fibrous conductive filler is obtained by taking 10 stereomicroscopic images of the fibrous conductive filler from a CCD camera into a PC and using an image measuring device to perform image processing. Therefore, the average of the values obtained by measuring the fiber lengths of 100 fibrous conductive fillers, that is, a total of 1000 fibrous conductive fillers, is adopted for each stereoscopic microscope image. The average fiber length of the fibrous conductive filler (B) in the liquid crystalline resin composition is the fibrous conductive filler remaining after incineration by heating the liquid crystalline resin composition at 500 ° C. for 4 hours. Measured by applying the method.
 (B)繊維状導電性充填剤の繊維径は、特に限定されず、導電性の観点から、例えば、0.2~15μmでよく、0.25~13μmでも、0.3~11μmでもよい。なお、本明細書において、(B)繊維状導電性充填剤の繊維径としては、繊維状導電性充填剤を走査型電子顕微鏡で観察し、30本の繊維状導電性充填剤について繊維径を測定した値の平均を採用する。液晶性樹脂組成物中の(B)繊維状導電性充填剤の繊維径は、液晶性樹脂組成物を500℃で4時間の加熱により灰化して残存した繊維状導電性充填剤について、上記方法を適用することで測定される。 (B) The fiber diameter of the fibrous conductive filler is not particularly limited, and from the viewpoint of conductivity, it may be, for example, 0.2 to 15 μm, 0.25 to 13 μm, or 0.3 to 11 μm. In the present specification, the fiber diameter of the fibrous conductive filler (B) is determined by observing the fibrous conductive filler with a scanning electron microscope and determining the fiber diameter of 30 fibrous conductive fillers. Take the average of the measured values. The fiber diameter of the (B) fibrous conductive filler in the liquid crystalline resin composition is determined by the above method for the fibrous conductive filler remaining after incineration by heating the liquid crystalline resin composition at 500 ° C. for 4 hours. is measured by applying
 (B)繊維状導電性充填剤としては、例えば、炭素繊維;金属繊維等の導電性繊維;無機質繊維状物質等にニッケル、銅等の金属をコートし、導電性を付与したものが挙げられ、導電性の観点から、炭素繊維が好ましい。 (B) Examples of fibrous conductive fillers include carbon fibers; conductive fibers such as metal fibers; inorganic fibrous substances, etc., coated with metals such as nickel and copper to impart conductivity. , carbon fiber is preferable from the viewpoint of conductivity.
 炭素繊維としては、ポリアクリロニトリルを原料とするPAN系炭素繊維、ピッチを原料とするピッチ系炭素繊維が挙げられる。 Examples of carbon fibers include PAN-based carbon fibers made from polyacrylonitrile and pitch-based carbon fibers made from pitch.
 金属繊維としては、軟鋼、ステンレス、鋼及びその合金、銅、黄銅、アルミニウム及びその合金、チタン、鉛等からなる繊維が挙げられる。これらの金属繊維は、その導電性により必要であれば更に導電性を付与するために他の金属をコートしたものも使用可能である。 Examples of metal fibers include fibers made of mild steel, stainless steel, steel and its alloys, copper, brass, aluminum and its alloys, titanium, lead, and the like. These metal fibers may be coated with other metals to provide further conductivity if required due to their conductivity.
 上記無機質繊維状物質としては、ガラス繊維、ミルドガラスファイバー、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維、硼素繊維、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー(繊維状ウォラストナイト)等が挙げられる。 Examples of the inorganic fibrous substances include glass fiber, milled glass fiber, asbestos fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate whisker, calcium silicate whisker ( fibrous wollastonite) and the like.
[(C)粒状導電性充填剤]
 本発明に係る液晶性樹脂組成物には、粒状導電性充填剤が含まれる。粒状導電性充填剤は、1種単独で又は2種以上組み合わせて使用することができる。
[(C) Particulate conductive filler]
The liquid crystalline resin composition according to the present invention contains a granular conductive filler. Granular conductive fillers can be used singly or in combination of two or more.
 (C)粒状導電性充填剤のメディアン径は、特に限定されず、導電性の観点から、例えば、10nm以上50μm以下でよく、15nm以上20μm以下でも、18nm以上10μm以下でもよい。なお、本明細書において、メディアン径とは、レーザー回折/散乱式粒度分布測定法で測定した体積基準の中央値をいう。 (C) The median diameter of the particulate conductive filler is not particularly limited, and from the viewpoint of conductivity, it may be, for example, 10 nm or more and 50 μm or less, 15 nm or more and 20 μm or less, or 18 nm or more and 10 μm or less. In this specification, the median diameter refers to the volume-based median value measured by a laser diffraction/scattering particle size distribution measurement method.
 (C)粒状導電性充填剤としては、カーボンブラック、粒状金属粉(例えば、アルミ、鉄、銅)、粒状導電性セラミックス(例えば、酸化亜鉛、酸化スズ、酸化インジウムスズ)等が挙げられ、導電性の観点から、カーボンブラックが好ましい。カーボンブラックは、樹脂着色に用いられる一般的に入手可能なものであれば、特に限定されるものではない。通常、カーボンブラックには一次粒子が凝集して出来上がる塊状物が含まれているが、50μm以上の大きさの塊状物が著しく多く含まれていない限り、本発明の樹脂組成物を成形してなる成形体の表面に多くのブツ(カーボンブラックが凝集した細かいブツブツ状突起物(細かい凹凸))は発生しにくい。上記塊状物粒子径が50μm以上の粒子の含有率が20ppm以下であると、成形体表面の平滑性が高くなりやすい。好ましい含有率は5ppm以下である。 (C) Granular conductive fillers include carbon black, granular metal powders (e.g., aluminum, iron, copper), granular conductive ceramics (e.g., zinc oxide, tin oxide, indium tin oxide) and the like. Carbon black is preferred from the viewpoint of properties. Carbon black is not particularly limited as long as it is generally available for coloring resins. Generally, carbon black contains lumps formed by agglomeration of primary particles. A large number of bumps (fine bumpy projections (fine irregularities) formed by agglomeration of carbon black) are less likely to occur on the surface of the molded product. When the content of particles having a particle size of 50 μm or more is 20 ppm or less, the smoothness of the surface of the molded article tends to be high. A preferable content is 5 ppm or less.
 (B)繊維状導電性充填剤と(C)粒状導電性充填剤との合計の含有量は、本発明の液晶性樹脂組成物において、15~60質量%であり、好ましくは20~50質量%であり、より好ましくは20.5~39.5質量%である。上記合計の含有量が15質量%以上であると、電磁波シールド性が向上した成形体を得やすい。上記合計の含有量が60質量%以下であると、液晶性樹脂組成物の流動性が向上しやすく、成形加工性に優れた液晶性樹脂組成物を得やすい。 The total content of (B) the fibrous conductive filler and (C) the granular conductive filler is 15 to 60% by mass, preferably 20 to 50% by mass, in the liquid crystalline resin composition of the present invention. %, more preferably 20.5 to 39.5% by mass. When the total content is 15% by mass or more, it is easy to obtain a molded article with improved electromagnetic wave shielding properties. When the total content is 60% by mass or less, the fluidity of the liquid crystalline resin composition is likely to be improved, and a liquid crystalline resin composition having excellent moldability can be easily obtained.
 (C)粒状導電性充填剤の含有量に対する前記(B)繊維状導電性充填剤の含有量の質量比は、0.30~22.0であり、好ましくは0.40~21.0であり、より好ましくは0.50~20.0である。上記質量比が0.30以上であると、液晶性樹脂組成物の流動性が向上しやすく、成形加工性に優れた液晶性樹脂組成物を得やすいとともに、電磁波シールド性が向上した成形体を得やすい。上記質量比が20.0以下であると、電磁波シールド性が向上した成形体を得やすい。 The mass ratio of the content of the fibrous conductive filler (B) to the content of the granular conductive filler (C) is 0.30 to 22.0, preferably 0.40 to 21.0. Yes, more preferably 0.50 to 20.0. When the mass ratio is 0.30 or more, the fluidity of the liquid crystalline resin composition is likely to be improved, and a liquid crystalline resin composition having excellent molding processability is easily obtained, and a molded article having improved electromagnetic wave shielding properties is obtained. Easy to get. When the mass ratio is 20.0 or less, it is easy to obtain a molded article with improved electromagnetic wave shielding properties.
[(D)非導電性充填剤]
 本発明に係る液晶性樹脂組成物は、非導電性充填剤を含んでもよい。非導電性充填剤は、1種単独で又は2種以上組み合わせて使用することができる。(D)非導電性充填剤としては、例えば、板状非導電性充填剤、粒状非導電性充填剤、繊維状非導電性充填剤が挙げられる。
[(D) non-conductive filler]
The liquid crystalline resin composition according to the present invention may contain a non-conductive filler. A non-conductive filler can be used individually by 1 type or in combination of 2 or more types. (D) Non-conductive fillers include, for example, plate-shaped non-conductive fillers, granular non-conductive fillers, and fibrous non-conductive fillers.
 板状非導電性充填剤のメディアン径は、特に限定されず、例えば、10~100μmでよく、12~50μmでも、14~30μmでもよい。本発明に係る電磁波シールド部材は、電磁波シールド性の観点から、複雑な形状を有する成形体からなる場合であっても、成形体の厚みによらず、導電性の指標である体積抵抗率の変動が小さいことが好ましい。板状非導電性充填剤のメディアン径が10~100μmであると、成形体の導電性の厚み依存性が低減しやすく、厚みによらず、体積抵抗率の変動が小さい成形体を得やすい。板状非導電性充填剤としては、例えば、タルク、マイカ、ガラスフレーク等が挙げられる。 The median diameter of the plate-shaped non-conductive filler is not particularly limited, and may be, for example, 10 to 100 μm, 12 to 50 μm, or 14 to 30 μm. From the viewpoint of electromagnetic wave shielding properties, the electromagnetic wave shielding member according to the present invention has a volume resistivity that is an index of conductivity, regardless of the thickness of the molded body, even if it is composed of a molded body having a complicated shape. is preferably small. When the plate-shaped non-conductive filler has a median diameter of 10 to 100 μm, the thickness dependence of the electrical conductivity of the molded article is likely to be reduced, and a molded article having a small variation in volume resistivity regardless of the thickness is easily obtained. Plate-shaped non-conductive fillers include, for example, talc, mica, glass flakes, and the like.
 粒状非導電性充填剤のメディアン径は、特に限定されず、例えば、0.3~50μmでよく、0.4~25μmでも、0.5~5.0μmでもよい。粒状非導電性充填剤のメディアン径が0.3~50μmであると、成形体の導電性の厚み依存性が低減しやすく、厚みによらず、体積抵抗率の変動が小さい成形体を得やすい。粒状非導電性充填剤としては、例えば、シリカ、石英粉末、ガラスビーズ、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、珪藻土、ウォラストナイト等の硅酸塩;酸化鉄、酸化チタン、酸化亜鉛、アルミナ等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;炭化硅素;窒化硅素;窒化硼素等が挙げられる。 The median diameter of the granular non-conductive filler is not particularly limited, and may be, for example, 0.3 to 50 μm, 0.4 to 25 μm, or 0.5 to 5.0 μm. When the median diameter of the granular non-conductive filler is 0.3 to 50 μm, the thickness dependence of the conductivity of the molded body is likely to be reduced, and the molded body with small fluctuations in volume resistivity is easily obtained regardless of the thickness. . Granular non-conductive fillers include, for example, silica, quartz powder, glass beads, glass balloons, glass powder, calcium silicate, aluminum silicate, kaolin, clay, diatomaceous earth, silicates such as wollastonite; , titanium oxide, zinc oxide and alumina; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; silicon carbide; silicon nitride;
 繊維状非導電性充填剤の平均繊維長は、特に限定されず、例えば、50μm以上10mmでよく、80μm以上7mmでも、100μm以上4mmでもよい。繊維状非導電性充填剤の平均繊維長が50μm以上10mmであると、成形体の導電性の厚み依存性が低減しやすく、厚みによらず、体積抵抗率の変動が小さい成形体を得やすい。繊維状非導電性充填剤の繊維径は、特に限定されず、例えば、0.2~15μmでよく、0.25~13μmでも、0.3~11μmでもよい。繊維状非導電性充填剤の繊維径が0.2~15μmであると、成形体の導電性の厚み依存性が低減しやすく、厚みによらず、体積抵抗率の変動が小さい成形体を得やすい。繊維状非導電性充填剤の平均繊維長、及び、繊維状非導電性充填剤の繊維径としては、各々、(B)繊維状導電性充填剤について前述したのと同様にして測定した値の平均を採用する。繊維状非導電性充填剤としては、例えば、ガラス繊維、ミルドガラスファイバー、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維、硼素繊維、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー(繊維状ウォラストナイト)等の無機質繊維状物質等が挙げられる。 The average fiber length of the fibrous non-conductive filler is not particularly limited, and may be, for example, 50 μm to 10 mm, 80 μm to 7 mm, or 100 μm to 4 mm. When the fibrous non-conductive filler has an average fiber length of 50 μm or more and 10 mm, the thickness dependence of the conductivity of the molded article is likely to be reduced, and a molded article with small fluctuations in volume resistivity is easily obtained regardless of the thickness. . The fiber diameter of the fibrous non-conductive filler is not particularly limited, and may be, for example, 0.2 to 15 μm, 0.25 to 13 μm, or 0.3 to 11 μm. When the fiber diameter of the fibrous non-conductive filler is 0.2 to 15 μm, the thickness dependence of the conductivity of the molded article is easily reduced, and a molded article with small volume resistivity fluctuation regardless of the thickness can be obtained. Cheap. The average fiber length of the fibrous non-conductive filler and the fiber diameter of the fibrous non-conductive filler are each the values measured in the same manner as described above for (B) the fibrous conductive filler. Take the average. Examples of fibrous non-conductive fillers include glass fiber, milled glass fiber, asbestos fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate whisker, silica Examples thereof include inorganic fibrous substances such as calcium acid whiskers (fibrous wollastonite).
 成形体の導電性の厚み依存性がより低減しやすく、厚みによらず、体積抵抗率の変動が小さい成形体をより得やすいことから、(D)非導電性充填剤は、好ましくは、タルク、マイカ、ガラスフレーク、シリカ、ガラスビーズ、ガラスバルーン、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー、ミルドガラスファイバー、及びガラス繊維からなる群より選択される1種以上であり、より好ましくは、タルク、マイカ、シリカ、及びガラス繊維からなる群より選択される1種以上である。 The (D) non-conductive filler is preferably talc, because the thickness dependence of the conductivity of the molded body is more likely to be reduced, and a molded body with small fluctuations in volume resistivity is more likely to be obtained regardless of the thickness. , mica, glass flakes, silica, glass beads, glass balloons, potassium titanate whiskers, calcium silicate whiskers, milled glass fibers, and glass fibers, more preferably talc, One or more selected from the group consisting of mica, silica, and glass fiber.
 (D)非導電性充填剤の含有量は、本発明の液晶性樹脂組成物において、好ましくは2~8質量%であり、より好ましくは2.3~7.7質量%であり、更により好ましくは2.5~7.5質量%である。上記含有量が2~8質量%であると、液晶性樹脂組成物の流動性が向上しやすく、成形加工性に優れた液晶性樹脂組成物を得やすい。 (D) The content of the non-conductive filler in the liquid crystalline resin composition of the present invention is preferably 2 to 8% by mass, more preferably 2.3 to 7.7% by mass, and still more It is preferably 2.5 to 7.5% by mass. When the content is 2 to 8% by mass, the fluidity of the liquid crystalline resin composition is likely to be improved, and a liquid crystalline resin composition having excellent moldability can be easily obtained.
[その他の成分]
 本発明の液晶性樹脂組成物には、本発明の効果を害さない範囲で、その他の重合体、その他の充填剤、一般に合成樹脂に添加される公知の物質、即ち、酸化防止剤や紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、染料や顔料等の着色剤、潤滑剤、結晶化促進剤、結晶核剤、離型剤等のその他の成分も要求性能に応じ適宜添加することができる。その他の成分は1種単独で用いても2種以上を組み合わせて用いてもよい。
[Other ingredients]
The liquid crystalline resin composition of the present invention may contain other polymers, other fillers, and known substances generally added to synthetic resins, such as antioxidants and ultraviolet absorbers, as long as they do not impair the effects of the present invention. Other ingredients such as stabilizers such as agents, antistatic agents, flame retardants, coloring agents such as dyes and pigments, lubricants, crystallization accelerators, crystal nucleating agents, release agents, etc. may be added as appropriate according to the required performance. can be done. Other components may be used singly or in combination of two or more.
 その他の重合体としては、例えば、エポキシ基含有共重合体が挙げられる。その他の重合体は1種単独で用いても2種以上を組み合わせて用いてもよい。 Other polymers include, for example, epoxy group-containing copolymers. Other polymers may be used singly or in combination of two or more.
 その他の充填剤とは、(B)繊維状導電性充填剤、(C)粒状導電性充填剤、及び(D)非導電性充填剤以外の充填剤をいい、例えば、(B)成分及び(C)成分以外の導電性充填剤が挙げられる。その他の充填剤は1種単独で用いても2種以上を組み合わせて用いてもよい。(B)成分及び(C)成分以外の導電性充填剤としては、例えば、板状導電性充填剤が挙げられる。 Other fillers refer to fillers other than (B) fibrous conductive fillers, (C) granular conductive fillers, and (D) non-conductive fillers, for example, (B) components and ( C) Conductive fillers other than the component can be mentioned. Other fillers may be used singly or in combination of two or more. Examples of conductive fillers other than components (B) and (C) include plate-like conductive fillers.
[液晶性樹脂組成物の調製方法]
 本発明の液晶性樹脂組成物の調製方法は特に限定されない。例えば、上記(A)~(C)成分、任意に、(D)成分、及び、任意に、その他の成分の少なくとも1種を配合して、これらを1軸又は2軸押出機を用いて溶融混練処理することで、液晶性樹脂組成物の調製が行われる。
[Method for preparing liquid crystalline resin composition]
The method for preparing the liquid crystalline resin composition of the present invention is not particularly limited. For example, the components (A) to (C), optionally the component (D), and optionally at least one of the other components are blended, and these are melted using a single-screw or twin-screw extruder. The liquid crystalline resin composition is prepared by kneading.
[液晶性樹脂組成物]
 上記のようにして得られた本発明の液晶性樹脂組成物は、溶融時の流動性の観点、成形加工性の観点から、溶融粘度が180Pa・sec以下であることが好ましく、145Pa・sec以下であることがより好ましく、140Pa・sec以下であることがより好ましい。本明細書において、溶融粘度としては、液晶性樹脂の融点よりも10~20℃高いシリンダー温度、剪断速度1000sec-1の条件で、ISO 11443に準拠した測定方法で得られた値を採用する。
[Liquid Crystalline Resin Composition]
The liquid crystalline resin composition of the present invention obtained as described above preferably has a melt viscosity of 180 Pa·sec or less, more preferably 145 Pa·sec or less, from the viewpoint of fluidity when melted and moldability. and more preferably 140 Pa·sec or less. As used herein, the melt viscosity is a value obtained by a measurement method according to ISO 11443 under the conditions of a cylinder temperature 10 to 20° C. higher than the melting point of the liquid crystalline resin and a shear rate of 1000 sec −1 .
 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
<液晶性樹脂>
・液晶性ポリエステルアミド樹脂(LCP1)
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、300℃で2時間の熱処理を行って、目的のポリマーを得た。得られたポリマーの融点は336℃、350℃における溶融粘度は19.0Pa・sであった。なお、上記ポリマーの溶融粘度は、後述する溶融粘度の測定方法と同様にして測定した。
 4-ヒドロキシ安息香酸(HBA);1380g(60モル%)
 2-ヒドロキシ-6-ナフトエ酸(HNA);157g(5モル%)
 1,4-フェニレンジカルボン酸(TA);484g(17.5モル%)
 4,4’-ジヒドロキシビフェニル(BP);388g(12.5モル%)
 N-アセチル-p-アミノフェノール(APAP);126g(5モル%)
 金属触媒(酢酸カリウム触媒);110mg
 アシル化剤(無水酢酸);1659g
<Liquid crystal resin>
・Liquid crystal polyester amide resin (LCP1)
After charging the following raw materials into the polymerization vessel, the temperature of the reaction system was raised to 140° C., and the reaction was carried out at 140° C. for 1 hour. After that, the temperature is further raised to 340°C over 4.5 hours, and the pressure is reduced to 10 Torr (that is, 1330 Pa) over 15 minutes to distill off acetic acid, excess acetic anhydride, and other low-boiling components. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to increase the pressure from reduced pressure to normal pressure to pressurized state, the polymer was discharged from the bottom of the polymerization vessel, and the strand was pelletized to obtain pellets. The obtained pellets were heat-treated at 300° C. for 2 hours in a nitrogen stream to obtain the desired polymer. The obtained polymer had a melting point of 336° C. and a melt viscosity at 350° C. of 19.0 Pa·s. The melt viscosity of the polymer was measured in the same manner as the melt viscosity measurement method described below.
4-hydroxybenzoic acid (HBA); 1380 g (60 mol%)
2-hydroxy-6-naphthoic acid (HNA); 157 g (5 mol%)
1,4-phenylene dicarboxylic acid (TA); 484 g (17.5 mol%)
4,4'-dihydroxybiphenyl (BP); 388 g (12.5 mol%)
N-acetyl-p-aminophenol (APAP); 126 g (5 mol%)
Metal catalyst (potassium acetate catalyst); 110 mg
Acylating agent (acetic anhydride); 1659 g
・液晶性ポリエステル樹脂(LCP2) ・Liquid crystalline polyester resin (LCP2)
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて5Torr(即ち、667Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズして、ペレットとして目的のポリマーを得た。得られたポリマーの融点は355℃、溶融粘度は10Pa・sであった。なお、上記ポリマーの溶融粘度は、後述する溶融粘度の測定方法と同様にして測定した。
 4-ヒドロキシ安息香酸(HBA);1040g(48モル%)
 6-ヒドロキシ-2-ナフトエ酸(HNA);89g(3モル%)
 1,4-フェニレンジカルボン酸(TA);547g(21モル%)
 1,3-フェニレンジカルボン酸(IA);91g(3.5モル%)
 4,4’-ジヒドロキシビフェニル(BP);716g(24.5モル%)
 酢酸カリウム触媒:110mg
 無水酢酸:1644g
After charging the following raw materials into the polymerization vessel, the temperature of the reaction system was raised to 140° C., and the reaction was carried out at 140° C. for 1 hour. After that, the temperature was further raised to 360°C over 5.5 hours, and the pressure was reduced to 5 Torr (that is, 667 Pa) over 20 minutes to distill off acetic acid, excess acetic anhydride, and other low-boiling components. Melt polymerization was performed. After the stirring torque reaches a predetermined value, nitrogen is introduced to increase the pressure from reduced pressure to normal pressure to pressurized state, the polymer is discharged from the bottom of the polymerization vessel, and the strand is pelletized to obtain the target polymer as pellets. got The obtained polymer had a melting point of 355° C. and a melt viscosity of 10 Pa·s. The melt viscosity of the polymer was measured in the same manner as the melt viscosity measurement method described below.
4-hydroxybenzoic acid (HBA); 1040 g (48 mol%)
6-hydroxy-2-naphthoic acid (HNA); 89 g (3 mol%)
1,4-phenylene dicarboxylic acid (TA); 547 g (21 mol%)
1,3-phenylene dicarboxylic acid (IA); 91 g (3.5 mol%)
4,4'-dihydroxybiphenyl (BP); 716 g (24.5 mol%)
Potassium acetate catalyst: 110 mg
Acetic anhydride: 1644g
<液晶性樹脂以外の材料>
・繊維状導電性充填剤:HTC432(帝人(株)製、PAN系炭素繊維、チョップドストランド、繊維径7μm、長さ6mm)
・カーボンブラック:VULCAN XC305(キャボットジャパン(株)製、メディアン径20nm、粒子径50μm以上の粒子の割合が20ppm以下)
・タルク:クラウンタルクPP(松村産業(株)製、タルク、メディアン径14.6μm)
・マイカ:AB-25S((株)ヤマグチマイカ製、マイカ、メディアン径25.0μm)
・シリカ:デンカ溶融シリカFB-5SDC(デンカ(株)製、シリカ、メディアン径4.0μm)
・ガラス繊維:ECS03T-786H(日本電気硝子(株)製、チョップドストランド、繊維径10μm、長さ3mm)
<Materials other than liquid crystalline resin>
・Fibrous conductive filler: HTC432 (manufactured by Teijin Limited, PAN-based carbon fiber, chopped strand, fiber diameter 7 μm, length 6 mm)
Carbon black: VULCAN XC305 (manufactured by Cabot Japan Co., Ltd., median diameter 20 nm, proportion of particles with a particle diameter of 50 μm or more is 20 ppm or less)
Talc: Crown talc PP (manufactured by Matsumura Sangyo Co., Ltd., talc, median diameter 14.6 μm)
・ Mica: AB-25S (manufactured by Yamaguchi Mica Co., Ltd., mica, median diameter 25.0 μm)
Silica: Denka fused silica FB-5SDC (manufactured by Denka Co., Ltd., silica, median diameter 4.0 μm)
・Glass fiber: ECS03T-786H (manufactured by Nippon Electric Glass Co., Ltd., chopped strand, fiber diameter 10 μm, length 3 mm)
<液晶性樹脂組成物の製造>
 上記成分を、表1~3に示す割合(単位:質量%)で二軸押出機((株)日本製鋼所製TEX30α型)を用いて、下記シリンダー温度にて溶融混練し、液晶性樹脂組成物ペレットを得た。
シリンダー温度:
     350℃(実施例23以外)
     370℃(実施例23)
<Production of liquid crystalline resin composition>
The above components are melted and kneaded at the following cylinder temperature using a twin-screw extruder (TEX30α type manufactured by Japan Steel Works, Ltd.) in the proportions (unit: mass%) shown in Tables 1 to 3, and the liquid crystalline resin composition pellets were obtained.
Cylinder temperature:
350°C (other than Example 23)
370°C (Example 23)
<溶融粘度>
 (株)東洋精機製作所製キャピログラフ1B型を使用し、液晶性樹脂の融点よりも10~20℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、液晶性樹脂組成物の溶融粘度を測定した。なお、測定温度は、実施例23以外について350℃であり、実施例23について370℃であった。結果を表1~3に示す。
<Melt viscosity>
Using Capilograph Model 1B manufactured by Toyo Seiki Seisakusho Co., Ltd., at a temperature 10 to 20 ° C higher than the melting point of the liquid crystalline resin, using an orifice with an inner diameter of 1 mm and a length of 20 mm, at a shear rate of 1000 / sec, ISO 11443 The melt viscosity of the liquid crystalline resin composition was measured according to the above. The measurement temperature was 350° C. for all the samples other than Example 23, and 370° C. for Example 23. The results are shown in Tables 1-3.
<体積抵抗率>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で成形し、80mm×80mm×1mmtの平板試験片1又は80mm×80mm×2mmtの平板試験片2を得た。平板試験片1を用い、抵抗率計(日東精工アナリテック(株)製 「ロレスタ-GP」)を使用し、JIS K 7194に準拠して、体積抵抗率(以下、「1mmt体積抵抗率」ともいう。)を測定した。また、平板試験片2を用い、抵抗率計(日東精工アナリテック(株)製 「ロレスタ-GP」)を使用し、JIS K 7194に準拠して、体積抵抗率(以下、「2mmt体積抵抗率」ともいう。)を測定した。更に、1mmt体積抵抗率と2mmt体積抵抗率との差を算出した。結果を表1~3に示す。上記差の絶対値が0.10Ω・cm以下である場合に、厚みによらず、体積抵抗率の変動が特に小さいと評価した。
〔成形条件〕
シリンダー温度:
     350℃(実施例23以外)
     370℃(実施例23)
金型温度:80℃
射出速度:33mm/sec
<Volume resistivity>
The pellets of Examples and Comparative Examples were molded under the following molding conditions using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.), and 80 mm × 80 mm × 1 mmt flat plate test piece 1 or 80 mm × 80 mm A flat test piece 2 of ×2 mmt was obtained. Using a flat plate test piece 1, using a resistivity meter ("Loresta-GP" manufactured by Nitto Seiko Analytic Tech Co., Ltd.), in accordance with JIS K 7194, the volume resistivity (hereinafter also referred to as "1mmt volume resistivity" ) was measured. In addition, using the flat plate test piece 2, using a resistivity meter ("Loresta-GP" manufactured by Nitto Seiko Analytic Co., Ltd.), in accordance with JIS K 7194, the volume resistivity (hereinafter referred to as "2mmt volume resistivity ”) was measured. Furthermore, the difference between the 1 mmt volume resistivity and the 2 mmt volume resistivity was calculated. The results are shown in Tables 1-3. When the absolute value of the difference was 0.10 Ω·cm or less, it was evaluated that the variation in volume resistivity was particularly small regardless of the thickness.
〔Molding condition〕
Cylinder temperature:
350°C (other than Example 23)
370°C (Example 23)
Mold temperature: 80°C
Injection speed: 33mm/sec
<電磁波シールド性>
 実施例及び比較例のペレットを、成形機(日精樹脂工業(株)製 「ES3000」)を用いて、以下の成形条件で成形し、120mm×120mm×2mmtの試験片を得た。この試験片について、KEC法により、周波数100MHzにおける電磁波シールド性を測定した。結果を表1~3に示す。
〔成形条件〕
シリンダー温度:
     350℃(実施例23以外)
     370℃(実施例23)
金型温度:80℃
射出速度:100mm/sec
<Electromagnetic shielding>
Using a molding machine (“ES3000” manufactured by Nissei Plastic Industry Co., Ltd.), the pellets of Examples and Comparative Examples were molded under the following molding conditions to obtain test pieces of 120 mm×120 mm×2 mmt. The electromagnetic wave shielding property at a frequency of 100 MHz was measured for this test piece by the KEC method. The results are shown in Tables 1-3.
〔Molding condition〕
Cylinder temperature:
350°C (other than Example 23)
370°C (Example 23)
Mold temperature: 80°C
Injection speed: 100mm/sec
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~3に記載の結果から明らかなように、実施例の組成物は、溶融粘度が低く、流動性が高いため、成形加工性に優れることが確認され、かつ、実施例の組成物が与える成形体は、電磁波シールド性に優れていることが確認された。 As is clear from the results shown in Tables 1 to 3, the compositions of Examples have low melt viscosities and high fluidity, so it is confirmed that they are excellent in moldability. It was confirmed that the molded article obtained was excellent in electromagnetic wave shielding properties.

Claims (7)

  1.  (A)液晶性樹脂と、(B)繊維状導電性充填剤と、(C)粒状導電性充填剤と、を含有する液晶性樹脂組成物の成形体からなる電磁波シールド部材であって、
     前記(B)繊維状導電性充填剤と前記(C)粒状導電性充填剤との合計の含有量は、15~60質量%であり、
     前記(C)粒状導電性充填剤の含有量に対する前記(B)繊維状導電性充填剤の含有量の質量比は、0.30~22.0であり、
     前記電磁波シールド部材は、KEC法に準拠して測定される、周波数100MHzにおける電磁波シールド性が35dB以上である電磁波シールド部材。
    An electromagnetic wave shielding member comprising a molded body of a liquid crystalline resin composition containing (A) a liquid crystalline resin, (B) a fibrous conductive filler, and (C) a granular conductive filler,
    The total content of the (B) fibrous conductive filler and the (C) granular conductive filler is 15 to 60% by mass,
    The mass ratio of the content of the fibrous conductive filler (B) to the content of the granular conductive filler (C) is 0.30 to 22.0,
    The electromagnetic wave shielding member has an electromagnetic wave shielding property of 35 dB or more at a frequency of 100 MHz, as measured according to the KEC method.
  2.  前記(B)繊維状導電性充填剤と前記(C)粒状導電性充填剤との合計の含有量は、20~50質量%であり、
     前記(C)粒状導電性充填剤の含有量に対する前記(B)繊維状導電性充填剤の含有量の質量比は、0.50~20.0である請求項1に記載の電磁波シールド部材。
    The total content of the (B) fibrous conductive filler and the (C) granular conductive filler is 20 to 50% by mass,
    2. The electromagnetic wave shielding member according to claim 1, wherein the mass ratio of the content of the fibrous conductive filler (B) to the content of the granular conductive filler (C) is 0.50 to 20.0.
  3.  前記(B)繊維状導電性充填剤は、炭素繊維であり、
     前記(C)粒状導電性充填剤は、カーボンブラックである請求項1又は2に記載の電磁波シールド部材。
    The (B) fibrous conductive filler is carbon fiber,
    3. The electromagnetic wave shielding member according to claim 1, wherein the (C) particulate conductive filler is carbon black.
  4.  前記液晶性樹脂組成物は、更に、(D)非導電性充填剤を含有する請求項1~3のいずれかに記載の電磁波シールド部材。 The electromagnetic wave shielding member according to any one of claims 1 to 3, wherein the liquid crystalline resin composition further contains (D) a non-conductive filler.
  5.  前記(D)非導電性充填剤の含有量は、2~8質量%である請求項1~4のいずれかに記載の電磁波シールド部材。 The electromagnetic wave shielding member according to any one of claims 1 to 4, wherein the content of the (D) non-conductive filler is 2 to 8% by mass.
  6.  前記(D)非導電性充填剤は、タルク、マイカ、ガラスフレーク、シリカ、ガラスビーズ、ガラスバルーン、チタン酸カリウムウィスカー、ケイ酸カルシウムウィスカー、ミルドガラスファイバー、及びガラス繊維からなる群より選択される1種以上である請求項4又は5に記載の電磁波シールド部材。 The (D) non-conductive filler is selected from the group consisting of talc, mica, glass flakes, silica, glass beads, glass balloons, potassium titanate whiskers, calcium silicate whiskers, milled glass fibers, and glass fibers. 6. The electromagnetic wave shielding member according to claim 4 or 5, which is one or more kinds.
  7.  前記(D)非導電性充填剤は、タルク、マイカ、シリカ、及びガラス繊維からなる群より選択される1種以上である請求項4~6のいずれかに記載の電磁波シールド部材。 The electromagnetic wave shielding member according to any one of claims 4 to 6, wherein the (D) non-conductive filler is one or more selected from the group consisting of talc, mica, silica, and glass fiber.
PCT/JP2022/029772 2021-08-31 2022-08-03 Electromagnetic wave shielding member WO2023032574A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023517301A JPWO2023032574A1 (en) 2021-08-31 2022-08-03
CN202280058304.6A CN117882502A (en) 2021-08-31 2022-08-03 Electromagnetic wave shielding member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021141166 2021-08-31
JP2021-141166 2021-08-31

Publications (1)

Publication Number Publication Date
WO2023032574A1 true WO2023032574A1 (en) 2023-03-09

Family

ID=85411193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029772 WO2023032574A1 (en) 2021-08-31 2022-08-03 Electromagnetic wave shielding member

Country Status (4)

Country Link
JP (1) JPWO2023032574A1 (en)
CN (1) CN117882502A (en)
TW (1) TW202313843A (en)
WO (1) WO2023032574A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987417A (en) * 1995-09-22 1997-03-31 Kobe Steel Ltd Electroconductive thin resin molding
JPH09279003A (en) * 1996-04-10 1997-10-28 Teijin Chem Ltd Conductive resin composition and molded product
JP2001316572A (en) * 2000-05-08 2001-11-16 Teijin Ltd Electromagnetic wave-shielding resin composition
JP2002158487A (en) * 2000-11-20 2002-05-31 Nok Corp Grommet
JP2004035826A (en) * 2002-07-05 2004-02-05 Yuka Denshi Co Ltd Highly electroconductive resin molded article
JP2011192714A (en) * 2010-03-12 2011-09-29 Aisin Chemical Co Ltd Electromagnetic wave shielding material
JP2011207981A (en) * 2010-03-29 2011-10-20 Mitsubishi Chemicals Corp Electro-magnetic wave shieldable polyamide resin composition and molded article thereof
JP2012229345A (en) * 2011-04-27 2012-11-22 Toray Ind Inc Molded article
JP2017107928A (en) * 2015-12-08 2017-06-15 ダイセルポリマー株式会社 Molded article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987417A (en) * 1995-09-22 1997-03-31 Kobe Steel Ltd Electroconductive thin resin molding
JPH09279003A (en) * 1996-04-10 1997-10-28 Teijin Chem Ltd Conductive resin composition and molded product
JP2001316572A (en) * 2000-05-08 2001-11-16 Teijin Ltd Electromagnetic wave-shielding resin composition
JP2002158487A (en) * 2000-11-20 2002-05-31 Nok Corp Grommet
JP2004035826A (en) * 2002-07-05 2004-02-05 Yuka Denshi Co Ltd Highly electroconductive resin molded article
JP2011192714A (en) * 2010-03-12 2011-09-29 Aisin Chemical Co Ltd Electromagnetic wave shielding material
JP2011207981A (en) * 2010-03-29 2011-10-20 Mitsubishi Chemicals Corp Electro-magnetic wave shieldable polyamide resin composition and molded article thereof
JP2012229345A (en) * 2011-04-27 2012-11-22 Toray Ind Inc Molded article
JP2017107928A (en) * 2015-12-08 2017-06-15 ダイセルポリマー株式会社 Molded article

Also Published As

Publication number Publication date
TW202313843A (en) 2023-04-01
CN117882502A (en) 2024-04-12
JPWO2023032574A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP6439027B1 (en) Liquid crystal polyester resin composition and molded body
JP6473796B1 (en) Liquid crystal polyester resin composition and molded body
JP5155769B2 (en) Totally aromatic polyester and polyester resin composition
JP4169322B2 (en) Totally aromatic liquid crystal polyester resin molding
KR101867623B1 (en) Liquid crystal polyester composition and process for producing the same
KR101618239B1 (en) High thermal conductivity thermoplastic resin composition and thermoplastic resin
KR101244499B1 (en) Liquid-crystal polyester resin composition
JPH0629367B2 (en) Conductive resin composition
KR101821415B1 (en) Liquid crystal polyester composition
WO2011106252A1 (en) Thermally conductive and dimensionally stable liquid crystalline polymer composition
JP2019094489A (en) Liquid crystal polyester resin composition, and molded article
JP2019094497A (en) Liquid-crystal polyester resin composition and molded body
KR20100094941A (en) Thermoplastic resin composition, method for producing the same, and molded article obtained from the same
WO2019203157A1 (en) Liquid-crystalline resin composition
JP2004143270A (en) Liquid-crystal polyester resin composition
JPH0742400B2 (en) Liquid crystalline polyester resin composition
JP2006282678A (en) Highly-filled thermoplastic resin composition
JP6294690B2 (en) Liquid crystalline polyester composition
WO2023032574A1 (en) Electromagnetic wave shielding member
WO2021117529A1 (en) Thermoplastic resin composition
JP7373080B2 (en) Conductive liquid crystal resin composition
JP2005306955A (en) Method for producing highly heat-conductive resin composition
JP7393589B1 (en) Liquid crystalline resin composition for planar connectors and planar connectors using the same
WO2023136196A1 (en) Liquid crystal polyester composition and molded body
WO2022014663A1 (en) Resin composition and molded article thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023517301

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864160

Country of ref document: EP

Kind code of ref document: A1