JPH08302498A - Antibacterial and mildewproof building material - Google Patents

Antibacterial and mildewproof building material

Info

Publication number
JPH08302498A
JPH08302498A JP7135728A JP13572895A JPH08302498A JP H08302498 A JPH08302498 A JP H08302498A JP 7135728 A JP7135728 A JP 7135728A JP 13572895 A JP13572895 A JP 13572895A JP H08302498 A JPH08302498 A JP H08302498A
Authority
JP
Japan
Prior art keywords
coating
film
coating film
fine particles
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7135728A
Other languages
Japanese (ja)
Other versions
JP3210546B2 (en
Inventor
Nobuyuki Nakada
信之 中田
Toshio Arai
敏夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15158496&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08302498(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP13572895A priority Critical patent/JP3210546B2/en
Priority to US08/634,985 priority patent/US5753322A/en
Publication of JPH08302498A publication Critical patent/JPH08302498A/en
Application granted granted Critical
Publication of JP3210546B2 publication Critical patent/JP3210546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Abstract

PURPOSE: To provide an antibacterial and mildewproof aluminum building material made free of maintenance without the necessity for a special device, without the surface of an aluminum alloy substrate being corroded with an antibacterial and mildewproof film and coated with high adhesive strength. CONSTITUTION: An anodic oxide film 2 is formed on the surface of an aluminum alloy 1, and the film is coated with a coatnig material conting. a photocatalytic semiconductor fine grain by electrodeposition coating, electrostatic coating, etc. An aluminum building material coated with a coating film 10a, wherein a semiconductor fine grain 11 is mixed, formed on the anodic oxide film is obtained by this method. A coating material contg. an antibacterial metallic fine grain can be used along with the semiconductor fine grain. Besides, a double-layer structure consisting of an ordinary coating film as the lower layer and a coating film, wherein an antibacterial metallic fine grain is mixed, as the surface layer can be used instead.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗菌・防黴性の建築材
料(以下、建材という)に関し、さらに詳しくは、アル
ミニウム又はアルミニウム合金製の建材(以下、アルミ
建材という)表面に形成した陽極酸化皮膜上に、光触媒
作用を有する半導体微粒子、さらには抗菌性金属微粒子
を含有もしくは担持した塗膜を形成してなる抗菌・防黴
作用に優れたアルミ建材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial and antifungal building material (hereinafter referred to as building material), and more specifically, an anode formed on the surface of a building material made of aluminum or aluminum alloy (hereinafter referred to as aluminum building material). The present invention relates to an aluminum building material having excellent antibacterial and antifungal effects, which is formed by forming a coating film containing or carrying semiconductor fine particles having a photocatalytic action and fine particles of antibacterial metal on an oxide film.

【0002】[0002]

【従来の技術】近年、MRSA(メチシリン耐性黄色ブ
ドウ球菌)等の院内感染が問題視されるようになってき
ている。院内感染の多くは日和見感染症であり、ウィル
ス、細菌、原虫、黴等が抵抗力や免疫力が低下した人体
の中で急に活発化して発症する感染症である。例えばM
RSAの感染に関して言えば、その菌は主に患者や院内
従事者の体、スリッパ、医療器具等を介して病院内に広
がるようだが、空気中の塵埃に菌が付着して空気感染を
起こすこともある。そのため、院内感染を防ぐには室内
空気全体を殺菌、浄化処理する必要があり、従来、薬品
による消毒や空気清浄器に頼ってきた。しかしながら、
消毒においては、薬品を用いるため人体への影響が無視
できず、薬品の臭いも不快感を与えるといった問題があ
り、また、作業が容易でない等の理由から頻繁に行うわ
けにもいかなかった。一方、空気清浄器による院内の浄
化は比較的容易ではあるが、空気中の塵埃等を静電気に
より除去する原理であるため、細菌、黴、及びそれに付
随する臭気等は除去しにくいといった問題があった。ま
た、煙草のヤニがサッシ、パネル材等の建築部材表面に
付着し汚れた場合、美観を損ねるだけでなく、その部分
に細菌が付着し繁殖し易いという問題もあった。
2. Description of the Related Art In recent years, nosocomial infections such as MRSA (methicillin-resistant Staphylococcus aureus) have become a problem. Most of the nosocomial infections are opportunistic infections, in which viruses, bacteria, protozoa, fungi, etc. suddenly become active in humans with reduced resistance and immunity. For example, M
Regarding the infection of RSA, it seems that the bacteria spread inside the hospital mainly through the body of patients and in-hospital workers, slippers, medical equipment, etc., but the bacteria adhere to dust in the air and cause air infection. There is also. Therefore, in order to prevent nosocomial infections, it is necessary to sterilize and purify the entire indoor air, and conventionally, reliance on chemical disinfection and air purifiers has been used. However,
In the disinfection, there is a problem that the influence on the human body cannot be ignored because a chemical is used, and the smell of the chemical causes discomfort, and it cannot be performed frequently because the work is not easy. On the other hand, although it is relatively easy to clean the inside of the hospital using an air purifier, there is a problem in that it is difficult to remove bacteria, fungi, and odors that accompany it because it is a principle of removing dust and the like in the air by static electricity. It was In addition, when a tar of a cigarette adheres to the surface of a building member such as a sash or a panel material and is contaminated, not only the appearance is impaired, but also bacteria are easily adhered to that portion and are prone to breeding.

【0003】ところで、TiO2 に代表される光触媒作
用を有する半導体微粒子が、その光触媒作用により有機
物の分解を行い、その作用に基づき抗菌・防黴・防汚・
防臭作用を有することは従来から知られており、最近で
はそれらを利用して、細菌や黴が繁殖しにくい様々な材
料が研究、開発されている。例えば、特開平2−633
3号公報には酸化チタンの粒子表面に銅、亜鉛等の抗菌
性金属を担持させた抗菌性粉末について開示されてお
り、この粉末を樹脂、ゴム、ガラス等に配合することに
よって抗菌性組成物が得られ、また、公知の方法によ
り、電機機器、家具調度品、室内装飾材、食品等の包装
資材などの抗菌性処理のほか、環境衛生施設、機器類の
抗菌剤として上記粉末を利用できると教示している。特
開平6−65012号公報には、銀、銅、亜鉛、白金等
の金属を含有した酸化チタン膜をコンクリート、ガラ
ス、プラスチック、セラミックス、金属等の材質からな
る基板にコーティングすることによって、該基板におい
て雑菌及び黴の繁殖を防止できる旨が開示されている。
さらに特開平4−307066号公報には、パネルの裏
面に光触媒を付設し、該パネルの裏側に短波長ランプを
配置し、このランプから光触媒へ紫外線照射することに
よって、光触媒を活性化し、パネルが設置された室内の
脱臭を図るという室内空気のリフレッシュ法が開示され
ている。
By the way, semiconductor fine particles having a photocatalytic action represented by TiO 2 decompose organic substances by the photocatalytic action, and based on the action, antibacterial, antifungal, antifouling,
It has been conventionally known that it has a deodorizing effect, and recently, various materials have been researched and developed by utilizing them, in which bacteria and mold are hard to reproduce. For example, JP-A-2-633
Japanese Patent Publication No. 3 discloses an antibacterial powder in which antibacterial metal such as copper and zinc is supported on the surface of titanium oxide particles, and the antibacterial composition is prepared by blending the powder with resin, rubber, glass and the like. In addition to the antibacterial treatment of electrical equipment, furniture furnishings, upholstery materials, packaging materials such as foods, etc., the above-mentioned powder can be used as an antibacterial agent for environmental hygiene facilities and equipment by a known method. I teach. Japanese Unexamined Patent Publication No. 6-65012 discloses that a titanium oxide film containing a metal such as silver, copper, zinc or platinum is coated on a substrate made of a material such as concrete, glass, plastic, ceramics, metal, etc. Discloses that the propagation of germs and mold can be prevented.
Further, in Japanese Patent Laid-Open No. 4-307066, a photocatalyst is attached to the back surface of the panel, a short wavelength lamp is arranged on the back side of the panel, and the photocatalyst is activated by irradiating the photocatalyst with ultraviolet rays from the lamp. A method for refreshing the indoor air is disclosed, which aims to deodorize the installed room.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、アルミ
ニウム又はアルミニウム合金(以下、アルミ合金とい
う)製の建築部材、例えばパネル材上に酸化チタン等の
光触媒をコーティングすると、光触媒の強い酸化還元作
用によってパネル表面が腐食(酸化)され易いという問
題がある。また、アルミ合金基材と光触媒の充分な密着
性が得られず、コーティングした光触媒の膜が剥離し易
いという問題がある。また、複雑な形状を有する建材上
に均一に光触媒をコーティングすることは困難であり、
さらに、通常、光触媒をコーティングする場合、200
℃を超える温度に基材を加熱する必要があり、このよう
な温度にアルミ合金をさらすとアルミ合金の強度が著し
く低下してしまう。
However, when a photocatalyst such as titanium oxide is coated on a building member made of aluminum or an aluminum alloy (hereinafter referred to as an aluminum alloy), for example, a panel material, the panel surface is strongly oxidized and reduced by the photocatalyst. Has a problem that it is easily corroded (oxidized). Further, there is a problem that sufficient adhesion between the aluminum alloy base material and the photocatalyst cannot be obtained and the coated photocatalyst film is easily peeled off. Further, it is difficult to uniformly coat the photocatalyst on a building material having a complicated shape,
Furthermore, when coating a photocatalyst, it is usually 200
It is necessary to heat the base material to a temperature higher than ° C, and exposing the aluminum alloy to such a temperature significantly reduces the strength of the aluminum alloy.

【0005】従って、本発明の目的は、上記のような問
題を解決し、特別の装置を要することなくメンテナンス
フリーであり、しかも抗菌・防黴性の膜がアルミ合金基
材表面を腐食することなくかつ高い密着強度でコーティ
ングされた抗菌・防黴性のアルミ建材を提供することに
ある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to be maintenance-free without requiring a special device, and to have an antibacterial / antifungal film corrode the surface of an aluminum alloy substrate. It is to provide an antibacterial / mildewproof aluminum building material which is coated with high adhesion strength without any damage.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、アルミニウム又はアルミニウム合
金からなる基材の表面に陽極酸化皮膜を形成し、さらに
該陽極酸化皮膜上に光触媒作用を有する半導体微粒子を
含有もしくは担持した塗膜をコーティングしてなるアル
ミ建材が提供される。好適な態様においては、前記光触
媒作用を有する半導体微粒子と共に銀、銅等の抗菌性の
金属微粒子を含有もしくは担持した塗膜をコーティング
することにより、より一層抗菌・防黴性に優れた建材が
提供される。さらに本発明の他の態様によれば、前記塗
膜が、光触媒作用を有する半導体微粒子が混在していな
い塗膜からなる層の上に、上記半導体微粒子あるいはさ
らに抗菌性の金属微粒子が混在する塗膜を形成した二層
構造の塗膜からなる建材が提供される。
In order to achieve the above object, according to the present invention, an anodized film is formed on the surface of a substrate made of aluminum or an aluminum alloy, and a photocatalytic action is further formed on the anodized film. Provided is an aluminum building material obtained by coating a coating film containing or carrying semiconductor particles having: In a preferred embodiment, by providing a coating film containing or carrying antibacterial metal fine particles such as silver and copper together with the semiconductor fine particles having a photocatalytic action, a building material further excellent in antibacterial and antifungal properties is provided. To be done. Further, according to another aspect of the present invention, the coating film is a layer in which the semiconductor fine particles or the antibacterial metal fine particles are mixed on a layer made of a coating film in which semiconductor fine particles having a photocatalytic action are not mixed. Provided is a building material comprising a film having a two-layer structure.

【0007】[0007]

【発明の作用及び態様】前記したように、アルミ合金地
金に直接、光触媒作用を有する半導体膜(以下、光触媒
膜という)をコーティングすると、光触媒膜の強い酸化
還元作用によってアルミ合金地金表面が腐食(酸化)さ
れてしまい、また、光触媒膜とアルミ合金地金との密着
性が悪く、衝撃を受けた場合に光触媒膜が剥離してしま
うという問題がある。また、複雑な形状を有する押出形
材等に光触媒膜をコーティングする場合は、膜の付き廻
りの問題があり、凹部や隅角部にまで光触媒膜を均一に
コーティングすることは困難である。さらに、通常行わ
れている光触媒微粒子を含む懸濁液を基材表面に塗布、
焼結させる方法や、金属簿膜を形成した後、これを酸化
させて所定の光触媒膜を形成する方法では、200℃を
超える温度下での処理が必要であるが、アルミ合金の場
合には、このような高い温度にさらすとその強度が著し
く低下してしまうという問題がある。
As described above, when a semiconductor film having a photocatalytic action (hereinafter referred to as a photocatalytic film) is directly coated on an aluminum alloy ingot, the surface of the aluminum alloy ingot is affected by the strong redox action of the photocatalytic film. There is a problem in that the photocatalyst film is corroded (oxidized), the adhesion between the photocatalyst film and the aluminum alloy base metal is poor, and the photocatalyst film is peeled off when an impact is applied. Further, when a photocatalyst film is coated on an extruded shape member having a complicated shape, there is a problem of the film surrounding, and it is difficult to uniformly coat the photocatalyst film even on the concave portions and the corners. Furthermore, a suspension containing photocatalyst fine particles that is usually applied is applied to the surface of the substrate,
The method of sintering or the method of forming a metal film and then oxidizing it to form a predetermined photocatalyst film requires treatment at a temperature higher than 200 ° C. However, when exposed to such a high temperature, there is a problem that its strength is significantly reduced.

【0008】前記のような問題点を解決するためには、
光触媒膜とアルミ合金地金の間に、光触媒膜の有する強
い酸化還元作用をバリヤーし、しかも光触媒膜とアルミ
合金地金との密着性を強める効果を有する膜を介在させ
る必要がある。このような中間膜として、本発明のアル
ミ建材は、アルミ合金表面に一体的に形成される微多孔
質の陽極酸化皮膜を利用するものである。さらに本発明
は、光触媒作用を有する半導体微粒子の担体として塗膜
を用い、通常のアルミ建材の塗装工程を利用することに
より、抗菌・防黴性の膜が高い密着強度でコーティング
されたアルミ建材を提供するものである。
In order to solve the above problems,
It is necessary to interpose between the photocatalyst film and the aluminum alloy base metal a film that has a function of barriering the strong redox action of the photocatalyst film and enhancing the adhesion between the photocatalyst film and the aluminum alloy base metal. As such an intermediate film, the aluminum building material of the present invention utilizes a microporous anodic oxide film integrally formed on the surface of the aluminum alloy. Furthermore, the present invention uses a coating film as a carrier of semiconductor fine particles having a photocatalytic action, and by utilizing a usual aluminum building material coating process, an aluminum building material coated with a high adhesion strength of an antibacterial / mildewproof film is provided. It is provided.

【0009】すなわち、本発明のアルミ建材は、アルミ
合金からなる基材の表面に陽極酸化皮膜を形成し、さら
にこの陽極酸化皮膜上に光触媒作用を有する半導体微粒
子を少なくともその一部が塗膜表面より部分的に露出す
るように含有もしくは担持した塗膜をコーティングした
ものである。陽極酸化皮膜は絶縁膜であり、しかも表面
に直径約5nm〜200nmの細孔が無数に開いた微多
孔質で、しかも凹凸のある構造を有している。従って、
その絶縁効果によってアルミ合金地金に対する光触媒の
酸化還元作用がバリヤーされ、しかも、微多孔質構造に
よるアンカー効果によって、コーティングされる抗菌・
防黴性の膜のアルミ合金地金に対する密着性を向上させ
ることができる。また、本発明のアルミ建材は、通常の
アルミ建材の塗装工程を利用して光触媒作用を有する半
導体微粒子を含有もしくは担持する塗膜を陽極酸化皮膜
上にコーティングしたものであるため、従来の光触媒膜
の場合のように200℃を超える温度下での処理は不要
となり、アルミ合金基材の強度低下を招くことはない。
また、パネル材から複雑な形状の押出形材まで種々の形
状のアルミ建材に対して、抗菌・防黴性の膜を、高い密
着強度で、しかも容易にかつ作業性よくコーティングで
きる。
That is, in the aluminum building material of the present invention, an anodized film is formed on the surface of a base material made of an aluminum alloy, and at least a part of the semiconductor fine particles having a photocatalytic action is formed on the surface of the anodized film. It is a coating film containing or carried so as to be more partially exposed. The anodized film is an insulating film, and has a microporous structure in which a large number of pores having a diameter of about 5 nm to 200 nm are opened on the surface, and has a structure with irregularities. Therefore,
Due to its insulating effect, the redox action of the photocatalyst on the aluminum alloy base metal is barriered, and the antibacterial effect is coated by the anchor effect of the microporous structure.
It is possible to improve the adhesion of the antifungal film to the aluminum alloy base metal. Further, the aluminum building material of the present invention is a conventional photocatalytic film, because a coating film containing or carrying semiconductor fine particles having a photocatalytic action is coated on the anodic oxide film by utilizing the coating process of a usual aluminum building material. In this case, the treatment at a temperature exceeding 200 ° C. becomes unnecessary, and the strength of the aluminum alloy base material is not lowered.
Also, an antibacterial / mildew-proof film can be coated on aluminum building materials of various shapes, from panel materials to extruded shapes of complicated shapes, with high adhesion strength and easily and with good workability.

【0010】このように、本発明のアルミ建材は、光触
媒の有する強い酸化還元作用をバリヤーし、しかも塗膜
とアルミ合金地金との密着性を強めるアンカー効果を有
する陽極酸化皮膜の上に光触媒作用を有する半導体微粒
子を含有もしくは担持した塗膜をコーティングしたもの
であるため、アルミ合金地金表面の腐食(酸化)や光触
媒膜の剥離といった問題もなく優れた抗菌・防黴作用を
示す。このような建材表面には、光触媒作用を有する半
導体微粒子、例えば、TiO2 が存在しているため、こ
の半導体微粒子に太陽光線や蛍光灯の光が照射される
と、TiO2 表面に正孔(h+ )や電子(e- )が生じ
光触媒作用を示し、水や各種の有機物の分解が行われ
る。また、この正孔の作用により空気中の酸素が還元さ
れ、酸素ラジカルを生ずる。この酸素ラジカルは優れた
殺菌作用を有し、その結果、黴等が生じにくくなる。
As described above, the aluminum building material of the present invention is a photocatalyst on the anodic oxide coating that has a barrier effect against the strong redox effect of the photocatalyst and has an anchoring effect that strengthens the adhesion between the coating film and the aluminum alloy base metal. Since it is coated with a coating film containing or carrying fine semiconductor particles having an action, it exhibits an excellent antibacterial and antifungal action without problems such as corrosion (oxidation) of the aluminum alloy base metal surface and peeling of the photocatalyst film. Such building material surface, the semiconductor fine particles having a photocatalytic action, for example, because the TiO 2 is present, when light sunlight or a fluorescent lamp is irradiated to the semiconductor fine particles, a hole on TiO 2 surface ( h + ) and electrons (e ) are generated to show a photocatalytic action, and water and various organic substances are decomposed. Also, the action of the holes reduces oxygen in the air to generate oxygen radicals. This oxygen radical has an excellent bactericidal action, and as a result, mildew and the like are less likely to occur.

【0011】本発明のアルミ建材の使用に際しては、例
えば上記のような作用を有する建材から枠材もしくは框
材、パネル材を製作し、これを同様に光触媒作用を有す
る半導体微粒子を含有もしくは担持する水密気密材と組
み合わせて建具ユニットを構成する。この建具は室内面
全体に光触媒膜がコーティングされており、日中は太陽
光線が照射され、夜間は蛍光灯の光が照射されるため、
コーティング面は常に光触媒作用を発揮する。この光触
媒作用によって、抗菌・防黴作用を示す面となる。ま
た、室内空気は常に対流しているため建具内面に接して
おり、このようにして建具内面に触れることにより清浄
化される。
When the aluminum building material of the present invention is used, for example, a frame material, a frame material, or a panel material is manufactured from the building material having the above-mentioned action, and similarly, it contains or carries semiconductor fine particles having a photocatalytic action. Combined with a watertight airtight material to form a fitting unit. This fitting has a photocatalytic film coated on the entire interior surface, which is exposed to sunlight during the day and fluorescent light at night.
The coated surface always exhibits photocatalysis. Due to this photocatalytic action, it becomes a surface exhibiting antibacterial and antifungal actions. Further, since the indoor air is always convected, it is in contact with the inner surface of the fitting, and in this manner, the inner surface of the fitting is touched to be cleaned.

【0012】本発明で用いる半導体としては、電子−正
孔移動度比が比較的大きく、上記のような光触媒作用を
有する半導体であればいずれも使用可能であり、例えば
TiO2 、RuO2 、Cs3 Sb、InAs、InS
b、GaAs等が挙げられるが、これらの中でも特にT
iO2 が好ましい。使用する半導体微粒子の粒径は、1
nm〜1μm、好ましくは5nm〜0.5μmが適当で
ある。粒径が1nmよりも小さくなると量子サイズ効果
によりバンドギャップが大きくなり、紫外線などのエネ
ルギーの大きな照明下でないと光触媒性能が得られない
といった問題がある。また、粒径があまりに小さ過ぎる
と取り扱いが困難であったり、分散性が悪くなるという
問題も生じてくる。取り扱い性の点からは5nm以上の
粒径が好ましい。一方、粒径が1μmを超えると、半導
体微粒子の担持性が悪くなり、基材表面に形成される塗
膜中の半導体微粒子含有量が少なくなる。さらには、粒
径が大きいと、塗膜表面に比較的大きな半導体微粒子が
存在することになるため、表面の滑らかさが乏しくな
り、また、表面に露出した粒子が脱落し易くもなる。以
上の点から、半導体微粒子は0.5μm以下の粒径が好
ましい。
As the semiconductor used in the present invention, any semiconductor having a relatively large electron-hole mobility ratio and having the above-mentioned photocatalytic action can be used. For example, TiO 2 , RuO 2 , Cs. 3 Sb, InAs, InS
b, GaAs, etc., but among these, T
iO 2 is preferred. The particle size of the semiconductor particles used is 1
nm to 1 μm, preferably 5 nm to 0.5 μm. If the particle size is smaller than 1 nm, the band gap becomes large due to the quantum size effect, and there is a problem that the photocatalytic performance cannot be obtained unless it is illuminated with a large energy such as ultraviolet rays. In addition, if the particle size is too small, handling may be difficult or the dispersibility may be deteriorated. From the viewpoint of handleability, a particle size of 5 nm or more is preferable. On the other hand, when the particle size exceeds 1 μm, the ability to carry the semiconductor fine particles deteriorates, and the content of the semiconductor fine particles in the coating film formed on the surface of the base material decreases. Further, if the particle size is large, relatively large semiconductor fine particles are present on the surface of the coating film, so that the surface becomes poor in smoothness and the particles exposed on the surface easily fall off. From the above points, the semiconductor fine particles preferably have a particle size of 0.5 μm or less.

【0013】また、前記粒径を有する半導体微粒子の形
状は、球形又はそれに近い形状であることが望ましい。
半導体の光触媒特性自体に関しては、半導体微粒子の形
状に依存しているわけではないのでどのような形状でも
問題ないが、塗料中に半導体微粒子を分散させるために
は、その分散の容易性からファイバー状や針状構造より
球形又はそれに近い形状の粒子の方が好ましい。また、
得られる塗膜の表面の滑らかさも球形粒子を用いた方が
勝っている。
Further, it is desirable that the semiconductor fine particles having the above-mentioned particle diameter have a spherical shape or a shape close thereto.
The photocatalytic properties of semiconductors themselves do not depend on the shape of the semiconductor particles, so any shape is acceptable, but in order to disperse the semiconductor particles in the paint, it is easy to disperse them in the form of fibers. Particles having a spherical shape or a shape close thereto are preferable to a needle-like structure. Also,
The smoothness of the surface of the obtained coating film is superior when the spherical particles are used.

【0014】本発明のアルミ建材においては、電着塗装
あるいは静電塗装等の塗装によって光触媒作用を有する
抗菌・防黴性の塗膜を形成している。従って、塗装され
る基材の形状は複雑なものからパネル状のものまで適応
可能である。電着塗装あるいは静電塗装は、建材の表面
処理に通常用いられている方法であり、この方法を適用
することによって、複雑な形状の部材に均一な抗菌・防
黴性塗膜を形成することが可能となり、さらには現状の
生産設備を変更することなしに抗菌・防黴性塗膜の形成
を行うことが可能となる。塗料としてはアクリル系、ポ
リエステル系、ポリウレタン系、フッ素系等の塗料が使
用されるが、建材の塗膜として適度の強度と密着性を有
するものであれば特に限定されず、用途に応じて適宜選
定することができる。
In the aluminum building material of the present invention, an antibacterial and antifungal coating film having a photocatalytic action is formed by coating such as electrodeposition coating or electrostatic coating. Therefore, the shape of the substrate to be coated can be adapted from a complicated shape to a panel shape. Electrodeposition coating or electrostatic coating is a method that is usually used for surface treatment of building materials, and by applying this method, it is possible to form a uniform antibacterial and antifungal coating film on a member with a complicated shape. In addition, it is possible to form an antibacterial / antifungal coating film without changing the current production equipment. As the paint, acrylic-based, polyester-based, polyurethane-based, or fluorine-based paint is used, but it is not particularly limited as long as it has appropriate strength and adhesion as a coating material for building materials, and is appropriately selected depending on the application. Can be selected.

【0015】前記塗料と半導体微粒子を使用した光触媒
作用を有する抗菌・防黴性塗膜の形成方法としては、種
々の方法を用いることができる。例えば、塗料材料に前
記半導体微粒子を適量混合し、この塗料粒子と半導体微
粒子を含む塗料溶液を用いて電着塗装を行うと、半導体
微粒子を担持した塗料粒子がアニオン化し、建材表面に
付着する。これを、水洗し、焼き付けを行うことによっ
て、表面に光触媒作用を有する半導体微粒子を含んだ塗
膜が形成された建材が得られる。また、静電塗装におい
ては、前記塗料粒子と半導体微粒子を含む塗料溶液を用
いることにより、半導体微粒子を担持した塗料粒子が微
小電荷を持ち、アースされた被塗物に付着する。これを
焼き付け処理することによって、表面に光触媒作用を有
する半導体微粒子を含んだ塗膜が形成された建材が得ら
れる。このような塗装法により、図1に示すように、ア
ルミ合金地金1表面に形成された陽極酸化皮膜2上に、
光触媒作用を有する半導体微粒子11が混在した塗膜1
0aがコーティングされたアルミ建材が得られる。塗膜
10aの一部は陽極酸化皮膜2の細孔3内に侵入してい
るため、陽極酸化皮膜2に対する上記抗菌・防黴性の塗
膜10aの密着強度は極めて優れている。
Various methods can be used as a method for forming an antibacterial / antifungal coating film having a photocatalytic effect using the coating material and semiconductor fine particles. For example, when a suitable amount of the semiconductor fine particles is mixed with a coating material and electrodeposition coating is performed using a coating solution containing the coating particles and the semiconductor particles, the coating particles carrying the semiconductor particles are anionized and adhere to the surface of the building material. This is washed with water and baked to obtain a building material having a coating film containing semiconductor particles having a photocatalytic action on the surface. Further, in electrostatic coating, by using a coating solution containing the coating particles and semiconductor fine particles, the coating particles supporting the semiconductor fine particles have a minute charge and adhere to the grounded object to be coated. By baking this, a building material having a coating film containing semiconductor fine particles having a photocatalytic action on the surface thereof can be obtained. By such a coating method, as shown in FIG. 1, on the anodic oxide film 2 formed on the surface of the aluminum alloy base metal 1,
Coating film 1 in which semiconductor fine particles 11 having a photocatalytic action are mixed
An aluminum building material coated with 0a is obtained. Since a part of the coating film 10a penetrates into the pores 3 of the anodic oxide coating 2, the adhesion strength of the antibacterial and antifungal coating 10a to the anodic oxide coating 2 is extremely excellent.

【0016】別の抗菌・防黴性塗膜の形成方法として
は、例えば電着塗装法や静電塗装法によって、陽極酸化
皮膜上に半導体微粒子が混在しない塗膜をコーティング
し、この塗膜が焼き付け処理前のまだ軟らかい段階で、
光触媒作用を有する半導体微粒子を塗膜表面に吹き付け
る方法も採用できる。このような方法によって、図2に
示すように、半導体微粒子11が一部、塗膜10bの表
面部に埋め込まれた状態に、表面部に半導体微粒子11
を担持した塗膜10bが陽極酸化皮膜(図示せず)上に
コーティングされる。この方法においては、半導体微粒
子の吹き付け圧力等を調整することによって、塗膜10
bの表面部にのみ、図2に示すように半導体微粒子11
が比較的均一に埋め込まれた状態にコントロールするこ
とができる。
As another method for forming an antibacterial and antifungal coating film, for example, an electrodeposition coating method or an electrostatic coating method is used to coat a coating film on which semiconductor fine particles are not mixed on the anodized film. At the still soft stage before baking,
A method of spraying semiconductor fine particles having a photocatalytic action on the surface of the coating film can also be adopted. By such a method, as shown in FIG. 2, the semiconductor fine particles 11 are partially embedded in the surface portion of the coating film 10b, and the semiconductor fine particles 11 are formed on the surface portion.
The coating film 10b carrying is coated on an anodized film (not shown). In this method, the coating film 10 is adjusted by adjusting the spraying pressure of the semiconductor particles.
As shown in FIG. 2, the semiconductor fine particles 11 are formed only on the surface of b.
Can be controlled to be embedded relatively uniformly.

【0017】前記したいずれの方法によっても、得られ
る抗菌・防黴性の塗膜が光触媒作用を発揮するために
は、光触媒作用を有する半導体微粒子の少なくとも一部
が塗膜表面より部分的に露出している状態にすることが
必要である。従って、塗膜中に含有もしくは担持される
半導体微粒子の量的割合は、塗膜全量の0.01〜10
0重量%の範囲が好ましい。0.01重量%より少なく
なると光触媒特性を発揮する半導体微粒子の量が不足
し、ひいては建材の充分な抗菌・防黴性が得られず、一
方、100重量%を超えると抗菌・防黴性の発揮に関し
ては問題ないが、塗膜の密着性が著しく低下するので好
ましくない。特に、半導体微粒子を混合した塗料溶液を
用いて電着塗装法や静電塗装法によって塗装する方法で
は、塗膜中に含有され光触媒特性の発揮に寄与しない半
導体微粒子の量的割合が増えるため、塗料溶液に混合さ
れる光触媒作用を有する半導体微粒子の混合量は、塗料
中の塗料樹脂成分に対し、10重量%以上、100重量
%未満の範囲にあることが好ましい。
In order to exert a photocatalytic action on the antibacterial / mildew-resistant coating film obtained by any of the above-mentioned methods, at least a part of the semiconductor fine particles having a photocatalytic action is partially exposed from the coating film surface. It is necessary to be in a state of being in operation. Therefore, the quantitative ratio of the semiconductor fine particles contained or supported in the coating film is 0.01 to 10 of the total amount of the coating film.
A range of 0% by weight is preferred. If it is less than 0.01% by weight, the amount of semiconductor fine particles exhibiting photocatalytic properties is insufficient, and thus sufficient antibacterial and antifungal properties of building materials cannot be obtained, while if it exceeds 100% by weight, antibacterial and antifungal properties are not obtained. Although there is no problem in terms of performance, it is not preferable because the adhesion of the coating film is significantly reduced. In particular, in the method of coating by the electrodeposition coating method or the electrostatic coating method using the coating solution in which the semiconductor fine particles are mixed, since the quantitative ratio of the semiconductor fine particles contained in the coating film and not contributing to the exertion of the photocatalytic property is increased, The mixing amount of the photocatalytic semiconductor fine particles to be mixed with the coating solution is preferably in the range of 10% by weight or more and less than 100% by weight with respect to the coating resin component in the coating.

【0018】塗膜の膜厚は、数μm〜数十μmが適当で
ある。膜厚が厚い程塗膜の耐候性は増大するが、建材に
穴を開けたり、切断したりする加工時や、施工時に剥離
が起きやすくなる。また、塗膜中に含まれる半導体微粒
子の量も多くなり経済的でない。一方、膜厚が薄くなれ
ば光触媒作用を示す半導体微粒子の量が少なくなり、光
触媒作用が弱まり、さらに、塗膜の耐候性が低下する。
光触媒作用を発揮させるには1μm程度の膜厚で充分で
あるので、その建材に要求される耐候性によって塗装膜
厚を適宜選定すればよい。
The thickness of the coating film is suitably several μm to several tens of μm. The thicker the film thickness, the more the weather resistance of the coating film increases, but peeling is more likely to occur during the process of making or cutting holes in the building material or during construction. In addition, the amount of semiconductor fine particles contained in the coating film increases, which is not economical. On the other hand, when the film thickness is thin, the amount of semiconductor fine particles exhibiting a photocatalytic action is reduced, the photocatalytic action is weakened, and the weather resistance of the coating film is lowered.
Since a film thickness of about 1 μm is sufficient to exert the photocatalytic action, the coating film thickness may be appropriately selected depending on the weather resistance required for the building material.

【0019】本発明の建材の別の態様は、前記光触媒作
用を有する半導体微粒子を塗膜中に混在させた層と、塗
膜だけからなる層の二層構造の塗膜を有する。二層構造
の塗膜としたことにより、光触媒作用を維持させたまま
含有させる半導体微粒子の量を減少させることが可能と
なる。この二層構造の塗膜を形成する方法としては、前
記したような塗装法により、通常の塗料を用いた塗装の
後に、塗料材料に半導体微粒子を適量混合した塗料溶液
を用いて塗装を行うことによって、二層構造で表層に光
触媒作用を有する半導体微粒子を含んだ塗膜が得られ
る。すなわち、図3に示すように、アルミ合金地金1表
面に形成された陽極酸化皮膜2上に、下層の半導体微粒
子が混在していない通常の塗膜10cと、該塗膜10c
の上にコーティングされた半導体微粒子11が混在した
塗膜10dの二層構造の塗膜が形成されたアルミ建材が
得られる。このような態様においても、下層の塗膜10
cの一部は陽極酸化皮膜2の細孔3内に侵入しているた
め、塗膜10cの陽極酸化皮膜2に対する密着強度は極
めて優れている。
Another aspect of the building material of the present invention has a coating film having a two-layer structure of a layer in which the semiconductor fine particles having a photocatalytic action are mixed in the coating film and a layer consisting of only the coating film. By using a coating film having a two-layer structure, it becomes possible to reduce the amount of semiconductor fine particles to be contained while maintaining the photocatalytic action. As a method of forming a coating film of this two-layer structure, after coating with a normal coating material by the coating method as described above, coating with a coating material solution in which an appropriate amount of semiconductor fine particles are mixed with the coating material is applied. Thus, a coating film having a two-layer structure and containing semiconductor fine particles having a photocatalytic action on the surface layer is obtained. That is, as shown in FIG. 3, on the anodic oxide coating 2 formed on the surface of the aluminum alloy base metal 1, a normal coating film 10c in which the lower semiconductor fine particles are not mixed, and the coating film 10c.
An aluminum building material having a two-layered coating film of the coating film 10d in which the semiconductor fine particles 11 coated on the above is mixed is obtained. Even in such an embodiment, the lower coating film 10
Since a part of c penetrates into the pores 3 of the anodic oxide coating 2, the adhesion strength of the coating film 10c to the anodic oxide coating 2 is extremely excellent.

【0020】尚、上記の態様においても、表層に混在さ
せる半導体微粒子の量は、前記態様と同じ理由により、
表層の塗膜10d全量の0.01〜100重量%、好ま
しくは10〜100重量%の範囲にあることが望まし
い。また、表層に使用される塗料と下層を構成するため
に使用される塗料は、それらが二層構造を形成したとき
に充分な密着強度が確保できれば異なるものでもよい
が、密着強度を考慮すると同一種類の塗料を使用するこ
とが好ましい。さらに二層構造の場合の各層の膜厚は、
前記態様と同じ理由により、表層は0.5〜1μm、基
材側の下層は数μm〜数十μm程度が好ましい。
In the above embodiment, the amount of the semiconductor fine particles mixed in the surface layer is the same as in the above embodiment because of the same reason.
It is desirable that the amount is 0.01 to 100% by weight, preferably 10 to 100% by weight of the total amount of the coating film 10d on the surface layer. Further, the paint used for the surface layer and the paint used for forming the lower layer may be different as long as sufficient adhesive strength can be secured when they form a two-layer structure, but the same when considering the adhesive strength. It is preferred to use a type of paint. Furthermore, in the case of a two-layer structure, the film thickness of each layer is
For the same reason as in the above embodiment, the surface layer preferably has a thickness of 0.5 to 1 μm, and the lower layer on the substrate side has a thickness of preferably several μm to several tens of μm.

【0021】以上、本発明の建材として二つの基本的態
様を述べたが、さらに抗菌性を向上させる材料として前
記半導体微粒子以外に銅、銀、白金等の抗菌性を有する
金属微粒子を塗膜中に含有もしくは担持させてもよい。
これらの金属は、光の照射がなくても抗菌性を発揮する
ので、これらの抗菌性金属を含有もしくは担持する塗膜
では、夜間、蛍光灯の明かりが消えても抗菌・防黴性が
維持されることになる。尚、これら抗菌性金属微粒子の
大きさ、形状や塗膜への添加方法も前述した光触媒作用
を有する半導体微粒子の場合と同様であり、また、その
含有量は、一緒に混在する半導体微粒子との合計量で、
それらが含有もしくは担持される塗膜全量の0.01〜
100重量%、好ましくは10〜100重量%の範囲に
あることが望ましい。
The two basic aspects of the building material of the present invention have been described above. In addition to the semiconductor fine particles, metal fine particles having antibacterial properties such as copper, silver and platinum are further coated in the coating film as a material for further improving the antibacterial properties. May be contained in or carried by.
Since these metals exhibit antibacterial properties even without light irradiation, a coating film containing or carrying these antibacterial metals maintains antibacterial and antifungal properties even at night when the light of a fluorescent lamp goes out. Will be done. Incidentally, the size, shape and method of adding these antibacterial metal fine particles to the coating film are the same as those of the semiconductor fine particles having a photocatalytic action described above, and the content thereof is the same as that of the semiconductor fine particles mixed together. In total amount,
0.01 to the total amount of coating film containing or carrying them
It is desirable to be in the range of 100% by weight, preferably 10 to 100% by weight.

【0022】前記のような抗菌性の金属微粒子を光触媒
作用を有する半導体微粒子と共に含有もしくは担持する
塗膜の構造例を図4乃至図6に示す。図4は、アルミ合
金地金1表面に形成された陽極酸化皮膜2上に、光触媒
作用を有する半導体微粒子11と抗菌性金属微粒子12
が混在した塗膜10eがコーティングされた構造を示し
ている。一方、図5は、塗料溶液のみの塗装によって陽
極酸化皮膜上に形成した塗膜10fに、半導体微粒子1
1及び抗菌性金属微粒子12を吹き付けることによっ
て、これらの微粒子が塗膜の表面部に埋め込まれた状態
を示している。図6は、陽極酸化皮膜2上に、下層の通
常の塗膜10gと、該塗膜10gの上にコーティングさ
れた半導体微粒子11と抗菌性金属微粒子12とが混在
した塗膜10hの二層構造の塗膜が形成された例を示し
ている。
4 to 6 show structural examples of coating films containing or carrying the above-mentioned antibacterial metal fine particles together with semiconductor fine particles having a photocatalytic action. FIG. 4 shows a semiconductor fine particle 11 having a photocatalytic action and an antibacterial metal fine particle 12 on an anodized film 2 formed on the surface of an aluminum alloy base metal 1.
3 shows a structure in which the coating film 10e in which is mixed is coated. On the other hand, FIG. 5 shows that the semiconductor fine particles 1 are formed on the coating film 10f formed on the anodized film by coating only the coating solution.
By spraying 1 and the antibacterial metal fine particles 12, these fine particles are shown embedded in the surface portion of the coating film. FIG. 6 shows a two-layer structure of a normal coating film 10 g as a lower layer on the anodized film 2, and a coating film 10 h in which semiconductor fine particles 11 and antibacterial metal fine particles 12 coated on the coating film 10 g are mixed. An example in which the coating film of No. 1 is formed is shown.

【0023】[0023]

【実施例】以下、実施例を示して本発明の効果について
さらに具体的に説明するが、本発明が下記実施例に限定
されるものでないことはもとよりである。
EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples.

【0024】実施例1 硫酸電解浴中で膜厚10μmの陽極酸化皮膜を形成した
Al板上に、光触媒であるTiO2 の微粉末(平均粒径
20nm)をそれぞれ5重量%(試料No.1)、50
重量%(試料No.2)及び100重量%(試料No.
3)混練したアクリル系塗料を用い、塗膜の膜厚が10
μmとなるよう電着塗装を行った。また、比較のため
に、陽極酸化皮膜を形成していないAl板上に、光触媒
であるTiO2 の微粉末(平均粒径20nm)を50重
量%混練したアクリル系塗料を用い、塗膜の膜厚が10
μmとなるよう電着塗装を行った(試料No.4)。な
お、電着塗装は、所定量のTiO2 微粉末と塗料を混練
した後、水で希釈し、この塗料中に陽極酸化処理Al板
を浸し、1分間通電せずに塗料とAl板を馴染ませた
後、塗料温度20〜25℃、印加電圧DC200Vの条
件で所定の膜厚が得られるまで電圧を印加して行った。
その後、純水を用い、2回水洗した後、190℃で40
分間焼き付けを行った。
Example 1 5% by weight of fine powder of TiO 2 (average particle size 20 nm) as a photocatalyst (Sample No. 1) was formed on an Al plate on which an anodized film having a thickness of 10 μm was formed in a sulfuric acid electrolytic bath. ), 50
% By weight (Sample No. 2) and 100% by weight (Sample No. 2).
3) Using a kneaded acrylic paint, the film thickness of the coating film is 10
Electrodeposition coating was performed so as to have a thickness of μm. For comparison, an acrylic paint in which 50% by weight of fine powder of TiO 2 (photocatalyst) (average particle size 20 nm) was kneaded on an Al plate without an anodized film was used to form a coating film. Thickness is 10
Electrodeposition coating was performed so as to have a thickness of μm (Sample No. 4). In the electrodeposition coating, a predetermined amount of TiO 2 fine powder and a paint are kneaded, diluted with water, and an anodized Al plate is dipped in the paint, and the paint and the Al plate are mixed with each other without energizing for 1 minute. After the removal, a voltage was applied under the conditions of a coating temperature of 20 to 25 ° C. and an applied voltage of DC 200 V until a predetermined film thickness was obtained.
After that, it was washed twice with pure water and then at 40 ° C at 40 ° C.
It was baked for a minute.

【0025】防黴性評価:上記実施例1で得られたTi
2 微粉末を含有する塗膜をコーティングした各Al板
の防黴性を調べるため、温度25℃、湿度90%に保っ
た大気雰囲気に50日間暴露した。その結果を表1に示
す。表示方法については、塗装表面に黴の発生が認めら
れなかったものには■、認められたものには×で表示し
てある。
Anti-mold evaluation: Ti obtained in Example 1 above
In order to examine the anti-mold property of each Al plate coated with the coating film containing O 2 fine powder, the Al plate was exposed to an air atmosphere kept at a temperature of 25 ° C. and a humidity of 90% for 50 days. Table 1 shows the results. The marking method is indicated by ■ when no mold is found on the coated surface, and by x when it is found.

【表1】 [Table 1]

【0026】密着性評価:上記実施例1で得られたTi
2 微粉末を含有する塗膜をコーティングした各Al板
に対し、スコッチテープ試験(JIS H 8602の
5.8項に記載のセロハン粘着テープを用いた塗膜の付
着性試験)を行い、またJIS H 8504に規定す
る方法にしたがってスクラッチ試験を行い、それぞれ塗
膜の密着性をテストした。その結果を表2に示す。
Evaluation of adhesion: Ti obtained in Example 1 above
Each Al plate coated with a coating film containing O 2 fine powder was subjected to a Scotch tape test (adhesion test of coating film using cellophane adhesive tape described in Section 5.8 of JIS H 8602). A scratch test was performed according to the method specified in JIS H 8504, and the adhesion of each coating film was tested. The results are shown in Table 2.

【表2】 [Table 2]

【0027】表1からわかるように、試料No.1にお
いては防黴性は不十分であったが、その他の試料No.
2〜4については防黴効果が認められた。これは、試料
No.1においては塗料への光触媒TiO2 の混入量が
少なかったため、塗膜表面に露出している光触媒が少な
く、それ故、防黴性が不十分であったといえる。その他
の試料については、光触媒の混入量が充分であったた
め、防黴効果が発揮されたものである。また、表2の密
着性試験の結果から明らかなように、試料No.3及び
No.4においては密着性に劣るという結果が得られ
た。試料No.3は、塗料への光触媒TiO2 の混入量
が多かったために密着性が低下したものである。また、
陽極酸化皮膜が形成されていないAl板上に塗装を行っ
た試料No.4では、陽極酸化皮膜によるアンカー効果
がないために密着性が劣ったものである。陽極酸化皮膜
上にそれぞれ5重量%及び50重量%の光触媒混合量の
塗膜が塗装された試料No.1及び2については、塗膜
の密着強度が向上し、密着性試験においても全く剥離を
生ずることはなかった。
As can be seen from Table 1, the sample No. In No. 1, the mold resistance was insufficient, but other sample Nos.
About 2-4, the antifungal effect was recognized. This is sample No. In No. 1, since the amount of the photocatalyst TiO 2 mixed in the paint was small, the photocatalyst exposed on the coating film surface was small, and therefore it can be said that the antifungal property was insufficient. As for the other samples, the antifungal effect was exhibited because the amount of the photocatalyst mixed was sufficient. Further, as is clear from the results of the adhesion test in Table 2, the sample No. 3 and No. 3 In No. 4, the result was inferior in adhesiveness. Sample No. In No. 3, the adhesion was lowered because the amount of the photocatalyst TiO 2 mixed in the paint was large. Also,
Sample No. 1 coated on an Al plate on which an anodized film was not formed. In No. 4, the adhesion was poor because there was no anchoring effect due to the anodized film. Sample No. 1 in which a coating film with a photocatalyst mixing amount of 5% by weight and 50% by weight, respectively, was applied on the anodized film. Regarding Nos. 1 and 2, the adhesion strength of the coating film was improved and no peeling occurred at all in the adhesion test.

【0028】実施例2 硫酸電解浴中で膜厚10μmの陽極酸化皮膜を形成した
Al板上に、アクリル系塗料のみを用いて塗膜の膜厚が
8μmとなるよう電着塗装を行った後、TiO2 の微粉
末(平均粒径20nm)を50重量%混練したアクリル
系塗料を用い、塗膜の膜厚が2μmとなるよう電着塗装
を行った。なお、電着塗装の条件及び工程は前記実施例
1の場合と同様である。
Example 2 An aluminum plate on which an anodized film having a thickness of 10 μm was formed was subjected to electrodeposition coating using an acrylic paint alone so that the thickness of the coating film would be 8 μm in a sulfuric acid electrolytic bath. , 50% by weight of fine powder of TiO 2 (average particle size 20 nm) was kneaded, and electrodeposition coating was performed so that the thickness of the coating film was 2 μm. The conditions and steps of the electrodeposition coating are the same as in the case of the first embodiment.

【0029】上記実施例2で得られた抗菌・防黴性の塗
膜について、前記と同様にして防黴性及び密着性の評価
を行った。その結果を表3に示す。
The antibacterial and antifungal coatings obtained in Example 2 were evaluated for antifungal properties and adhesion in the same manner as described above. Table 3 shows the results.

【表3】 表3に示す結果から明らかなように、二層構造の塗膜を
コーティングしたAl板は、防黴性及び密着性共に優
れ、光触媒混入塗膜と通常の塗膜の間での剥離は認めら
れなかった。
[Table 3] As is clear from the results shown in Table 3, the Al plate coated with the two-layer structure coating film has excellent anti-mold property and adhesion, and peeling between the photocatalyst-containing coating film and the ordinary coating film is observed. There wasn't.

【0030】[0030]

【発明の効果】以上のように、本発明のアルミ建材は、
アルミ合金からなる基材の表面に、光触媒の強い酸化還
元作用に対する強いバリヤーとして機能し、しかも塗膜
とアルミ合金地金との密着性を強めるアンカー効果を有
する陽極酸化皮膜を形成し、さらにこの陽極酸化皮膜の
上に光触媒作用を有する半導体微粒子あるいはさらに抗
菌性金属微粒子を含有もしくは担持する塗膜をコーティ
ングしたものであるため、アルミ合金地金の表面の腐食
(酸化)や光触媒膜の剥離といった問題もなく、また、
光が当たる材料表面の塗膜には充分な量の半導体微粒子
あるいはさらに抗菌性金属微粒子が存在するため、優れ
た抗菌・防黴作用を示す。従って、本発明によれば、特
別の装置を要することなくメンテナンスフリーであり、
しかも抗菌・防黴性の膜がアルミ合金基材表面に高い密
着強度でコーティングされた自己浄化性のアルミ建材が
提供される。さらに、光触媒作用を有する半導体微粒子
を混在させた塗料を用いることにより、従来の表面処理
工程に何等変更を加えることなく、アルミ合金上に抗菌
・防黴性の膜を形成できる。この方法によれば、複雑な
形状の押出形材からパネル材に至るまで種々の形状の建
材に対して全く同じ処理方法で抗菌・防黴性の膜の形成
が可能である。
As described above, the aluminum building material of the present invention is
On the surface of the base material made of aluminum alloy, an anodic oxide film that functions as a strong barrier against the strong redox action of the photocatalyst and has an anchoring effect that strengthens the adhesion between the coating film and the aluminum alloy base metal is further formed. Since the coating film containing or supporting semiconductor fine particles having photocatalytic action or antibacterial metal fine particles is coated on the anodic oxide film, corrosion (oxidation) of the surface of the aluminum alloy base metal and peeling of the photocatalytic film No problem,
A sufficient amount of semiconductor fine particles or further antibacterial metal fine particles are present in the coating film on the surface of the material which is exposed to the light, and thus exhibits excellent antibacterial and antifungal effects. Therefore, according to the present invention, it is maintenance-free without requiring a special device,
Moreover, a self-cleaning aluminum building material in which an antibacterial / mildew-proof film is coated on the surface of an aluminum alloy substrate with high adhesion strength is provided. Furthermore, by using a coating material in which semiconductor fine particles having a photocatalytic action are mixed, an antibacterial and antifungal film can be formed on an aluminum alloy without any modification to the conventional surface treatment process. According to this method, it is possible to form an antibacterial / mildew-proof film by using exactly the same treatment method for building materials of various shapes ranging from extruded shapes having complicated shapes to panel materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】陽極酸化皮膜上に光触媒作用を有する半導体微
粒子が混在した塗膜がコーティングされたアルミ建材の
構造を概略的に示す部分拡大断面図である。
FIG. 1 is a partially enlarged sectional view schematically showing the structure of an aluminum building material in which a coating film in which semiconductor fine particles having a photocatalytic action are mixed is coated on an anodized film.

【図2】半導体微粒子が塗膜表面部に埋め込まれた状態
の塗膜構造を概略的に示す部分拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view schematically showing a coating film structure in which semiconductor particles are embedded in a coating film surface portion.

【図3】陽極酸化皮膜上に、通常の塗膜と、半導体微粒
子が混在した塗膜の二層構造の塗膜がコーティングされ
たアルミ建材の構造を概略的に示す部分拡大断面図であ
る。
FIG. 3 is a partially enlarged cross-sectional view schematically showing the structure of an aluminum building material in which a normal coating film and a coating film having a mixture of semiconductor particles are coated on the anodized film in a two-layer structure.

【図4】陽極酸化皮膜上に半導体微粒子と抗菌性金属微
粒子が混在した塗膜がコーティングされたアルミ建材の
構造を概略的に示す部分拡大断面図である。
FIG. 4 is a partially enlarged cross-sectional view schematically showing the structure of an aluminum building material in which a coating film in which semiconductor particles and antibacterial metal particles are mixed is coated on an anodized film.

【図5】半導体微粒子と抗菌性金属微粒子が塗膜表面部
に埋め込まれた状態の塗膜構造を概略的に示す部分拡大
断面図である。
FIG. 5 is a partially enlarged cross-sectional view schematically showing a coating film structure in which semiconductor particles and antibacterial metal particles are embedded in a coating film surface portion.

【図6】陽極酸化皮膜上に、通常の塗膜と、半導体微粒
子と抗菌性金属微粒子が混在した塗膜の二層構造の塗膜
がコーティングされたアルミ建材の構造を概略的に示す
部分拡大断面図である。
FIG. 6 is a partially enlarged view schematically showing the structure of an aluminum building material in which a normal coating film and a coating film having a two-layer structure of semiconductor particles and antibacterial metal particles are coated on the anodized film. FIG.

【符号の説明】 1 アルミ合金地金 2 陽極酸化皮膜 3 細孔 10a,10b,10c,10d,10e,10f,1
0g,10h 塗膜 11 半導体微粒子 12 抗菌性金属微粒子
[Explanation of Codes] 1 Aluminum alloy base metal 2 Anodized film 3 Pores 10a, 10b, 10c, 10d, 10e, 10f, 1
0g, 10h Coating film 11 Semiconductor fine particles 12 Antibacterial metal fine particles

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年7月3日[Submission date] July 3, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗菌・防黴性の建築材
料(以下、建材という)に関し、さらに詳しくは、アル
ミニウム又はアルミニウム合金製の建材(以下、アルミ
建材という)表面に形成した陽極酸化皮膜上に、光触媒
作用を有する半導体微粒子、さらには抗菌性金属微粒子
を含有もしくは担持した塗膜を形成してなる抗菌・防黴
作用に優れたアルミ建材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial and antifungal building material (hereinafter referred to as building material), and more specifically, an anode formed on the surface of a building material made of aluminum or aluminum alloy (hereinafter referred to as aluminum building material). The present invention relates to an aluminum building material having excellent antibacterial and antifungal effects, which is formed by forming a coating film containing or carrying semiconductor fine particles having a photocatalytic action and fine particles of antibacterial metal on an oxide film.

【0002】[0002]

【従来の技術】近年、MRSA(メチシリン耐性黄色ブ
ドウ球菌)等の院内感染が問題視されるようになってき
ている。院内感染の多くは日和見感染症であり、ウィル
ス、細菌、原虫、黴等が抵抗力や免疫力が低下した人体
の中で急に活発化して発症する感染症である。例えばM
RSAの感染に関して言えば、その菌は主に患者や院内
従事者の体、スリッパ、医療器具等を介して病院内に広
がるようだが、空気中の塵埃に菌が付着して空気感染を
起こすこともある。そのため、院内感染を防ぐには室内
空気全体を殺菌、浄化処理する必要があり、従来、薬品
による消毒や空気清浄器に頼ってきた。しかしながら、
消毒においては、薬品を用いるため人体への影響が無視
できず、薬品の臭いも不快感を与えるといった問題があ
り、また、作業が容易でない等の理由から頻繁に行うわ
けにもいかなかった。一方、空気清浄器による院内の浄
化は比較的容易ではあるが、空気中の塵埃等を静電気に
より除去する原理であるため、細菌、黴、及びそれに付
随する臭気等は除去しにくいといった問題があった。ま
た、煙草のヤニがサッシ、パネル材等の建築部材表面に
付着し汚れた場合、美観を損ねるだけでなく、その部分
に細菌が付着し繁殖し易いという問題もあった。
2. Description of the Related Art In recent years, nosocomial infections such as MRSA (methicillin-resistant Staphylococcus aureus) have become a problem. Most of the nosocomial infections are opportunistic infections, in which viruses, bacteria, protozoa, fungi, etc. suddenly become active in humans with reduced resistance and immunity. For example, M
Regarding the infection of RSA, it seems that the bacteria spread inside the hospital mainly through the body of patients and in-hospital workers, slippers, medical equipment, etc., but the bacteria adhere to dust in the air and cause air infection. There is also. Therefore, in order to prevent nosocomial infections, it is necessary to sterilize and purify the entire indoor air, and conventionally, reliance on chemical disinfection and air purifiers has been used. However,
In the disinfection, there is a problem that the influence on the human body cannot be ignored because a chemical is used, and the smell of the chemical causes discomfort, and it cannot be performed frequently because the work is not easy. On the other hand, although it is relatively easy to clean the inside of the hospital using an air purifier, there is a problem in that it is difficult to remove bacteria, fungi, and odors that accompany it because it is a principle of removing dust and the like in the air by static electricity. It was In addition, when a tar of a cigarette adheres to the surface of a building member such as a sash or a panel material and is contaminated, not only the appearance is impaired, but also bacteria are easily adhered to that portion and are prone to breeding.

【0003】ところで、TiOに代表される光触媒作
用を有する半導体微粒子が、その光触媒作用により有機
物の分解を行い、その作用に基づき抗菌・防黴・防汚・
防臭作用を有することは従来から知られており、最近で
はそれらを利用して、細菌や黴が繁殖しにくい様々な材
料が研究、開発されている。例えば、特開平2−633
3号公報には酸化チタンの粒子表面に銅、亜鉛等の抗菌
性金属を担持させた抗菌性粉末について開示されてお
り、この粉末を樹脂、ゴム、ガラス等に配合することに
よって抗菌性組成物が得られ、また、公知の方法によ
り、電機機器、家具調度品、室内装飾材、食品等の包装
資材などの抗菌性処理のほか、環境衛生施設、機器類の
抗菌剤として上記粉末を利用できると教示している。特
開平6−65012号公報には、銀、銅、亜鉛、白金等
の金属を含有した酸化チタン膜をコンクリート、ガラ
ス、プラスチック、セラミックス、金属等の材質からな
る基板にコーティングすることによって、該基板におい
て雑菌及び黴の繁殖を防止できる旨が開示されている。
さらに特開平4−307066号公報には、パネルの裏
面に光触媒を付設し、該パネルの裏側に短波長ランプを
配置し、このランプから光触媒へ紫外線照射することに
よって、光触媒を活性化し、パネルが設置された室内の
脱臭を図るという室内空気のリフレッシュ法が開示され
ている。
By the way, semiconductor fine particles having a photocatalytic action typified by TiO 2 decompose organic substances by the photocatalytic action, and based on the action, antibacterial, antifungal, antifouling,
It has been conventionally known that it has a deodorizing effect, and recently, various materials have been researched and developed by utilizing them, in which bacteria and mold are hard to reproduce. For example, JP-A-2-633
Japanese Patent Publication No. 3 discloses an antibacterial powder in which antibacterial metal such as copper and zinc is supported on the surface of titanium oxide particles, and the antibacterial composition is prepared by blending the powder with resin, rubber, glass and the like. In addition to the antibacterial treatment of electrical equipment, furniture furnishings, upholstery materials, packaging materials such as foods, etc., the above-mentioned powder can be used as an antibacterial agent for environmental hygiene facilities and equipment by a known method. I teach. Japanese Unexamined Patent Publication No. 6-65012 discloses that a titanium oxide film containing a metal such as silver, copper, zinc or platinum is coated on a substrate made of a material such as concrete, glass, plastic, ceramics, metal, etc. Discloses that the propagation of germs and mold can be prevented.
Further, in Japanese Patent Laid-Open No. 4-307066, a photocatalyst is attached to the back surface of the panel, a short wavelength lamp is arranged on the back side of the panel, and the photocatalyst is activated by irradiating the photocatalyst with ultraviolet rays from the lamp. A method for refreshing the indoor air is disclosed, which aims to deodorize the installed room.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、アルミ
ニウム又はアルミニウム合金(以下、アルミ合金とい
う)製の建築部材、例えばパネル材上に酸化チタン等の
光触媒をコーティングすると、アルミ合金基材と光触媒
の充分な密着性が得られず、コーティングした光触媒の
膜が剥離し易いという問題がある。また、複雑な形状を
有する建材上に均一に光触媒をコーティングすることは
困難であり、さらに、通常、光触媒をコーティングする
場合、200℃を超える温度に基材を加熱する必要があ
り、このような温度にアルミ合金をさらすとアルミ合金
の強度が著しく低下してしまう。
[SUMMARY OF THE INVENTION However, aluminum or aluminum alloy (hereinafter, referred to as aluminum alloy) building elements made of, for example, coating the photocatalyst such as titanium oxide on the panel member, the A Rumi alloy base and the photocatalyst There is a problem that sufficient adhesion cannot be obtained and the coated photocatalyst film is easily peeled off. Further, it is difficult to uniformly coat the photocatalyst on a building material having a complicated shape, and normally, when coating the photocatalyst, it is necessary to heat the base material to a temperature higher than 200 ° C. When the aluminum alloy is exposed to the temperature, the strength of the aluminum alloy is significantly reduced.

【0005】従って、本発明の目的は、上記のような問
題を解決し、特別の装置を要することなくメンテナンス
フリーであり、しかも抗菌・防黴性の膜が高い密着強度
でコーティングされた抗菌・防黴性のアルミ建材を提供
することにある。
It is therefore an object of the present invention is to solve the above problem, a maintenance-free without the need for special equipment, antimicrobial which moreover coated with adhesive strength antibacterial and antifungal properties of the film is not high -To provide antifungal aluminum building materials.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、アルミニウム又はアルミニウム合
金からなる基材の表面に陽極酸化皮膜を形成し、さらに
該陽極酸化皮膜上に光触媒作用を有する半導体微粒子を
含有もしくは担持した塗膜をコーティングしてなるアル
ミ建材が提供される。好適な態様においては、前記光触
媒作用を有する半導体微粒子と共に銀、銅等の抗菌性の
金属微粒子を含有もしくは担持した塗膜をコーティング
することにより、より一層抗菌・防黴性に優れた建材が
提供される。さらに本発明の他の態様によれば、前記塗
膜が、光触媒作用を有する半導体微粒子が混在していな
い塗膜からなる層の上に、上記半導体微粒子あるいはさ
らに抗菌性の金属微粒子が混在する塗膜を形成した二層
構造の塗膜からなる建材が提供される。
In order to achieve the above object, according to the present invention, an anodized film is formed on the surface of a substrate made of aluminum or an aluminum alloy, and a photocatalytic action is further formed on the anodized film. Provided is an aluminum building material obtained by coating a coating film containing or carrying semiconductor particles having: In a preferred embodiment, by providing a coating film containing or carrying antibacterial metal fine particles such as silver and copper together with the semiconductor fine particles having a photocatalytic action, a building material further excellent in antibacterial and antifungal properties is provided. To be done. Further, according to another aspect of the present invention, the coating film is a layer in which the semiconductor fine particles or the antibacterial metal fine particles are mixed on a layer made of a coating film in which semiconductor fine particles having a photocatalytic action are not mixed. Provided is a building material comprising a film having a two-layer structure.

【0007】[0007]

【発明の作用及び態様】前記したように、アルミ合金地
金に直接、光触媒作用を有する半導体膜(以下、光触媒
膜という)をコーティングすると、光触媒膜とアルミ合
金地金との密着性が悪く、衝撃を受けた場合に光触媒膜
が剥離してしまうという問題がある。また、複雑な形状
を有する押出形材等に光触媒膜をコーティングする場合
は、膜の付き廻りの問題があり、凹部や隅角部にまで光
触媒膜を均一にコーティングすることは困難である。さ
らに、通常行われている光触媒微粒子を含む懸濁液を基
材表面に塗布、焼結させる方法や、金属薄膜を形成した
後、これを酸化させて所定の光触媒膜を形成する方法で
は、200℃を超える温度下での処理が必要であるが、
アルミ合金の場合には、このような高い温度にさらすと
その強度が著しく低下してしまうという問題がある。
[Action and aspects of the invention] As described above, directly to the aluminum alloy ingots, the semiconductor film (hereinafter, referred to as a photocatalyst film) having a photocatalytic activity when coating the adhesion between the photocatalyst layer and the aluminum alloy base metal Poorly, there is a problem that the photocatalyst film peels off when it receives an impact. Further, when a photocatalyst film is coated on an extruded shape member having a complicated shape, there is a problem of the film surrounding, and it is difficult to uniformly coat the photocatalyst film even on the concave portions and the corners. Further, in the method which is usually performed, a method of applying a suspension containing photocatalyst fine particles to the surface of a substrate and sintering it, or a method of forming a metal thin film and then oxidizing this to form a predetermined photocatalyst film is used. It is necessary to process at a temperature above ℃,
In the case of an aluminum alloy, there is a problem that its strength is significantly reduced when exposed to such a high temperature.

【0008】前記のような問題点を解決するためには、
光触媒膜とアルミ合金地金の間に、光触媒膜とアルミ合
金地金との密着性を強める効果を有する膜を介在させる
必要がある。このような中間膜として、本発明のアルミ
建材は、アルミ合金表面に一体的に形成される微多孔質
の陽極酸化皮膜を利用するものである。さらに本発明
は、光触媒作用を有する半導体微粒子の担体として塗膜
を用い、通常のアルミ建材の塗装工程を利用することに
より、抗菌・防黴性の膜が高い密着強度でコーティング
されたアルミ建材を提供するものである。
In order to solve the above problems,
It is necessary to interpose between the photocatalyst film and the aluminum alloy base metal a film having the effect of enhancing the adhesion between the photocatalyst film and the aluminum alloy base metal. As such an intermediate film, the aluminum building material of the present invention utilizes a microporous anodic oxide film integrally formed on the surface of the aluminum alloy. Furthermore, the present invention uses a coating film as a carrier of semiconductor fine particles having a photocatalytic action, and by utilizing a usual aluminum building material coating process, an aluminum building material coated with a high adhesion strength of an antibacterial / mildewproof film is provided. It is provided.

【0009】すなわち、本発明のアルミ建材は、アルミ
合金からなる基材の表面に陽極酸化皮膜を形成し、さら
にこの陽極酸化皮膜上に光触媒作用を有する半導体微粒
子を少なくともその一部が塗膜表面より部分的に露出す
るように含有もしくは担持した塗膜をコーティングした
ものである。陽極酸化皮膜は絶縁膜であり、しかも表面
に直径約5nm〜200nmの細孔が無数に開いた微多
孔質で、しかも凹凸のある構造を有している。従って、
多孔質構造によるアンカー効果によって、コーティン
グされる抗菌・防黴性の膜のアルミ合金地金に対する密
着性を向上させることができる。また、本発明のアルミ
建材は、通常のアルミ建材の塗装工程を利用して光触媒
作用を有する半導体微粒子を含有もしくは担持する塗膜
を陽極酸化皮膜上にコーティングしたものであるため、
従来の光触媒膜の場合のように200℃を超える温度下
での処理は不要となり、アルミ合金基材の強度低下を招
くことはない。また、パネル材から複雑な形状の押出形
材まで種々の形状のアルミ建材に対して、抗菌・防黴性
の膜を、高い密着強度で、しかも容易にかつ作業性よく
コーティングできる。
That is, in the aluminum building material of the present invention, an anodized film is formed on the surface of a base material made of an aluminum alloy, and at least a part of the semiconductor fine particles having a photocatalytic action is formed on the surface of the anodized film. It is a coating film containing or carried so as to be more partially exposed. The anodized film is an insulating film, and has a microporous structure in which a large number of pores having a diameter of about 5 nm to 200 nm are opened on the surface, and has a structure with irregularities. Therefore,
The anchor effect of the microporous structure can improve the adhesion of the coated antibacterial and antifungal film to the aluminum alloy base metal. Further, since the aluminum building material of the present invention is a coating film containing or carrying semiconductor fine particles having a photocatalytic action, which is coated on the anodized film by using a usual aluminum building material coating process,
Unlike the case of the conventional photocatalyst film, the treatment at a temperature higher than 200 ° C. becomes unnecessary, and the strength of the aluminum alloy base material is not lowered. Also, an antibacterial / mildew-proof film can be coated on aluminum building materials of various shapes, from panel materials to extruded shapes of complicated shapes, with high adhesion strength and easily and with good workability.

【0010】このように、本発明のアルミ建材は、塗
とアルミ合金地金との密着性を強めるアンカー効果を有
する陽極酸化皮膜の上に光触媒作用を有する半導体微粒
子を含有もしくは担持した塗膜をコーティングしたもの
であるため、光触媒膜の剥離といった問題もなく優れた
抗菌・防黴作用を示す。このような建材表面には、光触
媒作用を有する半導体微粒子、例えば、TiOが存在
しているため、この半導体微粒子に太陽光線や蛍光灯の
光が照射されると、TiO表面に正孔(h及び
子(e)が生じ光触媒作用を示し、水や各種の有機物
の分解が行われる。すなわち、この電子の作用により空
気中の酸素が還元され、酸素ラジカルを生じ、また正孔
の作用によって水が酸化され、OHラジカルが生じる。
これら活性酸素は優れた殺菌作用を有し、その結果、黴
等が生じにくくなる。
As described above, the aluminum building material of the present invention is a coating film containing or carrying semiconductor fine particles having a photocatalytic action on an anodized film having an anchoring effect for enhancing the adhesion between the coating film and the aluminum alloy base metal. because the is obtained by coating, it exhibits superior antibacterial and antifungal activity without problems such peeling of the photocatalytic film. Such building material surface, the semiconductor fine particles having a photocatalytic action, for example, because the TiO 2 is present, when light sunlight or a fluorescent lamp is irradiated to the semiconductor fine particles, a hole on TiO 2 surface ( h + ) and electrons (e ) are generated to show a photocatalytic action, and water and various organic substances are decomposed. That is, this by the electronic effects are oxygen in the air reduction, Ji oxygen radicals raw, also the hole
Of water oxidizes the OH radicals.
These active oxygens have an excellent bactericidal action, and as a result, mildew and the like are less likely to occur.

【0011】本発明のアルミ建材の使用に際しては、例
えば上記のような作用を有する建材から枠材もしくは框
材、パネル材を製作し、これを同様に光触媒作用を有す
る半導体微粒子を含有もしくは担持する水密気密材と組
み合わせて建具ユニットを構成する。この建具は室内面
全体に光触媒膜がコーティングされており、日中は太陽
光線が照射され、夜間は蛍光灯の光が照射されるため、
コーティング面は常に光触媒作用を発揮する。この光触
媒作用によって、抗菌・防黴作用を示す面となる。ま
た、室内空気は常に対流しているため建具内面に接して
おり、このようにして建具内面に触れることにより清浄
化される。
When the aluminum building material of the present invention is used, for example, a frame material, a frame material, or a panel material is manufactured from the building material having the above-mentioned action, and similarly, it contains or carries semiconductor fine particles having a photocatalytic action. Combined with a watertight airtight material to form a fitting unit. This fitting has a photocatalytic film coated on the entire interior surface, which is exposed to sunlight during the day and fluorescent light at night.
The coated surface always exhibits photocatalysis. Due to this photocatalytic action, it becomes a surface exhibiting antibacterial and antifungal actions. Further, since the indoor air is always convected, it is in contact with the inner surface of the fitting, and in this manner, the inner surface of the fitting is touched to be cleaned.

【0012】本発明で用いる半導体としては、電子及び
正孔移動が比較的大きく、上記のような光触媒作用
を有する半導体であればいずれも使用可能であり、例え
ば特開平6−170360号等に開示されているような
従来公知のTiOSrTiO、ZnO、CdS、
Sn 、RuO、Cs Sb、InAs、InS
b、GaAs等が挙げられるが、これらの中でも特にT
iOが好ましい。使用する半導体微粒子の粒径は、1
nm〜1μm、好ましくは5nm〜0.5μmが適当で
ある。粒径が1nmよりも小さくなると量子サイズ効果
によりバンドギャップが大きくなり、低圧水銀ランプな
どの短波長光を発生する照明下でないと光触媒性能が得
られないといった問題がある。また、粒径があまりに小
さ過ぎると取り扱いが困難であったり、分散性が悪くな
るという問題も生じてくる。取り扱い性の点からは5n
m以上の粒径が好ましい。一方、粒径が1μmを超える
と、半導体微粒子の担持性が悪くなり、基材表面に形成
される塗膜中の半導体微粒子含有量が少なくなる。さら
には、粒径が大きいと、塗膜表面に比較的大きな半導体
微粒子が存在することになるため、表面の滑らかさが乏
しくなり、また、表面に露出した粒子が脱落し易くもな
る。以上の点から、半導体微粒子は0.5μm以下の粒
径が好ましい。
[0012] As semiconductor used in the present invention, the mobility of electrons and <br/> hole is relatively large, but any semiconductor having a photocatalytic action as described above may be used, for example, JP-A-6 -170360 etc.
Conventionally known TiO 2 , SrTiO 3 , ZnO, CdS,
Sn O 2, RuO 2, Cs 3 Sb, InAs, InS
b, GaAs, etc., but among these, T
iO 2 is preferred. The particle size of the semiconductor particles used is 1
nm to 1 μm, preferably 5 nm to 0.5 μm. Particle size band gap is increased by small becomes the quantum size effect than 1 nm, a low-pressure mercury lamp
There is a problem that the photocatalytic performance cannot be obtained unless it is under illumination that generates short wavelength light . In addition, if the particle size is too small, handling may be difficult or the dispersibility may be deteriorated. 5n from the point of handling
A particle size of m or more is preferred. On the other hand, when the particle size exceeds 1 μm, the ability to carry the semiconductor fine particles deteriorates, and the content of the semiconductor fine particles in the coating film formed on the surface of the base material decreases. Further, if the particle size is large, relatively large semiconductor fine particles are present on the surface of the coating film, so that the surface becomes poor in smoothness and the particles exposed on the surface easily fall off. From the above points, the semiconductor fine particles preferably have a particle size of 0.5 μm or less.

0013】本発明のアルミ建材においては、電着塗装
あるいは静電塗装等の塗装によって光触媒作用を有する
抗菌・防黴性の塗膜を形成している。従って、塗装され
る基材の形状は複雑なものからパネル状のものまで適応
可能である。電着塗装あるいは静電塗装は、建材の表面
処理に通常用いられている方法であり、この方法を適用
することによって、複雑な形状の部材に均一な抗菌・防
黴性塗膜を形成することが可能となり、さらには現状の
生産設備を変更することなしに抗菌・防黴性塗膜の形成
を行うことが可能となる。塗料としてはアクリル系、ポ
リエステル系、ポリウレタン系、フッ素系等の塗料が使
用されるが、建材の塗膜として適度の強度と密着性と光
触媒作用に対する耐久性を有するものであれば特に限定
されず、用途に応じて適宜選定することができる。
[0013] In aluminum building material of the present invention forms a antibacterial and antifungal properties of the coating film having a photocatalytic activity by coating such as electrodeposition coating, or electrostatic coating. Therefore, the shape of the substrate to be coated can be adapted from a complicated shape to a panel shape. Electrodeposition coating or electrostatic coating is a method that is usually used for surface treatment of building materials, and by applying this method, it is possible to form a uniform antibacterial and antifungal coating film on a member with a complicated shape. In addition, it is possible to form an antibacterial / antifungal coating film without changing the current production equipment. Acrylic, polyester, polyurethane, and fluorine-based paints are used as paints, but they have appropriate strength, adhesion, and light as coatings for building materials.
It is not particularly limited as long as it has durability against the catalytic action , and can be appropriately selected according to the application.

0014】前記塗料と半導体微粒子を使用した光触媒
作用を有する抗菌・防黴性塗膜の形成方法としては、種
々の方法を用いることができる。例えば、塗料材料に前
記半導体微粒子を適量混合し、この塗料粒子と半導体微
粒子を含む塗料溶液を用いて電着塗装を行うと、半導体
微粒子を担持した塗料粒子がアニオン化し、建材表面に
付着する。これを、水洗し、焼き付けを行うことによっ
て、表面に光触媒作用を有する半導体微粒子を含んだ塗
膜が形成された建材が得られる。また、静電塗装におい
ては、前記塗料粒子と半導体微粒子を含む塗料溶液を用
いることにより、半導体微粒子を担持した塗料粒子が微
小電荷を持ち、アースされた被塗物に付着する。これを
焼き付け処理することによって、表面に光触媒作用を有
する半導体微粒子を含んだ塗膜が形成された建材が得ら
れる。このような塗装法により、図1に示すように、ア
ルミ合金地金1表面に形成された陽極酸化皮膜2上に、
光触媒作用を有する半導体微粒子11が混在した塗膜1
0aがコーティングされたアルミ建材が得られる。塗膜
10aの一部は陽極酸化皮膜2の細孔3内に侵入してい
るため、陽極酸化皮膜2に対する上記抗菌・防黴性の塗
膜10aの密着強度は極めて優れている。
[0014] As a method for forming the antibacterial and antifungal coating film having a photocatalytic activity using the paint and the semiconductor fine particles may be used a variety of methods. For example, when a suitable amount of the semiconductor fine particles is mixed with a coating material and electrodeposition coating is performed using a coating solution containing the coating particles and the semiconductor particles, the coating particles carrying the semiconductor particles are anionized and adhere to the surface of the building material. This is washed with water and baked to obtain a building material having a coating film containing semiconductor particles having a photocatalytic action on the surface. Further, in electrostatic coating, by using a coating solution containing the coating particles and semiconductor fine particles, the coating particles supporting the semiconductor fine particles have a minute charge and adhere to the grounded object to be coated. By baking this, a building material having a coating film containing semiconductor fine particles having a photocatalytic action on the surface thereof can be obtained. By such a coating method, as shown in FIG. 1, on the anodic oxide film 2 formed on the surface of the aluminum alloy base metal 1,
Coating film 1 in which semiconductor fine particles 11 having a photocatalytic action are mixed
An aluminum building material coated with 0a is obtained. Since a part of the coating film 10a penetrates into the pores 3 of the anodic oxide coating 2, the adhesion strength of the antibacterial and antifungal coating 10a to the anodic oxide coating 2 is extremely excellent.

0015】別の抗菌・防黴性塗膜の形成方法として
は、例えば電着塗装法や静電塗装法によって、陽極酸化
皮膜上に半導体微粒子が混在しない塗膜をコーティング
し、この塗膜が焼き付け処理前のまだ軟らかい段階で、
光触媒作用を有する半導体微粒子を塗膜表面に吹き付け
る方法も採用できる。このような方法によって、図2に
示すように、半導体微粒子11が一部、塗膜10bの表
面部に埋め込まれた状態に、表面部に半導体微粒子11
を担持した塗膜10bが陽極酸化皮膜(図示せず)上に
コーティングされる。この方法においては、半導体微粒
子の吹き付け圧力等を調整することによって、塗膜10
bの表面部にのみ、図2に示すように半導体微粒子11
が比較的均一に埋め込まれた状態にコントロールするこ
とができる。
[0015] As a method of forming another antibacterial and antifungal coating film, for example, by electrodeposition coating method or an electrostatic coating method, coating a coating semiconductor fine particles are not mixed on the anodized film, the coating film At the still soft stage before baking,
A method of spraying semiconductor fine particles having a photocatalytic action on the surface of the coating film can also be adopted. By such a method, as shown in FIG. 2, the semiconductor fine particles 11 are partially embedded in the surface portion of the coating film 10b, and the semiconductor fine particles 11 are formed on the surface portion.
The coating film 10b carrying is coated on an anodized film (not shown). In this method, the coating film 10 is adjusted by adjusting the spraying pressure of the semiconductor particles.
As shown in FIG. 2, the semiconductor fine particles 11 are formed only on the surface of b.
Can be controlled to be embedded relatively uniformly.

0016】前記したいずれの方法によっても、得られ
る抗菌・防黴性の塗膜が光触媒作用を発揮するために
は、光触媒作用を有する半導体微粒子の少なくとも一部
が塗膜表面より部分的に露出している状態にすることが
必要である。従って、塗膜中に含有もしくは担持される
半導体微粒子の量的割合は、塗膜全量の0.01〜10
0重量%の範囲が好ましい。0.01重量%より少なく
なると光触媒特性を発揮する半導体微粒子の量が不足
し、ひいては建材の充分な抗菌・防黴性が得られず、一
方、100重量%を超えると抗菌・防黴性の発揮に関し
ては問題ないが、塗膜の密着性が著しく低下するので好
ましくない。特に、半導体微粒子を混合した塗料溶液を
用いて電着塗装法や静電塗装法によって塗装する方法で
は、塗膜中に含有され光触媒特性の発揮に寄与しない半
導体微粒子の量的割合が増えるため、塗料溶液に混合さ
れる光触媒作用を有する半導体微粒子の混合量は、塗料
中の塗料樹脂成分に対し、10重量%以上、100重量
%未満の範囲にあることが好ましい。
[0016] by any of the methods described above, for antibacterial and antifungal properties of the coating film obtained exerts photocatalysis is partially exposed from at least partially coating the surface of the semiconductor fine particles having a photocatalytic activity It is necessary to be in a state of being in operation. Therefore, the quantitative ratio of the semiconductor fine particles contained or supported in the coating film is 0.01 to 10 of the total amount of the coating film.
A range of 0% by weight is preferred. If it is less than 0.01% by weight, the amount of semiconductor fine particles exhibiting photocatalytic properties is insufficient, and thus sufficient antibacterial and antifungal properties of building materials cannot be obtained, while if it exceeds 100% by weight, antibacterial and antifungal properties are not obtained. Although there is no problem in terms of performance, it is not preferable because the adhesion of the coating film is significantly reduced. In particular, in the method of coating by the electrodeposition coating method or the electrostatic coating method using the coating solution in which the semiconductor fine particles are mixed, since the quantitative ratio of the semiconductor fine particles contained in the coating film and not contributing to the exertion of the photocatalytic property is increased, The mixing amount of the photocatalytic semiconductor fine particles to be mixed with the coating solution is preferably in the range of 10% by weight or more and less than 100% by weight with respect to the coating resin component in the coating.

0017】塗膜の膜厚は、数μm〜数十μmが適当で
ある。膜厚が厚い程塗膜の耐候性は増大するが、建材に
穴を開けたり、切断したりする加工時や、施工時に剥離
が起きやすくなる。また、塗膜中に含まれる半導体微粒
子の量も多くなり経済的でない。
[0017] The coating thickness is several μm~ several tens μm are suitable. The thicker the film thickness, the more the weather resistance of the coating film increases, but peeling is more likely to occur during the process of making or cutting holes in the building material or during construction. Also, the more even the amount of the semiconductor fine particles contained in the coating film economically at an unsupported.

0018】本発明の建材の別の態様は、前記光触媒作
用を有する半導体微粒子を塗膜中に混在させた層と、塗
膜だけからなる層の二層構造の塗膜を有する。二層構造
の塗膜としたことにより、光触媒作用を維持させたまま
含有させる半導体微粒子の量を減少させることが可能と
なる。この二層構造の塗膜を形成する方法としては、前
記したような塗装法により、通常の塗料を用いた塗装の
後に、塗料材料に半導体微粒子を適量混合した塗料溶液
を用いて塗装を行うことによって、二層構造で表層に光
触媒作用を有する半導体微粒子を含んだ塗膜が得られ
る。すなわち、図3に示すように、アルミ合金地金1表
面に形成された陽極酸化皮膜2上に、下層の半導体微粒
子が混在していない通常の塗膜10cと、該塗膜10c
の上にコーティングされた半導体微粒子11が混在した
塗膜10dの二層構造の塗膜が形成されたアルミ建材が
得られる。このような態様においても、下層の塗膜10
cの一部は陽極酸化皮膜2の細孔3内に侵入しているた
め、塗膜10cの陽極酸化皮膜2に対する密着強度は極
めて優れている。
[0018] Another aspect of the construction materials of the present invention has a layer in which are mixed in the coating the semiconductor fine particles, a coating film of two-layer structure of a layer made of only the coating having photocatalytic action. By using a coating film having a two-layer structure, it becomes possible to reduce the amount of semiconductor fine particles to be contained while maintaining the photocatalytic action. As a method of forming a coating film of this two-layer structure, after coating with a normal coating material by the coating method as described above, coating with a coating material solution in which an appropriate amount of semiconductor fine particles are mixed with the coating material is applied. Thus, a coating film having a two-layer structure and containing semiconductor fine particles having a photocatalytic action on the surface layer is obtained. That is, as shown in FIG. 3, on the anodic oxide coating 2 formed on the surface of the aluminum alloy base metal 1, a normal coating film 10c in which the lower semiconductor fine particles are not mixed, and the coating film 10c.
An aluminum building material having a two-layered coating film of the coating film 10d in which the semiconductor fine particles 11 coated on the above is mixed is obtained. Even in such an embodiment, the lower coating film 10
Since a part of c penetrates into the pores 3 of the anodic oxide coating 2, the adhesion strength of the coating film 10c to the anodic oxide coating 2 is extremely excellent.

0019】尚、上記の態様においても、表層に混在さ
せる半導体微粒子の量は、前記態様と同じ理由により、
表層の塗膜10d全量の0.01〜100重量%、好ま
しくは10〜100重量%の範囲にあることが望まし
い。また、表層に使用される塗料と下層を構成するため
に使用される塗料は、それらが二層構造を形成したとき
に充分な密着強度が確保できれば異なるものでもよい
が、密着強度を考慮すると同一種類の塗料を使用するこ
とが好ましい。さらに二層構造の場合の各層の膜厚は、
前記態様と同じ理由により、表層は0.5〜1μm、基
材側の下層は数μm〜数十μm程度が好ましい。
[0019] Also in the embodiment described above, the amount of the semiconductor fine particles to be mixed in the surface layer, for the same reason as the above embodiment,
It is desirable that the amount is 0.01 to 100% by weight, preferably 10 to 100% by weight of the total amount of the coating film 10d on the surface layer. Further, the paint used for the surface layer and the paint used for forming the lower layer may be different as long as sufficient adhesive strength can be secured when they form a two-layer structure, but the same when considering the adhesive strength. It is preferred to use a type of paint. Furthermore, in the case of a two-layer structure, the film thickness of each layer is
For the same reason as in the above embodiment, the surface layer preferably has a thickness of 0.5 to 1 μm, and the lower layer on the substrate side has a thickness of preferably several μm to several tens of μm.

0020】以上、本発明の建材として二つの基本的態
様を述べたが、さらに抗菌性を向上させる材料として前
記半導体微粒子以外に銅、銀、白金等の抗菌性を有する
金属微粒子を塗膜中に含有もしくは担持(塗膜上にコー
ティング)してもよい。これらの金属は、光の照射がな
くても抗菌性を発揮するので、これらの抗菌性金属を含
有もしくは担持する塗膜では、夜間、蛍光灯の明かりが
消えても抗菌・防黴性が維持されることになる。尚、こ
れら抗菌性金属微粒子の大きさ、形状や塗膜への添加方
法も前述した光触媒作用を有する半導体微粒子の場合と
同様であり、また、その含有量は、一緒に混在する半導
体微粒子との合計量で、それらが含有もしくは担持され
る塗膜全量の0.01〜100重量%、好ましくは10
〜100重量%の範囲にあることが望ましい。
[0020] Having thus described the two essential aspects as building material of the present invention, further copper in addition to the semiconductor fine particles as a material for improving the antimicrobial, silver, metal particles a coating film in which have antibacterial properties, such as platinum Contained or carried (coated on the coating
Computing) may be. Since these metals exhibit antibacterial properties even without light irradiation, a coating film containing or carrying these antibacterial metals maintains antibacterial and antifungal properties even at night when the light of a fluorescent lamp goes out. Will be done. Incidentally, the size, shape and method of adding these antibacterial metal fine particles to the coating film are the same as those of the semiconductor fine particles having a photocatalytic action described above, and the content thereof is the same as that of the semiconductor fine particles mixed together. The total amount is 0.01 to 100% by weight, preferably 10% by weight of the total amount of the coating film containing or carrying them.
It is desirable to be in the range of up to 100% by weight.

0021】前記のような抗菌性の金属微粒子を光触媒
作用を有する半導体微粒子と共に含有もしくは担持する
塗膜の構造例を図4乃至図6に示す。図4は、アルミ合
金地金1表面に形成された陽極酸化皮膜2上に、光触媒
作用を有する半導体微粒子11と抗菌性金属微粒子12
が混在した塗膜10eがコーティングされた構造を示し
ている。一方、図5は、塗料溶液のみの塗装によって陽
極酸化皮膜上に形成した塗膜10fに、半導体微粒子1
1及び抗菌性金属微粒子12を吹き付けることによっ
て、これらの微粒子が塗膜の表面部に埋め込まれた状態
を示している。図6は、陽極酸化皮膜2上に、下層の通
常の塗膜10gと、該塗膜10gの上にコーティングさ
れた半導体微粒子11と抗菌性金属微粒子12とが混在
した塗膜10hの二層構造の塗膜が形成された例を示し
ている。
[0021] showing a structural example of a coating containing or carrying together with the semiconductor fine particles having a photocatalytic activity of the antibacterial metal particulates, such as the 4 to 6. FIG. 4 shows a semiconductor fine particle 11 having a photocatalytic action and an antibacterial metal fine particle 12 on an anodized film 2 formed on the surface of an aluminum alloy base metal 1.
3 shows a structure in which the coating film 10e in which is mixed is coated. On the other hand, FIG. 5 shows that the semiconductor fine particles 1 are formed on the coating film 10f formed on the anodized film by coating only the coating solution.
By spraying 1 and the antibacterial metal fine particles 12, these fine particles are shown embedded in the surface portion of the coating film. FIG. 6 shows a two-layer structure of a normal coating film 10 g as a lower layer on the anodized film 2, and a coating film 10 h in which semiconductor fine particles 11 and antibacterial metal fine particles 12 coated on the coating film 10 g are mixed. An example in which the coating film of No. 1 is formed is shown.

0022[ 0022 ]

【実施例】以下、実施例を示して本発明の効果について
さらに具体的に説明するが、本発明が下記実施例に限定
されるものでないことはもとよりである。
EXAMPLES Hereinafter, the effects of the present invention will be described more specifically with reference to Examples, but it goes without saying that the present invention is not limited to the following Examples.

0023】実施例1 硫酸電解浴中で膜厚10μmの陽極酸化皮膜を形成した
Al板上に、光触媒であるTiOの微粉末(平均粒径
20nm)をそれぞれ5重量%(試料No.1)、50
重量%(試料No.2)及び100重量%(試料No.
3)混練したアクリル系塗料を用い、塗膜の膜厚が10
μmとなるよう電着塗装を行った。また、比較のため
に、陽極酸化皮膜を形成していないAl板上に、光触媒
であるTiOの微粉末(平均粒径20nm)を50重
量%混練したアクリル系塗料を用い、塗膜の膜厚が10
μmとなるよう電着塗装を行った(試料No.4)。な
お、電着塗装は、所定量のTiO微粉末と塗料を混練
した後、水で希釈し、この塗料中に陽極酸化処理Al板
を浸し、1分間通電せずに塗料とAl板を馴染ませた
後、塗料温度20〜25℃、印加電圧DC200Vの条
件で所定の膜厚が得られるまで電圧を印加して行った。
その後、純水を用い、2回水洗した後、190℃で40
分間焼き付けを行った。
[0023] Example 1 sulfate electrolyte bath by forming an anodized film of thickness 10μm was Al plate, fine powder (average particle size 20 nm), respectively 5 wt% of TiO 2 is a photocatalyst (Sample No.1 ), 50
% By weight (Sample No. 2) and 100% by weight (Sample No. 2).
3) Using a kneaded acrylic paint, the film thickness of the coating film is 10
Electrodeposition coating was performed so as to have a thickness of μm. For comparison, an acrylic paint in which 50% by weight of fine powder of TiO 2 (photocatalyst) (average particle size 20 nm) was kneaded on an Al plate on which an anodized film was not formed was used to form a coating film. Thickness is 10
Electrodeposition coating was performed so as to have a thickness of μm (Sample No. 4). In the electrodeposition coating, a predetermined amount of TiO 2 fine powder and a paint are kneaded, diluted with water, and an anodized Al plate is immersed in the paint, and the paint and the Al plate are mixed with each other without energizing for 1 minute. After the removal, a voltage was applied under the conditions of a coating temperature of 20 to 25 ° C. and an applied voltage of DC 200 V until a predetermined film thickness was obtained.
After that, it was washed twice with pure water and then at 40 ° C at 40 ° C.
It was baked for a minute.

0024】防黴性評価:上記実施例1で得られたTi
微粉末を含有する塗膜をコーティングした各Al板
の防黴性を調べるため、温度25℃、湿度90%に保っ
た大気雰囲気に50日間暴露した。その結果を表1に示
す。表示方法については、塗装表面に黴の発生が認めら
れなかったものには○、認められたものには×で表示し
てある。
The antifungal Evaluation: Ti obtained in the above Example 1
In order to examine the anti-mold property of each Al plate coated with the coating film containing O 2 fine powder, the Al plate was exposed to an air atmosphere kept at a temperature of 25 ° C. and a humidity of 90% for 50 days. Table 1 shows the results. The marking method is indicated by ○ when no mold is found on the coated surface, and by x when it is found.

【表1】[Table 1]

0025】密着性評価:上記実施例1で得られたTi
微粉末を含有する塗膜をコーティングした各Al板
に対し、スコッチテープ試験(JIS H 8602の
5.8項に記載のセロハン粘着テープを用いた塗膜の付
着性試験)を行い、またJIS H 8504に規定す
る方法にしたがってスクラッチ試験を行い、それぞれ塗
膜の密着性をテストした。その結果を表2に示す。
The adhesion rating: Ti obtained in the above Example 1
Each Al plate coated with a coating film containing O 2 fine powder was subjected to a Scotch tape test (adhesion test of coating film using cellophane adhesive tape described in Section 5.8 of JIS H 8602). A scratch test was performed according to the method specified in JIS H 8504, and the adhesion of each coating film was tested. The results are shown in Table 2.

【表2】[Table 2]

0026】表1からわかるように、試料No.1にお
いては防黴性は不十分であったが、その他の試料No.
2〜4については防黴効果が認められた。これは、試料
No.1においては塗料への光触媒TiOの混入量が
少なかったため、塗膜表面に露出している光触媒が少な
く、それ故、防黴性が不十分であったといえる。その他
の試料については、光触媒の混入量が充分であったた
め、防黴効果が発揮されたものである。また、表2の密
着性試験の結果から明らかなように、試料No.3及び
No.4においては密着性に劣るという結果が得られ
た。試料No.3は、塗料への光触媒TiOの混入量
が多かったために密着性が低下したものである。また、
陽極酸化皮膜が形成されていないAl板上に塗装を行っ
た試料No.4では、陽極酸化皮膜によるアンカー効果
がないために密着性が劣ったものである。陽極酸化皮膜
上にそれぞれ5重量%及び50重量%の光触媒混合量の
塗膜が塗装された試料No.1及び2については、塗膜
の密着強度が向上し、密着性試験においても全く剥離を
生ずることはなかった。
[0026] As can be seen from Table 1, sample No. In No. 1, the mold resistance was insufficient, but other sample Nos.
About 2-4, the antifungal effect was recognized. This is sample No. In No. 1, since the amount of the photocatalyst TiO 2 mixed in the paint was small, the photocatalyst exposed on the surface of the coating film was small, and therefore it can be said that the antifungal property was insufficient. As for the other samples, the antifungal effect was exhibited because the amount of the photocatalyst mixed was sufficient. Further, as is clear from the results of the adhesion test in Table 2, the sample No. 3 and No. 3 In No. 4, the result was inferior in adhesiveness. Sample No. In No. 3, the adhesiveness was lowered because the amount of the photocatalyst TiO 2 mixed in the paint was large. Also,
Sample No. 1 coated on an Al plate on which an anodized film was not formed. In No. 4, the adhesion was poor because there was no anchoring effect due to the anodized film. Sample No. 1 in which a coating film with a photocatalyst mixing amount of 5% by weight and 50% by weight, respectively, was applied on the anodized film. Regarding Nos. 1 and 2, the adhesion strength of the coating film was improved and no peeling occurred at all in the adhesion test.

0027】実施例2 硫酸電解浴中で膜厚10μmの陽極酸化皮膜を形成した
Al板上に、アクリル系塗料のみを用いて塗膜の膜厚が
8μmとなるよう電着塗装を行った後、TiOの微粉
末(平均粒径20nm)を50重量%混練したアクリル
系塗料を用い、塗膜の膜厚が2μmとなるよう電着塗装
を行った。なお、電着塗装の条件及び工程は前記実施例
1の場合と同様である。
[0027] on the Example 2 Al to form an anode oxide film of thickness 10μm with sulfuric acid electrolytic bath plate, after the thickness of the coating film by using only the acrylic paint was electrodeposited coating so as to be 8μm , 50% by weight of fine powder of TiO 2 (average particle size 20 nm) was kneaded, and electrodeposition coating was performed so that the film thickness of the coating film was 2 μm. The conditions and steps of the electrodeposition coating are the same as in the case of the first embodiment.

0028】上記実施例2で得られた抗菌・防黴性の塗
膜について、前記と同様にして防黴性及び密着性の評価
を行った。その結果を表3に示す。
[0028] The resulting antibacterial and antifungal properties of the coating film in the second embodiment were evaluated antifungal and adhesion in the same manner as above. Table 3 shows the results.

【表3】表3に示す結果から明らかなように、二層構造
の塗膜をコーティングしたAl板は、防黴性及び密着性
共に優れ、光触媒混入塗膜と通常の塗膜の間での剥離は
認められなかった。
[Table 3] As is clear from the results shown in Table 3, the Al plate coated with a two-layered coating film has excellent antifungal properties and adhesiveness, and is excellent in the property between the photocatalyst-mixed coating film and the ordinary coating film. No peeling was observed.

0029[ 0029 ]

【発明の効果】以上のように、本発明のアルミ建材は、
アルミ合金からなる基材の表面に、塗膜とアルミ合金地
金との密着性を強めるアンカー効果を有する陽極酸化皮
膜を形成し、さらにこの陽極酸化皮膜の上に光触媒作用
を有する半導体微粒子あるいはさらに抗菌性金属微粒子
を含有もしくは担持する塗膜をコーティングしたもので
あるため、触媒膜の剥離といった問題もなく、また、
光が当たる材料表面の塗膜には充分な量の半導体微粒子
あるいはさらに抗菌性金属微粒子が存在するため、優れ
た抗菌・防黴作用を示す。従って、本発明によれば、特
別の装置を要することなくメンテナンスフリーであり、
しかも抗菌・防黴性の膜がアルミ合金基材表面に高い密
着強度でコーティングされた自己浄化性のアルミ建材が
提供される。さらに、光触媒作用を有する半導体微粒子
を混在させた塗料を用いることにより、従来の表面処理
工程に何等変更を加えることなく、アルミ合金上に抗菌
・防黴性の膜を形成できる。この方法によれば、複雑な
形状の押出形材からパネル材に至るまで種々の形状の建
材に対して全く同じ処理方法で抗菌・防黴性の膜の形成
が可能である。
As described above, the aluminum building material of the present invention is
On the surface of a base material made of an aluminum alloy, an anodic oxide film having an anchor effect that strengthens the adhesion between the coating film and the aluminum alloy base metal is formed, and further semiconductor fine particles having a photocatalytic action or further on the anodic oxide film for those coated with a coating containing or carrying the antibacterial metal particulates, no problem peeling of the photocatalytic film, also,
A sufficient amount of semiconductor fine particles or further antibacterial metal fine particles are present in the coating film on the surface of the material which is exposed to the light, and thus exhibits excellent antibacterial and antifungal effects. Therefore, according to the present invention, it is maintenance-free without requiring a special device,
Moreover, a self-cleaning aluminum building material in which an antibacterial / mildew-proof film is coated on the surface of an aluminum alloy substrate with high adhesion strength is provided. Furthermore, by using a coating material in which semiconductor fine particles having a photocatalytic action are mixed, an antibacterial and antifungal film can be formed on an aluminum alloy without any modification to the conventional surface treatment process. According to this method, it is possible to form an antibacterial / mildew-proof film by using exactly the same treatment method for building materials of various shapes ranging from extruded shapes having complicated shapes to panel materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25D 11/20 304 C25D 11/20 304Z 13/10 13/10 B E04C 2/08 E04C 2/08 B E04F 13/12 8913−2E E04F 13/12 A E06B 5/00 E06B 5/00 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C25D 11/20 304 C25D 11/20 304Z 13/10 13/10 B E04C 2/08 E04C 2/08 B E04F 13/12 8913-2E E04F 13/12 A E06B 5/00 E06B 5/00 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム又はアルミニウム合金から
なる基材の表面に陽極酸化皮膜を形成し、さらに該陽極
酸化皮膜上に光触媒作用を有する半導体微粒子を含有も
しくは担持した塗膜が形成されてなる建築材料。
1. A building material comprising an anodized film formed on the surface of a base material made of aluminum or an aluminum alloy, and a coating film containing or carrying semiconductor fine particles having a photocatalytic action formed on the anodized film. .
【請求項2】 前記塗膜が、光触媒作用を有する半導体
微粒子と抗菌性の金属微粒子が混在する塗膜からなる請
求項1に記載の建築材料。
2. The building material according to claim 1, wherein the coating film is a coating film in which semiconductor fine particles having a photocatalytic action and antibacterial metal fine particles are mixed.
【請求項3】 前記塗膜が、半導体微粒子が混在してい
ない塗膜からなる層の上に光触媒作用を有する半導体微
粒子が混在する塗膜を形成した二層の塗膜構造からなる
請求項1に記載の建築材料。
3. The coating film has a two-layer coating film structure in which a coating film in which semiconductor fine particles having a photocatalytic action are mixed is formed on a layer made of a coating film in which semiconductor fine particles are not mixed. Building material described in.
【請求項4】 前記塗膜が、半導体微粒子が混在してい
ない塗膜からなる層の上に光触媒作用を有する半導体微
粒子と抗菌性の金属微粒子が混在する塗膜を形成した二
層の塗膜構造からなる請求項1に記載の建築材料。
4. A two-layer coating film in which the coating film is formed by mixing semiconductor fine particles having photocatalytic action and antibacterial metal fine particles on a layer made of a coating film in which semiconductor fine particles are not mixed. The building material according to claim 1, comprising a structure.
【請求項5】 前記半導体微粒子の少なくとも一部が塗
膜表面より部分的に露出している請求項1乃至4のいず
れか一項に記載の建築材料。
5. The building material according to claim 1, wherein at least a part of the semiconductor fine particles is partially exposed from the surface of the coating film.
【請求項6】 前記抗菌性の金属微粒子の少なくとも一
部が塗膜表面より部分的に露出している請求項2、4又
は5に記載の建築材料。
6. The building material according to claim 2, 4 or 5, wherein at least a part of the antibacterial metal fine particles is partially exposed from the coating film surface.
JP13572895A 1995-04-21 1995-05-10 Antibacterial and antifungal building materials Expired - Fee Related JP3210546B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13572895A JP3210546B2 (en) 1995-05-10 1995-05-10 Antibacterial and antifungal building materials
US08/634,985 US5753322A (en) 1995-04-21 1996-04-19 Antibacterial, antifungal aluminum building materials and fixtures using the materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13572895A JP3210546B2 (en) 1995-05-10 1995-05-10 Antibacterial and antifungal building materials

Publications (2)

Publication Number Publication Date
JPH08302498A true JPH08302498A (en) 1996-11-19
JP3210546B2 JP3210546B2 (en) 2001-09-17

Family

ID=15158496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13572895A Expired - Fee Related JP3210546B2 (en) 1995-04-21 1995-05-10 Antibacterial and antifungal building materials

Country Status (1)

Country Link
JP (1) JP3210546B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971897A (en) * 1995-09-06 1997-03-18 Akira Fujishima Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production
JPH10237362A (en) * 1997-02-26 1998-09-08 Catalysts & Chem Ind Co Ltd Electrodeposition coating material and electrodeposition coating
JP2000041713A (en) * 1998-07-31 2000-02-15 Akira Fujishima Antimicrobial fastening parts and their manufacture
US6270571B1 (en) 1998-11-10 2001-08-07 Canon Kabushiki Kaisha Method for producing narrow wires comprising titanium oxide, and narrow wires and structures produced by the same method
KR20140057622A (en) * 2011-09-07 2014-05-13 가부시키가이샤 엔비씨 메슈테크 Anti-virus aluminum member and method for producing same
CN114228272A (en) * 2021-12-22 2022-03-25 揭阳市运泰装饰材料有限公司 Antibacterial and mildewproof aluminum-plastic composite board with self-cleaning function and production process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182298A (en) * 1986-01-17 1987-08-10 Nippon Alum Mfg Co Ltd:The Aluminum product having antibacterial or antimold anodic oxide film
JPH06278241A (en) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd Building material
JPH07462A (en) * 1993-06-17 1995-01-06 Takenaka Komuten Co Ltd Prevention of nosocomial infection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182298A (en) * 1986-01-17 1987-08-10 Nippon Alum Mfg Co Ltd:The Aluminum product having antibacterial or antimold anodic oxide film
JPH06278241A (en) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd Building material
JPH07462A (en) * 1993-06-17 1995-01-06 Takenaka Komuten Co Ltd Prevention of nosocomial infection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971897A (en) * 1995-09-06 1997-03-18 Akira Fujishima Aluminum building material and colored aluminum building material having antimicrobial, fungiproof and stainproof properties and their production
JPH10237362A (en) * 1997-02-26 1998-09-08 Catalysts & Chem Ind Co Ltd Electrodeposition coating material and electrodeposition coating
JP2000041713A (en) * 1998-07-31 2000-02-15 Akira Fujishima Antimicrobial fastening parts and their manufacture
US6270571B1 (en) 1998-11-10 2001-08-07 Canon Kabushiki Kaisha Method for producing narrow wires comprising titanium oxide, and narrow wires and structures produced by the same method
KR20140057622A (en) * 2011-09-07 2014-05-13 가부시키가이샤 엔비씨 메슈테크 Anti-virus aluminum member and method for producing same
CN114228272A (en) * 2021-12-22 2022-03-25 揭阳市运泰装饰材料有限公司 Antibacterial and mildewproof aluminum-plastic composite board with self-cleaning function and production process

Also Published As

Publication number Publication date
JP3210546B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP3251475B2 (en) Manufacturing method of antibacterial / antifungal / antifouling aluminum building material and colored aluminum building material
US5753322A (en) Antibacterial, antifungal aluminum building materials and fixtures using the materials
JP3109101B2 (en) Antimicrobial solid, method for producing the same, and method for using the same
JP3210546B2 (en) Antibacterial and antifungal building materials
JP2001081409A (en) Anti-fungus coating agent, anti-fungus agent and method for inhibiting nosocomial infection
JP3210544B2 (en) Antibacterial and antifungal aluminum building materials and fittings using the same
JP3101537B2 (en) Antifouling building material and exterior building material unit
JP3523787B2 (en) Outdoor building materials with photocatalytic layers
JP3267880B2 (en) Antibacterial aluminum or aluminum alloy material and method for producing the same
JP3027739B2 (en) Photocatalyst and method for producing the same
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JP3267884B2 (en) Antibacterial and antifouling aluminum or aluminum alloy material and method for producing the same
JP3311570B2 (en) Anti-fouling screen net
US11906157B2 (en) Photocatalyst formulations and coatings
US11819824B2 (en) Surface coatings for self-decontamination
JP2911021B2 (en) Photocatalyst for sticking
JP2790596B2 (en) Hospital infection prevention methods
JPH11158694A (en) Article with hydrophilic coating, and coating method
JP3326071B2 (en) Aluminum or aluminum alloy material coated with photocatalytic film and method for producing the same
JPH11188272A (en) Photocatalytic body and its production
JPH11166332A (en) Operating member for antibacterial construction
JPH07462A (en) Prevention of nosocomial infection
JP3481381B2 (en) Waterproof and airtight material for mold-proof building and method for producing the same
JP2000041713A (en) Antimicrobial fastening parts and their manufacture
JP2000202939A (en) Antibacterial laminate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees