WO2022158723A1 - Antifouling surface treatment method, and antifouling surface treatment structure obtained thereby - Google Patents

Antifouling surface treatment method, and antifouling surface treatment structure obtained thereby Download PDF

Info

Publication number
WO2022158723A1
WO2022158723A1 PCT/KR2021/019097 KR2021019097W WO2022158723A1 WO 2022158723 A1 WO2022158723 A1 WO 2022158723A1 KR 2021019097 W KR2021019097 W KR 2021019097W WO 2022158723 A1 WO2022158723 A1 WO 2022158723A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
water
base material
metal base
antifouling surface
Prior art date
Application number
PCT/KR2021/019097
Other languages
French (fr)
Korean (ko)
Inventor
홍상현
이서진
황덕현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2022158723A1 publication Critical patent/WO2022158723A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths

Definitions

  • the present invention relates to an antifouling surface treatment method and an antifouling surface treatment structure thereof.
  • a heat exchanger used in an air conditioner is a device that exchanges heat between two fluids having different temperatures and humidity.
  • Such a heat exchanger has a stacked structure of heat exchange elements, and has a structure in which two fluids having different temperatures and humidity are passed alternately to perform sensible heat exchange by temperature difference and latent heat exchange by exchange of moisture.
  • the heat exchange is performed by conduction in the heat exchange element and convection between the fluid adjacent to the heat exchange element, and copper heat exchangers using copper as the heat exchange element accounted for most.
  • condensed water generated during cooling becomes water droplets and remains between the aluminum fins to contaminate the surface of the aluminum fins. Contamination of such aluminum fins not only reduces heat exchange efficiency, but also promotes the growth of bacteria and mold, causing odors such as odors.
  • Patent Document 1 KR Patent Publication No. 10-2003-0097421 (published on March 31, 2003)
  • An object of the present invention is to provide an antifouling surface treatment method and an antifouling surface treatment structure capable of exhibiting excellent water repellency properties by filling water-repellent nanoparticles in a cup-shaped receiving groove.
  • an object of the present invention is to reduce the thermal efficiency by surface contamination of the aluminum fins due to condensate water by surface-treating the aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source heat pumps (AWHP) to have water repellency properties.
  • heat exchangers such as air conditioners, dryers, and air heat source heat pumps (AWHP) to have water repellency properties.
  • AWHP air heat source heat pumps
  • an object of the present invention is a surface treatment that can be used semi-permanently by forming a receiving groove of a cup-shaped nanostructure with a low aspect ratio on the surface, and filling the water-repellent nanoparticles having water-repellent properties in the cup-shaped receiving groove
  • An antifouling surface treatment method having a structure and an antifouling surface treatment structure thereof are provided.
  • the antifouling surface treatment method and the antifouling surface treatment structure thereof according to the present invention form a receiving groove of a cup-shaped nanostructure with a low aspect ratio on the surface, and fill the water-repellent nanoparticles having water repellency into the cup-shaped receiving groove. Excellent water-repellent properties can be exhibited.
  • the antifouling surface treatment method and the antifouling surface treatment structure thereof according to the present invention are surface treated to have water repellency properties on aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP). It is possible to prevent problems such as lowering of thermal efficiency due to surface contamination of aluminum fins or the generation of odors due to the growth of bacteria and mold.
  • heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP).
  • the antifouling surface treatment method and the antifouling surface treatment structure thereof according to the present invention expand the adhesion area with the aluminum fin of the heat exchanger by completely filling the cup-shaped receiving groove with water-repellent nanoparticles having water-repellent properties.
  • it has a structural advantage that can fundamentally block the separation or drop-off of the water-repellent nanoparticles because the structure is perfectly filled in the receiving groove.
  • the antifouling surface treatment structure includes a metal base material; a metal oxide layer covering the surface of the metal base material; a plurality of accommodating grooves passing through a portion of the metal oxide layer and the metal base material, some of which are disposed inside the metal base material; and a plurality of water-repellent nanoparticles filled in the plurality of receiving grooves.
  • the water-repellent nanoparticles may include at least one selected from silica having a fluorine functional group, a magnetic material having a fluorine functional group, and a polymer resin having a fluorine functional group.
  • the thermal efficiency is reduced or It is possible to prevent problems such as odor generation due to the growth of bacteria and mold.
  • a surface treatment that can be used semi-permanently by forming a receiving groove of a cup-shaped nanostructure with a low aspect ratio on the surface, and filling water-repellent nanoparticles having water repellency in the cup-shaped receiving groove structure can be implemented.
  • the present invention by completely filling the inside of the cup-shaped receiving groove with water-repellent nanoparticles having water-repellent properties, it is possible not only to expand the adhesion area with the aluminum fin of the heat exchanger, but also to completely fill it in the receiving groove. Since it is a tightly filled structure, it has a structural advantage that can fundamentally block the escape or drop-off of water-repellent nanoparticles.
  • FIG. 1 is a perspective view showing an antifouling surface treatment structure according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an antifouling surface treatment structure according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining the principle of improving the contact angle of the antifouling surface treatment structure according to an embodiment of the present invention.
  • 4 to 8 are cross-sectional views showing the antifouling surface treatment method according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing an antifouling surface treatment structure according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing an antifouling surface treatment structure according to an embodiment of the present invention.
  • the antifouling surface treatment structure 100 includes a metal base material 120, a metal oxide layer 140, a plurality of receiving grooves (H), and a plurality of water-repellent nanoparticles ( 160).
  • the metal base material 120 may have a plate shape having one surface and the other surface opposite to the one surface, but this is exemplary and the shape may be variously changed. More specifically, the metal base material 120 is preferably an aluminum fin of a heat exchanger such as an air conditioner, a dryer, or an air heat source type heat pump (AWHP). To this end, the metal base material 120 may be formed of aluminum or an aluminum alloy material, but this is exemplary and there is no restriction on use as long as it is a metal or alloy material having excellent heat dissipation efficiency.
  • AWHP air heat source type heat pump
  • the metal oxide layer 140 covers the surface of the metal base material 120 .
  • the metal oxide layer 140 is formed by an oxidation reaction with the metal base material 120 during anodization.
  • the metal oxide layer 140 may be formed of aluminum oxide.
  • the plurality of receiving grooves (H) penetrate a portion of the metal oxide layer 140 and the metal base material 120 , and are partially disposed inside the metal base material 120 .
  • the accommodating groove H has a partial thickness removed from the other surface of the metal oxide layer 140 and the metal base material 120 in the direction of one surface.
  • This receiving groove (H) has a cup (cup) shape. More specifically, the plurality of receiving grooves H may have a honeycomb structure in which a cup-shaped cross-sectional structure is arranged in a grid arrangement structure.
  • the receiving groove (H) preferably has a length ratio of diameter and height of 1: 3 to 3: 1.
  • the length ratio of the diameter and height of the receiving groove (H) is out of the range of 1: 3 to 3: 1, a plurality of water-repellent nanoparticles (160) filled in the receiving groove (H) due to excessively large diameter or height ) can act as a factor to increase the amount of use, so it is not economical.
  • the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H).
  • the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H) to implement a water-repellent surface, thereby blocking contact with condensed water itself.
  • the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H) since it is possible to delay in the form of blocking contact with the condensed water itself, so ice or condensed water also rapidly falls off the water-repellent surface. can
  • FIG. 3 is a schematic diagram for explaining the principle of improving the contact angle of the antifouling surface treatment structure according to an embodiment of the present invention, which will be described in conjunction with FIG. 2 .
  • the contact angle with respect to water droplets is 90° or less, making it difficult to realize super water-repellent properties.
  • the contact angle with respect to the water droplets is 120° or more.
  • water-repellent nanoparticles 160 When using these water-repellent nanoparticles 160, it is possible to exhibit super-water repellency having a contact angle of 120° or more, so that it is possible not only to prevent contaminants such as condensed water from adhering to the surface of the metal base material 120 in advance, but also , it is possible to secure excellent cleaning properties.
  • the water-repellent nanoparticles 160 preferably include at least one selected from silica having a fluorine functional group, a magnetic material having a fluorine functional group, and a polymer resin having a fluorine functional group.
  • silica having a fluorine functional group a magnetic material having a fluorine functional group
  • polymer resin having a fluorine functional group a polymer resin having a fluorine functional group.
  • the water-repellent nanoparticles 160 may be prepared by synthesizing a compound having a fluorine functional group to the silicon compound.
  • the water-repellent nanoparticles 160 may be prepared by coating a compound having a fluorine functional group on the surface of any one or more of silica, a magnetic material, and a polymer resin.
  • silica having a fluorine functional group may be formed by partially adding a compound having a fluorine functional group to the silicone compound by a sol-gel synthesis method.
  • the compound having a fluorine functional group may be selected from perfluoropolyether (PFPE) silane represented by Formula 1, perfluorocyclopentene (PFPC) silane represented by Formula 2, and the like.
  • PFPE perfluoropolyether
  • PFPC perfluorocyclopentene
  • the conventional hydrophilic coating aims to make the condensed water flow down quickly, whereas the present invention has a water-repellent surface structure in which the water-repellent nanoparticles 160 are filled in the receiving groove (H), so contact with the condensed water Since it has a shape that blocks itself, the water-repellent surface is more efficient in removing condensed water than the hydrophilic coating.
  • the conventional hydrophilic coating can be developed in the form of preventing heat exchange by freezing condensed water on the surface of the heat exchanger, whereas in the present invention, the water-repellent nanoparticles 160 filled in the receiving groove (H) block the contact of the condensed water itself. Since it is possible to delay in the form of a water repellent, ice or condensed water may also exhibit a characteristic of rapidly falling off the water-repellent surface.
  • a cup-shaped receiving groove (H) is disposed inside the metal base material 120 , and the water-repellent nanoparticles 160 are disposed in the receiving groove (H). Since stable filling is made in a buried form, there is no fear of peeling or dropping from the surface, and thus high durability can be exhibited.
  • a plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H), and the metal base material 120 except for the plurality of receiving grooves (H). ) may be treated with a hydrophilic surface on the exposed surface.
  • the exposed surface of the metal base material 120 is subjected to hydrophilic surface treatment by adjusting the size of the surface condensate. It may become possible to collect condensate only downwards. Due to this, there is no concern that small condensed water that does not adhere to the surface of the plurality of water-repellent nanoparticles 160 is sprayed in all directions.
  • the antifouling surface treatment structure 100 can rapidly and easily remove condensed water by simultaneously applying hydrophilic and water-repellent surface treatment in a grid structure, while preventing contaminants from sticking in advance. be able to
  • the antifouling surface treatment structure according to the embodiment of the present invention exhibits excellent water repellency properties by filling the water repellent nanoparticles in the cup-shaped receiving groove.
  • the antifouling surface treatment structure according to the embodiment of the present invention is surface-treated to have water-repellent properties on aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP). It is possible to prevent problems such as reducing the thermal efficiency due to surface contamination of the surface or odor generation due to the growth of bacteria and mold.
  • heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP).
  • the antifouling surface treatment structure in order to quickly remove the condensed water from the surface of the heat exchanger, it is not a hydrophilic coating that is thinly present on the surface of the condensed water, but a water repellent that blocks the contact of the condensed water and removes the condensed water more quickly Controlled to have a surface.
  • the antifouling surface treatment structure forms a cup-shaped nano-structure receiving groove with a low aspect ratio on the surface through anodization, and water-repellent nanoparticles having water-repellent properties are placed in the cup-shaped receiving groove. It has a surface treatment structure that can be used semi-permanently by filling.
  • the antifouling surface treatment structure according to the embodiment of the present invention can expand the adhesion area with the aluminum fin of the heat exchanger by completely filling the water-repellent nanoparticles having water-repellent properties into the cup-shaped accommodation groove.
  • the structure since the structure is completely filled in the receiving groove, it has a structural advantage that can fundamentally block the separation or drop-off of the water-repellent nanoparticles.
  • the antifouling surface treatment structure according to the embodiment of the present invention can rapidly and easily remove condensed water by simultaneously applying hydrophilic and water-repellent surface treatment in a grid structure, while preventing contaminants from sticking in advance.
  • 4 to 8 are cross-sectional views showing the antifouling surface treatment method according to an embodiment of the present invention.
  • a metal base material 120 is prepared.
  • the metal base material 120 may have a plate shape having one surface and the other surface opposite to one surface, but this is exemplary and the shape may be variously changed.
  • the metal base material 120 is preferably an aluminum fin of a heat exchanger such as an air conditioner, a dryer, or an air heat source type heat pump (AWHP).
  • AWHP air heat source type heat pump
  • the metal base material 120 may be formed of aluminum or an aluminum alloy material, but this is exemplary and there is no restriction on use as long as it is a metal or alloy material having excellent heat dissipation efficiency.
  • the metal base material 120 is subjected to primary anodization to form a plurality of notched grooves (N).
  • the plurality of notch grooves N may be formed at intervals of 150 to 200 nm, but is not limited thereto.
  • At least one electrolyte solution selected from oxalic acid, acetic acid, phosphoric acid, chromic acid, sulfuric acid and hydrochloric acid for the first anodization treatment.
  • the anode is hung in the oxidation treatment tank containing the electrolyte using the metal base material 120 to be anodized as a working electrode, and then the cathode is made using a platinum (Pt) or carbon electrode as a counter electrode. is oxidized in such a way that
  • the primary anodization treatment may be performed at a temperature of -5 to 10° C. using 0.1 to 0.5 M oxalic acid as an electrolyte.
  • the metal base material 120 having the plurality of notched grooves N formed thereon is subjected to secondary anodization to cover the surfaces of the plurality of notched grooves N and the metal base material 120 , A metal oxide layer 140 having a plurality of seed grooves C disposed at positions corresponding to the notch grooves N is formed.
  • the secondary anodization treatment it is preferable to use at least one electrolyte solution selected from among oxalic acid, acetic acid, phosphoric acid, chromic acid, sulfuric acid and hydrochloric acid, similarly to the primary anodization treatment.
  • the secondary anodization treatment may be performed at a temperature of -5 to 10° C. using a mixed solution of phosphoric acid and chromic acid as an electrolyte.
  • the secondary anodizing treatment it is preferable to apply a DC voltage of 40 to 45V for 2 to 5 hours.
  • the metal oxide layer 140 may be formed of aluminum oxide by the secondary anodization treatment.
  • the metal base material 120 on which the metal oxide layer 140 is formed is subjected to a tertiary anodization process to form a metal oxide layer 140 and a metal base material 120 through a plurality of seed grooves (C in FIG. 6 ). ) to form a plurality of accommodating grooves H for expanding the plurality of seed grooves.
  • At least one electrolyte solution selected from among oxalic acid, acetic acid, phosphoric acid, chromic acid, sulfuric acid and hydrochloric acid, similarly to the secondary anodization treatment.
  • the tertiary anodization treatment may be performed at a temperature of -5 to 10° C. using a mixed solution of phosphoric acid and chromic acid as an electrolyte.
  • the third anodization treatment is performed within a fast time of 10 to 30 sec, thereby precisely controlling the diameter and height of the receiving groove (H).
  • the receiving groove (H) is formed by removing a portion of the thickness in the direction of one surface from the other surface of the metal oxide layer 140 and the metal base material 120 .
  • This receiving groove (H) has a cup shape. More specifically, the plurality of receiving grooves H may have a honeycomb structure in which a cup-shaped cross-sectional structure is arranged in a grid arrangement structure.
  • the receiving groove (H) preferably has a length ratio of diameter and height of 1: 3 to 3: 1.
  • the length ratio of the diameter and height of the receiving groove (H) is out of the range of 1: 3 to 3: 1, a plurality of water-repellent nanoparticles (160) filled in the receiving groove (H) due to excessively large diameter or height ) can act as a factor to increase the amount of use, so it is not economical.
  • the water-repellent nanoparticle dispersion is coated in the plurality of receiving grooves (H) of the metal base material 120 and dried to fill the plurality of water-repellent nanoparticles 160 .
  • the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H) to implement a water-repellent surface, thereby blocking contact with condensed water itself.
  • the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H) since the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H), it is possible to delay in the form of blocking contact with the condensed water itself, so ice or condensed water also quickly falls off the water-repellent surface. can
  • these water-repellent nanoparticles 160 When these water-repellent nanoparticles 160 are filled in the receiving groove (H), it can exhibit super-water repellency having a contact angle of 120° or more, so that the adhesion of contaminants such as condensed water to the surface of the metal base material 120 is delayed. Not only can it be prevented, but also excellent cleaning properties can be ensured.
  • the water-repellent nanoparticles 160 preferably include at least one selected from silica having a fluorine functional group, a magnetic material having a fluorine functional group, and a polymer resin having a fluorine functional group.
  • silica having a fluorine functional group a magnetic material having a fluorine functional group
  • polymer resin having a fluorine functional group a polymer resin having a fluorine functional group.
  • the water-repellent nanoparticles 160 may be prepared by synthesizing a compound having a fluorine functional group to the silicon compound.
  • the water-repellent nanoparticles 160 may be prepared by coating a compound having a fluorine functional group on the surface of any one or more of silica, a magnetic material, and a polymer resin.
  • silica having a fluorine functional group may be formed by partially adding a compound having a fluorine functional group to the silicone compound by a sol-gel synthesis method.
  • the compound having a fluorine functional group may be selected from perfluoropolyether (PFPE) silane represented by Formula 1, perfluorocyclopentene (PFPC) silane represented by Formula 2, and the like.
  • PFPE perfluoropolyether
  • PFPC perfluorocyclopentene
  • the antifouling surface treatment method according to the embodiment of the present invention exhibits excellent water repellency properties by filling water repellent nanoparticles in the cup-shaped receiving groove.
  • the aluminum fins caused by condensed water are surface treated to have water repellency properties on the aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP). It is possible to prevent problems such as reducing the thermal efficiency due to surface contamination of the surface or odor generation due to the growth of bacteria and mold.
  • heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP).
  • the antifouling surface treatment method in order to quickly remove condensed water from the surface of the heat exchanger, it is not a hydrophilic coating that exists thinly on the surface of the condensate, but prevents the contact of condensate and removes condensed water more quickly. It can be controlled to have a surface.
  • the antifouling surface treatment method forms a receiving groove of a cup-shaped nanostructure with a low aspect ratio on the surface through anodization, and inserts water-repellent nanoparticles having water repellency into the cup-shaped receiving groove. It becomes possible to use semi-permanently by filling.
  • the antifouling surface treatment method according to the embodiment of the present invention can expand the adhesion area with the aluminum fin of the heat exchanger by completely filling the water-repellent nanoparticles having water-repellent properties into the cup-shaped accommodation groove.
  • the structure since the structure is completely filled in the receiving groove, it is possible to fundamentally block the separation or drop-off of the water-repellent nanoparticles.
  • An aluminum metal plate was placed in an oxalic acid solution, and a plurality of notch grooves were formed by primary anodization treatment at 40V DC voltage for 4 hours.
  • an aluminum metal plate having a plurality of notched grooves is placed in a 5wt% phosphoric acid and 5wt% chromic acid solution and subjected to secondary anodization treatment at 40V DC voltage for 4 hours, a plurality of seeds disposed at positions corresponding to the plurality of notched grooves An aluminum oxide layer having grooves was formed.
  • the aluminum metal plate having the aluminum oxide layer formed thereon was subjected to a third anodization treatment at a voltage of 45V DC for 25 sec to form a plurality of receiving grooves for expanding the plurality of seed grooves.
  • a silica dispersion having a fluorine functional group was coated in a plurality of receiving grooves of the aluminum metal plate and dried to fill the silica having a fluorine functional group.
  • the silica dispersion having a fluorine functional group is mixed with 300 mL of 28 wt% ammonia water as a catalyst in 5 L of ethanol and stirred at a speed of 400 rpm, followed by 95 parts by weight of TEOS (Tetraethyl orthosilicate) and 5 parts by weight of PFPE (perfluoropolyether) silane. After adding 150 mL of a mixed solution at a rate of 10 mL/min, the mixture was reacted for 12 hours at room temperature (15° C.) and synthesized was used.
  • TEOS Tetraethyl orthosilicate
  • PFPE perfluoropolyether
  • an aluminum metal plate having a plurality of receiving grooves is immersed in the synthesized silica dispersion having a fluorine functional group, taken out at a speed of 10 cm/min in a direction perpendicular to the water-repellent nanoparticle dispersion, dried at 80° C. for 12 hours, and then in water 3 times. Residual particles were removed by washing.
  • An antifouling surface treatment structure was prepared in the same manner as in Example 1, except that the third anodization treatment was performed for 30 sec at 40V DC voltage.
  • An antifouling surface treatment structure was prepared in the same manner as in Example 1, except that a silica dispersion without a fluorine functional group was coated and dried to attach a plurality of nanoparticles.
  • Table 1 shows the results of evaluation of physical properties for the samples according to Examples 1 to 2 and Comparative Example 1.
  • the contact angle with respect to distilled water was measured 1 minute later using a contact angle meter.
  • the left and right contact angles of water droplets were measured 5 times with the same sample, and the average value was used.
  • more than 100 times
  • more than 50 times to less than 100 times
  • X less than 50 times

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • External Artificial Organs (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Disclosed are: an antifouling surface treatment method of forming, on a surface, cup-shaped nanostructured accommodation grooves having a small aspect ratio, and filling the cup-shaped accommodation grooves with water-repellent nanoparticles, which are water-repellent, so as to have a semi-permanently usable surface treatment structure; and an antifouling surface treatment structure obtained thereby.

Description

방오 표면처리 방법 및 이의 방오 표면처리 구조체Antifouling surface treatment method and antifouling surface treatment structure thereof
본 발명은 방오 표면처리 방법 및 이의 방오 표면처리 구조체에 관한 것이다.The present invention relates to an antifouling surface treatment method and an antifouling surface treatment structure thereof.
에어컨 등에 사용되는 열교환기는 온도와 습도가 각각 다른 두 유체 사이에서 열을 교환하는 장치이다. 이러한 열교환기는 열교환 소자의 적층구조로 이루어지며, 온도와 습도가 다른 두 유체를 엇갈리게 통과시켜서 온도차에 의한 현열 교환과 습기의 교환에 의한 잠열 교환을 수행하는 구조로 이루어져 있다.A heat exchanger used in an air conditioner is a device that exchanges heat between two fluids having different temperatures and humidity. Such a heat exchanger has a stacked structure of heat exchange elements, and has a structure in which two fluids having different temperatures and humidity are passed alternately to perform sensible heat exchange by temperature difference and latent heat exchange by exchange of moisture.
열교환은 열교환 소자 내의 전도 및 열교환 소자에 인접한 유체 사이의 대류에 의해 이루어지며, 구리를 열교환 소자로 이용하는 구리 열교환기가 대부분을 차지하였다.The heat exchange is performed by conduction in the heat exchange element and convection between the fluid adjacent to the heat exchange element, and copper heat exchangers using copper as the heat exchange element accounted for most.
그러나, 최근에는 경량, 수급의 용이함, 구리 열교환기에 상응하는 열교환 성능 등의 장점으로 알루미늄 열교환기의 수요가 급증하고 있다. 알루미늄 열교환기가 냉각에 사용될 경우, 공기 중에 포함된 수분이 열 교환기의 알루미늄 핀의 표면에서 응축되어 작은 물방울을 형성하고, 이러한 물방울은 열교환기의 공기 저항성을 증가시켜 대류에 의한 열전달 계수를 낮춤으로써 열교환 효율을 급격히 저하시킨다.However, in recent years, the demand for aluminum heat exchangers is rapidly increasing due to advantages such as light weight, ease of supply and demand, and heat exchange performance corresponding to copper heat exchangers. When an aluminum heat exchanger is used for cooling, the moisture contained in the air condenses on the surface of the aluminum fin of the heat exchanger to form small water droplets, which increase the air resistance of the heat exchanger and lower the heat transfer coefficient by convection. sharply decreases the efficiency.
또한, 냉방시에 발생하는 응축수가 물방울이 되어 알루미늄 핀 사이에 잔류하여 알루미늄 핀의 표면을 오염시킨다. 이러한 알루미늄 핀의 오염은 열교환 효율을 감소시킬 뿐만 아니라, 박테리아와 곰팡이의 번식을 촉진시켜 악취 등의 냄새를 유발하는 원인이 된다.In addition, condensed water generated during cooling becomes water droplets and remains between the aluminum fins to contaminate the surface of the aluminum fins. Contamination of such aluminum fins not only reduces heat exchange efficiency, but also promotes the growth of bacteria and mold, causing odors such as odors.
이를 해결하기 위해, 종래에는 에어컨 등에 사용되는 열교환기의 알루미늄 핀에 친수코팅 처리를 실시하여 열교환 효율을 높이려는 시도가 있었으나, 친수코팅은 물에 지속적으로 노출되어 대략 1 ~ 3년의 비교적 짧은 수명을 가지는 문제가 있었다.In order to solve this problem, conventionally, attempts have been made to increase heat exchange efficiency by performing hydrophilic coating treatment on aluminum fins of heat exchangers used in air conditioners, etc., but the hydrophilic coating is continuously exposed to water and has a relatively short lifespan of approximately 1 to 3 years. There was a problem with having .
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) KR 공개특허공보 제10-2003-0097421호(2003.12.31. 공개)(Patent Document 1) KR Patent Publication No. 10-2003-0097421 (published on March 31, 2003)
본 발명의 목적은 발수 나노입자를 컵 형태의 수용 홈 내에 충진하는 것에 의해 우수한 발수 특성을 발휘할 수 있는 방오 표면처리 방법 및 이의 방오 표면처리 구조체를 제공하는 것이다.An object of the present invention is to provide an antifouling surface treatment method and an antifouling surface treatment structure capable of exhibiting excellent water repellency properties by filling water-repellent nanoparticles in a cup-shaped receiving groove.
아울러, 본 발명의 목적은 에어컨, 건조기, 공기열원식 히트펌프(AWHP) 등의 열교환기의 알루미늄 핀에 발수 특성을 갖도록 표면 처리하는 것에 의해, 응축수로 인한 알루미늄 핀의 표면 오염에 의해 열효율을 떨어뜨리거나 세균 및 곰팡이의 번식으로 인해 냄새 발생 등의 문제를 미연에 방지할 수 있는 방오 표면처리 방법 및 이의 방오 표면처리 구조체를 제공하는 것이다.In addition, an object of the present invention is to reduce the thermal efficiency by surface contamination of the aluminum fins due to condensate water by surface-treating the aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source heat pumps (AWHP) to have water repellency properties. To provide an antifouling surface treatment method and an antifouling surface treatment structure capable of preventing problems such as odor generation in advance due to the growth of bacteria and mold.
또한, 본 발명의 목적은 종횡비가 낮은 컵 모양의 나노구조의 수용 홈을 표면에 형성시키고, 발수 특성을 가지는 발수 나노입자를 컵 모양의 수용 홈 내에 충진하는 것에 의해 반영구적으로 사용하는 것이 가능한 표면처리 구조를 갖는 방오 표면처리 방법 및 이의 방오 표면처리 구조체를 제공하는 것이다.In addition, an object of the present invention is a surface treatment that can be used semi-permanently by forming a receiving groove of a cup-shaped nanostructure with a low aspect ratio on the surface, and filling the water-repellent nanoparticles having water-repellent properties in the cup-shaped receiving groove An antifouling surface treatment method having a structure and an antifouling surface treatment structure thereof are provided.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned may be understood by the following description, and will be more clearly understood by the examples of the present invention. It will also be readily apparent that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the appended claims.
본 발명에 따른 방오 표면처리 방법 및 이의 방오 표면처리 구조체는 종횡비가 낮은 컵 모양의 나노구조의 수용 홈을 표면에 형성시키고, 발수 특성을 가지는 발수 나노입자를 컵 모양의 수용 홈 내에 충진하는 것에 의해 우수한 발수 특성을 발휘할 수 있다.The antifouling surface treatment method and the antifouling surface treatment structure thereof according to the present invention form a receiving groove of a cup-shaped nanostructure with a low aspect ratio on the surface, and fill the water-repellent nanoparticles having water repellency into the cup-shaped receiving groove. Excellent water-repellent properties can be exhibited.
이 결과, 본 발명에 따른 방오 표면처리 방법 및 이의 방오 표면처리 구조체는 에어컨, 건조기, 공기열원식 히트펌프(AWHP) 등의 열교환기의 알루미늄 핀에 발수 특성을 갖도록 표면 처리하는 것에 의해, 응축수로 인한 알루미늄 핀의 표면 오염에 의해 열효율을 떨어뜨리거나 세균 및 곰팡이의 번식으로 인해 냄새 발생 등의 문제를 미연에 방지할 수 있다.As a result, the antifouling surface treatment method and the antifouling surface treatment structure thereof according to the present invention are surface treated to have water repellency properties on aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP). It is possible to prevent problems such as lowering of thermal efficiency due to surface contamination of aluminum fins or the generation of odors due to the growth of bacteria and mold.
또한, 본 발명에 따른 방오 표면처리 방법 및 이의 방오 표면처리 구조체는 발수 특성을 갖는 발수 나노입자를 컵 형태의 수용 홈의 내부에 완벽히 넣어 충진하는 것에 의해 열교환기의 알루미늄 핀과의 접착 면적을 확장시킬 수 있을 뿐만 아니라, 수용 홈 내에 완벽하게 충진된 구조이므로 발수 나노입자의 이탈이나 탈락을 원천적으로 차단할 수 있는 구조적인 이점을 갖는다.In addition, the antifouling surface treatment method and the antifouling surface treatment structure thereof according to the present invention expand the adhesion area with the aluminum fin of the heat exchanger by completely filling the cup-shaped receiving groove with water-repellent nanoparticles having water-repellent properties. In addition to being able to do it, it has a structural advantage that can fundamentally block the separation or drop-off of the water-repellent nanoparticles because the structure is perfectly filled in the receiving groove.
이를 위해, 본 발명에 따른 방오 표면처리 구조체는 금속 모재; 상기 금속 모재의 표면을 덮는 금속 산화층; 상기 금속 산화층 및 금속 모재의 일부를 관통하여, 상기 금속 모재의 내부에 일부가 배치되는 복수의 수용 홈; 및 상기 복수의 수용 홈 내에 충진된 복수의 발수 나노입자;를 포함한다.To this end, the antifouling surface treatment structure according to the present invention includes a metal base material; a metal oxide layer covering the surface of the metal base material; a plurality of accommodating grooves passing through a portion of the metal oxide layer and the metal base material, some of which are disposed inside the metal base material; and a plurality of water-repellent nanoparticles filled in the plurality of receiving grooves.
아울러, 상기 발수 나노입자는 불소 기능기를 갖는 실리카, 불소 기능기를 갖는 자성체 및 불소 기능기를 갖는 고분자 수지 중 선택된 1종 이상을 포함할 수 있다.In addition, the water-repellent nanoparticles may include at least one selected from silica having a fluorine functional group, a magnetic material having a fluorine functional group, and a polymer resin having a fluorine functional group.
본 발명에 따르면, 에어컨, 건조기, 공기열원식 히트펌프(AWHP) 등의 열교환기의 알루미늄 핀에 발수 특성을 갖도록 표면 처리하는 것에 의해, 응축수로 인한 알루미늄 핀의 표면 오염에 의해 열효율을 떨어뜨리거나 세균 및 곰팡이의 번식으로 인해 냄새 발생 등의 문제를 미연에 방지할 수 있게 된다.According to the present invention, by surface-treating aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP) to have water repellent properties, the thermal efficiency is reduced or It is possible to prevent problems such as odor generation due to the growth of bacteria and mold.
또한, 본 발명에 따르면, 종횡비가 낮은 컵 모양의 나노구조의 수용 홈을 표면에 형성시키고, 발수 특성을 가지는 발수 나노입자를 컵 모양의 수용 홈 내에 충진하는 것에 의해 반영구적으로 사용하는 것이 가능한 표면처리 구조를 구현할 수 있다.In addition, according to the present invention, a surface treatment that can be used semi-permanently by forming a receiving groove of a cup-shaped nanostructure with a low aspect ratio on the surface, and filling water-repellent nanoparticles having water repellency in the cup-shaped receiving groove structure can be implemented.
또한, 본 발명에 따르면, 발수 특성을 갖는 발수 나노입자를 컵 형태의 수용 홈의 내부에 완벽히 넣어 충진하는 것에 의해 열교환기의 알루미늄 핀과의 접착 면적을 확장시킬 수 있을 뿐만 아니라, 수용 홈 내에 완벽하게 충진된 구조이므로 발수 나노입자의 이탈이나 탈락을 원천적으로 차단할 수 있는 구조적인 이점을 갖는다.In addition, according to the present invention, by completely filling the inside of the cup-shaped receiving groove with water-repellent nanoparticles having water-repellent properties, it is possible not only to expand the adhesion area with the aluminum fin of the heat exchanger, but also to completely fill it in the receiving groove. Since it is a tightly filled structure, it has a structural advantage that can fundamentally block the escape or drop-off of water-repellent nanoparticles.
아울러, 본 발명에 따르면, 격자구조로 친수 및 발수 표면 처리를 동시에 적용하는 것에 의해, 응축수를 신속하면서도 용이하게 제거할 수 있으면서 오염 물질이 달라붙는 것을 미연에 방지할 수 있게 된다.In addition, according to the present invention, by simultaneously applying the hydrophilic and water-repellent surface treatment in a lattice structure, it is possible to quickly and easily remove condensed water while preventing contaminants from adhering in advance.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, the specific effects of the present invention will be described together while describing specific details for carrying out the invention below.
도 1은 본 발명의 실시예에 따른 방오 표면처리 구조체를 나타낸 사시도.1 is a perspective view showing an antifouling surface treatment structure according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 방오 표면처리 구조체를 나타낸 단면도.2 is a cross-sectional view showing an antifouling surface treatment structure according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 방오 표면처리 구조체의 접촉각 향상 원리를 설명하기 위한 모식도.3 is a schematic diagram for explaining the principle of improving the contact angle of the antifouling surface treatment structure according to an embodiment of the present invention.
도 4 내지 도 8은 본 발명의 실시예에 따른 방오 표면처리 방법을 나타낸 공정 단면도.4 to 8 are cross-sectional views showing the antifouling surface treatment method according to an embodiment of the present invention.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features and advantages will be described below in detail with reference to the accompanying drawings, and accordingly, those skilled in the art to which the present invention pertains will be able to easily implement the technical idea of the present invention. In describing the present invention, if it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to refer to the same or similar components.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.As used herein, the singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as "consisting of" or "comprising" should not be construed as necessarily including all of the various components or various steps described in the specification, some of which components or some steps are It should be construed that it may not include, or may further include additional components or steps.
이하에서는, 본 발명의 몇몇 실시예에 따른 방오 표면처리 방법 및 이의 방오 표면처리 구조체를 설명하도록 한다.Hereinafter, an antifouling surface treatment method and an antifouling surface treatment structure according to some embodiments of the present invention will be described.
도 1은 본 발명의 실시예에 따른 방오 표면처리 구조체를 나타낸 사시도이고, 도 2는 본 발명의 실시예에 따른 방오 표면처리 구조체를 나타낸 단면도이다.1 is a perspective view showing an antifouling surface treatment structure according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an antifouling surface treatment structure according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 방오 표면처리 구조체(100)는 금속 모재(120), 금속 산화층(140), 복수의 수용 홈(H) 및 복수의 발수 나노입자(160)를 포함한다.1 and 2, the antifouling surface treatment structure 100 according to an embodiment of the present invention includes a metal base material 120, a metal oxide layer 140, a plurality of receiving grooves (H), and a plurality of water-repellent nanoparticles ( 160).
금속 모재(120)는 일면 및 일면에 반대되는 타면을 갖는 플레이트 형상을 가질 수 있으나, 이는 예시적인 것으로 그 형상은 다양하게 변경될 수 있다. 보다 구체적으로, 금속 모재(120)는 에어컨, 건조기, 공기열원식 히트펌프(AWHP) 등의 열교환기의 알루미늄 핀인 것이 바람직하다. 이를 위해, 금속 모재(120)는 알루미늄 또는 알루미늄 합금 재질로 형성될 수 있으나, 이는 예시적인 것으로 열 방출 효율이 우수한 금속 또는 합금 재질이라면 사용상에 제약은 없다.The metal base material 120 may have a plate shape having one surface and the other surface opposite to the one surface, but this is exemplary and the shape may be variously changed. More specifically, the metal base material 120 is preferably an aluminum fin of a heat exchanger such as an air conditioner, a dryer, or an air heat source type heat pump (AWHP). To this end, the metal base material 120 may be formed of aluminum or an aluminum alloy material, but this is exemplary and there is no restriction on use as long as it is a metal or alloy material having excellent heat dissipation efficiency.
금속 산화층(140)은 금속 모재(120)의 표면을 덮는다. 이러한 금속 산화층(140)은 양극산화 처리시 금속 모재(120)와의 산화 반응에 의해 형성된다. 이때, 금속 모재(120)로 알루미늄 또는 알루미늄 합금을 이용할 시, 금속 산화층(140)은 알루미늄 산화물로 이루어질 수 있다.The metal oxide layer 140 covers the surface of the metal base material 120 . The metal oxide layer 140 is formed by an oxidation reaction with the metal base material 120 during anodization. In this case, when aluminum or an aluminum alloy is used as the metal base material 120 , the metal oxide layer 140 may be formed of aluminum oxide.
복수의 수용 홈(H)은 금속 산화층(140) 및 금속 모재(120)의 일부를 관통하여, 금속 모재(120)의 내부에 일부가 배치된다. 이러한 수용 홈(H)은 금속 산화층(140) 및 금속 모재(120)의 타면으로부터 일면 방향으로 일부 두께가 제거된 것이다.The plurality of receiving grooves (H) penetrate a portion of the metal oxide layer 140 and the metal base material 120 , and are partially disposed inside the metal base material 120 . The accommodating groove H has a partial thickness removed from the other surface of the metal oxide layer 140 and the metal base material 120 in the direction of one surface.
이러한 수용 홈(H)은 컵(cup) 형상을 갖는다. 보다 구체적으로, 복수의 수용 홈(H)은 컵 형상의 단면 구조가 격자 배열 구조로 배열되는 허니콤 구조를 가질 수 있다.This receiving groove (H) has a cup (cup) shape. More specifically, the plurality of receiving grooves H may have a honeycomb structure in which a cup-shaped cross-sectional structure is arranged in a grid arrangement structure.
여기서, 수용 홈(H)은 직경과 높이의 길이비가 1 : 3 ~ 3 : 1을 갖는 것이 바람직하다. 수용 홈(H)의 직경과 높이의 길이비가 1 : 3 ~ 3 : 1의 범위를 벗어날 경우, 직경 또는 높이가 과도하게 커지는데 기인하여 수용 홈(H) 내에 충진되는 복수의 발수 나노입자(160)의 사용량을 증가시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.Here, the receiving groove (H) preferably has a length ratio of diameter and height of 1: 3 to 3: 1. When the length ratio of the diameter and height of the receiving groove (H) is out of the range of 1: 3 to 3: 1, a plurality of water-repellent nanoparticles (160) filled in the receiving groove (H) due to excessively large diameter or height ) can act as a factor to increase the amount of use, so it is not economical.
복수의 발수 나노입자(160)는 복수의 수용 홈(H) 내에 충진된다. 이러한 복수의 발수 나노입자(160)는 복수의 수용 홈(H) 내에 충진되어 발수 표면을 구현하는 것에 의해, 응축수와의 접촉 자체를 차단할 수 있게 된다. 아울러, 복수의 발수 나노입자(160)는 복수의 수용 홈(H) 내에 충진되어, 응축수와의 접촉 자체를 차단하는 형태로 지연이 가능하므로, 얼음이나 응축수 역시 발수 표면에서 빠르게 떨어져 나가는 특성을 발휘할 수 있다.The plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H). The plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H) to implement a water-repellent surface, thereby blocking contact with condensed water itself. In addition, since the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H), it is possible to delay in the form of blocking contact with the condensed water itself, so ice or condensed water also rapidly falls off the water-repellent surface. can
도 3은 본 발명의 실시예에 따른 방오 표면처리 구조체의 접촉각 향상 원리를 설명하기 위한 모식도로, 도 2와 연계하여 설명하도록 한다.3 is a schematic diagram for explaining the principle of improving the contact angle of the antifouling surface treatment structure according to an embodiment of the present invention, which will be described in conjunction with FIG. 2 .
도 2 및 도 3에 도시된 바와 같이, 접촉각 분석을 통해 접촉각이 120° 이상인 경우에는 초발수성이라 정의된다.As shown in FIGS. 2 and 3 , when the contact angle is 120° or more through the contact angle analysis, it is defined as superhydrophobic.
일반적으로, 폴리에스테르 수지, 나일론 수지 등을 금속 모재(120)의 표면에 코팅할 시, 물방울에 대한 접촉각이 90°이하를 나타내어 초발수 특성을 구현하기 어렵다.In general, when a polyester resin, nylon resin, or the like is coated on the surface of the metal base material 120, the contact angle with respect to water droplets is 90° or less, making it difficult to realize super water-repellent properties.
반면, 나노구조의 구 형상을 갖는 발수 나노입자(160)를 금속 모재(120)의 표면에 코팅할 시, 물방울에 대한 접촉각이 120° 이상을 나타낸다.On the other hand, when the water-repellent nanoparticles 160 having a spherical nanostructure are coated on the surface of the metal base material 120 , the contact angle with respect to the water droplets is 120° or more.
이러한 발수 나노입자(160)를 이용할시, 120° 이상의 접촉각을 갖는 초발수성을 나타낼 수 있므로, 금속 모재(120)의 표면에 응축수 등의 오염 물질이 부착되는 것을 미연에 방지할 수 있을 뿐만 아니라, 우수한 청소성을 확보할 수 있게 된다.When using these water-repellent nanoparticles 160, it is possible to exhibit super-water repellency having a contact angle of 120° or more, so that it is possible not only to prevent contaminants such as condensed water from adhering to the surface of the metal base material 120 in advance, but also , it is possible to secure excellent cleaning properties.
특히, 발수 나노입자(160)는 불소 기능기를 갖는 실리카, 불소 기능기를 갖는 자성체 및 불소 기능기를 갖는 고분자 수지 중 선택된 1종 이상을 포함하는 것이 바람직하다. 이러한 불소 기능기를 갖는 실리카, 자성체 및 고분자 수지 중 1종 이상을 발수 나노입자(160)로 사용하는 것에 의해, 우수한 방오성을 확보할 수 있게 된다.In particular, the water-repellent nanoparticles 160 preferably include at least one selected from silica having a fluorine functional group, a magnetic material having a fluorine functional group, and a polymer resin having a fluorine functional group. By using at least one of silica having a fluorine functional group, a magnetic material, and a polymer resin as the water-repellent nanoparticles 160, excellent antifouling properties can be secured.
발수 나노입자(160)는 불소 기능기를 가지는 화합물을 실리콘 화합물에 첨가하여 합성하는 방식으로 제조될 수 있다. 또한, 발수 나노입자(160)는 실리카, 자성체 및 고분자 수지 중 어느 하나 이상의 표면에 불소 기능기를 가지는 화합물을 코팅하는 방식으로 제조될 수도 있다.The water-repellent nanoparticles 160 may be prepared by synthesizing a compound having a fluorine functional group to the silicon compound. In addition, the water-repellent nanoparticles 160 may be prepared by coating a compound having a fluorine functional group on the surface of any one or more of silica, a magnetic material, and a polymer resin.
일 예로, 불소 기능기를 갖는 실리카는 졸-겔(sol-gel) 합성법으로 불소 기능기를 가지는 화합물을 실리콘 화합물에 일부 추가하는 것에 의해 형성될 수 있다.For example, silica having a fluorine functional group may be formed by partially adding a compound having a fluorine functional group to the silicone compound by a sol-gel synthesis method.
여기서, 불소 기능기를 갖는 화합물로는 화학식 1로 표시되는 PFPE(perfluoropolyether) 실란(silane), 화학식 2로 표시되는 PFPC(perfluorocyclopentene) 실란(silane) 등에서 선택될 수 있다.Here, the compound having a fluorine functional group may be selected from perfluoropolyether (PFPE) silane represented by Formula 1, perfluorocyclopentene (PFPC) silane represented by Formula 2, and the like.
[화학식 1][Formula 1]
Figure PCTKR2021019097-appb-img-000001
Figure PCTKR2021019097-appb-img-000001
[화학식 2][Formula 2]
Figure PCTKR2021019097-appb-img-000002
Figure PCTKR2021019097-appb-img-000002
일반적으로, 종래의 친수코팅은 응축수를 빠르게 흘러 내리게 하는 것을 목적으로 하고 있는데 반해, 본 발명은 수용 홈(H) 내에 발수 나노입자(160)가 충진되는 발수 표면 구조를 가지므로, 응축수와의 접촉 자체를 차단하는 형태를 가지므로, 발수 표면이 친수코팅에 비해 응축수를 제거하는데 보다 효율적이다.In general, the conventional hydrophilic coating aims to make the condensed water flow down quickly, whereas the present invention has a water-repellent surface structure in which the water-repellent nanoparticles 160 are filled in the receiving groove (H), so contact with the condensed water Since it has a shape that blocks itself, the water-repellent surface is more efficient in removing condensed water than the hydrophilic coating.
아울러, 종래의 친수코팅은 응축수가 열교환기의 표면에서 얼어 열교환을 막는 형태로 발전될 수 있는데 반해, 본 발명은 수용 홈(H) 내에 충진된 발수 나노입자(160)가 응축수의 접촉 자체를 차단하는 형태로 지연이 가능하므로, 얼음이나 응축수 역시 발수 표면에서 빠르게 떨어져 나가는 특징을 나타낼 수 있다.In addition, the conventional hydrophilic coating can be developed in the form of preventing heat exchange by freezing condensed water on the surface of the heat exchanger, whereas in the present invention, the water-repellent nanoparticles 160 filled in the receiving groove (H) block the contact of the condensed water itself. Since it is possible to delay in the form of a water repellent, ice or condensed water may also exhibit a characteristic of rapidly falling off the water-repellent surface.
또한, 본 발명의 실시예에 따른 방오 표면처리 구조체(100)는 금속 모재(120)의 내부에 컵 형태의 수용 홈(H)이 배치되고, 수용 홈(H) 내에 발수 나노입자(160)가 매립되는 형태로 안정적인 충진이 이루어지므로, 표면에서 박리, 탈락될 염려가 없어 높은 내구성을 발휘할 수 있다.In addition, in the antifouling surface treatment structure 100 according to the embodiment of the present invention, a cup-shaped receiving groove (H) is disposed inside the metal base material 120 , and the water-repellent nanoparticles 160 are disposed in the receiving groove (H). Since stable filling is made in a buried form, there is no fear of peeling or dropping from the surface, and thus high durability can be exhibited.
한편, 본 발명의 실시예에 따른 방오 표면처리 구조체(100)는 복수의 수용 홈(H) 내에 복수의 발수 나노입자(160)가 충진되고, 복수의 수용 홈(H)을 제외한 금속 모재(120)의 노출된 표면에는 친수 표면처리가 이루어질 수 있다.On the other hand, in the antifouling surface treatment structure 100 according to the embodiment of the present invention, a plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H), and the metal base material 120 except for the plurality of receiving grooves (H). ) may be treated with a hydrophilic surface on the exposed surface.
본 발명의 실시예에 따른 방오 표면처리 구조체(100)와 같이, 친수 및 발수 표면 처리를 동시에 구현하게 되면, 금속 모재(120)의 노출 표면이 친수 표면처리가 이루어져 있으므로 표면 응축수의 크기를 조절하여 하방으로만 응축수를 수집하는 것이 가능해질 수 있다. 이로 인해, 복수의 발수 나노입자(160)의 표면에 붙지 못한 작은 응축수가 사방으로 분사될 염려가 없게 된다.As in the antifouling surface treatment structure 100 according to the embodiment of the present invention, when the hydrophilic and water repellent surface treatment are simultaneously implemented, the exposed surface of the metal base material 120 is subjected to hydrophilic surface treatment by adjusting the size of the surface condensate. It may become possible to collect condensate only downwards. Due to this, there is no concern that small condensed water that does not adhere to the surface of the plurality of water-repellent nanoparticles 160 is sprayed in all directions.
이에 따라, 본 발명의 실시예에 따른 방오 표면처리 구조체(100)는 격자구조로 친수 및 발수 표면 처리를 동시에 적용하여 응축수를 신속하면서도 용이하게 제거할 수 있으면서 오염 물질이 달라붙는 것을 미연에 방지할 수 있게 된다.Accordingly, the antifouling surface treatment structure 100 according to the embodiment of the present invention can rapidly and easily remove condensed water by simultaneously applying hydrophilic and water-repellent surface treatment in a grid structure, while preventing contaminants from sticking in advance. be able to
지금까지 살펴본 바와 같이, 본 발명의 실시예에 따른 방오 표면처리 구조체는 발수 나노입자를 컵 형태의 수용 홈 내에 충진하는 것에 의해 우수한 발수 특성을 나타내게 된다.As described so far, the antifouling surface treatment structure according to the embodiment of the present invention exhibits excellent water repellency properties by filling the water repellent nanoparticles in the cup-shaped receiving groove.
이 결과, 본 발명의 실시예에 따른 방오 표면처리 구조체는 에어컨, 건조기, 공기열원식 히트펌프(AWHP) 등의 열교환기의 알루미늄 핀에 발수 특성을 갖도록 표면 처리하는 것에 의해, 응축수로 인한 알루미늄 핀의 표면 오염에 의해 열효율을 떨어뜨리거나 세균 및 곰팡이의 번식으로 인해 냄새 발생 등의 문제를 미연에 방지할 수 있게 된다.As a result, the antifouling surface treatment structure according to the embodiment of the present invention is surface-treated to have water-repellent properties on aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP). It is possible to prevent problems such as reducing the thermal efficiency due to surface contamination of the surface or odor generation due to the growth of bacteria and mold.
즉, 본 발명의 실시예에 따른 방오 표면처리 구조체는 응축수를 빠르게 열교환기의 표면에서 제거하기 위해, 응축수가 표면에 얇게 존재하는 친수 코팅이 아니라, 응축수의 접촉을 막아 더 빠르게 응축수를 제거하는 발수 표면을 갖도록 제어한 것이다.That is, in the antifouling surface treatment structure according to an embodiment of the present invention, in order to quickly remove the condensed water from the surface of the heat exchanger, it is not a hydrophilic coating that is thinly present on the surface of the condensed water, but a water repellent that blocks the contact of the condensed water and removes the condensed water more quickly Controlled to have a surface.
이를 위해, 본 발명의 실시예에 따른 방오 표면처리 구조체는 양극산화를 통해 종횡비가 낮은 컵 모양의 나노구조의 수용 홈을 표면에 형성시키고, 발수 특성을 가지는 발수 나노입자를 컵 모양의 수용 홈 내에 충진하는 것에 의해 반영구적으로 사용하는 것이 가능한 표면처리 구조를 갖는다.To this end, the antifouling surface treatment structure according to the embodiment of the present invention forms a cup-shaped nano-structure receiving groove with a low aspect ratio on the surface through anodization, and water-repellent nanoparticles having water-repellent properties are placed in the cup-shaped receiving groove. It has a surface treatment structure that can be used semi-permanently by filling.
아울러, 본 발명의 실시예에 따른 방오 표면처리 구조체는 발수 특성을 갖는 발수 나노입자를 컵 형태의 수용 홈의 내부에 완벽히 넣어 충진하는 것에 의해 열교환기의 알루미늄 핀과의 접착 면적을 확장시킬 수 있을 뿐만 아니라, 수용 홈 내에 완벽하게 충진된 구조이므로 발수 나노입자의 이탈이나 탈락을 원천적으로 차단할 수 있는 구조적인 이점을 갖는다.In addition, the antifouling surface treatment structure according to the embodiment of the present invention can expand the adhesion area with the aluminum fin of the heat exchanger by completely filling the water-repellent nanoparticles having water-repellent properties into the cup-shaped accommodation groove. In addition, since the structure is completely filled in the receiving groove, it has a structural advantage that can fundamentally block the separation or drop-off of the water-repellent nanoparticles.
또한, 본 발명의 실시예에 따른 방오 표면처리 구조체는 격자구조로 친수 및 발수 표면 처리를 동시에 적용하여 응축수를 신속하면서도 용이하게 제거할 수 있으면서 오염 물질이 달라붙는 것을 미연에 방지할 수 있게 된다.In addition, the antifouling surface treatment structure according to the embodiment of the present invention can rapidly and easily remove condensed water by simultaneously applying hydrophilic and water-repellent surface treatment in a grid structure, while preventing contaminants from sticking in advance.
이하 첨부된 도면을 참조하여 본 발명의 실시예에 따른 방오 표면처리 방법에 대하여 설명하도록 한다.Hereinafter, an antifouling surface treatment method according to an embodiment of the present invention will be described with reference to the accompanying drawings.
도 4 내지 도 8은 본 발명의 실시예에 따른 방오 표면처리 방법을 나타낸 공정 단면도이다.4 to 8 are cross-sectional views showing the antifouling surface treatment method according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 금속 모재(120)를 준비한다. 여기서, 금속 모재(120)는 일면 및 일면에 반대되는 타면을 갖는 플레이트 형상을 가질 수 있으나, 이는 예시적인 것으로 그 형상은 다양하게 변경될 수 있다. 보다 구체적으로, 금속 모재(120)는 에어컨, 건조기, 공기열원식 히트펌프(AWHP) 등의 열교환기의 알루미늄 핀인 것이 바람직하다. 이를 위해, 금속 모재(120)는 알루미늄 또는 알루미늄 합금 재질로 형성될 수 있으나, 이는 예시적인 것으로 열 방출 효율이 우수한 금속 또는 합금 재질이라면 사용상에 제약은 없다.As shown in FIG. 4 , a metal base material 120 is prepared. Here, the metal base material 120 may have a plate shape having one surface and the other surface opposite to one surface, but this is exemplary and the shape may be variously changed. More specifically, the metal base material 120 is preferably an aluminum fin of a heat exchanger such as an air conditioner, a dryer, or an air heat source type heat pump (AWHP). To this end, the metal base material 120 may be formed of aluminum or an aluminum alloy material, but this is exemplary and there is no restriction on use as long as it is a metal or alloy material having excellent heat dissipation efficiency.
도 5에 도시된 바와 같이, 금속 모재(120)를 1차 양극산화 처리하여 복수의 노치 홈(N)을 형성한다.As shown in FIG. 5 , the metal base material 120 is subjected to primary anodization to form a plurality of notched grooves (N).
본 단계에서, 1차 양극산화 처리는 40 ~ 45V의 DC 전압을 2 ~ 5시간 동안 인가하는 것이 바람직하다. 이때, 복수의 노치 홈(N)은 150 ~ 200nm의 간격으로 형성될 수 있으나, 이에 제한되는 것은 아니다.In this step, it is preferable to apply a DC voltage of 40 to 45V for 2 to 5 hours for the primary anodizing treatment. In this case, the plurality of notch grooves N may be formed at intervals of 150 to 200 nm, but is not limited thereto.
이러한 1차 양극산화 처리는 옥살산, 아세트산, 인산, 크롬산, 황산 및 염산 중 선택된 1종 이상의 전해액을 이용하는 것이 바람직하다.It is preferable to use at least one electrolyte solution selected from oxalic acid, acetic acid, phosphoric acid, chromic acid, sulfuric acid and hydrochloric acid for the first anodization treatment.
즉, 전해액이 담긴 산화처리 반응조에 양극산화 처리하고자 하는 금속 모재(120)를 작동 전극으로 이용하여 양극을 걸어 준 다음, 백금(Pt) 또는 카본(carbon) 전극을 상대(counter) 전극으로 하여 음극을 걸어 주는 방식으로 산화시키게 된다.That is, the anode is hung in the oxidation treatment tank containing the electrolyte using the metal base material 120 to be anodized as a working electrode, and then the cathode is made using a platinum (Pt) or carbon electrode as a counter electrode. is oxidized in such a way that
본 단계에서, 1차 양극산화 처리는 0.1 ~ 0.5M 옥살산을 전해액으로 사용하여 -5 ~ 10℃의 온도에서 이루어질 수 있다.In this step, the primary anodization treatment may be performed at a temperature of -5 to 10° C. using 0.1 to 0.5 M oxalic acid as an electrolyte.
도 6에 도시된 바와 같이, 복수의 노치 홈(N)이 형성된 금속 모재(120)를 2차 양극산화 처리하여 복수의 노치 홈(N) 및 금속 모재(120)의 표면을 덮으며, 복수의 노치 홈(N)과 대응되는 위치에 배치되는 복수의 씨드 홈(C)을 구비하는 금속 산화층(140)을 형성한다.As shown in FIG. 6 , the metal base material 120 having the plurality of notched grooves N formed thereon is subjected to secondary anodization to cover the surfaces of the plurality of notched grooves N and the metal base material 120 , A metal oxide layer 140 having a plurality of seed grooves C disposed at positions corresponding to the notch grooves N is formed.
2차 양극산화 처리는, 1차 양극산화 처리와 마찬가지로, 옥살산, 아세트산, 인산, 크롬산, 황산 및 염산 중 선택된 1종 이상의 전해액을 이용하는 것이 바람직하다.As for the secondary anodization treatment, it is preferable to use at least one electrolyte solution selected from among oxalic acid, acetic acid, phosphoric acid, chromic acid, sulfuric acid and hydrochloric acid, similarly to the primary anodization treatment.
본 단계에서, 2차 양극산화 처리는 인산 및 크롬산의 혼합 용액을 전해액으로 사용하여 -5 ~ 10℃의 온도에서 이루어질 수 있다.In this step, the secondary anodization treatment may be performed at a temperature of -5 to 10° C. using a mixed solution of phosphoric acid and chromic acid as an electrolyte.
2차 양극산화 처리는 40 ~ 45V의 DC 전압을 2 ~ 5시간 동안 인가하는 것이 바람직하다. 이때, 금속 모재(120)로 알루미늄 또는 알루미늄 합금을 이용할 시, 2차 양극산화 처리에 의해, 금속 산화층(140)은 알루미늄 산화물로 이루어질 수 있다.For the secondary anodizing treatment, it is preferable to apply a DC voltage of 40 to 45V for 2 to 5 hours. In this case, when aluminum or an aluminum alloy is used as the metal base material 120 , the metal oxide layer 140 may be formed of aluminum oxide by the secondary anodization treatment.
도 7에 도시된 바와 같이, 금속 산화층(140)이 형성된 금속 모재(120)를 3차 양극산화 처리하여 복수의 씨드 홈(도 6의 C)을 매개로 금속 산화층(140) 및 금속 모재(120)의 일부를 제거하여, 복수의 씨드 홈을 확장시키는 복수의 수용 홈(H)을 형성한다.As shown in FIG. 7 , the metal base material 120 on which the metal oxide layer 140 is formed is subjected to a tertiary anodization process to form a metal oxide layer 140 and a metal base material 120 through a plurality of seed grooves (C in FIG. 6 ). ) to form a plurality of accommodating grooves H for expanding the plurality of seed grooves.
3차 양극산화 처리는, 2차 양극산화 처리와 마찬가지로, 옥살산, 아세트산, 인산, 크롬산, 황산 및 염산 중 선택된 1종 이상의 전해액을 이용하는 것이 바람직하다.For the tertiary anodization treatment, it is preferable to use at least one electrolyte solution selected from among oxalic acid, acetic acid, phosphoric acid, chromic acid, sulfuric acid and hydrochloric acid, similarly to the secondary anodization treatment.
본 단계에서, 3차 양극산화 처리는 인산 및 크롬산의 혼합 용액을 전해액으로 사용하여 -5 ~ 10℃의 온도에서 이루어질 수 있다.In this step, the tertiary anodization treatment may be performed at a temperature of -5 to 10° C. using a mixed solution of phosphoric acid and chromic acid as an electrolyte.
본 단계에서, 3차 양극산화 처리는 40 ~ 45V의 DC 전압을 10 ~ 30sec 동안 인가하는 것이 바람직하다. 이와 같이, 3차 양극산화 처리는 10 ~ 30sec의 빠른 시간 내에 수행하는 것에 의해, 수용 홈(H)의 직경 및 높이를 정밀하게 제어하게 된다. 여기서, 수용 홈(H)은 금속 산화층(140) 및 금속 모재(120)의 타면으로부터 일면 방향으로 일부 두께가 제거되는 것에 의해 형성된다.In this step, it is preferable to apply a DC voltage of 40 ~ 45V for 10 ~ 30sec for the third anodization treatment. As such, the third anodization treatment is performed within a fast time of 10 to 30 sec, thereby precisely controlling the diameter and height of the receiving groove (H). Here, the receiving groove (H) is formed by removing a portion of the thickness in the direction of one surface from the other surface of the metal oxide layer 140 and the metal base material 120 .
이러한 수용 홈(H)은 컵 형상을 갖는다. 보다 구체적으로, 복수의 수용 홈(H)은 컵 형상의 단면 구조가 격자 배열 구조로 배열되는 허니콤 구조를 가질 수 있다.This receiving groove (H) has a cup shape. More specifically, the plurality of receiving grooves H may have a honeycomb structure in which a cup-shaped cross-sectional structure is arranged in a grid arrangement structure.
여기서, 수용 홈(H)은 직경과 높이의 길이비가 1 : 3 ~ 3 : 1을 갖는 것이 바람직하다. 수용 홈(H)의 직경과 높이의 길이비가 1 : 3 ~ 3 : 1의 범위를 벗어날 경우, 직경 또는 높이가 과도하게 커지는데 기인하여 수용 홈(H) 내에 충진되는 복수의 발수 나노입자(160)의 사용량을 증가시키는 요인으로 작용할 수 있으므로, 경제적이지 못하다.Here, the receiving groove (H) preferably has a length ratio of diameter and height of 1: 3 to 3: 1. When the length ratio of the diameter and height of the receiving groove (H) is out of the range of 1: 3 to 3: 1, a plurality of water-repellent nanoparticles (160) filled in the receiving groove (H) due to excessively large diameter or height ) can act as a factor to increase the amount of use, so it is not economical.
도 8에 도시된 바와 같이, 금속 모재(120)의 복수의 수용 홈(H) 내에 발수 나노입자 분산액을 코팅하고 건조하여 복수의 발수 나노입자(160)를 충진한다.As shown in FIG. 8 , the water-repellent nanoparticle dispersion is coated in the plurality of receiving grooves (H) of the metal base material 120 and dried to fill the plurality of water-repellent nanoparticles 160 .
본 단계에서, 복수의 발수 나노입자(160)는 복수의 수용 홈(H) 내에 충진되어 발수 표면을 구현하는 것에 의해, 응축수와의 접촉 자체를 차단할 수 있게 된다. 아울러, 복수의 발수 나노입자(160)는 복수의 수용 홈(H) 내에 충진되어, 응축수와의 접촉 자체를 차단하는 형태로 지연이 가능하므로, 얼음이나 응축수 역시 발수 표면에서 빠르게 떨어져 나가는 특징을 나타낼 수 있다.In this step, the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H) to implement a water-repellent surface, thereby blocking contact with condensed water itself. In addition, since the plurality of water-repellent nanoparticles 160 are filled in the plurality of receiving grooves (H), it is possible to delay in the form of blocking contact with the condensed water itself, so ice or condensed water also quickly falls off the water-repellent surface. can
이러한 발수 나노입자(160)를 수용 홈(H) 내에 충진할 시, 120° 이상의 접촉각을 갖는 초발수성을 나타낼 수 있므로, 금속 모재(120)의 표면에 응축수 등의 오염 물질이 부착되는 것을 미연에 방지할 수 있을 뿐만 아니라, 우수한 청소성을 확보할 수 있게 된다.When these water-repellent nanoparticles 160 are filled in the receiving groove (H), it can exhibit super-water repellency having a contact angle of 120° or more, so that the adhesion of contaminants such as condensed water to the surface of the metal base material 120 is delayed. Not only can it be prevented, but also excellent cleaning properties can be ensured.
특히, 발수 나노입자(160)는 불소 기능기를 갖는 실리카, 불소 기능기를 갖는 자성체 및 불소 기능기를 갖는 고분자 수지 중 선택된 1종 이상을 포함하는 것이 바람직하다. 이러한 불소 기능기를 갖는 실리카, 자성체 및 고분자 수지 중 1종 이상을 발수 나노입자(160)로 사용하는 것에 의해, 우수한 방오성을 확보할 수 있게 된다.In particular, the water-repellent nanoparticles 160 preferably include at least one selected from silica having a fluorine functional group, a magnetic material having a fluorine functional group, and a polymer resin having a fluorine functional group. By using at least one of silica having a fluorine functional group, a magnetic material, and a polymer resin as the water-repellent nanoparticles 160, excellent antifouling properties can be secured.
발수 나노입자(160)는 불소 기능기를 가지는 화합물을 실리콘 화합물에 첨가하여 합성하는 방식으로 제조될 수 있다. 또한, 발수 나노입자(160)는 실리카, 자성체 및 고분자 수지 중 어느 하나 이상의 표면에 불소 기능기를 가지는 화합물을 코팅하는 방식으로 제조될 수도 있다.The water-repellent nanoparticles 160 may be prepared by synthesizing a compound having a fluorine functional group to the silicon compound. In addition, the water-repellent nanoparticles 160 may be prepared by coating a compound having a fluorine functional group on the surface of any one or more of silica, a magnetic material, and a polymer resin.
일 예로, 불소 기능기를 갖는 실리카는 졸-겔(sol-gel) 합성법으로 불소 기능기를 가지는 화합물을 실리콘 화합물에 일부 추가하는 것에 의해 형성될 수 있다.For example, silica having a fluorine functional group may be formed by partially adding a compound having a fluorine functional group to the silicone compound by a sol-gel synthesis method.
여기서, 불소 기능기를 갖는 화합물로는 화학식 1로 표시되는 PFPE(perfluoropolyether) 실란(silane), 화학식 2로 표시되는 PFPC(perfluorocyclopentene) 실란(silane) 등에서 선택될 수 있다.Here, the compound having a fluorine functional group may be selected from perfluoropolyether (PFPE) silane represented by Formula 1, perfluorocyclopentene (PFPC) silane represented by Formula 2, and the like.
[화학식 1][Formula 1]
Figure PCTKR2021019097-appb-img-000003
Figure PCTKR2021019097-appb-img-000003
[화학식 2][Formula 2]
Figure PCTKR2021019097-appb-img-000004
Figure PCTKR2021019097-appb-img-000004
지금까지 살펴본 바와 같이, 본 발명의 실시예에 따른 방오 표면처리 방법은 발수 나노입자를 컵 형태의 수용 홈 내에 충진하는 것에 의해 우수한 발수 특성을 나타내게 된다.As described so far, the antifouling surface treatment method according to the embodiment of the present invention exhibits excellent water repellency properties by filling water repellent nanoparticles in the cup-shaped receiving groove.
이 결과, 본 발명의 실시예에 따른 방오 표면처리 방법은 에어컨, 건조기, 공기열원식 히트펌프(AWHP) 등의 열교환기의 알루미늄 핀에 발수 특성을 갖도록 표면 처리하는 것에 의해, 응축수로 인한 알루미늄 핀의 표면 오염에 의해 열효율을 떨어뜨리거나 세균 및 곰팡이의 번식으로 인해 냄새 발생 등의 문제를 미연에 방지할 수 있게 된다.As a result, in the antifouling surface treatment method according to the embodiment of the present invention, the aluminum fins caused by condensed water are surface treated to have water repellency properties on the aluminum fins of heat exchangers such as air conditioners, dryers, and air heat source type heat pumps (AWHP). It is possible to prevent problems such as reducing the thermal efficiency due to surface contamination of the surface or odor generation due to the growth of bacteria and mold.
즉, 본 발명의 실시예에 따른 방오 표면처리 방법은 응축수를 빠르게 열교환기의 표면에서 제거하기 위해, 응축수가 표면에 얇게 존재하는 친수 코팅이 아니라, 응축수의 접촉을 막아 더 빠르게 응축수를 제거하는 발수 표면을 갖도록 제어할 수 있다.That is, in the antifouling surface treatment method according to an embodiment of the present invention, in order to quickly remove condensed water from the surface of the heat exchanger, it is not a hydrophilic coating that exists thinly on the surface of the condensate, but prevents the contact of condensate and removes condensed water more quickly. It can be controlled to have a surface.
이를 위해, 본 발명의 실시예에 따른 방오 표면처리 방법은 양극산화를 통해 종횡비가 낮은 컵 모양의 나노구조의 수용 홈을 표면에 형성시키고, 발수 특성을 가지는 발수 나노입자를 컵 모양의 수용 홈 내에 충진하는 것에 의해 반영구적으로 사용할 수 있게 된다.To this end, the antifouling surface treatment method according to the embodiment of the present invention forms a receiving groove of a cup-shaped nanostructure with a low aspect ratio on the surface through anodization, and inserts water-repellent nanoparticles having water repellency into the cup-shaped receiving groove. It becomes possible to use semi-permanently by filling.
아울러, 본 발명의 실시예에 따른 방오 표면처리 방법은 발수 특성을 갖는 발수 나노입자를 컵 형태의 수용 홈의 내부에 완벽히 넣어 충진하는 것에 의해 열교환기의 알루미늄 핀과의 접착 면적을 확장시킬 수 있을 뿐만 아니라, 수용 홈 내에 완벽하게 충진된 구조이므로 발수 나노입자의 이탈이나 탈락을 원천적으로 차단할 수 있게 된다.In addition, the antifouling surface treatment method according to the embodiment of the present invention can expand the adhesion area with the aluminum fin of the heat exchanger by completely filling the water-repellent nanoparticles having water-repellent properties into the cup-shaped accommodation groove. In addition, since the structure is completely filled in the receiving groove, it is possible to fundamentally block the separation or drop-off of the water-repellent nanoparticles.
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, these are presented as preferred examples of the present invention and cannot be construed as limiting the present invention in any sense.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Content not described here will be omitted because it can be technically inferred sufficiently by those skilled in the art.
1. 방오 표면처리 구조체 제조1. Manufacture of antifouling surface treatment structure
실시예 1Example 1
알루미늄 금속판을 옥살산 용액에 넣고, 40V DC 전압으로 4시간 동안 1차 양극산화 처리하여 복수의 노치 홈을 형성하였다.An aluminum metal plate was placed in an oxalic acid solution, and a plurality of notch grooves were formed by primary anodization treatment at 40V DC voltage for 4 hours.
다음으로, 복수의 노치 홈이 형성된 알루미늄 금속판을 5wt% 인산과 5wt%의 크롬산 용액에 넣고 40V DC 전압으로 4시간 동안 2차 양극산화 처리하여 복수의 노치 홈과 대응되는 위치에 배치되는 복수의 씨드 홈을 구비하는 알루미늄 산화층을 형성하였다.Next, an aluminum metal plate having a plurality of notched grooves is placed in a 5wt% phosphoric acid and 5wt% chromic acid solution and subjected to secondary anodization treatment at 40V DC voltage for 4 hours, a plurality of seeds disposed at positions corresponding to the plurality of notched grooves An aluminum oxide layer having grooves was formed.
다음으로, 알루미늄 산화층이 형성된 알루미늄 금속판을 45V DC 전압으로 25sec 동안 3차 양극산화 처리하여 복수의 씨드 홈을 확장시키는 복수의 수용 홈을 형성하였다.Next, the aluminum metal plate having the aluminum oxide layer formed thereon was subjected to a third anodization treatment at a voltage of 45V DC for 25 sec to form a plurality of receiving grooves for expanding the plurality of seed grooves.
다음으로, 알루미늄 금속판의 복수의 수용 홈 내에 불소 기능기를 갖는 실리카 분산액을 코팅하고 건조하여 불소 기능기를 갖는 실리카를 충진하였다.Next, a silica dispersion having a fluorine functional group was coated in a plurality of receiving grooves of the aluminum metal plate and dried to fill the silica having a fluorine functional group.
여기서, 불소 기능기를 갖는 실리카 분산액은 에탄올 5L에 촉매로 28wt%의 암모니아수 300mL를 혼합하고 400rpm의 속도로 교반한 후, 반응물인 TEOS(Tetraethyl orthosilicate) 95 중량부 및 PFPE(perfluoropolyether) silane 5 중량부로 혼합한 혼합용액 150mL를 10mL/min의 속도로 투입한 후, 상온(15℃)에서 12시간 동안 반응시켜 합성한 것을 이용하였다.Here, the silica dispersion having a fluorine functional group is mixed with 300 mL of 28 wt% ammonia water as a catalyst in 5 L of ethanol and stirred at a speed of 400 rpm, followed by 95 parts by weight of TEOS (Tetraethyl orthosilicate) and 5 parts by weight of PFPE (perfluoropolyether) silane. After adding 150 mL of a mixed solution at a rate of 10 mL/min, the mixture was reacted for 12 hours at room temperature (15° C.) and synthesized was used.
이때, 합성된 불소 기능기를 갖는 실리카 분산액에 복수의 수용 홈이 형성된 알루미늄 금속판을 담그고, 발수 나노입자 분산액과 수직방향으로 10cm/min의 속도로 꺼내어 80℃에서 12시간 동안 건조한 후, 물에 3회 세척하여 잔여 입자를 제거하였다.At this time, an aluminum metal plate having a plurality of receiving grooves is immersed in the synthesized silica dispersion having a fluorine functional group, taken out at a speed of 10 cm/min in a direction perpendicular to the water-repellent nanoparticle dispersion, dried at 80° C. for 12 hours, and then in water 3 times. Residual particles were removed by washing.
실시예 2Example 2
40V DC 전압으로 30sec 동안 3차 양극산화 처리한 것을 제외하고는 실시예 1과 동일한 방법으로 방오 표면처리 구조체를 제조하였다.An antifouling surface treatment structure was prepared in the same manner as in Example 1, except that the third anodization treatment was performed for 30 sec at 40V DC voltage.
비교예 1Comparative Example 1
불소 기능기가 없는 실리카 분산액을 코팅하고 건조하여 복수의 나노입자를 부착한 것을 제외하고는 실시예 1과 동일한 방법으로 방오 표면처리 구조체를 제조하였다.An antifouling surface treatment structure was prepared in the same manner as in Example 1, except that a silica dispersion without a fluorine functional group was coated and dried to attach a plurality of nanoparticles.
2. 물성 평가2. Physical property evaluation
표 1은 실시예 1 ~ 2 및 비교예 1에 따른 시료들에 대한 물성 평가 결과를 나타낸 것이다.Table 1 shows the results of evaluation of physical properties for the samples according to Examples 1 to 2 and Comparative Example 1.
1) 접촉각1) contact angle
시료의 표면에 상온(20℃), 상대습도 50%에서 물방울을 적하한 후, 1분 후에 접촉각 측정기를 사용하여 증류수에 대한 접촉각을 측정하였다. 접촉각은 물방울의 좌우 접촉각을 같은 시료로 5번을 측정하여 그 평균치를 사용하였다.After dripping water droplets on the surface of the sample at room temperature (20° C.) and 50% relative humidity, the contact angle with respect to distilled water was measured 1 minute later using a contact angle meter. For the contact angle, the left and right contact angles of water droplets were measured 5 times with the same sample, and the average value was used.
2) 내스크래치2) scratch resistance
내마모 테스터기를 사용하여 하중 1 Kg으로 10, 50 및 100회 왕복하여 발수 나노입자가 벗겨지는 시점의 왕복 회수로 측정하였다.It was measured as the number of reciprocations at the time the water repellent nanoparticles were peeled off by reciprocating 10, 50, and 100 times under a load of 1 Kg using an abrasion resistance tester.
○ : 100회 이상, △ : 50회 이상 ~ 100회 미만, X : 50회 미만○: more than 100 times, △: more than 50 times to less than 100 times, X: less than 50 times
[표 1][Table 1]
Figure PCTKR2021019097-appb-img-000005
Figure PCTKR2021019097-appb-img-000005
표 1에 도시된 바와 같이, 실시예 1 ~ 2에 따른 시료들의 경우, 물방울에 대한 접촉각이 120°이상으로 측정되어 초발수 특성을 나타내면서, 우수한 내스크래치성을 나타내는 것을 확인하였다.As shown in Table 1, in the case of the samples according to Examples 1 and 2, it was confirmed that the contact angle with respect to water droplets was measured to be 120° or more, indicating super water-repellent properties, and exhibiting excellent scratch resistance.
반면, 비교예 1에 따른 시료의 경우, 물방울에 대한 접촉각이 120°미만으로 측정되어 초발수 특성을 나타내지 않았으며, 내스크래치성도 보통 수준에 불과하였다.On the other hand, in the case of the sample according to Comparative Example 1, the contact angle with respect to the water droplet was measured to be less than 120°, indicating no super water-repellent property, and scratch resistance was also only at an average level.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the illustrated drawings, but the present invention is not limited by the embodiments and drawings disclosed in the present specification. It is obvious that variations can be made. In addition, although the effects according to the configuration of the present invention have not been explicitly described and described while describing the embodiments of the present invention, it is natural that the effects predictable by the configuration should also be recognized.
[부호의 설명][Explanation of code]
100 : 방오 표면처리 구조체100: antifouling surface treatment structure
120 : 금속 모재120: metal base material
140 : 금속 산화층140: metal oxide layer
160 : 발수 나노입자160: water-repellent nanoparticles
H : 수용 홈H: receiving groove

Claims (14)

  1. 금속 모재; metal base material;
    상기 금속 모재의 표면을 덮는 금속 산화층; a metal oxide layer covering the surface of the metal base material;
    상기 금속 산화층 및 금속 모재의 일부를 관통하여, 상기 금속 모재의 내부에 일부가 배치되는 복수의 수용 홈; 및 a plurality of accommodating grooves passing through a portion of the metal oxide layer and the metal base material, some of which are disposed inside the metal base material; and
    상기 복수의 수용 홈 내에 충진된 복수의 발수 나노입자; a plurality of water-repellent nanoparticles filled in the plurality of receiving grooves;
    를 포함하는 방오 표면처리 구조체.An antifouling surface treatment structure comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 금속 모재는 The metal base material is
    알루미늄 또는 알루미늄 합금 재질로 형성된 방오 표면처리 구조체.Antifouling surface treatment structure formed of aluminum or aluminum alloy material.
  3. 제1항에 있어서,According to claim 1,
    상기 수용 홈은 The receiving groove is
    컵 형상을 갖는 방오 표면처리 구조체.An antifouling surface treatment structure having a cup shape.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 수용 홈은 The receiving groove is
    직경과 높이의 길이비가 1 : 3 ~ 3 : 1을 갖는 방오 표면처리 구조체.An antifouling surface treatment structure having a length ratio of diameter to height of 1: 3 to 3: 1.
  5. 제1항에 있어서,According to claim 1,
    상기 발수 나노입자는 The water-repellent nanoparticles are
    불소 기능기를 갖는 실리카, 불소 기능기를 갖는 자성체 및 불소 기능기를 갖는 고분자 수지 중 선택된 1종 이상을 포함하는 방오 표면처리 구조체.An antifouling surface treatment structure comprising at least one selected from silica having a fluorine functional group, a magnetic material having a fluorine functional group, and a polymer resin having a fluorine functional group.
  6. 제1항에 있어서,According to claim 1,
    상기 복수의 수용 홈 내에는 상기 복수의 발수 나노입자가 충진되어 발수 표면처리되고, The plurality of water-repellent nanoparticles are filled in the plurality of receiving grooves, and the water-repellent surface treatment is performed,
    상기 복수의 수용 홈을 제외한 금속 모재의 노출된 표면은 친수 표면처리된 방오 표면처리 구조체.The exposed surface of the metal base material except for the plurality of receiving grooves is a hydrophilic surface-treated antifouling surface treatment structure.
  7. 금속 모재를 1차 양극산화 처리하여 복수의 노치 홈을 형성하는 단계; forming a plurality of notch grooves by performing primary anodization on the metal base material;
    상기 복수의 노치 홈이 형성된 금속 모재를 2차 양극산화 처리하여 복수의 노치 홈 및 금속 모재의 표면을 덮으며, 상기 복수의 노치 홈과 대응되는 위치에 배치되는 복수의 씨드 홈을 구비하는 금속 산화층을 형성하는 단계; A metal oxide layer having a plurality of notched grooves and a plurality of seed grooves disposed at positions corresponding to the plurality of notched grooves by performing secondary anodization treatment on the metal base material having the plurality of notched grooves to cover the surface of the metal base material forming a;
    상기 금속 산화층이 형성된 금속 모재를 3차 양극산화 처리하여 상기 복수의 씨드 홈을 매개로 상기 금속 산화층 및 금속 모재의 일부를 제거하여, 상기 복수의 씨드 홈을 확장시키는 복수의 수용 홈을 형성하는 단계; 및 forming a plurality of receiving grooves extending the plurality of seed grooves by tertiarily anodizing the metal base material on which the metal oxide layer is formed to remove a portion of the metal oxide layer and the metal base material through the plurality of seed grooves; ; and
    상기 금속 모재의 복수의 수용 홈 내에 발수 나노입자 분산액을 코팅하고 건조하여 복수의 발수 나노입자를 충진하는 단계; filling the plurality of water-repellent nanoparticles by coating and drying the water-repellent nanoparticle dispersion in the plurality of receiving grooves of the metal base material;
    를 포함하는 방오 표면처리 방법.An antifouling surface treatment method comprising a.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 1차 양극산화 처리는 The first anodization treatment is
    40 ~ 45V의 DC 전압을 2 ~ 5시간 동안 인가하는 방오 표면처리 방법.An antifouling surface treatment method that applies a DC voltage of 40 to 45V for 2 to 5 hours.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 1차, 2차 및 3차 양극산화 처리 각각은 Each of the primary, secondary and tertiary anodization treatments is
    옥살산, 아세트산, 인산, 크롬산, 황산 및 염산 중 선택된 1종 이상을 전해액으로 이용하는 방오 표면처리 방법.An antifouling surface treatment method using at least one selected from oxalic acid, acetic acid, phosphoric acid, chromic acid, sulfuric acid and hydrochloric acid as an electrolyte.
  10. 제7항에 있어서,8. The method of claim 7,
    상기 2차 양극산화 처리는 The secondary anodization treatment is
    40 ~ 45V의 DC 전압을 2 ~ 5시간 동안 인가하는 방오 표면처리 방법.An antifouling surface treatment method that applies a DC voltage of 40 to 45V for 2 to 5 hours.
  11. 제7항에 있어서,8. The method of claim 7,
    상기 3차 양극산화 처리는 The tertiary anodization treatment is
    40 ~ 45V의 DC 전압을 10 ~ 30sec 동안 인가하는 방오 표면처리 방법.An antifouling surface treatment method that applies a DC voltage of 40 ~ 45V for 10 ~ 30sec.
  12. 제7항에 있어서,8. The method of claim 7,
    상기 수용 홈은 The receiving groove is
    컵 형상을 갖는 방오 표면처리 방법.An antifouling surface treatment method having a cup shape.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 수용 홈은 The receiving groove is
    직경과 높이의 길이비가 1 : 3 ~ 3 : 1을 갖는 방오 표면처리 방법.An antifouling surface treatment method having a length ratio of diameter to height of 1: 3 to 3: 1.
  14. 제7항에 있어서,8. The method of claim 7,
    상기 발수 나노입자는 The water-repellent nanoparticles are
    불소 기능기를 갖는 실리카, 불소 기능기를 갖는 자성체 및 불소 기능기를 갖는 고분자 수지 중 선택된 1종 이상을 포함하는 방오 표면처리 방법.An antifouling surface treatment method comprising at least one selected from silica having a fluorine functional group, a magnetic material having a fluorine functional group, and a polymer resin having a fluorine functional group.
PCT/KR2021/019097 2021-01-21 2021-12-15 Antifouling surface treatment method, and antifouling surface treatment structure obtained thereby WO2022158723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0008891 2021-01-21
KR1020210008891A KR102512457B1 (en) 2021-01-21 2021-01-21 Antifoulding surface treatment method and antifoulding surface treatment structure thereof

Publications (1)

Publication Number Publication Date
WO2022158723A1 true WO2022158723A1 (en) 2022-07-28

Family

ID=82549758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019097 WO2022158723A1 (en) 2021-01-21 2021-12-15 Antifouling surface treatment method, and antifouling surface treatment structure obtained thereby

Country Status (2)

Country Link
KR (1) KR102512457B1 (en)
WO (1) WO2022158723A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971897A (en) * 1995-09-06 1997-03-18 Akira Fujishima Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production
JP2000239895A (en) * 1999-02-24 2000-09-05 Sumitomo Light Metal Ind Ltd Aluminum surface treated material excellent in water repellent property and its production
JP2005336538A (en) * 2004-05-26 2005-12-08 Fuji Photo Film Co Ltd Fine structure and method of producing the same
KR20140005426A (en) * 2012-07-03 2014-01-15 한국전기연구원 Superhydrophobic surfaces consisted of homogeneously mixed nanostructure and microstructure
US20200124769A1 (en) * 2017-07-26 2020-04-23 Pacific Light & Hologram, Inc. Low reflection articles and related systems and methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030097421A (en) 2002-06-21 2003-12-31 박청기 Water and oil repellent and anti-fouling coating composition, preparation thereof and spray containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971897A (en) * 1995-09-06 1997-03-18 Akira Fujishima Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production
JP2000239895A (en) * 1999-02-24 2000-09-05 Sumitomo Light Metal Ind Ltd Aluminum surface treated material excellent in water repellent property and its production
JP2005336538A (en) * 2004-05-26 2005-12-08 Fuji Photo Film Co Ltd Fine structure and method of producing the same
KR20140005426A (en) * 2012-07-03 2014-01-15 한국전기연구원 Superhydrophobic surfaces consisted of homogeneously mixed nanostructure and microstructure
US20200124769A1 (en) * 2017-07-26 2020-04-23 Pacific Light & Hologram, Inc. Low reflection articles and related systems and methods

Also Published As

Publication number Publication date
KR20220105927A (en) 2022-07-28
KR102512457B1 (en) 2023-03-20

Similar Documents

Publication Publication Date Title
WO2011133000A2 (en) Super-hydrorepellent coating composition, super-hydrorepellent coating layer including cured product of the super-hydrorepellent coating composition, and heat exchanger including the super-hydrorepellent coating layer
WO2020153532A1 (en) Ceramic coating for preventing corrosion of aluminum material having improved surface characteristics
JP5797561B2 (en) Method for producing semiconductor indium oxide film, indium oxide film produced according to the method, and use of the film
WO2013009150A2 (en) Inorganic particle scattering film having a good light-extraction performance
CN1582505A (en) Organic thin film transistor with siloxane polymer interface
WO2013100365A1 (en) Monomer for hardmask composition, hardmask composition including monomer, and pattern forming method using hardmask composition
US5393815A (en) Silazane-based, heat resistant, dielectric coating compositions
CN110452389B (en) Low-temperature-resistant low-permeability silicone resin coating composition and preparation method thereof
WO2022158723A1 (en) Antifouling surface treatment method, and antifouling surface treatment structure obtained thereby
JPS589791B2 (en) Method for reducing porosity and surface roughness of ceramic substrates
WO2012050291A1 (en) Heat-dissipating device for tv set-top box
CA1101657A (en) Hv insulation materials
WO2018194366A1 (en) Electrostatic chuck sealed with sealant and method for manufacturing same
JP2000222959A (en) Surface modified insulator and method of modifying surface of insulator
WO2020013485A1 (en) Composition for etching silicon nitride film and method for etching silicon nitride film by using same
EP0489428B1 (en) Formation of heat-resistant dielectric coatings
JP2001098218A (en) Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film
KR20000052937A (en) Stable solutions of a silsesquioxane or siloxane resin and a silicone solvent
EP2864402A1 (en) Transparent polyimide substrate and method of manufacturing the same
WO2017209325A1 (en) Electrostatic chuck and manufacturing method therefor
US5451655A (en) Process for making thermostable coating materials
WO2019074167A1 (en) Composition for forming silica membrane, manufacturing method for silica membrane, and silica membrane
WO2021149876A1 (en) Hydrophilic stainless steel and method for manufacturing same
WO2019124722A1 (en) Modified siloxane resin, modified siloxane resin crosslinked product, and manufacturing method for resin crosslinked product
WO2022035207A1 (en) Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921480

Country of ref document: EP

Kind code of ref document: A1