JPH11166332A - Operating member for antibacterial construction - Google Patents

Operating member for antibacterial construction

Info

Publication number
JPH11166332A
JPH11166332A JP9350181A JP35018197A JPH11166332A JP H11166332 A JPH11166332 A JP H11166332A JP 9350181 A JP9350181 A JP 9350181A JP 35018197 A JP35018197 A JP 35018197A JP H11166332 A JPH11166332 A JP H11166332A
Authority
JP
Japan
Prior art keywords
antibacterial
fine particles
operation member
photocatalytic
building operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9350181A
Other languages
Japanese (ja)
Inventor
Nobuyuki Nakada
信之 中田
Toshio Arai
敏夫 新井
Akira Fujishima
昭 藤嶋
Kazuhito Hashimoto
和仁 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP9350181A priority Critical patent/JPH11166332A/en
Publication of JPH11166332A publication Critical patent/JPH11166332A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an operating member for antibacterial construction which performs an antibacterial processing for an operating member to be operated by the hand of a person and is capable of displaying excellent antibacterial/mold proof/antifouling property for a long period without deteriorating the surface of a base material. SOLUTION: On the surface of a base material 1, an operating member for antibacterial construction in which substance with antibacterial property is arranged is provided. A photocatalytic film 2 made of photocatalytic grain 3 such as TiO2 and inorganic binder 4 such as silica are coated on the base material 1, as a favorable form. Antibacterial performance can be displayed day and night by further sticking and/or dispersing antibacterial metal or antibacterial metallic compound on the photocatalytic film 2 and/or in the film 2, and an intermediate layer interrupting a photocatalytic action can be provided between the photocatalytic film 2 and the base material 1 so as to prevent the deterioration of the surface of the base material 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種窓類の把手、
クレセント、ハンドル等や、補助錠、ブラインドなどに
用いるオペレーターハンドル、ドア等のノブ、電動ド
ア、電動窓、室内灯等のスイッチなどの抗菌性建築用操
作部材に関し、さらに詳しくは、表面に抗菌性を有する
物質が存在し、特に光触媒作用を有する半導体又はその
薄膜もしくは半導体微粒子を含む薄膜が存在し、あるい
はさらに抗菌性金属又は抗菌性金属化合物が存在するこ
とにより優れた抗菌・防黴・防汚性を発揮する建築用操
作部材に関する。
TECHNICAL FIELD The present invention relates to a handle for various windows,
Antibacterial architectural operating members such as crescents, handles, etc., operator handles used for auxiliary locks, blinds, etc., knobs such as doors, electric doors, electric windows, switches such as interior lights, etc. Excellent antibacterial, antifungal, and antifouling due to the presence of a substance having the following characteristics, particularly, the presence of a semiconductor having photocatalytic activity or a thin film thereof or a thin film containing semiconductor fine particles, or the presence of an antibacterial metal or an antibacterial metal compound. The present invention relates to an operation member for a building that exhibits a property.

【0002】[0002]

【従来の技術】近年、清潔志向や、防臭、防黴等に対処
するため、種々の抗菌製品が開発、市販されている。建
築用材料の分野でも、抗菌性アルミ建材が開発されてい
る。ところで、従来行われている抗菌処理は、銀等の抗
菌性金属を無機化合物に担持させた抗菌剤を塗料中に配
合し、この塗料を塗布することで製品表面に抗菌性を持
たせるものである。あるいは、抗菌剤を樹脂基材自体に
配合し、抗菌性を付与することも行われている。このよ
うな抗菌処理は、建材分野においては、例えば建築用外
層材に処理することにより防汚性を付与したり、また内
装材に処理することにより室内空間の抗菌・防臭・防黴
等を通じて空気の清浄化を図ろうとするものである。
2. Description of the Related Art In recent years, various antibacterial products have been developed and marketed in order to cope with a desire for cleanliness, anti-odor, anti-mold, and the like. In the field of building materials, antibacterial aluminum building materials have been developed. By the way, the antibacterial treatment conventionally performed is to mix an antibacterial agent in which an antibacterial metal such as silver is supported on an inorganic compound into a paint, and to apply the paint to impart antibacterial properties to a product surface. is there. Alternatively, an antibacterial agent is blended into the resin base material itself to impart antibacterial properties. In the field of building materials, such an antibacterial treatment imparts an antifouling property by, for example, treating an outer layer material for a building, or an antibacterial, deodorant, or antifungal agent in an indoor space by treating an interior material. It is intended to purify the water.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、窓の把
手、クレセント、ハンドル等や、補助錠、ブラインド等
に用いるオペレーターハンドル、ドア等のノブ、電動ド
ア、電動窓、室内灯等の各種スイッチ類などの建築用操
作部材の場合、小物品であることもあって、前記したよ
うな効果がそれ程期待できないと考えられ、抗菌処理が
施されていないのが現状である。しかしながら、近年、
院内感染やO−157の問題がクローズアップされてお
り、そのため、特に直接人の手が触れる操作部材につい
ても、抗菌性能を発揮できる操作部材の開発が望まれ
る。従って、本発明の基本的な目的は、人の手で操作さ
れる操作部材に対して抗菌処理を施し、優れた抗菌・防
黴・防汚性を発揮できる抗菌性建築用操作部材を提供す
ることにある。
However, handles, crescents, handles, etc. for windows, operator handles used for auxiliary locks, blinds, etc., knobs for doors, etc., various switches such as electric doors, electric windows, room lights, etc. In the case of the architectural operation member described above, since it is a small article, it is considered that the above-described effects cannot be expected so much, and at present, antibacterial treatment is not performed. However, in recent years,
The problems of hospital-acquired infections and O-157 have been highlighted, and therefore, it has been desired to develop operating members that can exhibit antibacterial performance, especially for operating members that are directly touched by human hands. Accordingly, a basic object of the present invention is to provide an antibacterial architectural operation member capable of exhibiting excellent antibacterial, antifungal and antifouling properties by subjecting an operation member operated by a human hand to antibacterial treatment. It is in.

【0004】また、前記したような抗菌剤は銀等の抗菌
性金属が徐々に溶出することによって抗菌効果が現われ
るため、このような抗菌剤を人の手が触れる操作部材に
適用した場合、人の手垢、皮脂等で表面が徐々に汚れて
いくことにより、抗菌性能が低下してしまい易い。従っ
て、本発明の他の基本的な目的は、防汚性及び寿命に優
れ、長期間に亘って優れた抗菌・防黴・防汚性を発揮で
きる抗菌性建築用操作部材を提供することにある。さら
に本発明の目的は、基材との密着性に優れ、また基材表
面を劣化させることなく優れた抗菌・防黴・防汚性を発
揮できる抗菌性薄膜を施した建築用操作部材を提供する
ことにある。さらにまた本発明の目的は、上記のような
優れた特性に加えて、昼夜を問わず長期間に亘って優れ
た抗菌性能を発揮できる建築用操作部材を提供すること
にある。
[0004] In addition, since the antibacterial agent described above exhibits an antibacterial effect due to the gradual elution of an antibacterial metal such as silver, when such an antibacterial agent is applied to an operation member that can be touched by human hands, The antibacterial performance is apt to be deteriorated by the surface being gradually stained with hand grit, sebum and the like. Therefore, another basic object of the present invention is to provide an antibacterial building operation member having excellent antifouling property and life, and capable of exhibiting excellent antibacterial, antifungal and antifouling properties over a long period of time. is there. Further, an object of the present invention is to provide a building operation member having an antibacterial thin film having excellent adhesion to a substrate and exhibiting excellent antibacterial, antifungal and antifouling properties without deteriorating the surface of the substrate. Is to do. Still another object of the present invention is to provide a building operation member capable of exhibiting excellent antibacterial performance over a long period of time regardless of day or night, in addition to the above excellent characteristics.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明の基本的な態様によれば、建築用操作部材の
表面に、抗菌性を有する物質を配してなることを特徴と
する抗菌性建築用操作部材が提供される。より好適な態
様によれば、建築用操作部材の表面を、光触媒作用を有
する半導体薄膜又は半導体微粒子を含む薄膜で被覆して
なることを特徴とする抗菌性建築用操作部材、あるい
は、建築用操作部材の基材表面又はその上に施された塗
膜表面に、光触媒作用を有する半導体微粒子が担持され
てなることを特徴とする抗菌性建築用操作部材が提供さ
れる。
According to a basic aspect of the present invention, a material having antibacterial properties is arranged on the surface of a building operation member. An antibacterial building operation member is provided. According to a more preferred aspect, an antibacterial building operation member characterized in that the surface of the building operation member is coated with a semiconductor thin film having a photocatalytic action or a thin film containing semiconductor fine particles, or a building operation An antibacterial building operation member is provided, wherein semiconductor fine particles having a photocatalytic action are carried on the surface of a base material of the member or the surface of a coating film applied thereon.

【0006】基材表面の劣化や密着性について配慮した
態様によれば、建築用操作部材の表面を、光触媒作用を
遮断する中間層、及び光触媒作用を有する半導体薄膜又
は半導体微粒子を含む薄膜で順次被覆してなることを特
徴とする抗菌性建築用操作部材が提供される。さらに、
昼夜を問わず長期間に亘って優れた抗菌性能を発揮でき
るようにした好適な態様によれば、前記光触媒作用を有
する半導体薄膜又は半導体微粒子を含む薄膜の上及び/
又は中に、さらに抗菌性金属又は抗菌性金属化合物が付
着及び/又は分散していることを特徴とする抗菌性建築
用操作部材、あるいは、建築用操作部材の基材表面又は
その上に施された塗膜表面に、光触媒作用を有する半導
体微粒子と共に、抗菌性金属又は抗菌性金属化合物が担
持されてなることを特徴とする抗菌性建築用操作部材が
提供される。
According to the aspect in which the deterioration and adhesion of the base material surface are taken into consideration, the surface of the building operation member is sequentially formed of an intermediate layer for blocking photocatalysis, and a semiconductor thin film having photocatalysis or a thin film containing semiconductor fine particles. An antibacterial building operation member characterized by being coated is provided. further,
According to a preferred embodiment in which excellent antibacterial performance can be exhibited for a long period of time regardless of day and night, the semiconductor thin film having the photocatalytic action or the thin film containing the semiconductor fine particles and / or
Or in which an antibacterial metal or an antimicrobial metal compound is further adhered and / or dispersed, and is applied to the surface of the base material of the antibacterial building operation member or the base material of the operating member for building or on the surface thereof. An antibacterial architectural operation member characterized in that an antibacterial metal or an antibacterial metal compound is supported on a coated film surface together with semiconductor fine particles having a photocatalytic action.

【0007】また、別の好適な態様においては、前記光
触媒作用を有する半導体微粒子として、表面に部分的に
無機質微粒子が付着している半導体微粒子、あるいはさ
らに、上記半導体微粒子の表面及び/又は無機質微粒子
の表面に抗菌性金属又は抗菌性金属化合物が付着してい
る半導体微粒子が用いられる。また、基材の劣化等の面
からは、前記半導体微粒子を含む薄膜のバインダーとし
て無機バインダー、特にシリカを用いることが好まし
く、また前記中間層又は塗膜としてもこのような無機質
材料を用いることが好ましい。
In another preferred embodiment, the semiconductor fine particles having a photocatalytic action include semiconductor fine particles having inorganic fine particles partially adhered to the surface thereof, or further, the surface of the semiconductor fine particles and / or inorganic fine particles. Semiconductor fine particles having an antibacterial metal or an antibacterial metal compound adhered to the surface thereof are used. Further, from the viewpoint of deterioration of the base material, it is preferable to use an inorganic binder, particularly silica, as the binder of the thin film containing the semiconductor fine particles, and to use such an inorganic material also as the intermediate layer or the coating film. preferable.

【0008】[0008]

【発明の実施の形態】本発明は、その基本的な態様とし
て、前記したような建築用操作部材の表面に抗菌性を有
する物質を配してなる抗菌性建築用操作部材を提供する
ものである。抗菌性物質としては、光触媒作用を有する
半導体や、銀、銅、亜鉛等もしくはそれらの合金等の抗
菌性金属又は抗菌性金属化合物、抗菌性有機化合物な
ど、従来知られている抗菌性物質の1種又は2種以上を
用いることができるが、これらの中でも光触媒作用を有
する半導体あるいはこれと抗菌性金属もしくは抗菌性化
合物との併用が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides, as a basic aspect, an antibacterial building operation member in which an antibacterial substance is disposed on the surface of the above-mentioned building operation member. is there. Examples of the antibacterial substance include one of conventionally known antibacterial substances such as a semiconductor having a photocatalytic action, an antibacterial metal or an antibacterial metal compound such as silver, copper, zinc, or an alloy thereof, and an antibacterial organic compound. A kind or two or more kinds can be used. Among them, a semiconductor having a photocatalytic action or a combination of the semiconductor and an antibacterial metal or an antibacterial compound is preferable.

【0009】このような光触媒作用を有する半導体、例
えば、TiO2 が操作部材表面に存在していることによ
り、この半導体に太陽光線や蛍光灯の光が照射される
と、TiO2 表面に正孔(h+ )や電子(e- )が生じ
て光触媒作用を示し、水や各種の有機物の分解が行われ
る。また、この正孔の作用により水が酸化されてOHラ
ジカルを、また、電子の作用により空気中の酸素が還元
されてO2 -ラジカルを生ずる。これら活性酸素は優れた
殺菌作用を有し、その結果、黴等が生じ難くなり、また
接触感染も防止される。
Since a semiconductor having such a photocatalytic action, for example, TiO 2 is present on the surface of the operation member, when the semiconductor is irradiated with sunlight or fluorescent light, holes are formed on the TiO 2 surface. (H + ) and electrons (e ) are generated to exhibit a photocatalytic action, and water and various organic substances are decomposed. Further, water is oxidized OH radicals by the action of the hole, also, by the action of electrons is oxygen in the air reducing O 2 - generated radicals. These active oxygens have an excellent bactericidal action, and as a result, mold and the like hardly occur, and contact infection is also prevented.

【0010】また、窓の把手、クレセント、ハンドル等
の屋内用操作部材に手垢、皮脂等の有機物が付着して
も、上記光触媒作用により有機物は分解され、自浄作用
を発揮する。さらに、玄関ドアのノブなど、屋外に設置
される操作部材において、土砂のように水で除去され易
い成分と、油脂のように水で除去され難い成分が混合し
て付着した場合でも、この油脂成分を分解することによ
り、雨水による自然洗浄あるいは水洗で除去可能な汚れ
のみが存在することになる。また、油脂等の成分に吸着
し易くかつ除去が困難な汚れ物質、例えば、ディーゼル
粉塵やタイヤ粉塵、カーボン粒子等の吸着が防止される
ことによって汚れ自体を減じることが可能となる。さら
に、光触媒作用による抗菌・防黴性により、細菌や黴に
起因する汚れを防止することができる。その結果、長期
間に亘って優れた抗菌性、防汚性、防黴性等を発揮でき
る。
[0010] Even if organic matter such as hand stains and sebum adheres to indoor operation members such as a handle, a crescent and a handle of a window, the organic matter is decomposed by the photocatalytic action and exerts a self-cleaning action. Furthermore, even if components that are easily removed with water, such as earth and sand, and components that are difficult to remove with water, such as fats and oils, are mixed and adhered to an operating member installed outdoors, such as a door knob of a front door. By decomposing the components, only dirt that can be removed by natural washing or washing with rainwater is present. Further, by preventing the adsorption of dirt substances which are easily adsorbed by components such as oils and fats and are difficult to remove, for example, diesel dust, tire dust, carbon particles, etc., the dirt itself can be reduced. Furthermore, antibacterial and antifungal properties by photocatalysis can prevent contamination caused by bacteria and fungi. As a result, excellent antibacterial properties, antifouling properties, antifungal properties and the like can be exhibited over a long period of time.

【0011】前記のような光触媒作用を有する半導体と
しては、電子−正孔移動度が比較的大きく、光触媒作用
を有する半導体であればいずれも使用可能であり、例え
ばTiO2 、SrTiO3 、ZnO、CdS、SnO2
等が挙げられるが、これらの中でも特にTiO2 が好ま
しい。また、このような光触媒作用を有する半導体と共
に抗菌性金属又は抗菌性金属化合物を共存させれば、夜
間であっても抗菌・防黴性が維持されるようになる。
As the semiconductor having a photocatalytic action as described above, any semiconductor having a relatively high electron-hole mobility and having a photocatalytic action can be used. For example, TiO 2 , SrTiO 3 , ZnO, CdS, SnO 2
And the like, among which TiO 2 is particularly preferable. If an antibacterial metal or an antibacterial metal compound is present together with such a semiconductor having a photocatalytic action, antibacterial and antifungal properties can be maintained even at night.

【0012】建築用操作部材表面に前記したような光触
媒作用を有する半導体及び/又は抗菌性金属又は抗菌性
金属化合物を存在させる態様としては、例えば、建築用
操作部材の基材表面又はその上に施された塗膜表面に、
光触媒作用を有する半導体及び/又は抗菌性金属又は抗
菌性金属化合物を担持させる態様、光触媒作用を有する
半導体薄膜又は半導体微粒子を含む(含有もしくは担持
する)薄膜(以下、光触媒膜と総称する。)を直に(直
接成膜又は直接コーティング)又は光触媒作用を遮断す
る中間層を介して被覆する態様、該光触媒膜の上及び/
又は中に抗菌性金属又は抗菌性金属化合物を付着及び/
又は分散させる態様など、種々の態様を採用できる。
As an embodiment in which the semiconductor and / or antibacterial metal or antibacterial metal compound having a photocatalytic action as described above is present on the surface of the building operation member, for example, the base material surface of the building operation member or on the surface thereof On the applied coating surface,
An embodiment in which a semiconductor having a photocatalytic action and / or an antibacterial metal or an antibacterial metal compound is supported, and a semiconductor thin film having a photocatalytic action or a thin film containing (containing or supporting) semiconductor fine particles (hereinafter collectively referred to as a photocatalytic film). An embodiment of coating directly (direct film formation or direct coating) or via an intermediate layer that blocks photocatalysis, on the photocatalytic film and / or
Or an antibacterial metal or an antibacterial metal compound adhered therein and / or
Alternatively, various modes such as a mode of dispersing can be adopted.

【0013】また、前記光触媒作用を有する半導体、抗
菌性金属又は抗菌性金属化合物の形態としても、個々の
微粒子の形態、光触媒作用を有する半導体微粒子(以
下、光触媒微粒子という。)の表面に抗菌性金属又は抗
菌性金属化合物が部分的に(又は一部の粒子は全体的で
も構わない)付着している形態、光触媒微粒子の表面に
シリカ等の無機質微粒子が部分的に付着している形態、
光触媒微粒子の表面に無機質微粒子と抗菌性金属又は抗
菌性金属化合物が部分的に付着している形態、抗菌性金
属又は抗菌性金属化合物が付着している無機質微粒子が
光触媒微粒子の表面に付着している形態など、種々の形
態を採用できる。
In the form of the semiconductor, antibacterial metal or antibacterial metal compound having the photocatalytic action, the form of individual fine particles and the surface of semiconductor fine particles having a photocatalytic action (hereinafter referred to as photocatalytic fine particles) are antibacterial. A form in which a metal or an antibacterial metal compound is partially adhered (or some particles may be entirely), a form in which inorganic fine particles such as silica are partially adhered to the surface of photocatalytic fine particles,
The form in which the inorganic fine particles and the antibacterial metal or the antibacterial metal compound are partially adhered to the surface of the photocatalytic fine particles, and the inorganic fine particles to which the antibacterial metal or the antibacterial metal compound is adhered adhere to the surface of the photocatalytic fine particles. Various forms can be adopted, such as a form in which the object is present.

【0014】光触媒作用を有する半導体のコーティング
方法としては、スパッタ法、溶射法、レーザーアブレー
ション法、ゾルーゲル法、メッキ法など種々の方法を用
いることができる。また、適当な塗料中に光触媒微粒子
を分散させ、これを基材に塗布・乾燥することによって
もコーティングすることができる。建築用操作部材がス
テンレス等の金属材料からなり、高温に耐えられる場合
には、前記の種々のコーティング方法で光触媒膜の形成
が可能である。一方、建築用操作部材が耐熱性が劣る樹
脂材料からなる場合は、加熱することが不可能になる。
その場合には、適当な塗料中に光触媒微粒子を分散さ
せ、これを基材に塗布・乾燥することによってコーティ
ングする方法が好ましい。
Various methods such as a sputtering method, a thermal spray method, a laser ablation method, a sol-gel method, and a plating method can be used as a method for coating a semiconductor having a photocatalytic action. Further, coating can also be carried out by dispersing photocatalyst fine particles in an appropriate coating material and applying and drying the fine particles on a substrate. When the building operation member is made of a metal material such as stainless steel and can withstand high temperatures, the photocatalytic film can be formed by the various coating methods described above. On the other hand, when the building operation member is made of a resin material having poor heat resistance, heating becomes impossible.
In this case, it is preferable to disperse the photocatalyst fine particles in an appropriate coating material, apply the resultant to a base material, and dry the substrate to perform coating.

【0015】また、建築用操作部材が樹脂材料からなる
場合、又は金属製であっても表面に樹脂塗膜が形成され
ている場合、この部材上に直接光触媒膜をコーティング
すると、その光触媒作用によって樹脂材料自体が分解さ
れ、光触媒膜が剥離したり、樹脂材料製操作部材の強度
等の機械的性質を低下させてしまう。このような場合に
は、光触媒作用を遮断する中間層を操作部材上にコーテ
ィングした後に光触媒膜をコーティングする方法が好ま
しい。中間層としては、光触媒微粒子を含まない塗料、
好ましくは無機系塗料が適用できる。このような中間層
を設けることにより、操作部材の樹脂材料自体の分解が
防止され、樹脂材料の強度、柔軟性等の機械的性質が低
下することなく維持できるという効果の他に、特に光触
媒膜として光触媒微粒子を分散させた塗料(特に中間層
と同一の塗料)をコーティングする場合に密着性がより
一層向上するという効果が得られる。
Further, when the building operation member is made of a resin material, or even if it is made of metal and a resin coating film is formed on the surface, if this member is coated directly with a photocatalytic film, the photocatalytic action causes The resin material itself is decomposed, the photocatalyst film is peeled off, and the mechanical properties such as the strength of the resin material operating member are reduced. In such a case, it is preferable to coat the photocatalytic film after coating the operation layer with an intermediate layer that blocks the photocatalytic action. As the intermediate layer, a paint containing no photocatalytic fine particles,
Preferably, an inorganic paint can be applied. By providing such an intermediate layer, decomposition of the resin material itself of the operation member is prevented, and in addition to the effect that the mechanical properties such as the strength and flexibility of the resin material can be maintained without lowering, especially the photocatalytic film When coating with a coating material in which photocatalyst fine particles are dispersed (particularly, the same coating material as the intermediate layer), the effect of further improving the adhesion can be obtained.

【0016】建築用操作部材上にコーティングされる光
触媒膜の膜厚は、光触媒膜のみをコーティングする場合
あるいは中間層と光触媒膜をコーティングする場合共、
10nm〜10μmが適当である。10μmを超える膜
厚になると、光触媒膜が基材表面から剥離し易くなるの
で好ましくない。特に、光触媒膜をコーティングした
後、組立時や施工時に剥離が起き易くなる。また、中間
層を設ける場合、その膜厚は操作部材表面全体を被覆で
き、コーティングされる光触媒膜の光触媒作用を遮断す
るためには、5nm以上必要である。なお、中間層と光
触媒膜の合計膜厚は、前記と同様の理由により10μm
以下が適当である。なお、この程度の膜厚であれば、光
触媒膜に白化等の問題を生ずることなく充分に高い透明
性を保持できる。
[0016] The thickness of the photocatalyst film coated on the building operation member is determined when the photocatalyst film alone is coated or when the intermediate layer and the photocatalyst film are coated.
10 nm to 10 μm is appropriate. When the thickness exceeds 10 μm, the photocatalyst film is easily separated from the substrate surface, which is not preferable. In particular, after coating the photocatalytic film, peeling is likely to occur during assembly or construction. When the intermediate layer is provided, the thickness of the intermediate layer needs to be 5 nm or more in order to cover the entire operation member surface and to block the photocatalytic action of the coated photocatalytic film. The total thickness of the intermediate layer and the photocatalytic film is 10 μm for the same reason as described above.
The following are appropriate: With this thickness, sufficiently high transparency can be maintained without causing a problem such as whitening in the photocatalytic film.

【0017】光触媒微粒子を含有した光触媒膜をコーテ
ィングする場合に用いる塗料(バインダー)あるいは中
間層の形成に用いる塗料としては、フッ素系、シリケー
ト系、アクリル系、ポリエステル系やポリウレタン系等
が挙げられるが、光触媒微粒子が均一に分散し、操作部
材上の塗膜として適度な強度と密着性を有するものであ
れば特に限定されず、用途に応じて適宜選定することが
できる。また、前記塗料の中でもフッ素系、シリケート
系等の無機系塗料が、その耐酸化力の点からより好まし
い。
Examples of the paint (binder) used for coating the photocatalyst film containing the photocatalyst fine particles and the paint used for forming the intermediate layer include fluorine-based, silicate-based, acrylic-based, polyester-based and polyurethane-based paints. There is no particular limitation as long as the photocatalyst fine particles are uniformly dispersed and have appropriate strength and adhesion as a coating film on the operation member, and can be appropriately selected depending on the application. In addition, among the above-mentioned paints, inorganic paints such as fluorine-based paints and silicate-based paints are more preferable in view of their oxidation resistance.

【0018】塗料中に光触媒微粒子を分散させ、これを
塗布するコーティング方法の場合、混合される光触媒微
粒子の割合は、塗料基剤に対し1〜100重量%(ここ
で100重量%は、光触媒微粒子の重量と塗料基剤の重
量が等しいことに相当する。)の範囲にあることが好ま
しい。1重量%より少なくなると、光触媒作用を発揮す
る光触媒微粒子の量が不足し、ひいては充分な光触媒作
用が得られず、一方、100重量%を超えると、光触媒
作用の発揮に関しては問題ないが、塗膜の機械的特性が
著しく低下する。
In the case of a coating method in which photocatalyst fine particles are dispersed in a paint and applied, the proportion of the photocatalyst fine particles to be mixed is 1 to 100% by weight based on the paint base (where 100% by weight is the photocatalyst fine particles). Is equivalent to the weight of the paint base). When the amount is less than 1% by weight, the amount of the photocatalytic fine particles exhibiting the photocatalytic action is insufficient, and thus the sufficient photocatalytic action cannot be obtained. On the other hand, when the amount exceeds 100% by weight, there is no problem in exerting the photocatalytic action. The mechanical properties of the membrane are significantly reduced.

【0019】使用する光触媒微粒子の粒径は、5nm〜
1μm、好ましくは10nm〜300nmが適当であ
る。粒径が5nmよりも小さくなると、量子サイズ効果
によりバンドギャップが大きくなり、高圧水銀灯等の短
波長光を発生する照明下でないと光触媒作用が得られな
いといった問題がある。また、粒径があまりに小さ過ぎ
ると、取り扱いが困難であったり、塗料中への分散性が
悪くなるという問題も生じてくる。取り扱い性の点から
は10nm以上の粒径が好ましい。一方、粒径が1μm
を超えると、材料表面に比較的大きな光触媒微粒子が存
在することになるため、表面の滑らかさが乏しくなり、
また材料表面に露出した粒子が脱落し易くもなる。材料
表面の平滑さ等を考慮すると300nm以下の粒径が好
ましい。
The photocatalyst fine particles used have a particle size of 5 nm to
1 μm, preferably 10 nm to 300 nm is suitable. When the particle size is smaller than 5 nm, the band gap becomes large due to the quantum size effect, and there is a problem that a photocatalytic action cannot be obtained unless under illumination that generates short-wavelength light such as a high-pressure mercury lamp. Further, when the particle size is too small, there arises a problem that handling is difficult and dispersibility in the coating material is deteriorated. A particle size of 10 nm or more is preferred from the viewpoint of handleability. On the other hand, the particle size is 1 μm
If it exceeds, relatively large photocatalyst fine particles will be present on the material surface, so the surface will be poor in smoothness,
In addition, particles exposed on the surface of the material can easily fall off. In consideration of the smoothness of the material surface and the like, a particle size of 300 nm or less is preferable.

【0020】光触媒膜上に抗菌性金属又は抗菌性金属化
合物を析出させる方法は、硝酸銀や塩化銅などの銀や銅
などの抗菌性金属を含む適当な化合物の溶液を調製し、
一つの方法としては、光触媒膜をコーティングした建築
用操作部材を該溶液中に浸し、紫外線ランプやブラック
ライトなどで紫外線を照射すると、光触媒作用で生じた
電子の作用により抗菌性金属イオン又は抗菌性金属化合
物イオンが還元され、操作部材表面に抗菌性金属又は抗
菌性金属化合物が析出する。この場合、抗菌性金属又は
抗菌性金属化合物の析出量は、溶液中の抗菌性金属イオ
ンの量、すなわち調製した溶液の濃度や溶液中に添加す
るアルコールやEDTA等の還元剤の濃度や紫外線照射
時間によって制御できる。
The method of depositing an antibacterial metal or an antibacterial metal compound on a photocatalytic film is as follows: a solution of a suitable compound containing an antibacterial metal such as silver or copper such as silver nitrate or copper chloride is prepared.
One method is to immerse an architectural operation member coated with a photocatalytic film in the solution and irradiate it with an ultraviolet ray using an ultraviolet lamp or a black light. The metal compound ions are reduced, and an antibacterial metal or an antibacterial metal compound is deposited on the surface of the operation member. In this case, the amount of the antibacterial metal or antibacterial metal compound deposited is determined by the amount of the antibacterial metal ion in the solution, that is, the concentration of the prepared solution, the concentration of the reducing agent such as alcohol or EDTA to be added to the solution, or the ultraviolet irradiation. Can be controlled by time.

【0021】また、別の方法としては、前記溶液を光触
媒膜をコーティングした建築用操作部材上にスプレー等
の適当な方法で塗布した後、紫外線を照射する方法があ
る。この方法では、溶液中の抗菌性金属イオンの量、す
なわち調製した溶液の濃度や溶液中に添加するアルコー
ルやEDTA等の還元剤の濃度や塗布量あるいは紫外線
照射時間によって抗菌性金属又は抗菌性金属化合物の析
出量が制御できる。なお、上記のいずれの方法において
も、抗菌性金属又は抗菌性金属化合物で光触媒膜表面全
体を被覆してしまうと、光触媒作用が発現できなくなる
ため、表面全体を被覆しない程度の析出量に制御する必
要がある。
As another method, there is a method in which the solution is applied on a building operation member coated with a photocatalytic film by a suitable method such as spraying, and then irradiated with ultraviolet rays. In this method, the antibacterial metal or antibacterial metal ion depends on the amount of the antibacterial metal ion in the solution, that is, the concentration of the prepared solution, the concentration or application amount of the reducing agent such as alcohol or EDTA added to the solution, or the irradiation time of the ultraviolet light. The precipitation amount of the compound can be controlled. In any of the above methods, if the entire surface of the photocatalytic film is coated with the antibacterial metal or the antibacterial metal compound, the photocatalytic action cannot be exhibited, so that the deposition amount is controlled to such an extent that the entire surface is not coated. There is a need.

【0022】以下、添付図面を参照しながら本発明の抗
菌性操作部材の種々の態様について説明する。図1乃至
図5は、基材表面に光触媒膜が直に又は中間層を介して
被覆された態様を示している。図1は、金属、樹脂、あ
るいは金属上に形成された塗膜など、種々の材質の基材
1上に、TiO2 等の光触媒微粒子3とシリカ等の無機
バインダー4とからなる光触媒膜2がコーティングされ
た態様を示している。このような光触媒膜2は、例え
ば、光触媒微粒子(TiO2 )3を分散させたゾル(シ
リカゾル)を基材1表面にスプレーコーティング法、ロ
ールコーティング法、ディップコーティング法、スピン
コーティング法、フローコーティング法など適当な方法
で塗布し、焼成することにより容易に形成できる。一
方、図2は、上記図1のように形成された光触媒膜2の
表面にさらに銀、銅、亜鉛等の抗菌性金属又は抗菌性金
属化合物5が部分的に付着した態様を示している。抗菌
性金属又は抗菌性金属化合物5を析着させる方法として
は、前記した光触媒微粒子3の光触媒作用を利用した光
照射による金属イオン還元法を好適に用いることができ
る。
Hereinafter, various embodiments of the antibacterial operation member of the present invention will be described with reference to the accompanying drawings. 1 to 5 show an embodiment in which a photocatalyst film is coated on the surface of a base material directly or via an intermediate layer. FIG. 1 shows a photocatalyst film 2 composed of photocatalyst fine particles 3 such as TiO 2 and an inorganic binder 4 such as silica on a base material 1 of various materials such as a metal, a resin, or a coating film formed on a metal. Figure 3 shows a coated embodiment. Such a photocatalyst film 2 is formed, for example, by spray coating, roll coating, dip coating, spin coating, flow coating, or the like on a surface of a substrate 1 with a sol (silica sol) in which photocatalyst fine particles (TiO 2 ) 3 are dispersed. For example, it can be easily formed by applying and baking by an appropriate method. On the other hand, FIG. 2 shows an embodiment in which an antibacterial metal such as silver, copper, or zinc or an antibacterial metal compound 5 is further partially adhered to the surface of the photocatalytic film 2 formed as shown in FIG. As a method of depositing the antibacterial metal or the antibacterial metal compound 5, the above-described metal ion reduction method by light irradiation utilizing the photocatalysis of the photocatalytic fine particles 3 can be suitably used.

【0023】図3は、基材1の表面に、銀、銅等の抗菌
性金属又は抗菌性金属化合物5が表面に部分的に付着し
た光触媒微粒子(TiO2 )3が無機バインダー4中に
分散した状態の光触媒膜2aがコーティングされた態様
を示しており、一方、図4は、光触媒微粒子3と抗菌性
金属又は抗菌性金属化合物5の微粒子が個々に無機バイ
ンダー4中に分散した状態の光触媒膜2bがコーティン
グされた態様を示している。なお、光触媒微粒子3上に
抗菌性金属又は抗菌性金属化合物5を析着させる方法と
しては、先に詳述した光照射による金属イオン還元法を
好適に利用できるが、その他にも蒸着法、抗菌性金属成
分を含むアルキル金属化合物、有機金属錯化合物など種
々の有機金属化合物を光触媒微粒子表面に付着させた状
態で加熱分解する方法、半導体粉末と抗菌性金属又は抗
菌性金属化合物の粉末を乾式又は湿式の圧密粉砕装置、
例えば、ボールミル、エッジランナーミルなどで混合す
る方法など、種々の方法が利用可能であり、このことは
後述する無機質微粒子上に抗菌性金属又は抗菌性金属化
合物を析着させる場合についても同様である。
FIG. 3 shows that fine particles of photocatalyst (TiO 2 ) 3 having an antibacterial metal such as silver or copper or an antibacterial metal compound 5 partially adhered to the surface of a substrate 1 are dispersed in an inorganic binder 4. FIG. 4 shows an embodiment in which the photocatalyst film 2 a is coated in a state where the photocatalyst particles 3 and the microparticles of the antibacterial metal or antibacterial metal compound 5 are individually dispersed in the inorganic binder 4. The embodiment in which the film 2b is coated is shown. As a method for depositing the antibacterial metal or the antibacterial metal compound 5 on the photocatalyst fine particles 3, the metal ion reduction method by light irradiation described in detail above can be suitably used. Method of thermally decomposing various organic metal compounds such as an alkyl metal compound containing a conductive metal component, an organometallic complex compound and the like in a state of being attached to the surface of the photocatalyst fine particles, a method of drying a semiconductor powder and a powder of an antibacterial metal or an antibacterial metal compound by dry or Wet compaction crusher,
For example, various methods such as a method of mixing with a ball mill, an edge runner mill, and the like can be used, and the same applies to a case where an antibacterial metal or an antibacterial metal compound is deposited on inorganic fine particles described below. .

【0024】前記図1乃至図4に示す態様の場合、光触
媒微粒子3が基材1の表面に接触している部分が生じ
る。このような光触媒微粒子3と基材1の接触箇所が存
在しても、基材1が金属材料の場合は問題ないが、樹脂
材料の場合、又は金属材料等の素材の表面に樹脂塗膜が
形成されている場合、光触媒微粒子3の光触媒作用によ
り接触部分の樹脂材料自体が分解され、光触媒膜2,2
a,2bの密着性が悪くなり、欠けや剥離を生じ易くな
る。
In the embodiments shown in FIGS. 1 to 4, there are portions where the photocatalyst fine particles 3 are in contact with the surface of the substrate 1. Even if such a contact portion between the photocatalyst fine particles 3 and the base material 1 exists, there is no problem when the base material 1 is a metal material, but when a resin material is used or a resin coating film is formed on the surface of a material such as a metal material. When formed, the resin material itself in the contact portion is decomposed by the photocatalytic action of the photocatalyst fine particles 3, and the photocatalyst films 2 and 2 are decomposed.
The adhesiveness of a and 2b is deteriorated, and chipping and peeling are likely to occur.

【0025】そこで、特に基材1が樹脂の場合、又は素
材表面に形成された樹脂塗膜の場合、好適には図5に示
すように、光触媒膜2と基材1との間に光触媒作用を遮
断する中間層6を介在させる。これによって、光触媒微
粒子3と基材1との直接接触を完全になくし、光触媒微
粒子3の光触媒作用が基材1に及ばなくする。このよう
な中間層6としては、光触媒作用を遮断する性質の材料
であれば全て使用可能であるが、無機材料が好ましい。
特に中間層6が光触媒膜2の無機バインダー4と同一又
は同種の無機質膜の場合、光触媒膜2の密着性や接着強
度がかなり改善され、このことは金属材料の基材表面に
中間層を設ける場合についても同様である。なお、この
ような中間層は、図2乃至図4に示す態様においても設
けることができることは勿論である。また、中間層6の
膜厚を厚く、光触媒膜2の膜厚を薄くすることにより、
実質的に無機質材料層の表層部のみに光触媒微粒子3が
存在するようにすることもできる。これによって、無機
バインダーの内部に分散して光触媒作用に寄与しない光
触媒微粒子の量を減らし、コスト低減を図ることができ
る。
Therefore, in particular, when the substrate 1 is a resin or a resin coating film formed on the surface of the material, a photocatalytic action is preferably provided between the photocatalytic film 2 and the substrate 1 as shown in FIG. An intermediate layer 6 is interposed to block the air. Thereby, the direct contact between the photocatalyst fine particles 3 and the substrate 1 is completely eliminated, and the photocatalytic action of the photocatalyst fine particles 3 does not reach the substrate 1. As the intermediate layer 6, any material can be used as long as it has a property of blocking photocatalysis, but an inorganic material is preferable.
In particular, when the intermediate layer 6 is the same or the same type of inorganic film as the inorganic binder 4 of the photocatalyst film 2, the adhesion and the adhesion strength of the photocatalyst film 2 are considerably improved, which means that the intermediate layer is provided on the surface of the metal material base material. The same applies to the case. It is needless to say that such an intermediate layer can be provided also in the embodiments shown in FIGS. Also, by increasing the thickness of the intermediate layer 6 and the thickness of the photocatalytic film 2,
The photocatalyst fine particles 3 can be present substantially only in the surface layer portion of the inorganic material layer. As a result, the amount of photocatalyst fine particles which are dispersed in the inorganic binder and do not contribute to the photocatalysis can be reduced, and the cost can be reduced.

【0026】図6は、金属材料の基材1の表面に、スパ
ッタ法などにより、TiO2 等の光触媒作用を有する半
導体のみからなる光触媒膜2cがコーティングされた態
様を示している。一方、図7は、基材1の表面に中間層
6及び光触媒膜2cが順にコーティングされた態様を示
している。このような態様も、基材1が樹脂材料の場合
又は素材表面に形成された樹脂塗膜の場合に特に有利で
あり、また中間層6としては金属膜も採用できる。
FIG. 6 shows an embodiment in which a photocatalytic film 2c made of only a semiconductor having a photocatalytic action such as TiO 2 is coated on the surface of a base material 1 made of a metal material by a sputtering method or the like. On the other hand, FIG. 7 shows an embodiment in which the intermediate layer 6 and the photocatalytic film 2c are sequentially coated on the surface of the substrate 1. Such an embodiment is also particularly advantageous when the base material 1 is a resin material or a resin coating film formed on the surface of the material, and a metal film can be used as the intermediate layer 6.

【0027】図8及び図9は、基材1の表面にTiO2
等の光触媒微粒子3(図8)あるいはさらに抗菌性金属
又は抗菌性金属化合物5の微粒子(図9)が部分的に埋
設された状態で担持されている態様を示している。この
ような態様は、例えば、金型のキャビティ内に光触媒微
粒子3あるいはさらに抗菌性金属又は抗菌性金属化合物
5の微粒子を予め散布もしくは付着させておき、これに
金属材料を射出して成形することにより得ることができ
る。
FIGS. 8 and 9 show that the surface of the substrate 1 is made of TiO 2.
This shows an embodiment in which photocatalyst fine particles 3 (FIG. 8) or fine particles of antibacterial metal or antibacterial metal compound 5 (FIG. 9) are supported in a partially buried state. In such an embodiment, for example, the photocatalyst fine particles 3 or fine particles of the antibacterial metal or the antibacterial metal compound 5 are sprayed or adhered in advance in the cavity of the mold, and the metal material is injected and molded into the fine particles. Can be obtained by

【0028】図10乃至図13は、使用する光触媒微粒
子の種々の形態を示している。まず、図10は、前記図
3に示す態様の光触媒膜2aの作製に用いる光触媒微粒
子の形態を示しており、TiO2 等の光触媒微粒子3の
表面に抗菌性金属又は抗菌性金属化合物5が部分的に付
着した粒子形態を示している。この形態の場合、光触媒
微粒子3が光触媒作用を発揮できるように、すなわちそ
の表面に露出部分が存在するように、抗菌性金属又は抗
菌性金属化合物5は部分的に付着していることが必要で
あるが、使用する一部の光触媒微粒子がその表面全体に
抗菌性金属又は抗菌性金属化合物が付着している場合で
も差し支えない。そのような微粒子の場合、当初はその
表面の抗菌性金属又は抗菌性金属化合物の抗菌作用のみ
が発現するが、経時的に抗菌性金属又は抗菌性金属化合
物の欠け、剥離、溶出等により光触媒微粒子の表面が露
出すれば光触媒作用も示すようになる。
FIGS. 10 to 13 show various forms of the photocatalyst fine particles to be used. First, FIG. 10 shows the form of the photocatalyst fine particles used for producing the photocatalyst film 2a of the embodiment shown in FIG. 3, and the surface of the photocatalyst fine particles 3 such as TiO 2 is partially covered with an antibacterial metal or an antibacterial metal compound 5. 2 shows the morphology of the particles that are chemically adhered. In the case of this form, the antibacterial metal or the antibacterial metal compound 5 needs to be partially adhered so that the photocatalytic fine particles 3 can exert a photocatalytic action, that is, an exposed portion exists on the surface. However, some of the photocatalyst fine particles used may have an antibacterial metal or an antibacterial metal compound attached to the entire surface. In the case of such fine particles, initially only the antibacterial action of the antibacterial metal or antibacterial metal compound on the surface is exhibited, but the photocatalytic fine particles due to chipping, peeling, elution, etc. of the antibacterial metal or antibacterial metal compound over time. If the surface is exposed, it will also exhibit photocatalysis.

【0029】一方、図11乃至図13は、光触媒微粒子
の表面に部分的にバインダー材料を付着させ、光触媒微
粒子の基材と直接接触する部分を少なくし、基材又は無
機バインダーとの密着性を向上させる形態を示してい
る。図11は、光触媒微粒子3の表面に、無機質微粒子
(バインダー微粒子)7を部分的に付着させた形態、図
12は無機質微粒子7と共に抗菌性金属又は抗菌性金属
化合物5を部分的に付着させた形態を示し、図13は抗
菌性金属又は抗菌性金属化合物5を部分的に付着させた
無機質微粒子7を光触媒微粒子3の表面に部分的に付着
させた形態を示している。このような形態の光触媒微粒
子3は、例え図8及び図9に示すように基材1の表面に
直接担持させるように用い、光触媒微粒子3と接触して
いる基材1部分が光触媒作用により劣化しても、少なく
とも無機質微粒子7が付着している部分は基材と接触し
ていないので、その部分の劣化は防止され、少なくとも
無機質微粒子7を介して接触しているので密着性は確保
できる。従って、基材又はその表面部が樹脂材料から成
る場合でも、図11乃至図13に示す形態の光触媒微粒
子を図8及び図9に示すような態様で基材表面に直接担
持させることが可能となる。
On the other hand, FIGS. 11 to 13 show that the binder material is partially adhered to the surface of the photocatalyst fine particles to reduce the portion of the photocatalyst fine particles which are in direct contact with the base material, thereby improving the adhesion to the base material or the inorganic binder. This shows a mode of improvement. FIG. 11 shows a form in which inorganic fine particles (binder fine particles) 7 are partially adhered to the surface of photocatalytic fine particles 3, and FIG. 12 shows an antibacterial metal or antibacterial metal compound 5 partially adhered together with inorganic fine particles 7. FIG. 13 shows a form in which the inorganic fine particles 7 to which the antibacterial metal or the antibacterial metal compound 5 is partially adhered are partially adhered to the surface of the photocatalytic fine particles 3. The photocatalyst fine particles 3 in such a form are used so as to be directly supported on the surface of the base material 1 as shown in FIGS. 8 and 9, and the base material 1 in contact with the photocatalyst fine particles 3 is deteriorated by the photocatalytic action. However, since at least the portion to which the inorganic fine particles 7 are adhered does not contact the base material, deterioration of the portion is prevented, and adhesion is ensured because at least the inorganic fine particles 7 are in contact via the inorganic fine particles 7. Therefore, even when the base material or its surface portion is made of a resin material, the photocatalyst fine particles of the form shown in FIGS. 11 to 13 can be directly supported on the base material surface in the manner shown in FIGS. 8 and 9. Become.

【0030】図14及び図15は、本発明を適用する建
築用操作部材の例を示している。図14は引違い窓1
0、図15は内開き窓20を示しており、引違い窓10
の把手11及びクレセント12、内開き窓20のハンド
ル21などの操作部材に本発明を好適に適用できる。な
お、図14に示す引違い窓10の縦枠13、上枠14、
下枠15、縦框16、上框17及び下框18や、図15
に示す内開き窓20の縦枠22、上枠23、下枠24、
縦框25、上框26及び下框27にも、本発明に従っ
て、あるいは従来公知の各種方法に従って抗菌処理を施
すこともでき、それによって接触感染だけでなく、室内
空気の清浄化も図ることができる。このことは、他の建
築用操作部材及びそれが適用される建築部材についても
同様である。
FIGS. 14 and 15 show examples of building operation members to which the present invention is applied. Figure 14 shows sliding window 1
0, FIG. 15 shows the inner casement window 20 and the sliding window 10
The present invention can be suitably applied to operating members such as the handle 11 and the crescent 12 and the handle 21 of the opening window 20. In addition, the vertical frame 13, the upper frame 14, of the sliding window 10 shown in FIG.
The lower frame 15, the vertical frame 16, the upper frame 17, the lower frame 18, and FIG.
, A vertical frame 22, an upper frame 23, a lower frame 24,
The vertical frame 25, the upper frame 26, and the lower frame 27 can also be subjected to an antibacterial treatment according to the present invention or according to various conventionally known methods, whereby not only contact infection but also indoor air can be purified. it can. The same applies to other building operation members and building members to which the building operation members are applied.

【0031】[0031]

【実施例】以下、実施例及び試験例を示して本発明の効
果について具体的に説明するが、本発明が下記実施例に
限定されるものでないことはもとよりである。
EXAMPLES Hereinafter, the effects of the present invention will be specifically described with reference to examples and test examples, but it is needless to say that the present invention is not limited to the following examples.

【0032】実施例1 ポリアミド製のドアハンドルに以下の抗菌処理をそれぞ
れ行った。 抗菌処理1:アナターゼ型TiO2 を固形分比で50重
量%含有するテトラエチルシリケート溶液を用いて上記
ドアハンドル上に光触媒TiO2 を含有する薄膜を形成
した。 抗菌処理2:上記抗菌処理1後に得られた光触媒膜をコ
ーティングしたドアハンドルを、硫酸銅とエタノールの
混合水溶液(硫酸銅濃度:0.05モル/l、エタノー
ル濃度:1モル/l)に浸漬しながら紫外線を照射し、
光触媒膜上に銅を析出させた。 抗菌処理3:市販の抗菌塗料(銀系抗菌剤含有、含有量
=5重量%)を用いて上記ドアハンドル上に抗菌塗装を
施した。
Example 1 A door handle made of polyamide was subjected to the following antibacterial treatment. Antimicrobial treatment 1: A thin film containing photocatalyst TiO 2 was formed on the door handle using a tetraethyl silicate solution containing 50% by weight of anatase type TiO 2 at a solid content ratio. Antibacterial treatment 2: The door handle coated with the photocatalytic film obtained after the above antibacterial treatment 1 is immersed in a mixed aqueous solution of copper sulfate and ethanol (copper sulfate concentration: 0.05 mol / l, ethanol concentration: 1 mol / l). While irradiating with ultraviolet light,
Copper was deposited on the photocatalyst film. Antibacterial treatment 3: An antibacterial coating was applied on the door handle using a commercially available antibacterial paint (containing a silver-based antibacterial agent, content = 5% by weight).

【0033】抗菌試験1:前記抗菌処理1〜3を施した
各試料及び未処理のドアハンドル上に、それぞれ、大腸
菌を約2万個含む菌液150μlを滴下し、蛍光灯
(1,000lx)による光照射状態下又は暗状態下で
所定時間反応させた後、菌液を回収し、生存菌数を算出
した。抗菌試験2:前記抗菌処理1〜3を施した各試料
及び未処理のドアハンドルを、それぞれ、ほぼ同数の人
が出入りするドアに1カ月間設置した後回収し、上記抗
菌試験1と同様の抗菌試験を実施した。
Antibacterial test 1: 150 µl of a bacterial solution containing about 20,000 Escherichia coli was dropped on each of the samples subjected to the antibacterial treatments 1 to 3 and on an untreated door handle, respectively, and a fluorescent lamp (1,000 lx) was used. After a reaction for a predetermined time under the light irradiation condition or under the dark condition, the bacterial solution was recovered and the number of surviving bacteria was calculated. Antibacterial test 2: Each sample subjected to the above antibacterial treatments 1 to 3 and an untreated door handle were respectively installed on doors through which approximately the same number of people enter and exit for one month, and then collected. An antibacterial test was performed.

【0034】前記抗菌試験1において、光照射時の抗菌
性能の序列は、未処理<抗菌塗装<<光触媒<銅+光触
媒、暗状態の抗菌性能は、未処理=光触媒<抗菌塗装<
銅+光触媒となった。また、前記抗菌試験2において、
1カ月使用後の抗菌性能の序列は、光照射時、未処理=
抗菌塗装<<光触媒<銅+光触媒、暗状態では未処理=
抗菌塗装=光触媒<<銅+光触媒となった。これらの試
験結果から、特に光触媒を用いることにより抗菌性能及
び耐汚染性に優れた抗菌処理を施すことが可能となるこ
とが確認された。
In the antibacterial test 1, the order of the antibacterial performance upon light irradiation is as follows: untreated <antibacterial coating <<< photocatalyst <copper + photocatalyst, antibacterial performance in the dark state: untreated = photocatalyst <antibacterial coating <
It became copper + photocatalyst. In the antibacterial test 2,
The order of antimicrobial performance after one month use is as follows:
Antibacterial painting << photocatalyst <copper + photocatalyst, untreated in the dark =
Antibacterial coating = photocatalyst << copper + photocatalyst. From these test results, it was confirmed that it is possible to perform antibacterial treatment excellent in antibacterial performance and stain resistance particularly by using a photocatalyst.

【0035】[0035]

【発明の効果】以上のように、本発明の抗菌性建築用操
作部材は、表面に抗菌性を有する物質、特に光触媒作用
を有する半導体微粒子(光触媒微粒子)又は光触媒膜が
存在しているため、優れた抗菌・防黴・防汚性を示す。
特に光触媒微粒子又は光触媒膜は、光触媒作用によって
細菌やその死骸、細菌が生成あるいは内包している毒素
をも分解するので、人の手が直接触れる建築用操作部材
を介しての接触感染を効果的に防止できる。しかも、光
触媒自体は変化することがないため、基材表面が汚染さ
れることによって著しく抗菌作用が低下する従来の溶出
型抗菌剤に比べ、その自浄作用によって操作部材表面を
清浄に保ち、長期に亘って抗菌作用が持続される。ま
た、安全性、耐久性に優れ、メンテナンスフリーで高い
防汚性を示し、たとえ汚れが付着したとしても、雨によ
る自然洗浄や簡単な水洗のみで充分な清浄度を保つこと
ができる。さらに、光触媒微粒子又は光触媒膜を抗菌性
金属又は抗菌性金属化合物と複合化することにより、光
の照射がない状態でも優れた抗菌・防黴性を示し、光の
照射下では抗菌性金属又は抗菌性金属化合物の抗菌作用
と光触媒微粒子又は光触媒膜の光触媒作用の相乗効果に
よりさらに優れた抗菌性、防汚性を示す建築用操作部材
が提供される。さらにまた、光触媒膜と基材表面との間
に光触媒作用を遮断する中間層を設けるか、あるいは光
触媒微粒子に部分的にバインダー微粒子を付着させるこ
とにより、樹脂基材への光触媒作用の影響を低減するこ
とができ、光触媒微粒子や光触媒膜の密着性を改善する
ことができると共に、樹脂材料の強度、柔軟性等の機械
的性質を低下させることなく維持できる。
As described above, the antibacterial architectural operation member of the present invention has an antibacterial substance on its surface, particularly a semiconductor fine particle (photocatalytic fine particle) or a photocatalytic film having a photocatalytic action. Shows excellent antibacterial, antifungal and antifouling properties.
In particular, photocatalytic fine particles or photocatalytic films decompose bacteria, their dead bodies, and toxins produced or encapsulated by the photocatalytic action, so they are effective against contact infection through building operation members that human hands directly touch. Can be prevented. Moreover, since the photocatalyst itself does not change, the self-cleaning action keeps the surface of the operating member clean compared to conventional eluting antibacterial agents, which significantly reduce the antibacterial action due to contamination of the base material surface, and provide a long-term Antimicrobial action is maintained throughout. In addition, it has excellent safety and durability, is maintenance-free, and exhibits high antifouling properties. Even if dirt adheres, sufficient cleanliness can be maintained only by natural washing with rain or simple washing with water. Furthermore, by combining photocatalyst fine particles or a photocatalytic film with an antibacterial metal or an antibacterial metal compound, it exhibits excellent antibacterial and antifungal properties even in the absence of light irradiation, and exhibits an antibacterial metal or antibacterial property under light irradiation. By providing a synergistic effect of the antibacterial action of the reactive metal compound and the photocatalytic action of the photocatalyst fine particles or the photocatalyst film, there is provided a building operation member exhibiting even better antibacterial properties and antifouling properties. Furthermore, the effect of the photocatalytic action on the resin substrate is reduced by providing an intermediate layer between the photocatalytic film and the substrate surface to block the photocatalytic action, or by partially attaching the binder fine particles to the photocatalytic fine particles. Thus, the adhesion between the photocatalyst fine particles and the photocatalyst film can be improved, and the mechanical properties such as the strength and flexibility of the resin material can be maintained without lowering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の抗菌性建築用操作部材の基材表面にコ
ーティングした光触媒膜の一態様を示す部分概略断面図
である。
FIG. 1 is a partial schematic cross-sectional view showing one embodiment of a photocatalytic film coated on a substrate surface of an antibacterial building operation member of the present invention.

【図2】基材表面にコーティングした光触媒膜の他の態
様を示す部分概略断面図である。
FIG. 2 is a partial schematic cross-sectional view showing another embodiment of a photocatalytic film coated on a substrate surface.

【図3】基材表面にコーティングした光触媒膜の別の態
様を示す部分概略断面図である。
FIG. 3 is a partial schematic cross-sectional view showing another embodiment of a photocatalytic film coated on a substrate surface.

【図4】基材表面にコーティングした光触媒膜のさらに
別の態様を示す部分概略断面図である。
FIG. 4 is a partial schematic cross-sectional view showing still another embodiment of a photocatalyst film coated on a substrate surface.

【図5】基材表面に中間層を介してコーティングした光
触媒膜の別の態様を示す部分概略断面図である。
FIG. 5 is a partial schematic cross-sectional view showing another embodiment of a photocatalyst film having a base material surface coated with an intermediate layer interposed therebetween.

【図6】基材表面にコーティングした光触媒作用を示す
半導体のみからなる光触媒膜の一態様を示す部分概略断
面図である。
FIG. 6 is a partial schematic cross-sectional view showing one embodiment of a photocatalytic film made of only a semiconductor exhibiting a photocatalytic action coated on a substrate surface.

【図7】基材表面に中間層を介してコーティングした光
触媒作用を示す半導体のみからなる光触媒膜の他の態様
を示す部分概略断面図である。
FIG. 7 is a partial schematic cross-sectional view showing another embodiment of a photocatalytic film made of only a semiconductor showing a photocatalytic action, which is coated on a base material surface via an intermediate layer.

【図8】基材表面に光触媒微粒子を直に担持させた態様
を示す部分概略断面図である。
FIG. 8 is a partial schematic cross-sectional view showing an embodiment in which photocatalyst fine particles are directly supported on a substrate surface.

【図9】基材表面に光触媒微粒子と抗菌性金属又は抗菌
性金属化合物を直に担持させた態様を示す部分概略断面
図である。
FIG. 9 is a partial schematic cross-sectional view showing an embodiment in which photocatalyst fine particles and an antibacterial metal or an antibacterial metal compound are directly supported on a substrate surface.

【図10】表面に抗菌性金属又は抗菌性金属化合物を部
分的に付着させた光触媒微粒子の形態を示す概略斜視図
である。
FIG. 10 is a schematic perspective view showing a form of photocatalytic fine particles having a surface to which an antibacterial metal or an antibacterial metal compound is partially adhered.

【図11】表面にバインダー微粒子を部分的に付着させ
た光触媒微粒子の形態を示す概略斜視図である。
FIG. 11 is a schematic perspective view showing a form of photocatalyst fine particles having binder fine particles partially adhered to the surface.

【図12】表面に抗菌性金属又は抗菌性金属化合物とバ
インダー微粒子を部分的に付着させた光触媒微粒子の形
態を示す概略斜視図である。
FIG. 12 is a schematic perspective view showing a form of photocatalyst fine particles having a surface on which an antimicrobial metal or an antimicrobial metal compound and binder fine particles are partially adhered.

【図13】表面に抗菌性金属又は抗菌性金属化合物を部
分的に付着させたバインダー微粒子を部分的に付着させ
た光触媒微粒子の形態を示す概略斜視図である。
FIG. 13 is a schematic perspective view showing a form of photocatalyst fine particles partially adhered with binder fine particles having an antibacterial metal or an antibacterial metal compound partially adhered to the surface.

【図14】本発明を適用する把手及びクレセントを用い
た引違い窓の正面図である。
FIG. 14 is a front view of a sliding window using a handle and a crescent to which the present invention is applied.

【図15】本発明を適用するハンドルを用いた内開き窓
の正面図である。
FIG. 15 is a front view of an inward window using a handle to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 基材 2,2a,2b,2c 光触媒膜 3 光触媒微粒子(光触媒作用を有する半導体微粒子) 4 無機バインダー 5 抗菌性金属又は抗菌性金属化合物 6 中間層 7 バインダー微粒子 10 引違い窓 11 把手 12 クレセント 20 内開き窓 21 ハンドル Reference Signs List 1 base material 2, 2a, 2b, 2c photocatalytic film 3 photocatalytic fine particle (semiconductor fine particle having photocatalytic action) 4 inorganic binder 5 antibacterial metal or antibacterial metal compound 6 intermediate layer 7 binder fine particle 10 sliding window 11 handle 12 crescent 20 Casement window 21 Handle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 敏夫 宮城県黒川郡富谷町富ケ丘1−22−5− 101 (72)発明者 藤嶋 昭 神奈川県川崎市中原区中丸子710番地5 (72)発明者 橋本 和仁 神奈川県横浜市栄区飯島町2073番地2 ニ ューシティ本郷台D棟213号 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshio Arai 1-2-22-5 Tomioka, Tomiya-cho, Kurokawa-gun, Miyagi Prefecture (72) Inventor Akira Fujishima 710-5, Nakamaruko, Nakahara-ku, Kawasaki-shi, Kanagawa-ken (72) Inventor Kazuhito Hashimoto 2073-2 Iijima-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture, New City Hongodai D-213

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 建築用操作部材の表面に、抗菌性を有す
る物質を配してなることを特徴とする抗菌性建築用操作
部材。
1. An antibacterial building operation member characterized in that an antibacterial substance is disposed on the surface of the building operation member.
【請求項2】 建築用操作部材の表面を、光触媒作用を
有する半導体薄膜又は半導体微粒子を含む薄膜で被覆し
てなることを特徴とする抗菌性建築用操作部材。
2. An antibacterial building operation member, wherein the surface of the building operation member is coated with a semiconductor thin film having a photocatalytic action or a thin film containing semiconductor fine particles.
【請求項3】 建築用操作部材の表面を、光触媒作用を
遮断する中間層、及び光触媒作用を有する半導体薄膜又
は半導体微粒子を含む薄膜で順次被覆してなることを特
徴とする抗菌性建築用操作部材。
3. An antibacterial building operation, characterized in that the surface of a building operation member is sequentially coated with an intermediate layer for blocking photocatalysis and a semiconductor thin film having photocatalysis or a thin film containing semiconductor fine particles. Element.
【請求項4】 前記光触媒作用を有する半導体薄膜又は
半導体微粒子を含む薄膜上にさらに抗菌性金属又は抗菌
性金属化合物が付着していることを特徴とする請求項2
又は3に記載の抗菌性建築用操作部材。
4. An antimicrobial metal or an antimicrobial metal compound is further attached to the photocatalytic semiconductor thin film or the thin film containing semiconductor fine particles.
Or the antibacterial building operation member according to 3.
【請求項5】 前記光触媒作用を有する半導体薄膜又は
半導体微粒子を含む薄膜中にさらに抗菌性金属又は抗菌
性金属化合物が分散していることを特徴とする請求項2
乃至4のいずれか一項に記載の抗菌性建築用操作部材。
5. An antimicrobial metal or an antimicrobial metal compound is further dispersed in the semiconductor thin film having photocatalysis or the thin film containing semiconductor fine particles.
5. The antibacterial building operation member according to any one of claims 4 to 4.
【請求項6】 前記半導体微粒子を含む薄膜が、半導体
微粒子を含む無機質薄膜であることを特徴とする請求項
2乃至5のいずれか一項に記載の抗菌性建築用操作部
材。
6. The antibacterial building operation member according to claim 2, wherein the thin film containing the semiconductor fine particles is an inorganic thin film containing the semiconductor fine particles.
【請求項7】 建築用操作部材の基材表面又はその上に
施された塗膜表面に、光触媒作用を有する半導体微粒子
が担持されてなることを特徴とする抗菌性建築用操作部
材。
7. An antibacterial building operation member, characterized in that semiconductor fine particles having a photocatalytic action are carried on the surface of a base material of the building operation member or the surface of a coating film applied thereon.
【請求項8】 建築用操作部材の基材表面又はその上に
施された塗膜表面に、光触媒作用を有する半導体微粒子
と共に、抗菌性金属又は抗菌性金属化合物が担持されて
なることを特徴とする抗菌性建築用操作部材。
8. An antibacterial metal or an antibacterial metal compound is carried on a surface of a base material of a building operation member or a surface of a coating film applied thereon together with semiconductor fine particles having a photocatalytic action. Antibacterial building operation member.
【請求項9】 前記中間層又は塗膜が無機質塗膜である
ことを特徴とする請求項3乃至8のいずれか一項に記載
の抗菌性建築用操作部材。
9. The antibacterial building operation member according to claim 3, wherein the intermediate layer or the coating film is an inorganic coating film.
【請求項10】 前記半導体微粒子の表面に部分的に無
機質微粒子が付着していることを特徴とする請求項2乃
至9のいずれか一項に記載の抗菌性建築用操作部材。
10. The antibacterial building operation member according to claim 2, wherein inorganic fine particles are partially adhered to the surface of the semiconductor fine particles.
【請求項11】 前記半導体微粒子の表面及び/又は無
機質微粒子の表面に抗菌性金属又は抗菌性金属化合物が
付着していることを特徴とする請求項2乃至10のいず
れか一項に記載の抗菌性建築用操作部材。
11. The antibacterial according to claim 2, wherein an antibacterial metal or an antibacterial metal compound is attached to the surface of the semiconductor fine particles and / or the surface of the inorganic fine particles. Operation members for building construction.
JP9350181A 1997-12-05 1997-12-05 Operating member for antibacterial construction Pending JPH11166332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9350181A JPH11166332A (en) 1997-12-05 1997-12-05 Operating member for antibacterial construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9350181A JPH11166332A (en) 1997-12-05 1997-12-05 Operating member for antibacterial construction

Publications (1)

Publication Number Publication Date
JPH11166332A true JPH11166332A (en) 1999-06-22

Family

ID=18408772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9350181A Pending JPH11166332A (en) 1997-12-05 1997-12-05 Operating member for antibacterial construction

Country Status (1)

Country Link
JP (1) JPH11166332A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395264B1 (en) * 2001-05-15 2003-08-21 주식회사 엔바이오니아 Photocatalytic composition having functions of air purification and antimicrobial activity and a moth-proof net coated with the composition
JP2004195040A (en) * 2002-12-20 2004-07-15 C'bon Co Ltd Sebum adhesion inhibiting method of cosmetic tool, and cosmetic tool
JP2014522415A (en) * 2011-06-16 2014-09-04 アウトブレイカー ソリューションズ インコーポレイテッド Apparatus and method for reducing the movement of microorganisms by hand contact
CN111712611A (en) * 2017-12-22 2020-09-25 汉莎技术股份公司 Locking device for flaps on aircraft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395264B1 (en) * 2001-05-15 2003-08-21 주식회사 엔바이오니아 Photocatalytic composition having functions of air purification and antimicrobial activity and a moth-proof net coated with the composition
JP2004195040A (en) * 2002-12-20 2004-07-15 C'bon Co Ltd Sebum adhesion inhibiting method of cosmetic tool, and cosmetic tool
JP2014522415A (en) * 2011-06-16 2014-09-04 アウトブレイカー ソリューションズ インコーポレイテッド Apparatus and method for reducing the movement of microorganisms by hand contact
US9283294B2 (en) 2011-06-16 2016-03-15 Outbreaker Solutions Inc. Device and method for reducing a transfer of microorganisms by manual contact
CN111712611A (en) * 2017-12-22 2020-09-25 汉莎技术股份公司 Locking device for flaps on aircraft

Similar Documents

Publication Publication Date Title
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
US5853866A (en) Multi-functional material with photocalytic functions and method of manufacturing same
JP3309591B2 (en) Multifunctional material with photocatalytic function
JPH1045428A (en) Window glass for construction
JP4564018B2 (en) Self cleaning lighting equipment
EP0684075A1 (en) Multi-functional material having photo-catalytic function and production method therefor
WO2009074120A2 (en) Multifunctional photocatalytic and sanitary paints and the method of application thereof
JP3773087B2 (en) Photocatalytic functional member
CN100378038C (en) Multi-functional material with photocatalytic functions and method of manufacturing same
US20040149307A1 (en) Reversible self-cleaning window assemblies and methods of use thereof
JP3101537B2 (en) Antifouling building material and exterior building material unit
JPH11166332A (en) Operating member for antibacterial construction
JP3523787B2 (en) Outdoor building materials with photocatalytic layers
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
JP3311570B2 (en) Anti-fouling screen net
JP3611727B2 (en) Antibacterial fastening parts and method for producing the same
JP3210546B2 (en) Antibacterial and antifungal building materials
JPH09225303A (en) Photocatalyst composition, its manufacture, and substrate with photocatalyst composition
JPH08296060A (en) Antibacterial and mildewproof aluminum building material and fittings using the material
US11906157B2 (en) Photocatalyst formulations and coatings
US11819824B2 (en) Surface coatings for self-decontamination
JP2003306992A (en) Antifouling panel building material
JP2001064625A (en) Low-staining sealing material for building
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614