JPH0971897A - Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production - Google Patents

Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production

Info

Publication number
JPH0971897A
JPH0971897A JP7252044A JP25204495A JPH0971897A JP H0971897 A JPH0971897 A JP H0971897A JP 7252044 A JP7252044 A JP 7252044A JP 25204495 A JP25204495 A JP 25204495A JP H0971897 A JPH0971897 A JP H0971897A
Authority
JP
Japan
Prior art keywords
particles
pores
antibacterial
semiconductor
anodized film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7252044A
Other languages
Japanese (ja)
Other versions
JP3251475B2 (en
Inventor
Akira Fujishima
昭 藤嶋
Kazuhito Hashimoto
和仁 橋本
Nobuyuki Nakada
信之 中田
Toshio Arai
敏夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP25204495A priority Critical patent/JP3251475B2/en
Publication of JPH0971897A publication Critical patent/JPH0971897A/en
Application granted granted Critical
Publication of JP3251475B2 publication Critical patent/JP3251475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an aluminum building material which has antimicrobial, fungiproof and stainproof properties and is formed by coating the surfaces of an aluminum alloy base material with films having the antimicrobial, fungiproof and stainproof properties with a high adhesive strength and an aluminum building material deposited with antimicrobial metals or compds. contg. the antimicrobial metals and further metals for coloration and various functional materials. SOLUTION: The base material consisting of the aluminum alloy formed with anodically oxidized films 1 is immersed into a liquid dispersion or coating material soln. contg. semiconductor particulates having a photocatalyst effect and an electrophoresis method is applied thereto or the base material is immersed into this soln. under a pressure below the atm. pressure, by which the antimicrobial, fungiproof and stainproof building material packed with the semiconductor particulates or the coating material particles 3 contg. or carrying the semiconductor particulates into the pares 2 of the anodically oxidized films 1 of the base material is produced. Further, the base material is subjected to reduction by the photocatalyst effect of the semiconductor particulates by bringing the base material into contact with the soln. contg. various metal ions and irradiating the base material with UV rays, by which the antimicrobial metals or the metals, such as compds. 4 contg. antimicrobial metals, are deposited thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、抗菌・防黴・防汚
性の建築材料(以下、建材という)に関し、さらに詳し
くは、アルミニウム又はアルミニウム合金製の建材(以
下、アルミ建材という)表面に形成した陽極酸化皮膜の
細孔中に、光触媒作用を有する半導体微粒子、あるいは
半導体微粒子を含有もしくは担持した塗料粒子を充填さ
せた抗菌・防黴・防汚性のアルミ建材及びその製造方法
に関する。さらに本発明は、上記陽極酸化皮膜の細孔中
に充填した半導体微粒子の光触媒作用によって、陽極酸
化皮膜の細孔に抗菌性金属又は抗菌性金属を含む化合物
や、アルミ建材の着色に使用される種々の金属や様々な
機能性物質を析着させたアルミ建材及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial / mildew / fouling resistant building material (hereinafter referred to as a building material), and more specifically, to a surface of a building material made of aluminum or an aluminum alloy (hereinafter referred to as an aluminum building material). The present invention relates to an antibacterial / mildew / fouling resistant aluminum building material in which fine pores of an anodized film formed are filled with fine semiconductor particles having a photocatalytic action or coating particles containing or carrying fine semiconductor particles, and a method for producing the same. Furthermore, the present invention is used for coloring an antibacterial metal or a compound containing an antibacterial metal in the pores of an anodized film, or a coloring material for aluminum building materials, by the photocatalytic action of semiconductor fine particles filled in the pores of the anodized film. The present invention relates to an aluminum building material deposited with various metals and various functional substances and a method for producing the same.

【0002】[0002]

【従来の技術】従来、各種金属塩を含有する浴を用いて
の電解着色法や有機染料の浴を用いての浸漬着色法等、
多くのアルミニウム陽極酸化皮膜の着色方法が知られて
おり、また特公昭52−5010号公報及び特公昭51
−35177号公報には、アルミニウムをリン酸水溶液
中で陽極酸化し、これを水性有機顔料微分散体浴中に浸
漬処理又はさらに通電処理して着色する方法が記載され
ている。しかし、これら着色法は、巨大な電解浴や大容
量の電源装置が必要であり、さらに、これらの方法の目
的は、建築部材の美観や耐久性の向上であり、それ以外
の機能を付与するものではなかった。
2. Description of the Related Art Conventionally, an electrolytic coloring method using a bath containing various metal salts, an immersion coloring method using a bath of an organic dye, etc.
Many methods for coloring aluminum anodic oxide coatings are known, and Japanese Patent Publication Nos. 52-5010 and 51.
JP-A-35177 describes a method in which aluminum is anodized in a phosphoric acid aqueous solution, and this is colored by dipping or further energizing in an aqueous organic pigment fine dispersion bath. However, these coloring methods require a huge electrolytic bath and a large-capacity power supply device. Furthermore, the purpose of these methods is to improve the aesthetics and durability of building members, and to add other functions. It wasn't something.

【0003】一方、近年、MRSA(メチシリン耐性黄
色ブドウ球菌)等の院内感染が問題視されるようになっ
てきている。院内感染の多くは日和見感染症であり、ウ
ィルス、細菌、原虫、黴等が抵抗力や免疫力が低下した
人体の中で急に活発化して発症する感染症である。例え
ばMRSAの感染に関して言えば、その菌は主に患者や
院内従事者の体、スリッパ、医療器具等を介して病院内
に広がるようだが、空気中の塵埃に菌が付着して空気感
染を起こすこともある。そのため、院内感染を防ぐには
室内空気全体を殺菌、浄化処理する必要があり、従来、
薬品による消毒や空気清浄器に頼ってきた。しかしなが
ら、消毒においては、薬品を用いるため人体への影響が
無視できず、薬品の臭いも不快感を与えるといった問題
があり、また、作業が容易でない等の理由から頻繁に行
うわけにもいかなかった。一方、空気清浄器による院内
の浄化は比較的容易ではあるが、空気中の塵埃等を静電
気により除去する原理であるため、細菌、黴、及びそれ
に付随する臭気等は除去しにくいといった問題があっ
た。また、煙草のヤニがサッシ、パネル材等の建築部材
表面に付着し汚れた場合、美観を損ねるだけでなく、そ
の部分に細菌が付着し繁殖し易いという問題もあった。
On the other hand, in recent years, nosocomial infections such as MRSA (methicillin-resistant Staphylococcus aureus) have become a problem. Most hospital-acquired infections are opportunistic infections, in which viruses, bacteria, protozoa, molds, and the like are suddenly activated in a human body with reduced resistance and immunity, and develop. Regarding MRSA infection, for example, the bacterium seems to spread in the hospital mainly through the body of patients and in-hospital workers, slippers, medical instruments, etc., but bacteria attach to dust in the air and cause air infection. Sometimes. Therefore, in order to prevent nosocomial infections, it is necessary to sterilize and purify the entire indoor air.
I have resorted to chemical disinfection and air purifiers. However, disinfection has the problem that the effects on the human body cannot be ignored because it uses chemicals, and the smell of the chemicals causes discomfort, and it cannot be performed frequently because the work is not easy. It was On the other hand, cleaning of the hospital with an air purifier is relatively easy, but since it is based on the principle of removing dust and the like in the air by static electricity, there is a problem that it is difficult to remove bacteria, fungi, and odors associated therewith. Was. In addition, when tobacco tar adheres to the surface of a building member such as a sash or a panel material and becomes dirty, there is a problem that not only the aesthetic appearance is impaired but also bacteria adhere to the portion and easily propagate.

【0004】ところで、TiO2 に代表される光触媒作
用を有する半導体微粒子が、その光触媒作用により有機
物の分解を行い、その作用に基づき抗菌・防黴・防汚・
防臭作用を有することは従来から知られており、最近で
はそれらを利用して、細菌や黴が繁殖しにくい様々な材
料が研究、開発されている。例えば、特開平2−633
3号公報には酸化チタンの粒子表面に銅、亜鉛等の抗菌
性金属を担持させた抗菌性粉末について開示されてお
り、この粉末を樹脂、ゴム、ガラス等に配合することに
よって抗菌性組成物が得られ、また、公知の方法によ
り、電機機器、家具調度品、室内装飾材、食品等の包装
資材などの抗菌性処理のほか、環境衛生施設、機器類の
抗菌剤として上記粉末を利用できると教示している。特
開平6−65012号公報には、銀、銅、亜鉛、白金等
の金属を含有した酸化チタン膜をコンクリート、ガラ
ス、プラスチック、セラミックス、金属等の材質からな
る基板にコーティングすることによって、該基板におい
て雑菌及び黴の繁殖を防止できる旨が開示されている。
さらに特開平4−307066号公報には、パネルの裏
面に光触媒を付設し、該パネルの裏側に短波長ランプを
配置し、このランプから光触媒へ紫外線照射することに
よって、光触媒を活性化し、パネルが設置された室内の
脱臭を図るという室内空気のリフレッシュ法が開示され
ている。
By the way, semiconductor fine particles having a photocatalytic action represented by TiO 2 decompose organic substances by the photocatalytic action, and based on the action, antibacterial, antifungal, antifouling,
It has been known that it has a deodorizing effect, and recently, various materials have been researched and developed utilizing these materials, in which bacteria and molds are difficult to propagate. For example, Japanese Patent Application Laid-Open No. 2-633
Japanese Patent Publication No. 3 discloses an antibacterial powder in which antibacterial metal such as copper and zinc is supported on the surface of titanium oxide particles, and the antibacterial composition is prepared by blending the powder with resin, rubber, glass and the like. In addition to the antibacterial treatment of electrical equipment, furniture furnishings, upholstery materials, packaging materials such as foods, etc., the above-mentioned powder can be used as an antibacterial agent for environmental hygiene facilities and equipment by a known method. I teach. Japanese Unexamined Patent Publication No. 6-65012 discloses that a titanium oxide film containing a metal such as silver, copper, zinc or platinum is coated on a substrate made of a material such as concrete, glass, plastic, ceramics, metal, etc. Discloses that the propagation of germs and mold can be prevented.
Further, JP-A-4-307066 discloses that a photocatalyst is attached to the back surface of a panel, a short-wavelength lamp is disposed on the back side of the panel, and the photocatalyst is activated by irradiating the photocatalyst with ultraviolet light from the lamp. There is disclosed a method of refreshing indoor air in which the installed room is deodorized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、アルミ
ニウム又はアルミニウム合金(以下、アルミ合金とい
う)製の建築部材、例えばパネル材上に酸化チタン等の
光触媒をコーティングすると、アルミ合金基材と光触媒
の充分な密着性が得られず、コーティングした光触媒の
膜が剥離し易いという問題がある。また、複雑な形状を
有する建材上に均一に光触媒をコーティングすることは
困難であり、さらに、通常、光触媒をコーティングする
場合、200℃を超える温度に基材を加熱する必要があ
り、このような温度にアルミ合金をさらすとアルミ合金
の強度が著しく低下してしまう。
However, when a photocatalyst such as titanium oxide is coated on a building member made of aluminum or an aluminum alloy (hereinafter referred to as an aluminum alloy), for example, a panel material, a sufficient amount of the aluminum alloy base material and the photocatalyst is provided. There is a problem that the adhesiveness is not obtained and the coated photocatalyst film is easily peeled off. Further, it is difficult to uniformly coat the photocatalyst on a building material having a complicated shape, and normally, when coating the photocatalyst, it is necessary to heat the base material to a temperature higher than 200 ° C. When the aluminum alloy is exposed to the temperature, the strength of the aluminum alloy is significantly reduced.

【0006】従って、本発明の目的は、上記のような問
題を解決し、特別の装置を要することなくメンテナンス
フリーであり、しかも抗菌・防黴・防汚性の膜が高い密
着強度でコーティングされた抗菌・防黴・防汚性のアル
ミ建材及びその製造方法を提供することにある。さらに
本発明の目的は、コーティングされた光触媒の酸化還元
作用によって、抗菌性金属又は抗菌性金属を含む化合物
や、従来電解着色によるアルミ建材の着色に用いられて
いた金属など種々の着色性の金属あるいは種々の機能性
物質を析着させたアルミ建材及びその製造方法を提供す
ることにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to be maintenance-free without requiring a special device, and to be coated with an antibacterial, antifungal and antifouling film with high adhesion strength. Another object of the present invention is to provide an antibacterial, antifungal and antifouling aluminum building material and a method for producing the same. Further, the object of the present invention is to provide various coloring metals such as antibacterial metal or a compound containing the antibacterial metal, and a metal that has been conventionally used for coloring aluminum building materials by electrolytic coloring, by the redox action of the coated photocatalyst. Alternatively, it is to provide an aluminum building material having various functional substances deposited and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の一側面によれば、アルミニウム又はアルミ
ニウム合金からなる基材の表面に細孔を有する陽極酸化
皮膜を形成し、さらに該陽極酸化皮膜の細孔中に光触媒
作用を有する半導体微粒子あるいは半導体微粒子を含有
もしくは担持した塗料粒子が充填されてなるアルミ建材
が提供される。好適な態様においては、前記光触媒作用
を有する半導体微粒子あるいは半導体微粒子を含有もし
くは担持した塗料粒子に銀、銅等の抗菌性金属又は抗菌
性金属を含んだ化合物を担持させることにより、さらに
抗菌・防黴性に優れたアルミ建材が提供される。さらに
本発明の他の側面によれば、前記半導体微粒子あるいは
半導体微粒子を含有もしくは担持した塗料粒子が充填さ
れた陽極酸化皮膜の細孔に種々の着色性の金属を析着し
てなる着色アルミ建材が提供される。また、抗菌性金属
又は抗菌性金属を含む化合物、着色用金属以外にも種々
の機能性物質を陽極酸化皮膜の細孔に析着してなるアル
ミ建材が提供される。
In order to achieve the above object, according to one aspect of the present invention, an anodized film having pores is formed on the surface of a substrate made of aluminum or an aluminum alloy, and further, Provided is an aluminum building material in which fine pores of an anodized film are filled with semiconductor fine particles having a photocatalytic action or coating particles containing or carrying the semiconductor fine particles. In a preferred embodiment, the antibacterial / prevention is further achieved by supporting silver or copper or other antibacterial metal or a compound containing an antibacterial metal on the semiconductor fine particles having photocatalytic activity or the coating particles containing or carrying the semiconductor fine particles. An aluminum building material with excellent moldability is provided. Further, according to another aspect of the present invention, a colored aluminum building material obtained by depositing various coloring metals in the pores of the anodic oxide film filled with the semiconductor fine particles or the coating particles containing or carrying the semiconductor fine particles. Will be provided. Further, there is provided an aluminum building material obtained by depositing various functional substances other than the antibacterial metal or the compound containing the antibacterial metal and the coloring metal in the pores of the anodized film.

【0008】さらに本発明によれば、前記のような抗菌
・防黴・防汚性のアルミ建材及び着色アルミ建材の製造
に好適な方法も提供される。抗菌・防黴・防汚性のアル
ミ建材の製造方法は、一つの方法においては、光触媒作
用を有する半導体微粒子を含む分散液又は塗料溶液中
に、陽極酸化皮膜を形成したアルミニウム又はアルミニ
ウム合金からなる基材を浸漬し、電気泳動法により上記
基材の陽極酸化皮膜の細孔中に半導体微粒子又は半導体
微粒子を含有もしくは担持した塗料粒子を充填させるこ
とを特徴としており、他の方法においては、光触媒作用
を有する半導体微粒子を含む分散液又は塗料溶液中に、
大気圧以下の圧力下、陽極酸化皮膜を形成したアルミニ
ウム又はアルミニウム合金からなる基材を浸漬し、上記
基材の陽極酸化皮膜の細孔中に半導体微粒子又は半導体
微粒子を含有もしくは担持した塗料粒子を充填させるこ
とを特徴としている。
Further, according to the present invention, there is also provided a method suitable for producing the above-mentioned antibacterial / mildew / fouling resistant aluminum building material and colored aluminum building material. One method for producing an antibacterial / mildew / fouling resistant aluminum building material comprises, in one method, aluminum or an aluminum alloy having an anodized film formed in a dispersion liquid or a coating solution containing semiconductor fine particles having a photocatalytic action. The method is characterized in that the base material is immersed, and the fine particles of the semiconductor or fine particles of the coating material containing or supporting the fine particles of the semiconductor are filled in the pores of the anodized film of the base material by an electrophoretic method. In a dispersion or coating solution containing semiconductor fine particles having an action,
Under a pressure of atmospheric pressure or less, a base material made of aluminum or an aluminum alloy on which an anodized film is formed is immersed, and semiconductor fine particles or coating particles containing or carried semiconductor fine particles in the pores of the anodized film of the base material are applied. It is characterized by filling.

【0009】前記半導体微粒子又は半導体微粒子を含有
もしくは担持した塗料粒子が充填された陽極酸化皮膜の
細孔にさらに抗菌性金属又は抗菌性金属を含む化合物や
着色用金属を析着してなるアルミ建材の製造は、半導体
微粒子の光触媒作用を利用して有利に行うことができ
る。すなわち、この方法は、陽極酸化皮膜の細孔中に光
触媒作用を有する半導体微粒子又は半導体微粒子を含有
もしくは担持した塗料粒子が充填されてなるアルミニウ
ム又はアルミニウム合金からなる基材の上記陽極酸化皮
膜を、抗菌性金属イオン、抗菌性金属化合物イオン又は
着色用金属イオンを含む溶液と接触せしめ、紫外線を照
射することにより、上記半導体微粒子の光触媒作用によ
って上記金属イオンや化合物イオンを還元し、上記陽極
酸化皮膜の細孔に上記金属を析出させることを特徴とし
ている。機能性物質の場合にも、溶液中でイオン化し、
これが還元された状態で所望の機能を発揮できるような
材料であれば、上記と同様の方法により有利に析出させ
ることができる。
An aluminum building material obtained by further depositing an antibacterial metal or a compound containing an antibacterial metal or a coloring metal in the pores of the anodized film filled with the semiconductor particles or the coating particles containing or carrying the semiconductor particles. Can be advantageously produced by utilizing the photocatalytic action of semiconductor fine particles. That is, this method, the anodized film of the substrate made of aluminum or aluminum alloy filled with coating particles containing or carrying semiconductor particles or semiconductor particles having a photocatalytic action in the pores of the anodized film, By contacting with a solution containing antibacterial metal ions, antibacterial metal compound ions or coloring metal ions and irradiating with ultraviolet rays, the metal ions and compound ions are reduced by the photocatalytic action of the semiconductor fine particles, and the anodized film is formed. It is characterized in that the above metal is deposited in the pores. In the case of functional substances, ionize in solution,
If this is a material that can exhibit a desired function in a reduced state, it can be advantageously deposited by the same method as described above.

【0010】[0010]

【発明の実施の形態】前記したように、アルミ合金地金
に直接、光触媒作用を有する半導体微粒子や半導体微粒
子を含有もしくは担持した塗料粒子(以下、光触媒と総
称する)をコーティングすると、光触媒とアルミ合金地
金との密着性が悪く、衝撃を受けた場合に光触媒が剥離
してしまうという問題がある。また、複雑な形状を有す
る押し出し形材等に光触媒をコーティングする場合は、
その付き廻りの問題があり、凹部や隅角部にまで光触媒
を均一にコーティングすることは困難である。さらに、
通常行われている光触媒微粒子を含む懸濁液を基材表面
に塗布、焼結させる方法や、金属簿膜を形成した後、こ
れを酸化させて所定の光触媒を形成する方法では、20
0℃を超える温度下での処理が必要であるが、アルミ合
金の場合には、このような高い温度にさらすとその強度
が著しく低下してしまうという問題がある。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, when the aluminum alloy base metal is directly coated with the semiconductor fine particles having a photocatalytic action or the coating particles containing or carrying the semiconductor fine particles (hereinafter, referred to as a photocatalyst), the photocatalyst and the aluminum are coated. There is a problem that the adhesion to the alloy metal is poor and the photocatalyst peels off when it receives an impact. In addition, when coating a photocatalyst on an extruded material having a complicated shape,
There is a problem with the surroundings, and it is difficult to uniformly coat the photocatalyst even on the recesses and corners. further,
In the conventional method in which a suspension containing photocatalyst fine particles is applied to the surface of a base material and sintered, or in which a metal book film is formed and then oxidized to form a predetermined photocatalyst,
Although treatment at a temperature exceeding 0 ° C. is necessary, there is a problem that the strength of an aluminum alloy is markedly reduced when exposed to such a high temperature.

【0011】前記のような問題点を解決するためには、
光触媒とアルミ合金地金の間に、光触媒とアルミ合金地
金との密着性を強める効果を有する膜を介在させる必要
がある。このような中間膜として、本発明のアルミ建材
は、アルミ合金表面に一体的に形成される多孔質の陽極
酸化皮膜を利用するものである。すなわち、本発明のア
ルミ建材は、アルミ合金からなる基材の表面に陽極酸化
皮膜を形成し、さらにこの細孔中に光触媒を充填したも
のである。陽極酸化皮膜は絶縁膜であり、しかも表面に
直径約5nm〜100nmの細孔が無数に開いた多孔質
である。従って、細孔中に光触媒を充填することによっ
て、光触媒のアルミ合金地金に対する密着性を向上させ
ることができる。
In order to solve the above problems,
It is necessary to interpose between the photocatalyst and the aluminum alloy base metal a film having the effect of enhancing the adhesion between the photocatalyst and the aluminum alloy base metal. As such an intermediate film, the aluminum building material of the present invention utilizes a porous anodic oxide film integrally formed on the surface of the aluminum alloy. That is, the aluminum building material of the present invention is one in which an anodized film is formed on the surface of a base material made of an aluminum alloy and the pores are filled with a photocatalyst. The anodic oxide film is an insulating film, and is also a porous material in which numerous pores having a diameter of about 5 nm to 100 nm are opened on the surface. Therefore, by filling the pores with the photocatalyst, the adhesion of the photocatalyst to the aluminum alloy base metal can be improved.

【0012】光触媒を充填させるアルミ建材の陽極酸化
皮膜としては、通常の陽極酸化処理によって形成した陽
極酸化皮膜の細孔径は一般に50nm以下であり、光触
媒の充填が困難であるので、細孔径の大きな陽極酸化皮
膜を有するアルミ合金を用いる必要がある。このような
細孔径の大きな陽極酸化皮膜を形成する方法としては種
々の方法が知られているが、まず、一つの方法において
は、アルミ合金を例えば硫酸、リン酸、シュウ酸、マロ
ン酸、マレイン酸等の鉱酸又は有機酸の1種又は2種以
上の酸水溶液中、例えばリン酸5〜30%、シュウ酸3
〜40%を含有する電解浴中で高電圧で陽極酸化し、該
アルミ合金表面に通常の細孔径より大きい細孔を有する
陽極酸化皮膜を形成させる。一般にDC150V〜22
0Vの高電圧で陽極酸化した場合、通常120nm以上
の細孔径を有する陽極酸化皮膜が得られ、該細孔内に前
記光触媒を充填できる。すなわち、陽極酸化処理の電圧
が150V未満の場合、光触媒の充填に十分な大きさの
細孔が得られにくいので好ましくなく、一方、220V
を超えると陽極酸化皮膜の強度等の物性に悪影響を及ぼ
すので好ましくない。
As an anodized film for an aluminum building material to be filled with a photocatalyst, the anodized film formed by an ordinary anodizing treatment generally has a pore size of 50 nm or less, and it is difficult to fill the photocatalyst, so that the pore size is large. It is necessary to use an aluminum alloy having an anodized film. Various methods are known as a method for forming such an anodized film having a large pore size. First, in one method, an aluminum alloy is treated with, for example, sulfuric acid, phosphoric acid, oxalic acid, malonic acid, maleic acid. In an aqueous acid solution of one or more kinds of mineral acids such as acids or organic acids, for example, phosphoric acid 5 to 30%, oxalic acid 3
Anodization is performed at a high voltage in an electrolytic bath containing 40% to 40% to form an anodized film having pores larger than usual pore diameters on the surface of the aluminum alloy. Generally, DC150V-22
When anodizing at a high voltage of 0 V, an anodized film having a pore size of 120 nm or more is usually obtained, and the photocatalyst can be filled in the pores. That is, when the voltage of the anodizing treatment is less than 150V, it is not preferable because it is difficult to obtain pores of a size sufficient for filling the photocatalyst, while 220V is used.
If it exceeds the range, physical properties such as strength of the anodized film are adversely affected, which is not preferable.

【0013】また、他の方法としては、まずアルミ合金
を前記鉱酸又は有機酸の1種又は2種以上の酸水溶液中
で陽極酸化し、該アルミ合金の表面に多孔質陽極酸化皮
膜を形成させる。電解条件としては、35V以上、好ま
しくは50〜160Vの高電圧電解によりセルサイズ及
び細孔径の大きな陽極酸化皮膜を得る。次いで、リン
酸、硫酸、シュウ酸、スルファミン酸の1種又は2種以
上の酸水溶液、好ましくはリン酸3〜10%の水溶液に
浸漬して皮膜細孔の拡大処理を行う。このような方法に
より、最終的には50nm以上、好ましくは100〜1
000nm、孔の深さ3〜10μm程度の細孔に調整し
て、本発明の光触媒の充填に適する多孔質陽極酸化皮膜
を得る。また、皮膜細孔の拡大処理の時間を短縮するた
めに、リン酸3〜10%の水溶液中で、浸漬と交流系電
解の処理を交互に短時間間隔で繰り返すことにより、該
皮膜細孔の拡大処理を比較的短時間に行うことができ
る。
As another method, first, an aluminum alloy is anodized in an aqueous acid solution of one or more of the mineral acids or organic acids to form a porous anodic oxide film on the surface of the aluminum alloy. Let As the electrolysis conditions, an anodic oxide film having a large cell size and a large pore diameter is obtained by high voltage electrolysis of 35 V or more, preferably 50 to 160 V. Then, the film is immersed in an aqueous solution of one or more of phosphoric acid, sulfuric acid, oxalic acid, and sulfamic acid, preferably an aqueous solution of 3 to 10% of phosphoric acid, to perform a process of expanding the pores of the film. By such a method, finally, 50 nm or more, preferably 100 to 1 nm
The porous anodic oxide film suitable for filling the photocatalyst of the present invention is obtained by adjusting the pore size to 000 nm and the pore depth to about 3 to 10 μm. In order to shorten the time required for the process of expanding the pores of the coating, the immersion and the alternating current electrolysis are alternately repeated at short intervals in an aqueous solution containing 3 to 10% of phosphoric acid. The enlargement process can be performed in a relatively short time.

【0014】前述したように、本発明のアルミ建材は、
光触媒とアルミ合金地金との密着性を強めるため、陽極
酸化皮膜の微細孔中に光触媒を充填したものであるた
め、光触媒の剥離といった問題もなく優れた抗菌・防黴
・防汚性を示す。すなわち、このような建材表面には、
光触媒作用を有する半導体微粒子、例えば、TiO2
存在している。この半導体微粒子に太陽光線や蛍光灯の
光が照射されると、TiO2 表面に正孔(h+ )や電子
(e- )が生じ光触媒作用を示し、水や各種の有機物の
分解が行われる。また、この正孔の作用により水が酸化
されOHラジカルを、また、電子の作用により空気中の
酸素が還元され、O2 -ラジカルを生ずる。これらの活性
酸素は優れた殺菌作用を有し、その結果、黴等が生じに
くくなる。
As mentioned above, the aluminum building material of the present invention is
In order to enhance the adhesion between the photocatalyst and the aluminum alloy base metal, the photocatalyst is filled in the fine pores of the anodic oxide film, so there is no problem of photocatalyst peeling and it exhibits excellent antibacterial, antifungal and antifouling properties. . That is, on the surface of such building materials,
Semiconductor fine particles having a photocatalytic action, such as TiO 2, are present. When these semiconductor particles are irradiated with sunlight or fluorescent light, holes (h + ) and electrons (e ) are generated on the TiO 2 surface to show a photocatalytic action, and water and various organic substances are decomposed. . Further, water is oxidized by the action of the holes to produce OH radicals, and oxygen in the air is reduced by the action of electrons to produce O 2 radicals. These active oxygens have an excellent bactericidal action, and as a result, mold and the like hardly occur.

【0015】さらに、TiO2 等の半導体粒子の表面に
金属イオンが存在する時は、光照射によって生じた電子
の作用によって種々の金属イオンの還元が行われ、陽極
酸化皮膜の細孔中に金属を析出させることが可能とな
る。すなわち、銀や銅などの抗菌性金属又は抗菌性金属
を含む化合物を析出させれば、夜間、蛍光灯の明かりが
消えても抗菌・防黴性が維持されることになる。また、
ニッケルやスズ等、従来、電解着色によって析出させて
いた金属を析出させれば、電解浴や電源を使用すること
なしに着色が行える。さらに、溶液中でイオン化しこれ
が還元された状態で機能を発揮するような機能性材料で
あれば、同様に該機能性材料を陽極酸化皮膜の細孔中に
析出させることが可能となり、様々な機能性アルミ建材
の作製が行える。
Furthermore, when metal ions are present on the surface of semiconductor particles such as TiO 2 , various metal ions are reduced by the action of electrons generated by light irradiation, and metal ions are present in the pores of the anodized film. Can be deposited. That is, if an antibacterial metal such as silver or copper or a compound containing an antibacterial metal is deposited, antibacterial and antifungal properties can be maintained even at night when the light of a fluorescent lamp is extinguished. Also,
If a metal such as nickel and tin, which has been conventionally deposited by electrolytic coloring, is deposited, coloring can be performed without using an electrolytic bath or a power supply. Furthermore, if it is a functional material that ionizes in a solution and exerts its function in a reduced state, it becomes possible to deposit the functional material in the pores of the anodic oxide film in the same manner. Capable of producing functional aluminum building materials.

【0016】本発明のアルミ建材の使用に際しては、例
えば上記のような光触媒作用を有する建材から枠材もし
くは框材、パネル材を製作し、これを同様に光触媒作用
を有する半導体微粒子を含有もしくは担持する水密気密
材と組み合わせて建具ユニットを構成する。この建具は
室内面全体に光触媒がコーティングされており、日中は
太陽光線が照射され、夜間は蛍光灯の光が照射されるた
め、コーティング面は常に光触媒作用を発揮する。この
光触媒作用によって、抗菌・防黴・防汚作用を示す面と
なる。また、室内空気は常に対流しているため建具内面
に接しており、このようにして建具内面に触れることに
より清浄化される。
When the aluminum building material of the present invention is used, for example, a frame material, a frame material, or a panel material is manufactured from the building material having the photocatalytic action as described above, and similarly, the semiconductor fine particles having the photocatalytic action are contained or carried. Combined with a water-tight air-tight material to form a fitting unit. This fitting has a photocatalyst coated on the entire interior surface, which is exposed to sunlight during the day and fluorescent light at night, so that the coated surface always exhibits a photocatalytic action. Due to this photocatalytic action, the surface exhibits antibacterial, antifungal and antifouling effects. Further, since the indoor air is always convected, it is in contact with the inner surface of the fitting, and in this manner, the inner surface of the fitting is touched to be cleaned.

【0017】前記陽極酸化皮膜の細孔中に充填される半
導体としては、電子と正孔の移動度が比較的大きく、上
記のような光触媒作用を有する半導体であればいずれも
使用可能であり、例えばTiO2 、SrTiO3 、Zn
O、CdS、SnO2 等が挙げられるが、これらの中で
も特にTiO2 が好ましい。半導体微粒子を含有又は担
持した塗料粒子を使用する場合、その塗料にはフッ素
系、シリケート系、アクリル系、ポリエステル系やポリ
ウレタン系等があるが、半導体微粒子が均一に分散し、
建材の塗料として適度な強度と密着性を有するものであ
れば特に限定されず、用途に応じて適宜選定することが
できる。また、前記塗料の中でもフッ素系、シリケート
系等の無機系塗料が、その耐酸化力の点からより好まし
い。
As the semiconductor filled in the pores of the anodic oxide film, any semiconductor can be used as long as it has a relatively high electron and hole mobility and has the photocatalytic action as described above. For example, TiO 2 , SrTiO 3 , Zn
O, CdS, SnO 2 and the like can be mentioned, and among them, TiO 2 is particularly preferable. When using paint particles containing or carrying semiconductor fine particles, the paint is fluorine-based, silicate-based, acrylic-based, polyester-based or polyurethane-based, etc., semiconductor fine particles are uniformly dispersed,
The coating material for building materials is not particularly limited as long as it has appropriate strength and adhesiveness, and can be appropriately selected according to the application. In addition, among the above-mentioned paints, inorganic paints such as fluorine-based paints and silicate-based paints are more preferable in view of their oxidation resistance.

【0018】使用する半導体微粒子、あるいは半導体微
粒子を含有もしくは担持した塗料粒子の粒径は、1nm
〜700nm、好ましくは5nm〜300nmの粒径に
調整することが好ましい。半導体微粒子を塗料に含有も
しくは担持させる場合、半導体微粒子を前記塗料粒子の
粒径よりも小さくすることは明らかである。粒径が1n
mよりも小さくなると量子サイズ効果によりバンドギャ
ップが大きくなり、低圧水銀灯等の短波長光を含む照明
下でないと光触媒性能が得られないといった問題があ
る。また、粒径があまりに小さ過ぎると取り扱いが困難
であったり、分散性が悪くなるという問題も生じてく
る。取り扱い性の点からは5nm以上の粒径が好まし
い。一方、粒径が700nmを超えると、アルミ建材の
陽極酸化皮膜の細孔への充填が難しくなる。
The particle size of the semiconductor particles used or the coating particles containing or supporting the semiconductor particles is 1 nm.
It is preferable to adjust the particle diameter to 700 nm, preferably 5 nm to 300 nm. When the fine semiconductor particles are contained in or carried by the coating material, it is apparent that the fine semiconductor particles are made smaller than the particle diameter of the coating material particles. Particle size is 1n
If it is smaller than m, the band gap becomes large due to the quantum size effect, and there is a problem that the photocatalytic performance cannot be obtained unless it is illuminated by a low-pressure mercury lamp or the like containing short-wavelength light. Further, when the particle size is too small, there are problems that handling is difficult and dispersibility is deteriorated. A particle size of 5 nm or more is preferred from the viewpoint of handleability. On the other hand, if the particle size exceeds 700 nm, it becomes difficult to fill the pores of the anodized film of the aluminum building material.

【0019】前記半導体微粒子のアルミ合金陽極酸化皮
膜細孔中への充填方法としては、半導体微粒子の分散液
中での電気泳動法等を好適に用いることができる。例え
ば、半導体微粒子の表面に極性を発現させて(例えば、
界面活性剤を粒子表面に吸着させて)、半導体微粒子1
0〜30重量%を水溶液中に分散させて水分散体浴を作
成し、この浴中で、陽極酸化皮膜を形成したアルミ合金
基板を陽極として直流電解(電圧30〜200V)して
陽極酸化皮膜の細孔中に半導体微粒子を充填する電気泳
動法などが採用できる。電気泳動法としては、直流電圧
を低電圧より高電圧へ一定の昇圧速度で所定時間走査す
る直流電圧走査法、及び定電圧で所定時間電解する直流
定電圧法等を採用できる。
As a method of filling the fine particles of the aluminum alloy anodic oxide film with the semiconductor fine particles, an electrophoresis method in a dispersion liquid of the semiconductor fine particles can be preferably used. For example, a polarity is developed on the surface of the semiconductor fine particles (for example,
Adsorbing a surfactant on the particle surface), semiconductor fine particles 1
An aqueous dispersion bath is prepared by dispersing 0 to 30% by weight in an aqueous solution, and in this bath, the aluminum alloy substrate on which the anodic oxide film is formed is used as an anode for direct current electrolysis (voltage 30 to 200 V) to perform the anodic oxide film. An electrophoresis method or the like in which the fine particles of the semiconductor are filled with semiconductor fine particles can be adopted. As the electrophoresis method, a DC voltage scanning method of scanning a DC voltage from a low voltage to a high voltage at a constant boosting speed for a predetermined time, a DC constant voltage method of electrolyzing at a constant voltage for a predetermined time, and the like can be adopted.

【0020】半導体微粒子を含有もしくは担持した塗料
粒子を用いる場合、該塗料粒子が電気泳動すれば前記の
場合と同様の方法で陽極酸化皮膜の細孔中に光触媒を充
填することができる。また、塗料中に陽極酸化皮膜を形
成したアルミ合金基板を浸漬する方法でも可能である。
更に、通常の大気圧下で塗料中に浸漬しても陽極酸化皮
膜の細孔中に光触媒が充填できないような場合は、適当
な真空容器中に陽極酸化皮膜を形成したアルミ合金基板
を設置し、内部を真空排気した後、塗料を導入し、真空
中で又は減圧下で陽極酸化皮膜を形成したアルミ合金基
板を塗料に浸漬する方法等が採用できる。
When coating particles containing or supporting semiconductor fine particles are used, if the coating particles are electrophoresed, the photocatalyst can be filled in the pores of the anodized film by the same method as described above. It is also possible to immerse the aluminum alloy substrate having the anodized film formed in the coating material.
Furthermore, if the photocatalyst cannot be filled in the pores of the anodized film even if it is immersed in the paint under normal atmospheric pressure, place the aluminum alloy substrate with the anodized film in a suitable vacuum container. It is possible to adopt a method in which the interior is evacuated and then the coating material is introduced and the aluminum alloy substrate on which the anodized film is formed is immersed in the coating material in a vacuum or under reduced pressure.

【0021】以上のような方法により、図1に示すよう
に、陽極酸化皮膜1の細孔2中に光触媒3を充填したア
ルミ建材が得られる。図1のように陽極酸化皮膜の上端
部まで光触媒を充填したものは、抗菌・防黴・防汚性を
目的とした場合の態様である。すなわち、図2に示すよ
うに陽極酸化皮膜の細孔の下部にのみ光触媒を充填した
ような場合では、菌やカビ、汚れ物質が陽極酸化皮膜の
細孔中を光触媒表面まで拡散しなければ抗菌・防黴・防
汚性が発現できないため、良好に前記特性を発現させる
には陽極酸化皮膜の上端部まで光触媒を充填し、アルミ
建材の表面で抗菌・防黴・防汚性が発現できるようにす
ることが望ましい。また、さらには図3に示すように、
光触媒3で陽極酸化皮膜1の凹凸をコーティングしたよ
うな態様も可能である。この場合、細孔2中に充填され
ていない光触媒が剥離し易く、最終的には図1の場合と
図2の場合の中間程度の抗菌・防黴・防汚性を示す。
By the method as described above, as shown in FIG. 1, an aluminum building material having the photocatalyst 3 filled in the pores 2 of the anodized film 1 can be obtained. The case where the photocatalyst is filled up to the upper end portion of the anodized film as shown in FIG. 1 is an embodiment for the purpose of antibacterial, antifungal and antifouling properties. That is, as shown in FIG. 2, in the case where the photocatalyst is filled only in the lower part of the pores of the anodic oxide film, bacteria, fungi, and contaminants must be dispersed in the pores of the anodic oxide film to reach the photocatalyst surface.・ Since anti-mold and anti-fouling properties cannot be expressed, in order to express the above-mentioned properties satisfactorily, the photocatalyst is filled up to the upper end of the anodized film so that the surface of aluminum building materials can exhibit anti-bacterial, anti-mold and anti-fouling properties. Is desirable. Further, as shown in FIG.
A mode in which the photocatalyst 3 coats the unevenness of the anodized film 1 is also possible. In this case, the photocatalyst not filled in the pores 2 is easily peeled off, and finally exhibits an intermediate level of antibacterial / mold / fouling resistance between the case of FIG. 1 and the case of FIG.

【0022】さらに、光触媒を充填した後に該光触媒作
用によって銀や銅などの抗菌性金属又は抗菌性金属を含
む化合物を析出させることにより、前述したように暗時
であっても抗菌・防黴効果が発現される。
Further, after the photocatalyst is filled, the photocatalytic action causes the antibacterial metal such as silver or copper or the compound containing the antibacterial metal to be deposited, so that the antibacterial and antifungal effect is obtained even in the dark as described above. Is expressed.

【0023】抗菌性金属又は抗菌性金属を含む化合物を
析出させる方法は、硝酸銀や硫酸銅などの銀や銅などの
抗菌性金属を含む適当な化合物の溶液を調製し、一つの
方法としては、陽極酸化皮膜の細孔中に光触媒を充填し
たアルミ建材を該溶液中に浸し、紫外線ランプやブラッ
クライト等で紫外線を照射すると、光触媒作用によって
生じた電子により抗菌性金属イオン又は抗菌性金属化合
物イオンが還元され、光触媒表面に抗菌性金属又は抗菌
性金属を含む化合物が析出する。この場合、抗菌性金属
又は抗菌性金属を含む化合物の析出量は、溶液中の抗菌
性金属イオンの量、すなわち調製した溶液の濃度や紫外
線の照射時間によって制御される。また、別の方法とし
ては、前記溶液を陽極酸化皮膜の細孔中に光触媒を充填
したアルミ建材表面にスプレー法等で塗布した後、紫外
線を照射する方法がある。この方法では、水溶液中の抗
菌性金属イオンの量、すなわち調製した溶液の濃度や塗
布量によって抗菌性金属又は抗菌性金属を含む化合物の
析出量が制御できる。また、どちらの方法においても、
光触媒の表面を抗菌性金属又は抗菌性金属を含む化合物
で完全に被覆してしまうと光触媒作用が発現できなくな
るため、表面を被覆しない程度の析出量に制御する必要
がある。
The method for depositing the antibacterial metal or the compound containing the antibacterial metal is to prepare a solution of an appropriate compound containing an antibacterial metal such as silver or copper such as silver nitrate or copper sulfate. An aluminum building material filled with a photocatalyst in the pores of the anodic oxide film is immersed in the solution and irradiated with ultraviolet rays by an ultraviolet lamp or a black light, and the antibacterial metal ions or antibacterial metal compound ions are generated by the electrons generated by the photocatalytic action. Are reduced, and an antibacterial metal or a compound containing an antibacterial metal is deposited on the surface of the photocatalyst. In this case, the amount of the antibacterial metal or the compound containing the antibacterial metal deposited is controlled by the amount of the antibacterial metal ion in the solution, that is, the concentration of the prepared solution and the irradiation time of ultraviolet rays. As another method, there is a method in which the solution is applied to the surface of an aluminum building material in which the pores of the anodized film are filled with a photocatalyst by a spray method or the like, and then ultraviolet rays are irradiated. In this method, the amount of the antibacterial metal ion or the compound containing the antibacterial metal deposited can be controlled by the amount of the antibacterial metal ion in the aqueous solution, that is, the concentration or coating amount of the prepared solution. Also, in either method,
If the surface of the photocatalyst is completely covered with the antibacterial metal or the compound containing the antibacterial metal, the photocatalytic action cannot be exhibited, so it is necessary to control the deposition amount to such an extent that the surface is not covered.

【0024】抗菌性金属又は抗菌性金属を含む化合物を
析出させる場合、図4に示すように陽極酸化皮膜1の細
孔2内にその上端部まで光触媒3を充填した後に抗菌性
金属又は抗菌性金属を含む化合物4をアルミ建材表面に
析出させることも、図5に示すように光触媒3を陽極酸
化皮膜1の細孔2内部にのみ充填しておき、陽極酸化皮
膜の細孔中に抗菌性金属又は抗菌性金属を含む化合物4
を析出させることもできる。また、図6に示すように光
触媒3で陽極酸化皮膜1の凹凸をコーティングした後
に、この光触媒表面に抗菌性金属又は抗菌性金属を含む
化合物4を析出させることもできる。図4の場合、抗菌
・防黴効果は高いが、抗菌性金属又は抗菌性金属を含む
化合物が表面に析出しているため、抗菌性金属又は抗菌
性金属を含む化合物が剥離するなど効果の持続性に劣る
ことがある。図5のような場合は、抗菌・防黴効果は図
4の場合よりも低下するが、抗菌性金属又は抗菌性金属
を含む化合物が陽極酸化皮膜の細孔中に入っているた
め、剥離し難く、効果の持続性は図4の場合よりも向上
する。図6の場合、抗菌性金属又は抗菌性金属を含む化
合物が表面から陽極酸化皮膜細孔内にまで析出している
ため、表面に析出した抗菌性金属又は抗菌性金属を含む
化合物が剥離しても、細孔内の抗菌性金属又は抗菌性金
属を含む化合物は剥離し難いため、効果の持続性は図5
の場合と同等である。どのような態様を採用するかは、
抗菌・防黴効果とその寿命から適当な態様を選択すれば
良い。
In the case of depositing an antibacterial metal or a compound containing an antibacterial metal, as shown in FIG. 4, the photocatalyst 3 is filled into the pores 2 of the anodic oxide film 1 up to its upper end, and then the antibacterial metal or the antibacterial metal is added. It is also possible to deposit the compound 4 containing a metal on the surface of the aluminum building material, and to fill the photocatalyst 3 only inside the pores 2 of the anodic oxide coating 1 as shown in FIG. Compound 4 containing metal or antibacterial metal
Can also be precipitated. Further, as shown in FIG. 6, after coating the unevenness of the anodic oxide film 1 with the photocatalyst 3, the antibacterial metal or the compound 4 containing the antibacterial metal can be deposited on the photocatalyst surface. In the case of FIG. 4, the antibacterial and antifungal effects are high, but since the antibacterial metal or the compound containing the antibacterial metal is deposited on the surface, the effect of the antibacterial metal or the compound containing the antibacterial metal is sustained, such as exfoliation. May be inferior in sex. In the case of FIG. 5, the antibacterial and antifungal effect is lower than that of FIG. 4, but the antibacterial metal or the compound containing the antibacterial metal is in the pores of the anodic oxide film. It is difficult, and the durability of the effect is improved as compared with the case of FIG. In the case of FIG. 6, since the antibacterial metal or the compound containing the antibacterial metal is precipitated from the surface into the pores of the anodic oxide film, the antibacterial metal or the compound containing the antibacterial metal deposited on the surface is peeled off. However, since the antibacterial metal or the compound containing the antibacterial metal in the pores is difficult to peel off, the persistence of the effect is shown in FIG.
Is equivalent to Which aspect is adopted depends on
An appropriate mode may be selected from the antibacterial and antifungal effects and the life thereof.

【0025】また、従来、電解着色によって陽極酸化皮
膜の細孔中にニッケル、スズ、銅等の金属を析出させ、
アルミ建材の着色を行っていたが、本発明によれば、前
述の抗菌性金属又は抗菌性金属を含む化合物に限らず、
電解着色によって析出させていた金属も前述の抗菌性金
属又は抗菌性金属を含む化合物の析出と同様の方法で陽
極酸化皮膜の細孔中に析出させることができる。また、
この場合の析出金属量の制御、すなわち、色調の制御
は、前述の抗菌性金属又は抗菌性金属を含む化合物の析
出量制御と同様の方法で実施できる。着色については、
前述したように陽極酸化皮膜の細孔中に光触媒を充填し
たアルミ建材表面に、金属イオンを含有する溶液をスプ
レー法等の適当な方法で塗布した後、紫外線を照射する
方法を採用する。例えば、図7に示すように、コンベア
等の搬送装置5でアルミ建材6を搬送しながら、噴霧器
7により金属イオンを含有する溶液をスプレーし、その
後、紫外線照射装置8により紫外線を照射する製造工程
とすれば、従来の電解浴を用いたバッチ式とは異なり、
連続式の製造工程となり、生産性が向上するばかりか、
電解着色で必要だった巨大な電解浴や電源が全く不要に
なる。
Further, conventionally, a metal such as nickel, tin or copper is deposited in the pores of the anodized film by electrolytic coloring,
Although the aluminum building material was colored, according to the present invention, it is not limited to the above-mentioned antibacterial metal or a compound containing an antibacterial metal,
The metal deposited by electrolytic coloring can also be deposited in the pores of the anodized film by the same method as the deposition of the antibacterial metal or the compound containing the antibacterial metal described above. Also,
In this case, the control of the amount of deposited metal, that is, the control of the color tone can be performed by the same method as the control of the amount of deposited antibacterial metal or the compound containing the antibacterial metal described above. For coloring,
As described above, a method of applying a solution containing metal ions to the surface of an aluminum building material in which the photocatalyst is filled in the pores of the anodized film by an appropriate method such as a spray method and then irradiating with ultraviolet rays is adopted. For example, as shown in FIG. 7, a manufacturing process in which a solution containing metal ions is sprayed by a sprayer 7 while an aluminum building material 6 is transported by a transport device 5 such as a conveyor, and then an ultraviolet ray is irradiated by an ultraviolet ray irradiation device 8. If so, unlike the batch type using the conventional electrolytic bath,
Not only will the continuous manufacturing process improve productivity,
The huge electrolytic bath and power supply required for electrolytic coloring are completely eliminated.

【0026】アルミ建材の着色に前記のような光触媒作
用を利用する場合、陽極酸化皮膜1の細孔2中への光触
媒3の充填は図2に示すような態様が好ましい。図2に
示すような光触媒の充填状態であれば、着色用金属9は
図8に示すように陽極酸化皮膜1の細孔2中に析出し、
従来の電解着色によって析出させた金属と同等の密着力
が確保できる。また、着色にのみ光触媒作用を利用し、
以後、光触媒作用による抗菌・防黴・防汚性が不要とい
う場合は、その後さらに、従来のアルミ建材の表面処理
と同様に陽極酸化皮膜1の封孔(図9)、あるいは、さ
らに静電塗装等による塗膜10の形成(図10)ができ
る。
When the photocatalytic action as described above is used for coloring the aluminum building material, it is preferable to fill the pores 2 of the anodic oxide film 1 with the photocatalyst 3 as shown in FIG. If the photocatalyst is in a filled state as shown in FIG. 2, the coloring metal 9 precipitates in the pores 2 of the anodic oxide film 1 as shown in FIG.
The same adhesive strength as metal deposited by conventional electrolytic coloring can be secured. Also, using photocatalysis only for coloring,
After that, if antibacterial, antifungal, and antifouling properties due to photocatalytic action are not required, then the anodic oxide film 1 is sealed (Fig. 9) or electrostatically coated, as in the case of the conventional surface treatment of aluminum building materials. Thus, the coating film 10 can be formed (FIG. 10).

【0027】また、図8に示すような充填状態でも、光
触媒作用によって抗菌・防黴・防汚性を示すが、さらに
光触媒作用を向上させる場合は、図11に示すように、
着色用金属9の析出後に再度光触媒3を陽極酸化皮膜上
端部まで充填する。特に光触媒に用いる半導体がTiO
2 であれば、このTiO2 は殆ど透明であるため、下部
に析出させた着色用金属の色調を変化させることがな
く、また着色用金属によって様々な色調が選択できる上
に、十分な抗菌・防黴・防汚性を示すことになる。ま
た、有機系の塗料を陽極酸化皮膜の細孔中に析出した
後、光触媒を形成する場合、その光触媒作用によって有
機塗料自体が分解し退色現象を引き起こすが、金属によ
る着色であれば光触媒作用に対して安定であり、長期に
亘って色調を維持しつつ、良好な抗菌・防黴・防汚性を
示すことができる。
Further, even in the filled state as shown in FIG. 8, it exhibits antibacterial, antifungal, and antifouling properties by the photocatalytic action. To further improve the photocatalytic action, as shown in FIG.
After depositing the coloring metal 9, the photocatalyst 3 is filled up to the upper end portion of the anodized film again. Particularly, the semiconductor used for the photocatalyst is TiO 2.
If 2, since the TiO 2 is almost transparent, without changing the color tone of the coloring metal is deposited on the lower, also on a variety of color tones can be selected by coloring metal, sufficient antibacterial It will show anti-mold and anti-fouling properties. Also, when a photocatalyst is formed after depositing an organic paint in the pores of the anodized film, the photocatalytic action causes the organic paint itself to decompose and cause a fading phenomenon. On the other hand, it is stable and can exhibit good antibacterial, antifungal and antifouling properties while maintaining the color tone for a long period of time.

【0028】[0028]

【実施例】以下、実施例を示して本発明の効果について
さらに具体的に説明するが、本発明が下記実施例に限定
されるものでないことはもとよりである。
EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to examples, but it is needless to say that the present invention is not limited to the following examples.

【0029】実施例1 リン酸20%、シュウ酸5%を含有する30℃の電解浴
中でアルミニウムを陽極として直流200Vを印加して
陽極酸化処理を行い、孔径約250nm、孔の深さ約5
μmの細孔を有する陽極酸化皮膜を生成させた。次い
で、光触媒であるTiO2 の微粉末(平均粒径10n
m)を10重量%混入し均一に分散させたシリケートを
エタノールで10倍に希釈し、光触媒担持塗料を作製
し、1気圧(試料1)又は0.2気圧(試料2)の圧力
下で、前記陽極酸化皮膜を形成したアルミニウム基板を
塗料に浸漬し、静かに引き上げた後、大気圧中、150
℃で30分間保持し前記シリケートを反応させ、光触媒
を担持したシリカ塗膜をコーティングした。また、比較
の為に陽極酸化皮膜を形成していないアルミニウム基板
を用いて、同様に1気圧(比較例1)又は0.2気圧
(比較例2)の条件で、前記試料と同様に光触媒を担持
したシリカ塗膜をコーティングした。
Example 1 Anodizing treatment was carried out by applying a DC voltage of 200 V using aluminum as an anode in an electrolytic bath containing phosphoric acid 20% and oxalic acid 5% at 30 ° C. to obtain a pore diameter of about 250 nm and a pore depth of about 250 nm. 5
An anodic oxide coating having pores of μm was produced. Then, fine powder of TiO 2 which is a photocatalyst (average particle size 10 n
The silicate in which 10% by weight of m) was mixed and uniformly dispersed was diluted 10 times with ethanol to prepare a photocatalyst-carrying coating, and under a pressure of 1 atm (Sample 1) or 0.2 atm (Sample 2), The aluminum substrate on which the anodized film is formed is dipped in a coating material and gently pulled up, and then, at 150 ° C. under atmospheric pressure.
It was kept at 30 ° C. for 30 minutes to react the silicate, and a silica coating film carrying a photocatalyst was coated. For comparison, an aluminum substrate on which an anodized film was not formed was used, and a photocatalyst was used under the same conditions of 1 atm (Comparative Example 1) or 0.2 atm (Comparative Example 2). The supported silica coating was coated.

【0030】膜厚測定及び表面粗さ測定:上記試料1〜
2及び比較例1〜2の陽極酸化皮膜上の光触媒膜の膜厚
及び表面粗さを触針接触式膜厚計で測定した。その結果
を表1に示す。
Film thickness measurement and surface roughness measurement: Samples 1 to 1 above
The film thickness and surface roughness of the photocatalytic film on the anodic oxide films of Comparative Example 1 and Comparative Examples 1 and 2 were measured with a stylus contact type film thickness meter. Table 1 shows the results.

【表1】 [Table 1]

【0031】防汚性評価1:上記試料1〜2及び比較例
1〜2の表面に0.1mg/cm2 になるようにサラダ
油を均一に塗布し、100Wの紫外線ランプで紫外線を
照射し、サラダ油が完全に分解されるまでの時間を測定
した。その結果を表2に示す。
Antifouling property evaluation 1: Salad oil was evenly applied to the surfaces of the above Samples 1 and 2 and Comparative Examples 1 and 2 so as to have a concentration of 0.1 mg / cm 2 , and ultraviolet rays were irradiated with a 100 W ultraviolet lamp. The time until the salad oil was completely decomposed was measured. The results are shown in Table 2.

【表2】 [Table 2]

【0032】密着性評価:上記試料1〜2及び比較例1
〜2の光触媒膜の密着性をスコッチテープ試験(JIS
H 8602の5.8項に記載のセロハン粘着テープ
を用いた塗膜の付着性試験)を行い、また、JIS H
8504に規定する方法にしたがってスクラッチ試験
を行った。その結果を表3に示す。
Evaluation of adhesion: Samples 1 and 2 and Comparative Example 1
-2 Scotch tape test (JIS)
H8602, the adhesion test of the coating film using the cellophane adhesive tape described in 5.8) and JIS H
A scratch test was performed according to the method specified in 8504. Table 3 shows the results.

【表3】 [Table 3]

【0033】防汚性評価2:試料1〜2の基材表面の光
触媒膜を#1200のサンドペーパーで完全に剥離させ
た後、前述の防汚性評価1と同様の方法でサラダ油が完
全に分解されるまでの時間を測定した。その結果を表4
に示す。
Antifouling evaluation 2: The photocatalyst films on the surface of the base materials of Samples 1 and 2 were completely peeled off with # 1200 sandpaper, and the salad oil was completely removed by the same method as the above-mentioned antifouling evaluation 1. The time until decomposition was measured. The results are shown in Table 4.
Shown in

【表4】 [Table 4]

【0034】表1からわかるように、試料1〜2と比較
例1〜2の光触媒膜の膜厚は殆ど同じであったが、表面
粗さは、試料2が試料1や比較例1〜2と比較して大き
かった。一方、表2において、試料1と比較例1〜2の
サラダ油の分解に必要な時間は殆ど同じであったが、試
料2の場合のみ所要時間が多少長くなっている。これら
の結果は、試料2の光触媒膜が、陽極酸化皮膜の細孔中
に充填されただけでなく、陽極酸化皮膜の凹凸全体をコ
ーティングしたことを示している(前記図3に示した態
様)。この場合、光触媒膜は、陽極酸化皮膜の凹凸の状
態を反映するため、試料1と比較して表面が粗くなる。
また、大気圧下では陽極酸化皮膜の細孔中に光触媒が入
り込めず、それ故、基材表面に平坦な光触媒膜が形成さ
れたため、試料1では、陽極酸化皮膜を形成していない
比較例1〜2と同等な表面粗さになったものである。ま
た、防汚性評価1において、試料2は光触媒の表面被覆
率が小さくなるために、サラダ油の分解に時間を要した
ことがわかる。
As can be seen from Table 1, the film thicknesses of the photocatalyst films of Samples 1 and 2 and Comparative Examples 1 and 2 were almost the same, but the surface roughness of Sample 2 was Sample 1 and Comparative Examples 1 and 2. It was great compared to. On the other hand, in Table 2, the time required for decomposing the salad oil of Sample 1 and Comparative Examples 1 and 2 was almost the same, but the time required for Sample 2 was slightly longer. These results indicate that the photocatalyst film of Sample 2 was not only filled in the pores of the anodic oxide film, but also coated the entire unevenness of the anodic oxide film (the embodiment shown in FIG. 3). . In this case, the surface of the photocatalyst film becomes rougher than that of the sample 1 in order to reflect the unevenness of the anodic oxide film.
Further, at atmospheric pressure, the photocatalyst could not enter the pores of the anodic oxide film, and therefore, a flat photocatalytic film was formed on the substrate surface. The surface roughness was equivalent to that of Nos. 1 and 2. Further, in the antifouling property evaluation 1, it can be seen that Sample 2 took a long time to decompose the salad oil because the surface coverage of the photocatalyst was small.

【0035】表3に示すように、試料1〜2においては
膜の剥離が認められなかった。これは、陽極酸化皮膜上
に光触媒膜を形成する場合、そのコーティング圧力が大
気圧下であっても減圧下であっても、陽極酸化皮膜のア
ンカー効果によって膜の密着性が向上したことを示して
いる。比較例1〜2において膜の剥離が認められたこと
から、陽極酸化皮膜を形成していない基板を用いた場
合、膜の密着性はコーティング圧力に依存しないことを
示している。表4からわかるように、試料1では全くサ
ラダ油を分解できなかったが、試料2では、表2に示し
た結果よりも所要時間は長くなったが、サラダ油を分解
しており、防汚性を発揮している。試料1は、表面にの
み光触媒膜が存在し、それが全て剥離してしまったため
に防汚性が失われたが、試料2では、たとえ表面の光触
媒膜が剥離しても陽極酸化皮膜細孔内に充填された光触
媒膜が存在するため、防汚性が失われないことを示して
おり、光触媒膜の耐久性及び光触媒作用の持続性は、試
料2の方が試料1よりも格段に優れていることがわか
る。以上から、0.2気圧という必ずしも高真空ではな
い条件で半導体微粒子を含んだ塗料をコーティングする
ことにより、陽極酸化皮膜の細孔中に光触媒が入り込
み、光触媒作用を発揮しながらも、該光触媒が陽極酸化
皮膜の細孔中に充填されているため、その脱落もなく非
常に強く密着していることが確認できた。
As shown in Table 3, no peeling of the film was observed in Samples 1 and 2. This indicates that when a photocatalytic film was formed on the anodized film, the adhesion of the film was improved by the anchor effect of the anodized film regardless of whether the coating pressure was under atmospheric pressure or under reduced pressure. ing. The peeling of the film was observed in Comparative Examples 1 and 2, indicating that the adhesion of the film did not depend on the coating pressure when a substrate having no anodized film was used. As can be seen from Table 4, the salad oil could not be decomposed at all in Sample 1, but in Sample 2, the time required was longer than the results shown in Table 2, but the salad oil was decomposed and the stain resistance was improved. It is exerting. In sample 1, the photocatalytic film was present only on the surface, and the entire surface was peeled off, so that the antifouling property was lost. The presence of the photocatalyst film filled therein indicates that the antifouling property is not lost, and the durability of the photocatalytic film and the durability of the photocatalytic action are much better in sample 2 than in sample 1. You can see that it is. From the above, the photocatalyst enters into the pores of the anodic oxide film by coating with a paint containing semiconductor fine particles under the condition of not necessarily a high vacuum of 0.2 atm. Since the pores of the anodic oxide film were filled, it was confirmed that the anodic oxide film did not fall off and adhered very strongly.

【0036】実施例2 上記実施例1での試料1〜2及び比較例1の試料を0.
01モル/リットルの硝酸銀水溶液0.5リットルに浸
漬し、100Wの紫外線ランプで紫外線を照射し、試料
1〜2及び比較例1の試料上に0.1mg/cm2 の銀
を析出させた。
Example 2 Samples 1 and 2 of the above Example 1 and the sample of Comparative Example 1 were compared with each other.
The sample was immersed in 0.5 liter of a 01 mol / liter silver nitrate aqueous solution, and irradiated with ultraviolet rays from a 100 W ultraviolet lamp to deposit 0.1 mg / cm 2 of silver on the samples of Samples 1 and 2 and Comparative Example 1.

【0037】密着性試験:得られた試料1〜2及び比較
例1の試料について、前記実施例1の場合と同様にスコ
ッチテープ試験、スクラッチ試験を実施した。その結果
を表5に示す。
Adhesion test: The Scotch tape test and the scratch test were carried out on the obtained samples 1 and 2 and the sample of Comparative Example 1 in the same manner as in Example 1 above. The results are shown in Table 5.

【表5】 [Table 5]

【0038】防黴性試験1:試料1〜2及び比較例1の
試料について、JIS Z 2911の5に記載の一般
工業製品の防黴性試験に基づき、試料1〜2及び比較例
1の表面に胞子懸濁液を塗布し、温度28℃、湿度95
%中に28日間放置し、黴の発生状態を観察した。ま
た、光の照射の有無による防黴性の差異を観察するた
め、各々の試料について20W蛍光灯で光を照射した場
合と、光を全く照射しない場合について防黴性試験を実
施した。その結果を表6に示す。表6中には、黴の試料
表面の被覆率を示す。
Antifungal test 1: The samples 1 and 2 and the sample of Comparative Example 1 were tested on the surface of Samples 1 and 2 and Comparative Example 1 based on the antifungal test of general industrial products described in JIS Z 2911-5. Apply the spore suspension to a temperature of 28 ° C and humidity of 95
% For 28 days, and the state of mold generation was observed. Further, in order to observe the difference in the antifungal property depending on the presence or absence of light irradiation, a fungicide test was performed for each sample when irradiating light with a 20 W fluorescent lamp and when no light was irradiated. Table 6 shows the results. Table 6 shows the coverage of the mold surface of the mold.

【表6】 [Table 6]

【0039】防黴性試験2:試料1〜2の光触媒膜を#
1200のサンドペーパーで完全に剥離させた後、前述
の防黴性試験1と同様の方法で防黴性試験を実施した。
その結果を表7に示す。表7中には、黴の試料表面の被
覆率を示す。
Antifungal test 2: The photocatalyst films of Samples 1 and 2 are #
After completely exfoliating with 1200 sandpaper, a fungicide test was carried out in the same manner as the fungicide test 1 described above.
The results are shown in Table 7. Table 7 shows the mold coverage of the mold surface.

【表7】 [Table 7]

【0040】銀を析出させた試料は薄茶色になってお
り、光触媒作用によって種々の金属によるアルミ建材の
着色が行えることを示している。また、表5及び実施例
1の場合の表3からわかるように、銀の密着性は、その
銀が付着している光触媒膜とアルミ建材の密着力の影響
を受けており、比較例1〜2においては光触媒と基材の
間で剥離しており、たとえ銀と光触媒の密着力が強くて
も基材から光触媒ごと剥離しては実際に使用することは
できない。試料1〜2の場合は、光触媒膜の剥離が認め
られず、また、銀の剥離も認められなかった。これら
は、表3に示されるように、光触媒膜の密着性が陽極酸
化皮膜のアンカー効果で向上したこと及び光触媒膜と銀
の密着性が十分であることを示している。
The sample on which silver is deposited has a light brown color, indicating that the aluminum building material can be colored with various metals by photocatalytic action. Further, as can be seen from Table 5 and Table 3 in the case of Example 1, the adhesiveness of silver is affected by the adhesiveness between the photocatalyst film to which the silver is attached and the aluminum building material. In No. 2, the photocatalyst is peeled off from the base material, and even if the adhesion between silver and the photocatalyst is strong, the photocatalyst cannot be actually peeled off from the base material. In the case of Samples 1 and 2, peeling of the photocatalyst film was not observed, and peeling of silver was not observed. As shown in Table 3, these indicate that the adhesion of the photocatalyst film was improved by the anchor effect of the anodized film and that the adhesion of the photocatalyst film and silver was sufficient.

【0041】表6から明らかなように、試料2の光照射
無しの場合のみ、他の試料と比較して若干黴の発育面積
が広かった。これは、他の試料では、試料の表面のみに
銀が析出していることに対し、試料2では陽極酸化皮膜
の細孔中に銀が入り込み、表面被覆率が減少しているた
めに防黴効果が低下したものである。しかし、この程度
の防黴性の差異が実使用時に問題になることは有り得な
い。また、光照射を行った場合では、銀の抗菌・防黴効
果と光触媒の抗菌・防黴効果の両方が発揮されるため、
全く黴の発育は認められなかった。また、基材表面をサ
ンドペーパーで研磨し、表面に付着している光触媒膜を
完全に剥離させると、試料1ではアルミ基材自体の色調
に戻ったが、試料2では陽極酸化皮膜表面を露出させて
も薄茶色のままであった。また、表7に示されるよう
に、試料2の防黴効果は維持されており、陽極酸化皮膜
細孔中に光触媒及び銀が充填されていることにより、試
料2の防黴性効果の耐久性、持久性が試料1よりも格段
に優れていることがわかる。これらの結果から、陽極酸
化皮膜の細孔中に光触媒を充填し、さらに該光触媒の光
触媒作用を利用して前記細孔中に銀を析出させた試料
は、銀の剥離・脱落等の問題が無く、また、暗時、光照
射時において十分な防黴効果を示すことが確認できた。
As is clear from Table 6, the growth area of mold was slightly larger than that of the other samples only in the case where the sample 2 was not irradiated with light. This is because, in the other samples, silver was precipitated only on the surface of the sample, whereas in sample 2, silver penetrated into the pores of the anodic oxide film and the surface coverage was reduced, so that the mold coverage was reduced. The effect was reduced. However, it is unlikely that such a difference in antifungal property will cause a problem during actual use. In addition, when light irradiation is performed, both the antibacterial and antifungal effect of silver and the antibacterial and antifungal effect of the photocatalyst are exhibited,
No mold development was observed. When the surface of the base material was polished with sandpaper to completely remove the photocatalyst film attached to the surface, the color tone of the aluminum base material itself returned to Sample 1 but the surface of the anodized film was exposed in Sample 2. It was still light brown even if it was made. Further, as shown in Table 7, the antifungal effect of Sample 2 is maintained, and the photocatalyst and silver are filled in the pores of the anodic oxide film, and thus the antifungal durability of Sample 2 is improved. It can be seen that the durability is far superior to that of Sample 1. From these results, the sample in which the photocatalyst is filled in the pores of the anodic oxide film and the silver is deposited in the pores by utilizing the photocatalytic action of the photocatalyst has a problem such as peeling and dropping of silver. Moreover, it was confirmed that the antifungal effect was sufficiently exhibited in the dark and in the light irradiation.

【0042】[0042]

【発明の効果】以上のように、本発明のアルミ建材は、
アルミ合金からなる基材の表面に陽極酸化皮膜を形成
し、さらにこの陽極酸化皮膜の細孔中に光触媒作用を有
する半導体微粒子あるいは半導体微粒子を含有もしくは
担持した塗料粒子を充填したものであるため、光触媒の
剥離といった問題もなく、また、光が当たる材料表面に
十分な量の半導体微粒子が存在するため、優れた抗菌・
防黴・防汚性を示す。従って、本発明によれば、特別の
装置を要することなくメンテナンスフリーであり、しか
も抗菌・防黴・防汚性の光触媒がアルミ合金陽極酸化皮
膜細孔中に充填されたものであるため、この光触媒が脱
落することもない自己浄化性のアルミ建材が提供され
る。
As described above, the aluminum building material of the present invention is
An anodized film is formed on the surface of a base material made of an aluminum alloy, and the fine particles of the anodized film are filled with coating particles containing or carrying semiconductor fine particles or semiconductor fine particles having a photocatalytic action. There is no problem such as peeling of the photocatalyst, and since there is a sufficient amount of semiconductor particles on the surface of the material exposed to light, excellent antibacterial
Shows anti-mold and anti-fouling properties. Therefore, according to the present invention, it is maintenance-free without requiring a special device, and further, the photocatalyst of antibacterial, antifungal, and antifouling property is filled in the pores of the aluminum alloy anodic oxide film. Provided is a self-cleaning aluminum building material in which the photocatalyst does not fall off.

【0043】さらに、この陽極酸化皮膜細孔中に充填さ
れた光触媒の還元作用によって、陽極酸化皮膜細孔中に
任意の金属を析出させることができ、抗菌性金属又は抗
菌性金属を含む化合物を析出させれば、光の照射がない
状態でも優れた抗菌・防黴効果を示し、光照射下では抗
菌性金属又は抗菌性金属を含む化合物と光触媒の相乗効
果によって更に優れた抗菌・防黴・防汚性を示し、さら
に陽極酸化皮膜細孔中に抗菌性金属又は抗菌性金属を含
む化合物と光触媒が充填されているため、それらが脱落
することもない自己浄化性のアルミ建材が提供される。
また、アルミ建材の電解着色に用いられていた種々の金
属を陽極酸化皮膜細孔中に析出できることから、電解着
色法よりも生産性に優れた方法でアルミ建材の着色が行
える。さらに、抗菌性金属又は抗菌性金属を含む化合物
や着色に使用されていた金属以外にも種々の機能性物質
を光触媒作用を利用して陽極酸化皮膜細孔中に析出させ
ることが可能であり、種々の機能性アルミ建材が提供で
きる。
Further, any metal can be deposited in the pores of the anodic oxide film by the reducing action of the photocatalyst filled in the pores of the anodic oxide film, and an antibacterial metal or a compound containing the antibacterial metal can be obtained. If it is deposited, it exhibits excellent antibacterial and antifungal effects even in the absence of light irradiation, and under light irradiation, a more excellent antibacterial and antifungal effect is achieved by the synergistic effect of an antibacterial metal or a compound containing an antibacterial metal and a photocatalyst. Since it has antifouling property and the pores of anodic oxide film are filled with antibacterial metal or a compound containing antibacterial metal and a photocatalyst, a self-cleaning aluminum building material that does not fall off is provided. .
In addition, various metals used for electrolytic coloring of aluminum building materials can be deposited in the pores of the anodic oxide film, so that the aluminum building material can be colored by a method having higher productivity than the electrolytic coloring method. Furthermore, it is possible to deposit various functional substances other than the metal used for coloring or an antibacterial metal or a compound containing an antibacterial metal into the pores of the anodic oxide film by utilizing the photocatalytic action, We can provide various functional aluminum building materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従ってアルミ合金の陽極酸化皮膜の細
孔中に光触媒を完全に充填したアルミ建材の部分概略断
面図である。
FIG. 1 is a partial schematic cross-sectional view of an aluminum building material in which pores of an anodized film of an aluminum alloy are completely filled with a photocatalyst according to the present invention.

【図2】本発明に従ってアルミ合金の陽極酸化皮膜の細
孔中に光触媒を部分的に充填したアルミ建材の部分概略
断面図である。
FIG. 2 is a partial schematic cross-sectional view of an aluminum building material in which the pores of an anodized film of an aluminum alloy are partially filled with a photocatalyst according to the present invention.

【図3】本発明に従ってアルミ合金の陽極酸化皮膜の凹
凸全体を光触媒でコーティングしたアルミ建材の部分概
略断面図である。
FIG. 3 is a partial schematic cross-sectional view of an aluminum building material in which the entire unevenness of the anodized film of an aluminum alloy is coated with a photocatalyst according to the present invention.

【図4】図1に示す状態のアルミ建材に抗菌性金属又は
抗菌性金属を含む化合物を析出させた状態を示す部分概
略断面図である。
FIG. 4 is a partial schematic cross-sectional view showing a state in which an antibacterial metal or a compound containing an antibacterial metal is deposited on the aluminum building material in the state shown in FIG.

【図5】図2に示す状態のアルミ建材に抗菌性金属又は
抗菌性金属を含む化合物を析出させた状態を示す部分概
略断面図である。
FIG. 5 is a partial schematic cross-sectional view showing a state in which an antibacterial metal or a compound containing an antibacterial metal is deposited on the aluminum building material in the state shown in FIG.

【図6】図3に示す状態のアルミ建材に抗菌性金属又は
抗菌性金属を含む化合物を析出させた状態を示す部分概
略断面図である。
6 is a partial schematic cross-sectional view showing a state in which an antibacterial metal or a compound containing an antibacterial metal is deposited on the aluminum building material in the state shown in FIG.

【図7】光触媒作用により金属を析出させる製造工程例
を示す概略説明図である。
FIG. 7 is a schematic explanatory view showing an example of a manufacturing process for depositing a metal by photocatalysis.

【図8】図2に示す状態のアルミ建材に着色用金属を析
出させた状態を示す部分概略断面図である。
8 is a partial schematic cross-sectional view showing a state in which a coloring metal is deposited on the aluminum building material in the state shown in FIG.

【図9】図8に示すアルミ建材に封孔処理した状態を示
す部分概略断面図である。
9 is a partial schematic cross-sectional view showing a state where the aluminum building material shown in FIG. 8 is subjected to a sealing treatment.

【図10】図8に示すアルミ建材表面に塗膜をコーティ
ングした状態を示す部分概略断面図である。
10 is a partial schematic cross-sectional view showing a state where a coating film is coated on the surface of the aluminum building material shown in FIG.

【図11】図8に示すアルミ建材の陽極酸化皮膜の細孔
中にさらに光触媒を充填した状態を示す部分概略断面図
である。
11 is a partial schematic cross-sectional view showing a state in which the photocatalyst is further filled in the pores of the anodized film of the aluminum building material shown in FIG.

【符号の説明】[Explanation of symbols]

1 陽極酸化皮膜 2 細孔 3 光触媒 4 抗菌性金属又は抗菌性金属を含む化合物 5 搬送装置 6 アルミ建材 7 噴霧器 8 紫外線照射装置 9 着色用金属 10 塗膜 DESCRIPTION OF SYMBOLS 1 Anodized film 2 Pore 3 Photocatalyst 4 Antibacterial metal or compound containing antibacterial metal 5 Conveying device 6 Aluminum building material 7 Sprayer 8 Ultraviolet irradiation device 9 Coloring metal 10 Coating film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 和仁 神奈川県横浜市栄区飯島町2073番地2 ニ ューシティ本郷台D練213号 (72)発明者 中田 信之 富山県黒部市堀切1300 (72)発明者 新井 敏夫 富山県富山市藤木841 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kazuhito Hashimoto, Inventor Kunihito Hashimoto, Kanagawa Prefecture 2073 Iijima-cho, Sakae-ku, Kanagawa Prefecture New City Hongodai D Ren No. 213 (72) Nobuyuki Nakata 1300 Horikiri, Kurobe-shi, Toyama Inventor Arai Toshio 841 Fujiki, Toyama City, Toyama Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム又はアルミニウム合金から
なる基材の表面に陽極酸化皮膜を形成し、さらに該陽極
酸化皮膜の細孔中に光触媒作用を有する半導体微粒子が
充填されてなる建築材料。
1. A building material in which an anodized film is formed on the surface of a base material made of aluminum or an aluminum alloy, and the fine pores of the anodized film are filled with semiconductor fine particles having a photocatalytic action.
【請求項2】 アルミニウム又はアルミニウム合金から
なる基材の表面に陽極酸化皮膜を形成し、さらに該陽極
酸化皮膜の細孔中に光触媒作用を有する半導体微粒子を
含有もしくは担持した塗料粒子が充填されてなる建築材
料。
2. An anodized film is formed on the surface of a base material made of aluminum or an aluminum alloy, and the coating particles containing or supporting semiconductor fine particles having a photocatalytic action are filled in the pores of the anodized film. Building materials.
【請求項3】 前記半導体微粒子又は半導体微粒子を含
有もしくは担持した塗料粒子が充填された陽極酸化皮膜
の細孔にさらに抗菌性金属又は抗菌性金属を含む化合物
を析着してなる請求項1又は2に記載の建築材料。
3. An antibacterial metal or a compound containing an antibacterial metal is further deposited on the pores of the anodized film filled with the semiconductor particles or the coating particles containing or supporting the semiconductor particles. The building material described in 2.
【請求項4】 前記半導体微粒子又は半導体微粒子を含
有もしくは担持した塗料粒子が充填された陽極酸化皮膜
の細孔にさらに着色性の金属又は機能性物質を析着して
なる請求項1又は2に記載の建築材料。
4. The method according to claim 1, wherein a coloring metal or a functional substance is further deposited on the pores of the anodic oxide film filled with the semiconductor fine particles or the coating particles containing or supporting the semiconductor fine particles. Building materials listed.
【請求項5】 光触媒作用を有する半導体微粒子を含む
分散液又は塗料溶液中に、陽極酸化皮膜を形成したアル
ミニウム又はアルミニウム合金からなる基材を浸漬し、
電気泳動法により上記基材の陽極酸化皮膜の細孔中に半
導体微粒子又は半導体微粒子を含有もしくは担持した塗
料粒子を充填させることを特徴とする抗菌・防黴・防汚
性の建築材料の製造方法。
5. A base material made of aluminum or an aluminum alloy on which an anodized film is formed is immersed in a dispersion or coating solution containing semiconductor fine particles having a photocatalytic action,
A method for producing an antibacterial, antifungal and antifouling building material, characterized in that pores of an anodized film of the base material are filled with semiconductor particles or coating particles containing or carrying semiconductor particles by an electrophoretic method. .
【請求項6】 光触媒作用を有する半導体微粒子を含む
分散液又は塗料溶液中に、大気圧以下の圧力下、陽極酸
化皮膜を形成したアルミニウム又はアルミニウム合金か
らなる基材を浸漬し、上記基材の陽極酸化皮膜の細孔中
に半導体微粒子又は半導体微粒子を含有もしくは担持し
た塗料粒子を充填させることを特徴とする抗菌・防黴・
防汚性の建築材料の製造方法。
6. A base material made of aluminum or an aluminum alloy on which an anodized film is formed is immersed in a dispersion liquid or a coating solution containing semiconductor fine particles having a photocatalytic action under a pressure of atmospheric pressure or less, and the above base material Antibacterial and antifungal properties, characterized in that fine pores of the anodized film are filled with fine semiconductor particles or coating particles containing or carrying fine semiconductor particles.
Manufacturing method of antifouling building material.
【請求項7】 陽極酸化皮膜の細孔中に光触媒作用を有
する半導体微粒子又は半導体微粒子を含有もしくは担持
した塗料粒子が充填されてなるアルミニウム又はアルミ
ニウム合金からなる基材の上記陽極酸化皮膜を、抗菌性
金属イオン又は抗菌性金属化合物イオンを含む溶液と接
触せしめ、紫外線を照射することにより、上記半導体微
粒子の光触媒作用によって抗菌性金属イオン又は抗菌性
金属化合物イオンを還元し、上記陽極酸化皮膜の細孔に
抗菌性金属又は抗菌性金属を含む化合物を析出させるこ
とを特徴とする抗菌・防黴・防汚性の建築材料の製造方
法。
7. An antibacterial treatment of the above-mentioned anodic oxide coating of a base material made of aluminum or aluminum alloy in which fine semiconductor particles having a photocatalytic action or coating particles containing or supporting semiconductor fine particles are filled in the pores of the anodic oxide coating. By contacting it with a solution containing a conductive metal ion or an antibacterial metal compound ion and irradiating it with ultraviolet rays to reduce the antibacterial metal ion or the antibacterial metal compound ion by the photocatalytic action of the semiconductor fine particles to reduce the fineness of the anodized film. A method for producing an antibacterial, antifungal, antifouling building material, which comprises depositing an antibacterial metal or a compound containing an antibacterial metal in the pores.
【請求項8】 陽極酸化皮膜の細孔中に光触媒作用を有
する半導体微粒子又は半導体微粒子を含有もしくは担持
した塗料粒子が充填されてなるアルミニウム又はアルミ
ニウム合金からなる基材の上記陽極酸化皮膜を、着色性
の金属イオンを含む溶液と接触せしめ、紫外線を照射す
ることにより、上記半導体微粒子の光触媒作用によって
上記金属イオンを還元し、上記陽極酸化皮膜の細孔に上
記金属を析出させることを特徴とする抗菌・防黴・防汚
性の建築材料の製造方法。
8. Coloring the anodized film of a substrate made of aluminum or an aluminum alloy in which fine semiconductor particles having a photocatalytic activity or coating particles containing or carrying semiconductor fine particles are filled in the pores of the anodized film. Characterized in that the metal ion is reduced by photocatalytic action of the semiconductor fine particles by contacting with a solution containing a polar metal ion and irradiating with ultraviolet rays to deposit the metal in the pores of the anodized film. Method of manufacturing antibacterial, antifungal and antifouling building materials.
JP25204495A 1995-09-06 1995-09-06 Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material Expired - Fee Related JP3251475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25204495A JP3251475B2 (en) 1995-09-06 1995-09-06 Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25204495A JP3251475B2 (en) 1995-09-06 1995-09-06 Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material

Publications (2)

Publication Number Publication Date
JPH0971897A true JPH0971897A (en) 1997-03-18
JP3251475B2 JP3251475B2 (en) 2002-01-28

Family

ID=17231799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25204495A Expired - Fee Related JP3251475B2 (en) 1995-09-06 1995-09-06 Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material

Country Status (1)

Country Link
JP (1) JP3251475B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100695A (en) * 1997-09-26 1999-04-13 Nippon Alum Co Ltd Production of titanium material having photocatalytic activity
JP2000041713A (en) * 1998-07-31 2000-02-15 Akira Fujishima Antimicrobial fastening parts and their manufacture
JP2001303296A (en) * 2000-04-25 2001-10-31 Chukin:Kk Metallic material having photocatalytic function and producing method thereof
WO2004045577A1 (en) * 2002-11-19 2004-06-03 Danmarks Tekniske Universitet-Dtu Biologically inhibiting material a method of producing said material as well as the use of said material for inhibiting live cells
JP2005103505A (en) * 2003-10-02 2005-04-21 Denka Himaku Kogyo Kk Method for manufacturing magnesium metallic material having photocatalytically active surface
JP2005103504A (en) * 2003-10-02 2005-04-21 Denka Himaku Kogyo Kk Magnesium metallic material having photocatalytically active surface and its manufacturing method
JP2005334827A (en) * 2004-05-28 2005-12-08 Mitsui Mining & Smelting Co Ltd Composite element
JP2007021441A (en) * 2005-07-20 2007-02-01 Fujifilm Corp Metal particle type reaction catalyst, production method of the same, and organic synthesis reaction apparatus using the same
JP2007277646A (en) * 2006-04-07 2007-10-25 Nts:Kk Heat conductive material, apparatus with heat dissipation structure, and method of manufacturing heat conductive material
KR100903003B1 (en) * 2006-08-31 2009-06-15 이기덕 A Method of Making Functional Material and Particles/Powder Made By Using It
WO2013035343A1 (en) * 2011-09-07 2013-03-14 株式会社Nbcメッシュテック Anti-virus aluminum member and method for producing same
CN104805486A (en) * 2014-01-29 2015-07-29 可成科技股份有限公司 Antimicrobial composite surfaces and methods of making the same
WO2016021367A1 (en) * 2014-08-07 2016-02-11 シャープ株式会社 Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
US20160152839A1 (en) * 2014-11-28 2016-06-02 Catcher Technology Co., Ltd. Antimicrobial complex surface and method for forming the same
CN105714352A (en) * 2014-12-05 2016-06-29 可成科技股份有限公司 Antibacterial composite surface and processing method for forming antibacterial composite surface
CN106334628A (en) * 2016-08-23 2017-01-18 孟玲 High speed centrifugal machine in environmental engineering field
CN107385405A (en) * 2017-07-22 2017-11-24 北京工商大学 A kind of controllable parts of stainless steel of ion implantation modification layer depth and its preparation technology
CN107419234A (en) * 2017-07-22 2017-12-01 北京工商大学 The food processing machinery parts of stainless steel and its preparation technology of a kind of wear-resistant antibacterial
WO2018134970A1 (en) * 2017-01-20 2018-07-26 株式会社G.H.A Method for coloring treatment of aluminium or aluminum alloy
CN109881235A (en) * 2019-03-18 2019-06-14 刘闪闪 A kind of antibacterial surface processing method of aluminium alloy
CN114481256A (en) * 2022-02-24 2022-05-13 九牧厨卫股份有限公司 Deodorization composite material, preparation method and deodorization product thereof
WO2022158723A1 (en) * 2021-01-21 2022-07-28 엘지전자 주식회사 Antifouling surface treatment method, and antifouling surface treatment structure obtained thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182298A (en) * 1986-01-17 1987-08-10 Nippon Alum Mfg Co Ltd:The Aluminum product having antibacterial or antimold anodic oxide film
JPH06278241A (en) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd Building material
JPH07462A (en) * 1993-06-17 1995-01-06 Takenaka Komuten Co Ltd Prevention of nosocomial infection
JPH08296060A (en) * 1995-04-21 1996-11-12 Ykk Kk Antibacterial and mildewproof aluminum building material and fittings using the material
JPH08302498A (en) * 1995-05-10 1996-11-19 Ykk Kk Antibacterial and mildewproof building material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182298A (en) * 1986-01-17 1987-08-10 Nippon Alum Mfg Co Ltd:The Aluminum product having antibacterial or antimold anodic oxide film
JPH06278241A (en) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd Building material
JPH07462A (en) * 1993-06-17 1995-01-06 Takenaka Komuten Co Ltd Prevention of nosocomial infection
JPH08296060A (en) * 1995-04-21 1996-11-12 Ykk Kk Antibacterial and mildewproof aluminum building material and fittings using the material
JPH08302498A (en) * 1995-05-10 1996-11-19 Ykk Kk Antibacterial and mildewproof building material

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100695A (en) * 1997-09-26 1999-04-13 Nippon Alum Co Ltd Production of titanium material having photocatalytic activity
JP2000041713A (en) * 1998-07-31 2000-02-15 Akira Fujishima Antimicrobial fastening parts and their manufacture
JP2001303296A (en) * 2000-04-25 2001-10-31 Chukin:Kk Metallic material having photocatalytic function and producing method thereof
US8062650B2 (en) 2002-11-19 2011-11-22 Alfa Laval Corporate Ab Biologically inhibiting material a method of producing said material as well as the use of said material for inhibiting live cells
WO2004045577A1 (en) * 2002-11-19 2004-06-03 Danmarks Tekniske Universitet-Dtu Biologically inhibiting material a method of producing said material as well as the use of said material for inhibiting live cells
JP2005103505A (en) * 2003-10-02 2005-04-21 Denka Himaku Kogyo Kk Method for manufacturing magnesium metallic material having photocatalytically active surface
JP2005103504A (en) * 2003-10-02 2005-04-21 Denka Himaku Kogyo Kk Magnesium metallic material having photocatalytically active surface and its manufacturing method
JP2005334827A (en) * 2004-05-28 2005-12-08 Mitsui Mining & Smelting Co Ltd Composite element
JP4524142B2 (en) * 2004-05-28 2010-08-11 三井金属鉱業株式会社 Composite element
JP2007021441A (en) * 2005-07-20 2007-02-01 Fujifilm Corp Metal particle type reaction catalyst, production method of the same, and organic synthesis reaction apparatus using the same
JP2007277646A (en) * 2006-04-07 2007-10-25 Nts:Kk Heat conductive material, apparatus with heat dissipation structure, and method of manufacturing heat conductive material
JP4611236B2 (en) * 2006-04-07 2011-01-12 株式会社エヌ・ティー・エス HEAT CONDUCTIVE MATERIAL, DEVICE HAVING HEAT DISSIPTION STRUCTURE, AND METHOD FOR PRODUCING HEAT CONDUCTIVE MATERIAL
KR100903003B1 (en) * 2006-08-31 2009-06-15 이기덕 A Method of Making Functional Material and Particles/Powder Made By Using It
KR100953776B1 (en) * 2006-08-31 2010-04-21 이기덕 Functional Material having Particles or Powder Type and Method thereof
EP2754734A4 (en) * 2011-09-07 2015-07-29 Nbc Meshtec Inc Anti-virus aluminum member and method for producing same
US20140367263A1 (en) * 2011-09-07 2014-12-18 NBC MESHTEC, INC. of Tokyo, Japan Anti-virus aluminum member and method for producing same
WO2013035343A1 (en) * 2011-09-07 2013-03-14 株式会社Nbcメッシュテック Anti-virus aluminum member and method for producing same
AU2012305805B2 (en) * 2011-09-07 2017-02-16 Nbc Meshtec, Inc. Anti-virus aluminum member and method for producing same
KR20140057622A (en) * 2011-09-07 2014-05-13 가부시키가이샤 엔비씨 메슈테크 Anti-virus aluminum member and method for producing same
CN104805486A (en) * 2014-01-29 2015-07-29 可成科技股份有限公司 Antimicrobial composite surfaces and methods of making the same
JP2018028148A (en) * 2014-08-07 2018-02-22 シャープ株式会社 Fin with surface having antifungal action, heat exchanger having fin, and metallic component with surface having bactericidal action
WO2016021367A1 (en) * 2014-08-07 2016-02-11 シャープ株式会社 Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
US11280563B2 (en) 2014-08-07 2022-03-22 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
JPWO2016021367A1 (en) * 2014-08-07 2017-05-25 シャープ株式会社 Heat exchanger having fins with sterilizing surface, metal member having sterilizing surface, sterilization method using fin surface of heat exchanger, electric water heater having metal member, and beverage feeder And lunch box lid
US10107574B2 (en) 2014-08-07 2018-10-23 Sharp Kabushiki Kaisha Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
US20160152839A1 (en) * 2014-11-28 2016-06-02 Catcher Technology Co., Ltd. Antimicrobial complex surface and method for forming the same
CN105714352A (en) * 2014-12-05 2016-06-29 可成科技股份有限公司 Antibacterial composite surface and processing method for forming antibacterial composite surface
CN106334628B (en) * 2016-08-23 2018-11-16 江苏众富智能电气研究院有限公司 A kind of supercentrifuge for field of environment engineering
CN106334628A (en) * 2016-08-23 2017-01-18 孟玲 High speed centrifugal machine in environmental engineering field
WO2018134970A1 (en) * 2017-01-20 2018-07-26 株式会社G.H.A Method for coloring treatment of aluminium or aluminum alloy
JPWO2018134970A1 (en) * 2017-01-20 2019-11-07 株式会社G.H.A Method of coloring aluminum or aluminum alloy
CN107419234A (en) * 2017-07-22 2017-12-01 北京工商大学 The food processing machinery parts of stainless steel and its preparation technology of a kind of wear-resistant antibacterial
CN107385405A (en) * 2017-07-22 2017-11-24 北京工商大学 A kind of controllable parts of stainless steel of ion implantation modification layer depth and its preparation technology
CN109881235A (en) * 2019-03-18 2019-06-14 刘闪闪 A kind of antibacterial surface processing method of aluminium alloy
WO2022158723A1 (en) * 2021-01-21 2022-07-28 엘지전자 주식회사 Antifouling surface treatment method, and antifouling surface treatment structure obtained thereby
KR20220105927A (en) * 2021-01-21 2022-07-28 엘지전자 주식회사 Antifoulding surface treatment method and antifoulding surface treatment structure thereof
CN114481256A (en) * 2022-02-24 2022-05-13 九牧厨卫股份有限公司 Deodorization composite material, preparation method and deodorization product thereof

Also Published As

Publication number Publication date
JP3251475B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
US5670206A (en) Deodorizing lamp and method for production thereof
Cotolan et al. Sol-gel synthesis, characterization and properties of TiO2 and Ag-TiO2 coatings on titanium substrate
JP4619197B2 (en) Aluminum substrate with anodized film and method for producing the same
Kiwi et al. TiO 2 and TiO 2-doped films able to kill bacteria by contact: new evidence for the dynamics of bacterial inactivation in the dark and under light irradiation
JP2001081409A (en) Anti-fungus coating agent, anti-fungus agent and method for inhibiting nosocomial infection
JPH0665012A (en) Antibacterial and antifungal ceramics and their production
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
JPH11267516A (en) Metal plate obtained by laminating photocatalyst-supporting film
JP3210546B2 (en) Antibacterial and antifungal building materials
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same
JP2000006303A (en) Laminated structure having photocatalyst layer
JPH08296060A (en) Antibacterial and mildewproof aluminum building material and fittings using the material
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JP3316048B2 (en) Building material and manufacturing method thereof
US11906157B2 (en) Photocatalyst formulations and coatings
WO2009123135A1 (en) Photocatalyst coating composition
JPH10249212A (en) Photocatalyst supporter having odor-preventing/ deodorizing property and its production
JPH11138686A (en) Resin structural body formed of laminated photocatalyst carrying film
JP3326071B2 (en) Aluminum or aluminum alloy material coated with photocatalytic film and method for producing the same
JPH07102678A (en) Nosokomial infection preventing method
JPH09195647A (en) Antifouling screen net
EP3212324B1 (en) Tio2 based nanotubes-polymer composite material, method for the preparation and uses thereof
JPH11158694A (en) Article with hydrophilic coating, and coating method
JPH11166332A (en) Operating member for antibacterial construction

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees