JPH0973897A - Sealed secondary battery - Google Patents

Sealed secondary battery

Info

Publication number
JPH0973897A
JPH0973897A JP7228931A JP22893195A JPH0973897A JP H0973897 A JPH0973897 A JP H0973897A JP 7228931 A JP7228931 A JP 7228931A JP 22893195 A JP22893195 A JP 22893195A JP H0973897 A JPH0973897 A JP H0973897A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
contact angle
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7228931A
Other languages
Japanese (ja)
Inventor
Michiko Igawa
享子 井川
Tadashi Muranaka
村中  廉
Yoshimi Komatsu
誼 小松
Kotaro Kobayashi
康太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP7228931A priority Critical patent/JPH0973897A/en
Publication of JPH0973897A publication Critical patent/JPH0973897A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-cadmium battery and a nickel-metal hydride battery that are excellent in quick charging characteristic and the battery life by suppressing the buildup of internal pressures during charging, without inhibiting the charging reactions of negative electrodes. SOLUTION: This sealed secondary battery has a negative electrode whose surface has a contact angle of not more than 110 deg. and not less than 75 deg. within one minute after an electrolyte has been dropped and a contact angle of not more than 80 deg. and not less than 65 deg. 15 minutes after the electrolyte has been dropped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術】本発明は二次電池に係り、特にニ
ッケル−金属水素化物電池、ニッケル−カドミウム電池
などの密閉型二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, and more particularly to a sealed secondary battery such as a nickel-metal hydride battery or a nickel-cadmium battery.

【0002】[0002]

【従来の技術】各種の小形コードレス機器の急速な普及
とともに電源となる電池の需要も増大している。これら
に使用される主な二次電池としてはニッケル−カドミウ
ム電池とニッケル−金属水素化物電池がある。どちら
も、正極にはニッケル極を使用し、前者は負極にカドミ
ウムを、後者は負極に水素吸蔵合金を用いる。この二つ
の電池では、充電末期あるいは過充電時に正極より発生
する酸素ガスを負極表面で吸収するガス吸収反応が進行
し、これにより密閉化が成立する。しかし、急速充電に
なるほど、正極のガス発生速度が負極のガス吸収速度よ
りも大きくなるため、電気内圧が上昇し、安全弁が開放
して密閉化原理は成り立たなくなり、電池寿命が短くな
る。また、大型になるほど充電時の発熱量が大きく、そ
のため充電効率が低下しガス発生量が増加して、電池内
圧が上昇し、電池寿命が短くなる。ガス吸収性を改善し
て内圧上昇を抑制するための方法としては表面近傍に撥
水性樹脂と熱可塑性樹脂を用いて撥水性を高める方法
(特開平2−250260号公報)、カーボンブラック
を用いる方法(特開平3−102766号公報)などが
ある。
2. Description of the Related Art With the rapid spread of various small cordless devices, the demand for batteries as a power source is also increasing. The main secondary batteries used in these are nickel-cadmium batteries and nickel-metal hydride batteries. In both cases, a nickel electrode is used for the positive electrode, the former uses cadmium for the negative electrode, and the latter uses hydrogen storage alloy for the negative electrode. In these two batteries, a gas absorption reaction in which the oxygen gas generated from the positive electrode is absorbed on the negative electrode surface at the end of charging or during overcharging progresses, whereby the sealing is established. However, as the charging speed increases, the gas generation rate of the positive electrode becomes faster than the gas absorption rate of the negative electrode, and the electric internal pressure rises, the safety valve opens and the sealing principle no longer holds, and the battery life shortens. In addition, the larger the size, the larger the amount of heat generated during charging, which lowers the charging efficiency, increases the gas generation amount, increases the battery internal pressure, and shortens the battery life. As a method for improving gas absorption and suppressing an increase in internal pressure, a method of increasing water repellency by using a water repellent resin and a thermoplastic resin in the vicinity of the surface (JP-A-2-250260), a method of using carbon black (JP-A-3-102766).

【0003】[0003]

【発明が解決しようとする課題】電池内圧の上昇を抑制
して寿命の長い電池を得るためには、正極から発生する
酸素ガスを負極上で円滑に吸収させなければならない。
そのためには、負極表面において多量の酸化ガスを吸着
させ、効率的に吸収させる必要がある。電池内圧上昇の
抑制策として、疎水性結着剤を用いる方法と、カーボン
を電極へ添加、あるいは電極表面へ塗布する方法とがあ
る。疎水性の結着剤を用いる方法は負極表面を疎水性に
保つため、電解液を遠ざけ、ガスの負極表面への吸着を
円滑に行うことができる。しかし、疎水性であるため、
電解液が反応表面から遠ざけられ、充電反応が阻害され
て負極が充電されにくくなり、負極と正極の容量バラン
スが崩れ、結果的に短寿命となる。また、カーボンの添
加は酸素の還元反応を促進するため、負極表面での水素
との結合反応が円滑に進行する。しかし、カーボンもま
た疎水性のため電解液との親和性に劣り、急速充電特性
が悪いという欠点があった。
In order to suppress an increase in battery internal pressure and obtain a battery having a long life, oxygen gas generated from the positive electrode must be smoothly absorbed on the negative electrode.
For that purpose, it is necessary to adsorb a large amount of oxidizing gas on the surface of the negative electrode and efficiently absorb it. As a measure for suppressing the increase in the internal pressure of the battery, there are a method of using a hydrophobic binder and a method of adding carbon to the electrode or coating the electrode surface. In the method using a hydrophobic binder, the surface of the negative electrode is kept hydrophobic, so that the electrolytic solution can be kept away and gas can be smoothly adsorbed on the surface of the negative electrode. However, because it is hydrophobic,
The electrolytic solution is moved away from the reaction surface, the charging reaction is hindered, the negative electrode is less likely to be charged, the capacity balance between the negative electrode and the positive electrode is lost, and the life is shortened as a result. Further, the addition of carbon promotes the reduction reaction of oxygen, so that the bonding reaction with hydrogen on the negative electrode surface proceeds smoothly. However, since carbon is also hydrophobic, it has a poor affinity with the electrolytic solution and has a drawback that the rapid charging property is poor.

【0004】本発明の目的は、負極の充電反応を阻害す
ることなく充電時の内圧上昇を抑制し、急速充電特性及
び電池寿命に優れたニッケル−カドミウム電池、及びニ
ッケル−金属水素化物電池を得ることにある。
An object of the present invention is to obtain a nickel-cadmium battery and a nickel-metal hydride battery which suppress an increase in internal pressure during charging without inhibiting the charging reaction of the negative electrode and are excellent in rapid charging characteristics and battery life. Especially.

【0005】[0005]

【課題を解決するための手段】負極の充電反応を阻害す
ることなく、充電時の内圧上昇を抑制するには、負極表
面の電解液に対するぬれ性を抑制する必要がある。電極
の電解液に対するぬれ性は電解液に対する電極表面の接
触角によって規定できる。すなわち、接触角が大きいほ
どぬれ性は悪く充電反応が進行しにくい反面、ガス吸収
性に優れる。接触角が小さくなるとその逆にぬれ性は良
くなり、充電反応が進行しやすい反面、ガス吸収性に劣
る。従って、電極表面のぬれ性に関して、充電反応が比
較的進行しやすく、かつガス吸収性にも優れたぬれ条件
に最適化することが望ましい。本発明の電極表面は、電
解液滴下直後の接触角が110°以下75°以上である
表面層を有することを特徴とする。電解液滴下直後とは
滴下してから1分以内の接触角の測定が可能な時間範囲
を意味する。
In order to suppress an increase in internal pressure during charging without inhibiting the charging reaction of the negative electrode, it is necessary to suppress the wettability of the surface of the negative electrode with the electrolytic solution. The wettability of an electrode with an electrolytic solution can be defined by the contact angle of the electrode surface with the electrolytic solution. That is, the larger the contact angle, the worse the wettability and the less likely the charging reaction proceeds, but the better the gas absorption. On the contrary, when the contact angle becomes small, the wettability becomes good, and the charging reaction easily proceeds, but the gas absorbability becomes poor. Therefore, regarding the wettability of the electrode surface, it is desirable to optimize the wettability condition in which the charging reaction is relatively easy to proceed and the gas absorbency is excellent. The electrode surface of the present invention is characterized by having a surface layer having a contact angle of 110 ° or less and 75 ° or more immediately after dropping the electrolytic droplet. Immediately after dropping the electrolytic droplet means a time range in which the contact angle can be measured within 1 minute after the dropping.

【0006】接触角は、電解液との接触時間により変化
する。接触角は電解液との接触時間の経過とともに減少
し、最終的には特定の値に飽和する。この時の減少量は
負極の表面層の性状や構造によって異なり、電池の特性
を大きく左右する。すなわち、初期の接触角が大きくて
電極表面が電解液にぬれにくくても、時間の経過ととも
に電解液との親和性がよくなりぬれやすくなれば、接触
時間経過後の接触角の減少量は大きくなる。従って、電
解液滴下直後と、電解液を滴下した後、一定時間経過後
の接触角によってぬれ性を規定する必要がある。本発明
の電極表面は、電解液滴下後15分経過時の接触角が8
0°以下65°以上である表面層を有することを特徴と
する。
The contact angle changes depending on the contact time with the electrolytic solution. The contact angle decreases with the lapse of contact time with the electrolytic solution, and finally reaches a specific value. The amount of decrease at this time depends on the properties and structure of the surface layer of the negative electrode, and greatly affects the characteristics of the battery. That is, even if the initial contact angle is large and the electrode surface is difficult to wet with the electrolytic solution, if the affinity with the electrolytic solution improves with the passage of time and it becomes easy to wet, the amount of decrease in the contact angle after the contact time elapses is large. Become. Therefore, it is necessary to define the wettability by the contact angle immediately after the electrolytic droplet is dropped and after a certain time has passed after the electrolytic solution is dropped. The electrode surface of the present invention has a contact angle of 8 after 15 minutes have passed after the electrolytic drop.
It is characterized by having a surface layer of 0 ° or less and 65 ° or more.

【0007】負極表面には、上記の条件になるようにぬ
れ性を制御したカーボン、結着剤、金属粉末のいずれか
もしくはこのうち二つ以上組み合わせたものを配置する
ことを特徴とする。カーボンはアルカリもしくは酸によ
り表面修飾を施すか、あるいは酸素プラズマによる表面
改質によりぬれ性を制御する。結着剤には疎水性と親水
性とがある。疎水性結着剤はアルカリもしくは酸により
表面修飾を施すかあるいは酸素プラズマによる表面改質
をしてぬれ性を制御する。親水性結着剤はフッ素系のガ
スを使ったプラズマによる表面改質、フッ酸液もしくは
還元剤による表面修飾をしてぬれ性を制御する。また金
属粉末はフッ素系のガスを使ったプラズマによる表面改
質、フッ酸溶液もしくは還元剤による表面修飾によりぬ
れ性を制御する。溶液を用いた処理では、処理液の濃
度、処理時間、撹拌速度、処理温度等を変えてぬれ性を
評価し最適条件を選択する方法が良い。また、プラズマ
処理では、ガス濃度、希釈するガスの種類や濃度、ガス
圧、プラズマ放電の電流値、処理時間、処理温度等を変
えてぬれ性を評価し最適条件を選択する方法が良い。最
終的にはどのような条件でも電極のぬれ性が電解液滴下
直後の接触角が110°以下75°以上、電解液滴下後
15分経過時の接触角が80°以下65°以上を与える
条件であれば良く、処理装置の構造や規模により異な
る。
On the surface of the negative electrode, any one of carbon, a binder and a metal powder whose wettability is controlled to satisfy the above conditions, or a combination of two or more thereof is arranged. The carbon is surface-modified with an alkali or an acid, or the wettability is controlled by surface modification with oxygen plasma. The binder has hydrophobicity and hydrophilicity. The hydrophobic binder is surface-modified with an alkali or an acid, or is surface-modified with oxygen plasma to control the wettability. The hydrophilic binder controls the wettability by performing surface modification with plasma using a fluorine-based gas and surface modification with a hydrofluoric acid solution or a reducing agent. Further, the wettability of the metal powder is controlled by surface modification with plasma using a fluorine-based gas and surface modification with a hydrofluoric acid solution or a reducing agent. In the treatment using a solution, a method of evaluating the wettability by changing the concentration of the treatment liquid, the treatment time, the stirring speed, the treatment temperature and the like and selecting the optimum condition is preferable. In the plasma processing, it is preferable to select the optimum condition by evaluating the wettability by changing the gas concentration, the type and concentration of the gas to be diluted, the gas pressure, the current value of plasma discharge, the processing time, the processing temperature, and the like. Finally, under any condition, the wettability of the electrode is such that the contact angle immediately after the electrolytic droplet is 110 ° or less and 75 ° or more, and the contact angle 15 minutes after the electrolytic droplet is 80 ° or less and 65 ° or more. However, it depends on the structure and scale of the processing apparatus.

【0008】カーボンには活性炭、カーボンブラック、
ファーネスブラック、ピッチ系カーボン、メソフェー
ズ、PAN系カーボン、グラッシーカーボン、グラファ
イトなどが使用できる。結着剤としては、疎水性結着剤
にはポリテトラフロロエチレン、ポリテトラフロロエチ
レンプロピレン、ホリフッ化ビニリデンなどフッ素系の
結着剤を用いることができる。親水性結着剤にはメチル
セルロース、エチルセルロース、カルボキシメチルセル
ロース、エチレン酢酸ビニル、スチレン−アクリル共重
合体、スチレン−ブタジエンゴム、ブタジエンゴム、イ
ソプレンゴム、クロロプレンゴム、ポリビニルアルコー
ル、ポリビニルホルマール、スチレンアクリロニトリル
共重合体、ABS、ポリエチレン、エチレン−プロピレ
ンコーポリマー、天然ゴム、ポリアセタール、ナイロ
ン、酢酸セルロース、フェノキシポリエステル、ポリウ
レタン、エポキシ樹脂、ポリエチレンオキサイド、ポリ
アクリル酸ソーダなどを用いることができる。金属粉末
はNi,Pd,Cu,Co,Zn,Cr,Tiなど充放
電反応を阻害しない物質であれば良い。これらは単独で
も複数の組合せでも良い。また、本発明はこれらの材料
に限定されるものでない。
Carbon includes activated carbon, carbon black,
Furnace black, pitch-based carbon, mesophase, PAN-based carbon, glassy carbon, graphite and the like can be used. As the binder, a fluorine-based binder such as polytetrafluoroethylene, polytetrafluoroethylene propylene, or vinylidene fluoride can be used as the hydrophobic binder. Hydrophilic binders include methyl cellulose, ethyl cellulose, carboxymethyl cellulose, ethylene vinyl acetate, styrene-acryl copolymer, styrene-butadiene rubber, butadiene rubber, isoprene rubber, chloroprene rubber, polyvinyl alcohol, polyvinyl formal, styrene acrylonitrile copolymer. , ABS, polyethylene, ethylene-propylene copolymer, natural rubber, polyacetal, nylon, cellulose acetate, phenoxy polyester, polyurethane, epoxy resin, polyethylene oxide, sodium polyacrylate and the like can be used. The metal powder may be a substance such as Ni, Pd, Cu, Co, Zn, Cr, or Ti that does not inhibit the charge / discharge reaction. These may be used alone or in combination. Further, the present invention is not limited to these materials.

【0009】電解液滴下直後の接触角が110°より大
きい表面層を有する場合には、充電時の内圧上昇は抑制
されるが、電解液に対するぬれ性が悪いために負極が充
電されず、放電容量が極めて低い。このため、正極容量
と負極容量との容量バランスが崩れて短寿命となる。一
方、電解液滴下直後の接触角が75°より小さい表面層
を有する場合には、充電時の負極表面でのガス吸収性が
悪いために内圧上昇が抑制されず、安全弁が開いて電解
液が蒸発し寿命となる。
When the surface layer having a contact angle of more than 110 ° immediately below the electrolytic droplet is suppressed, an increase in internal pressure during charging is suppressed, but the negative electrode is not charged because of the poor wettability to the electrolytic solution and the discharge is performed. Extremely low capacity. For this reason, the capacity balance between the positive electrode capacity and the negative electrode capacity is lost, resulting in a short life. On the other hand, when there is a surface layer having a contact angle of less than 75 ° immediately after dropping the electrolytic droplet, the internal pressure rise is not suppressed because the gas absorption on the negative electrode surface during charging is poor, and the safety valve opens and the electrolytic solution Evaporates and reaches the end of life.

【0010】電解液滴下後15分経過時の接触角が80
°より大きい場合には、電解液との親和性が悪いため、
それ以上の放置を行ってもぬれ性は改善されない。従っ
て、負極が充電されず、放電容量が極めて低くなる。電
解液滴下後15分経過時の接触角が65°より小さい場
合には、電解液に対する親和性が良いためにぬれやすく
なってしまい、ガス吸収を阻害するため内圧が上昇して
寿命が短い。
The contact angle is 80 at 15 minutes after the electrolytic drop.
If it is larger than °, the affinity with the electrolyte is poor,
The wettability does not improve even if left unattended. Therefore, the negative electrode is not charged and the discharge capacity becomes extremely low. If the contact angle at 15 minutes after the electrolytic drop is less than 65 °, it has a good affinity for the electrolytic solution and is easily wetted, and gas absorption is hindered, and the internal pressure rises and the life is shortened.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 水素吸蔵合金として代表的な組成であるLa0.5Ce0.5
Ni3.5Mn0.5Al0. 3Co0.7の組成の合金を用いた。
直径50ミクロン以下の粒子に粉砕した合金粉末に活性
化処理を施した後、結着剤としてエチレン酢酸ビニル
0.5重量%とメチルセルロース0.5重量%を加えて
スラリー状にする。これをパンチングメタル基体の両面
に塗布して乾燥後ローラプレスにより加圧し所定の厚さ
に成型した。この上にカーボンとメチルセルロースの混
合溶液を0.5ミクロンの厚みで塗布して電極とした。
この電極をKOH水溶液中で80℃3時間放置した後、
この溶液から取り出して水洗、乾燥後、電解液に対する
接触角を測定した。図1のAに示すように滴下後1分後
の接触角は95°であり、滴下後15分後には68°で
あった。正極のニッケル極として、気孔率95%の発泡
ニッケルを電極基体に用いたペースト式電極を用いた。
これらの電極により単三型の密閉型ニッケル−金属水素
化物電池を次の手順で製作した。正極及び負極を厚さ
0.17mmのポリプロピレン樹脂製不織布のセパレー
タを介して捲回し、電池缶内に挿入した。電解液には3
0〜35wt%の水酸化カリウムを含む水溶液に少量の
水酸化リチウムを添加したものを用いた。放電容量は7
50mAhで設計した。室温下で3CmAで容量に対し
120%充電、1時間の休止時間を置いた後、0.2C
mAで終止電圧の1.0Vまで放電した。結果を表1に
示す。放電容量は750mAhと所定の容量が得られ、
電池内圧も4.2kgf/cm2と小さく抑えられた。
Example 1 La 0.5 Ce 0.5 having a typical composition as a hydrogen storage alloy
Using Ni 3.5 Mn 0.5 Al 0. 3 alloy of the composition of Co 0.7.
After activating the alloy powder pulverized into particles having a diameter of 50 microns or less, 0.5% by weight of ethylene vinyl acetate and 0.5% by weight of methyl cellulose as a binder are added to form a slurry. This was applied on both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded into a predetermined thickness. A mixed solution of carbon and methylcellulose was applied on this to a thickness of 0.5 micron to form an electrode.
After leaving this electrode in a KOH aqueous solution at 80 ° C. for 3 hours,
After taking out from this solution, washing with water and drying, the contact angle to the electrolytic solution was measured. As shown in A of FIG. 1, the contact angle 1 minute after the dropping was 95 °, and 15 minutes after the dropping, it was 68 °. As a nickel electrode of the positive electrode, a paste-type electrode using foamed nickel having a porosity of 95% as an electrode substrate was used.
With these electrodes, an AA sealed nickel-metal hydride battery was manufactured by the following procedure. The positive electrode and the negative electrode were wound with a 0.17 mm-thick polypropylene resin nonwoven fabric separator interposed therebetween and inserted into a battery can. 3 for electrolyte
An aqueous solution containing 0 to 35 wt% potassium hydroxide to which a small amount of lithium hydroxide was added was used. Discharge capacity is 7
It was designed at 50 mAh. Charge at 120% of capacity at 3CmA at room temperature, and after 1 hour rest time, 0.2C
It was discharged to a final voltage of 1.0 V at mA. The results are shown in Table 1. The discharge capacity is 750 mAh, which is a predetermined capacity.
The internal pressure of the battery was also suppressed to a low value of 4.2 kgf / cm 2 .

【0012】比較例1 水素吸蔵合金として実施例1と同じLa0.5Ce0.5Ni
3.5Mn0.5Al0.3Co0.7の組成の合金を用いた。直径
50ミクロン以下の粒子に粉砕した合金粉末に活性化処
理を施した後、結着剤としてエチレン酢酸ビニル0.5
重量%とメチルセルロース0.5重量%を加えてスラリ
ー状にする。これをパンチングメタル基体の両面に塗布
して乾燥後ローラプレスにより加圧し所定の厚さに成型
した。この上にカーボンとメチルセルロースの混合溶液
を0.5ミクロンの厚みで塗布して電極とした。この電
極の電解液に対する接触角は図1のBに示すように滴下
後1分後は120°で滴下後15分後には98°であっ
た。実施例1と同様にして電池を組み立てて充放電試験
を行った。結果を表1に示す。電池内圧は3.5kgf
/cm2と小さいが、放電容量は600mAhと低い。
Comparative Example 1 As a hydrogen storage alloy, the same La 0.5 Ce 0.5 Ni as in Example 1 was used.
An alloy having a composition of 3.5 Mn 0.5 Al 0.3 Co 0.7 was used. After activating the alloy powder crushed to particles with a diameter of 50 microns or less, ethylene vinyl acetate 0.5 as a binder
Add wt% and methyl cellulose 0.5 wt% to make a slurry. This was applied on both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded into a predetermined thickness. A mixed solution of carbon and methylcellulose was applied on this to a thickness of 0.5 micron to form an electrode. The contact angle of this electrode with respect to the electrolytic solution was 120 ° 1 minute after the dropping and 98 ° 15 minutes after the dropping, as shown in FIG. 1B. A battery was assembled and a charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1. Battery internal pressure is 3.5kgf
Although the discharge capacity is as small as / cm 2 , the discharge capacity is as low as 600 mAh.

【0013】比較例2 水素吸蔵合金として実施例1と同じLa0.5Ce0.5Ni
3.5Mn0.5Al0.3Co0.7の組成の合金を用いた。直径
50ミクロン以下の粒子に粉砕した合金粉末に活性化処
理を施した後、結着剤としてエチレン酢酸ビニル0.5
重量%とメチルセルロース0.5重量%を加えてスラリ
ー状にする。これをパンチングメタル基体の両面に塗布
して乾燥後ローラプレスにより加圧し所定の厚さに成型
し電極とした。この電極の電解液に対する接触角は図1
のCに示すように滴下後1分後は122°で滴下後15
分後には60°であった。実施例1と同様にして電池を
組み立てて充放電試験を行った。結果を表1に示す。放
電容量は720mAhと所定の容量よりやや低く、電池
内圧も10.1kgf/cm2と大きい。
Comparative Example 2 As a hydrogen storage alloy, the same La 0.5 Ce 0.5 Ni as in Example 1 was used.
An alloy having a composition of 3.5 Mn 0.5 Al 0.3 Co 0.7 was used. After activating the alloy powder crushed to particles with a diameter of 50 microns or less, ethylene vinyl acetate 0.5 as a binder
Add wt% and methyl cellulose 0.5 wt% to make a slurry. This was applied to both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded to a predetermined thickness to form an electrode. The contact angle of this electrode with the electrolyte is shown in Fig. 1.
As shown in C of 1 minute after the dropping, 15 minutes after dropping at 122 °
After 60 minutes it was 60 °. A battery was assembled and a charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1. The discharge capacity is 720 mAh, which is slightly lower than the predetermined capacity, and the battery internal pressure is as high as 10.1 kgf / cm 2 .

【0014】実施例2 水素吸蔵合金として実施例1と同じLa0.5Ce0.5Ni
3.5Mn0.5Al0.3Co0.7の組成の合金を用いた。直径
50ミクロン以下の粒子に粉砕した合金粉末に活性化処
理を施した後、結着剤としてエチレン酢酸ビニル0.5
重量%とメチルセルロース0.5重量%を加えてスラリ
ー状にする。これをパンチングメタル基体の両面に塗布
して乾燥後ローラプレスにより加圧し所定の厚さに成型
した。この上にカーボンとメチルセルロースの混合溶液
を0.5ミクロンの厚みで塗布して電極とした。この電
極を酸素プラズマで表面処理した。この電極の電解液に
対する接触角は図2のDに示すように滴下後1分後は8
8°で滴下後15分後には71°であった。実施例1と
同様にして電池を組み立てて充放電試験を行った。結果
を表1に示す。放電容量は760mAhと所定の容量が
得られ、電池内圧も3.8kgf/cm2と小さく抑え
られた。
Example 2 As a hydrogen storage alloy, the same La 0.5 Ce 0.5 Ni as in Example 1 was used.
An alloy having a composition of 3.5 Mn 0.5 Al 0.3 Co 0.7 was used. After activating the alloy powder crushed to particles with a diameter of 50 microns or less, ethylene vinyl acetate 0.5 as a binder
Add wt% and methyl cellulose 0.5 wt% to make a slurry. This was applied on both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded into a predetermined thickness. A mixed solution of carbon and methylcellulose was applied on this to a thickness of 0.5 micron to form an electrode. This electrode was surface-treated with oxygen plasma. The contact angle of this electrode with respect to the electrolytic solution is 8 after 1 minute from dropping as shown in D of FIG.
It was 71 ° 15 minutes after the dropping at 8 °. A battery was assembled and a charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1. The discharge capacity was 760 mAh, which was a predetermined capacity, and the battery internal pressure was also suppressed to a small value of 3.8 kgf / cm 2 .

【0015】実施例3 水素吸蔵合金として実施例1と同じLa0.5Ce0.5Ni
3.5Mn0.5Al0.3Co0.7の組成の合金を用いた。直径
50ミクロン以下の粒子に粉砕した合金粉末に活性化処
理を施した後、結着剤としてエチレン酢酸ビニル0.5
重量%とメチルセルロース0.5重量%を加えてスラリ
ー状にする。これをパンチングメタル基体の両面に塗布
して乾燥後ローラプレスにより加圧し所定の厚さに成型
した。この上にカーボンとポリアクリル酸ソーダの混合
溶液を0.5ミクロンの厚みで塗布して電極とした。こ
の電極をKOH水溶液中で80℃3時間放置した後、こ
の溶液から取り出して水洗、乾燥後、電解液に対する接
触角を測定した。図2のEに示すように滴下後1分後の
接触角は95°で滴下後15分後には68°であった。
実施例1と同様にして電池を組み立てて充放電試験を行
った。結果を表1に示す。放電容量は780mAhと所
定の容量が得られ、電池内圧も4.5kgf/cm2
小さく抑えられた。
Example 3 As a hydrogen storage alloy, the same La 0.5 Ce 0.5 Ni as in Example 1 was used.
An alloy having a composition of 3.5 Mn 0.5 Al 0.3 Co 0.7 was used. After activating the alloy powder crushed to particles with a diameter of 50 microns or less, ethylene vinyl acetate 0.5 as a binder
Add wt% and methyl cellulose 0.5 wt% to make a slurry. This was applied on both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded into a predetermined thickness. A mixed solution of carbon and sodium polyacrylate was applied on this to a thickness of 0.5 micron to form an electrode. After leaving this electrode in a KOH aqueous solution at 80 ° C. for 3 hours, the electrode was taken out from this solution, washed with water, dried, and then the contact angle to the electrolytic solution was measured. As shown in E of FIG. 2, the contact angle 1 minute after the dropping was 95 ° and the contact angle was 68 ° 15 minutes after the dropping.
A battery was assembled and a charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1. The discharge capacity was 780 mAh, which was a predetermined capacity, and the battery internal pressure was suppressed to a low value of 4.5 kgf / cm 2 .

【0016】実施例4 水素吸蔵合金として実施例1と同じLa0.5Ce0.5Ni
3.5Mn0.5Al0.3Co0.7の組成の合金を用いた。直径
50ミクロン以下の粒子に粉砕した合金粉末に活性化処
理を施した後、結着剤としてエチレン酢酸ビニル0.5
重量%とメチルセルロース0.5重量%を加えてスラリ
ー状にする。これをパンチングメタル基体の両面に塗布
して乾燥後ローラプレスにより加圧し所定の厚さに成型
した。この上にニッケル粉末とメチルセルロースの混合
溶液を0.5ミクロンの厚みで塗布して電極とした。こ
の電極をKOH水溶液中で80℃3時間放置した後、こ
の溶液から取り出して水洗、乾燥後、電解液に対する接
触角を測定した。図2のFに示すように滴下後1分後の
接触角は103°で滴下後15分後には80°であっ
た。実施例1と同様にして電池を組み立てて充放電試験
を行った。結果を表1に示す。放電容量は750mAh
と所定の容量が得られ、電池内圧も4.7kgf/cm
2と小さく抑えられた。
Example 4 As a hydrogen storage alloy, the same La 0.5 Ce 0.5 Ni as in Example 1 was used.
An alloy having a composition of 3.5 Mn 0.5 Al 0.3 Co 0.7 was used. After activating the alloy powder crushed to particles with a diameter of 50 microns or less, ethylene vinyl acetate 0.5 as a binder
Add wt% and methyl cellulose 0.5 wt% to make a slurry. This was applied on both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded into a predetermined thickness. A mixed solution of nickel powder and methyl cellulose was applied on this to a thickness of 0.5 micron to form an electrode. After leaving this electrode in a KOH aqueous solution at 80 ° C. for 3 hours, the electrode was taken out from this solution, washed with water, dried, and then the contact angle to the electrolytic solution was measured. As shown in F of FIG. 2, the contact angle 1 minute after the dropping was 103 °, and the contact angle was 80 ° 15 minutes after the dropping. A battery was assembled and a charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1. Discharge capacity is 750mAh
And a predetermined capacity is obtained, and the battery internal pressure is 4.7 kgf / cm.
It was kept as small as 2 .

【0017】実施例5 水素吸蔵合金として実施例1と同じLa0.5Ce0.5Ni
3.5Mn0.5Al0.3Co0.7の組成の合金を用いた。直径
50ミクロン以下の粒子に粉砕した合金粉末に活性化処
理を施した後、結着剤としてエチレン酢酸ビニル0.5
重量%とメチルセルロース0.5重量%を加えてスラリ
ー状にする。これをパンチングメタル基体の両面に塗布
して乾燥後ローラプレスにより加圧し所定の厚さに成型
した。この上にポリテトラフロロエチレンを0.5ミク
ロンの厚みで塗布して電極とした。この電極をKOH水
溶液中で80℃3時間放置した後、この溶液から取り出
して水洗、乾燥後、電解液に対する接触角を測定した。
図3のGに示すように滴下後1分後の接触角は110°
で滴下後15分後には80°であった。実施例1と同様
にして電池を組み立てて充放電試験を行った。結果を表
1に示す。放電容量は770mAhと所定の容量が得ら
れ、電池内圧も4.0kgf/cm2と小さく抑えられ
た。
Example 5 As a hydrogen storage alloy, the same La 0.5 Ce 0.5 Ni as in Example 1 was used.
An alloy having a composition of 3.5 Mn 0.5 Al 0.3 Co 0.7 was used. After activating the alloy powder crushed to particles with a diameter of 50 microns or less, ethylene vinyl acetate 0.5 as a binder
Add wt% and methyl cellulose 0.5 wt% to make a slurry. This was applied on both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded into a predetermined thickness. Polytetrafluoroethylene was applied on this to a thickness of 0.5 micron to form an electrode. After leaving this electrode in a KOH aqueous solution at 80 ° C. for 3 hours, the electrode was taken out from this solution, washed with water, dried, and then the contact angle to the electrolytic solution was measured.
As shown in G of FIG. 3, the contact angle 1 minute after the dropping is 110 °.
It was 80 ° 15 minutes after the dropping. A battery was assembled and a charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1. The discharge capacity was 770 mAh, which was a predetermined capacity, and the battery internal pressure was suppressed to a low value of 4.0 kgf / cm 2 .

【0018】比較例3 水素吸蔵合金として実施例1と同じLa0.5Ce0.5Ni
3.5Mn0.5Al0.3Co0.7の組成の合金を用いた。直径
50ミクロン以下の粒子に粉砕した合金粉末に活性化処
理を施した後、結着剤としてエチレン酢酸ビニル0.5
重量%とメチルセルロース0.5重量%を加えてスラリ
ー状にする。これをパンチングメタル基体の両面に塗布
して乾燥後ローラプレスにより加圧し所定の厚さに成型
した。この上にポリテトラフロロエチレンを0.5ミク
ロンの厚みで塗布して電極とし、接触角を測定した。図
3のHに示すように滴下後1分後の接触角は135°で
滴下後15分後には122°であった。実施例1と同様
にして電池を組み立てて充放電試験を行った。結果を表
1に示す。電池内圧は3.4kgf/cm2と小さい
が、放電容量は590mAhと低い。
Comparative Example 3 As a hydrogen storage alloy, the same La 0.5 Ce 0.5 Ni as in Example 1 was used.
An alloy having a composition of 3.5 Mn 0.5 Al 0.3 Co 0.7 was used. After activating the alloy powder crushed to particles with a diameter of 50 microns or less, ethylene vinyl acetate 0.5 as a binder
Add wt% and methyl cellulose 0.5 wt% to make a slurry. This was applied on both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded into a predetermined thickness. Polytetrafluoroethylene was applied on this to a thickness of 0.5 micron to form an electrode, and the contact angle was measured. As shown in H of FIG. 3, the contact angle 1 minute after the dropping was 135 ° and 122 ° 15 minutes after the dropping. A battery was assembled and a charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1. The internal pressure of the battery was as small as 3.4 kgf / cm 2 , but the discharge capacity was as low as 590 mAh.

【0019】実施例6 水素吸蔵合金として実施例1と同じLa0.5Ce0.5Ni
3.5Mn0.5Al0.3Co0.7合金を用いた。直径50ミク
ロン以下の粒子に粉砕した合金粉末に活性化処理を施し
た後、結着剤としてエチレン酢酸ビニル0.5重量%と
メチルセルロース0.5重量%を加えてスラリー状にす
る。これをパンチングメタル基体の両面に塗布して乾燥
後ローラプレスにより加圧し所定の厚さに成型した。こ
の上にポリアクリル酸ソーダを0.5ミクロンの厚みで
塗布して電極とした。この電極をテトラフロロエタンガ
スを用いてプラズマ処理し、電解液に対する接触角を測
定した。図3のIに示すように滴下後1分後の接触角は
75°で滴下後15分後には65°であった。実施例1
と同様にして電池を組み立てて充放電試験を行った。結
果を表1に示す。放電容量は780mAhと所定の容量
が得られ、電池内圧も4.5kgf/cm2と小さく抑
えられた。
Example 6 As a hydrogen storage alloy, the same La 0.5 Ce 0.5 Ni as in Example 1 was used.
A 3.5 Mn 0.5 Al 0.3 Co 0.7 alloy was used. After activating the alloy powder pulverized into particles having a diameter of 50 microns or less, 0.5% by weight of ethylene vinyl acetate and 0.5% by weight of methyl cellulose as a binder are added to form a slurry. This was applied on both sides of a punched metal substrate, dried, and then pressed by a roller press to be molded into a predetermined thickness. Sodium polyacrylate was applied on this to a thickness of 0.5 micron to form an electrode. This electrode was plasma-treated using tetrafluoroethane gas, and the contact angle with the electrolytic solution was measured. As shown by I in FIG. 3, the contact angle 1 minute after the dropping was 75 ° and the contact angle was 65 ° 15 minutes after the dropping. Example 1
A battery was assembled and a charge / discharge test was conducted in the same manner as in. The results are shown in Table 1. The discharge capacity was 780 mAh, which was a predetermined capacity, and the battery internal pressure was suppressed to a low value of 4.5 kgf / cm 2 .

【0020】実施例7 ニッケル−カドミウム電池のカドミウム極として焼結式
のカドミウム極を用いた。ガドミウム極の表面にカーボ
ンとメチルセルロースの混合溶液を0.5ミクロンの厚
みで塗布して電極とした。この電極を酸素ガスを用いて
プラズマ処理し、電解液に対する接触角を測定した。図
3のJに示すように滴下後1分後の接触角は100°で
滴下後15分後には73°であった。実施例1と同様に
して電池を組み立てて充放電試験を行った。表1に結果
を示す。放電容量は750mAhと所定の容量が得ら
れ、電池内圧も3.5kgf/cm2と小さく抑えられ
た。
Example 7 A sintered cadmium electrode was used as the cadmium electrode of the nickel-cadmium battery. A mixed solution of carbon and methylcellulose was applied on the surface of the gadium electrode to a thickness of 0.5 μm to form an electrode. This electrode was plasma-treated using oxygen gas, and the contact angle with the electrolytic solution was measured. As shown by J in FIG. 3, the contact angle 1 minute after the dropping was 100 ° and the contact angle was 73 ° 15 minutes after the dropping. A battery was assembled and a charge / discharge test was conducted in the same manner as in Example 1. The results are shown in Table 1. The discharge capacity was 750 mAh, which was a predetermined capacity, and the battery internal pressure was suppressed to a low value of 3.5 kgf / cm 2 .

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】上記実施例の結果から明らかなように、
本発明によれば、ニッケル−金属水素化物電池、ニッケ
ル−カドミウム電池の急速充電特性を改善でき、電池内
圧上昇を抑制して、高容量、長寿命の密閉型二次電池を
得ることができる。
As is clear from the results of the above embodiments,
ADVANTAGE OF THE INVENTION According to this invention, the rapid charge characteristic of a nickel metal hydride battery and a nickel cadmium battery can be improved, an increase in battery internal pressure can be suppressed, and a high capacity and long life sealed secondary battery can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び比較例1,2よりなる水素極の接
触角を示す図である。
FIG. 1 is a diagram showing a contact angle of a hydrogen electrode according to Example 1 and Comparative Examples 1 and 2.

【図2】実施例2,3,4よりなる水素極の接触角を示
す図である。
FIG. 2 is a diagram showing the contact angles of hydrogen electrodes of Examples 2, 3 and 4.

【図3】実施例5,6,7及び比較例3よりなる水素極
の接触角を示す図である。
FIG. 3 is a diagram showing the contact angles of hydrogen electrodes of Examples 5, 6, 7 and Comparative Example 3.

【符号の説明】[Explanation of symbols]

Aは実施例1の水素極の接触角、Dは実施例2の水素極
の接触角、Eは実施例3の水素極の接触角、Fは実施例
4の水素極の接触角、Gは実施例5の水素極の接触角、
Iは実施例6の水素極の接触角、Jは実施例7のカドミ
ウム極の接触角。
A is the contact angle of the hydrogen electrode of Example 1, D is the contact angle of the hydrogen electrode of Example 2, E is the contact angle of the hydrogen electrode of Example 3, F is the contact angle of the hydrogen electrode of Example 4, and G is The contact angle of the hydrogen electrode of Example 5,
I is the contact angle of the hydrogen electrode of Example 6, and J is the contact angle of the cadmium electrode of Example 7.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 康太郎 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Kotaro Kobayashi 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Shinshin-Todo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】正極、セパレータ、負極、及びそれらの各
部分に分布する電解液により構成される密閉型二次電池
において、電極表面は、電解液滴下直後の接触角が11
0°以下75°以上である表面層を有することを特徴と
する密閉型二次電池。
1. A hermetically sealed secondary battery comprising a positive electrode, a separator, a negative electrode, and an electrolytic solution distributed in respective portions thereof, wherein the electrode surface has a contact angle of 11 immediately after dropping the electrolytic droplet.
A sealed secondary battery having a surface layer of 0 ° or less and 75 ° or more.
【請求項2】正極、セパレータ、負極、及びそれらの各
部分に分布する電解液により構成される密閉型二次電池
において、電極表面は、電解液滴下後15分経過時の接
触角が80°以下65°以上である表面層を有すること
を特徴とする請求項1に記載の密閉型二次電池。
2. A hermetically sealed secondary battery comprising a positive electrode, a separator, a negative electrode, and an electrolytic solution distributed in respective portions thereof, wherein the electrode surface has a contact angle of 80 ° at 15 minutes after the electrolytic droplet is dropped. The sealed secondary battery according to claim 1, further comprising a surface layer having an angle of 65 ° or more.
【請求項3】正極とセパレータと水素吸蔵合金負極もし
くはカドミウム負極とが密閉容器に収容され、電解液が
充填された密閉型二次電池において、アルカリもしくは
酸により表面修飾を受けたカーボン、結着剤、金属粉末
のいずれか一つ、もしくはそれらの組合せを使用するこ
とを特徴とする請求項1または2に記載の密閉型二次電
池。
3. A hermetically sealed secondary battery in which a positive electrode, a separator, a hydrogen storage alloy negative electrode or a cadmium negative electrode are housed in a hermetically sealed container and filled with an electrolytic solution. Carbon surface-modified with an alkali or an acid, a binder. The sealed secondary battery according to claim 1, wherein any one of the agent and the metal powder, or a combination thereof is used.
【請求項4】正極とセパレータと水素吸蔵合金負極もし
くはカドミウム負極とが密閉容器に収容され、電解液が
充填された密閉型二次電池において、酸素原子を含むガ
スからなるプラズマにより表面修飾を受けたカーボン、
結着剤、金属粉末のいずれか一つ、もしくはそれらの組
合せを使用することを特徴とする請求項3に記載の密閉
型二次電池。
4. A hermetically sealed secondary battery in which a positive electrode, a separator, a hydrogen storage alloy negative electrode or a cadmium negative electrode are housed in a hermetically sealed container and filled with an electrolytic solution, which is surface-modified by plasma containing a gas containing oxygen atoms. Carbon,
The sealed secondary battery according to claim 3, wherein any one of a binder and a metal powder, or a combination thereof is used.
【請求項5】正極とセパレータと水素吸蔵合金負極もし
くはカドミウム負極とが密閉容器に収容され、電解液が
充填された密閉型二次電池において、フッ素原子を含む
ガスからなるプラズマにより表面修飾を受けたカーボ
ン、結着剤、金属粉末のいずれか一つ、もしくはそれら
の組合せを使用することを特徴とする請求項3に記載の
密閉型二次電池。
5. A hermetically sealed secondary battery in which a positive electrode, a separator, a hydrogen storage alloy negative electrode or a cadmium negative electrode are housed in a hermetically sealed container and filled with an electrolytic solution, which is surface-modified by a plasma containing a gas containing a fluorine atom. The sealed secondary battery according to claim 3, wherein any one of carbon, a binder, a metal powder, or a combination thereof is used.
JP7228931A 1995-09-06 1995-09-06 Sealed secondary battery Pending JPH0973897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7228931A JPH0973897A (en) 1995-09-06 1995-09-06 Sealed secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7228931A JPH0973897A (en) 1995-09-06 1995-09-06 Sealed secondary battery

Publications (1)

Publication Number Publication Date
JPH0973897A true JPH0973897A (en) 1997-03-18

Family

ID=16884107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7228931A Pending JPH0973897A (en) 1995-09-06 1995-09-06 Sealed secondary battery

Country Status (1)

Country Link
JP (1) JPH0973897A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148244A (en) * 1999-09-09 2001-05-29 Canon Inc Secondary battery and its manufacturing method
WO2003026046A1 (en) * 2001-09-17 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Active material for cell and its manufacturing method
WO2003028142A1 (en) * 2001-09-19 2003-04-03 Kawasaki Jukogyo Kabushiki Kaisha Three-dimensional cell, its electrode struture, and method for manufacturing electrode material of three-dimensional cell
JP2003197187A (en) * 2002-12-12 2003-07-11 Kawasaki Heavy Ind Ltd Active material for battery and its manufacturing method
JPWO2011096572A1 (en) * 2010-02-08 2013-06-13 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
WO2014083741A1 (en) * 2012-11-28 2014-06-05 パナソニック株式会社 Nickel-hydrogen storage battery and battery pack

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148244A (en) * 1999-09-09 2001-05-29 Canon Inc Secondary battery and its manufacturing method
JP4717192B2 (en) * 1999-09-09 2011-07-06 キヤノン株式会社 Secondary battery and manufacturing method thereof
WO2003026046A1 (en) * 2001-09-17 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Active material for cell and its manufacturing method
WO2003028142A1 (en) * 2001-09-19 2003-04-03 Kawasaki Jukogyo Kabushiki Kaisha Three-dimensional cell, its electrode struture, and method for manufacturing electrode material of three-dimensional cell
JPWO2003028142A1 (en) * 2001-09-19 2005-01-13 川崎重工業株式会社 Three-dimensional battery, electrode structure thereof, and method for manufacturing electrode material of three-dimensional battery
JP2003197187A (en) * 2002-12-12 2003-07-11 Kawasaki Heavy Ind Ltd Active material for battery and its manufacturing method
JPWO2011096572A1 (en) * 2010-02-08 2013-06-13 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
WO2014083741A1 (en) * 2012-11-28 2014-06-05 パナソニック株式会社 Nickel-hydrogen storage battery and battery pack
JP5975307B2 (en) * 2012-11-28 2016-08-23 パナソニックIpマネジメント株式会社 Nickel metal hydride storage battery and battery pack
US9755226B2 (en) 2012-11-28 2017-09-05 Panasonic Intellectual Property Management Co., Ltd. Nickel-hydrogen storage battery and battery pack

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
EP0271043A1 (en) Sealed storage battery and method for making its electrode
JPWO2014083741A1 (en) Nickel metal hydride storage battery and battery pack
JPH0973897A (en) Sealed secondary battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH11144733A (en) Secondary battery electrode and secondary battery
JP6120362B2 (en) Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode
JP3686139B2 (en) Alkaline secondary battery
US10950848B2 (en) Positive electrode and alkaline secondary battery including the same
JP3203083B2 (en) Alkaline storage battery
JP2017168283A (en) Negative electrode material for battery, battery, and method for manufacturing negative electrode for battery
JP2010010097A (en) Method of manufacturing nickel metal hydride storage battery
JPH0888003A (en) Manufacture of hydrogen storage alloy electrode
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JP3558082B2 (en) Nickel-cadmium secondary battery
JP2022115451A (en) Iron-carbon composite material, manufacturing method of the same, negative electrode, and nickel-hydrogen battery
JP2022182855A (en) Negative electrode for alkaline storage battery and alkaline storage battery using the same
JPH03295177A (en) Sealed alkaline storage battery
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPH05159799A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JP4467212B2 (en) Alkaline storage battery
JPH08315810A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JP3876960B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same