JPH09276700A - Ammonia decomposing catalyst and ammonia treatment method - Google Patents

Ammonia decomposing catalyst and ammonia treatment method

Info

Publication number
JPH09276700A
JPH09276700A JP8088052A JP8805296A JPH09276700A JP H09276700 A JPH09276700 A JP H09276700A JP 8088052 A JP8088052 A JP 8088052A JP 8805296 A JP8805296 A JP 8805296A JP H09276700 A JPH09276700 A JP H09276700A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst
decomposition catalyst
atomic ratio
ammonia decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8088052A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawagoe
博 川越
Toshikatsu Mori
利克 森
Kenji Baba
研二 馬場
Yukio Murai
行男 村井
Akio Tanaka
明雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Ltd
Priority to JP8088052A priority Critical patent/JPH09276700A/en
Publication of JPH09276700A publication Critical patent/JPH09276700A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ammonia decomposing catalyst decomposing ammonia in exhaust gas from a thermoelectric power plant, sewage disposal equipment, an amine manufacturing plant, excretion disposal equipment or a food manufacturing plant. SOLUTION: This ammonia decomposing catalyst decomposing ammonia in exhaust gas is obtained by supporting a mixture of Cu being a first active component and an oxide of one or more kind of a component selected from among Fe, Ni, V, Mo, W, Na, K, Li, Sr, Mg, Ba and Sn being a second active component on an oxide carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は火力発電所,下水処
理設備,アミン製造プラント,食品製造プラント,し尿
処理設備等の排ガス中に含有するアンモニア除去のため
のアンモニア分解触媒とそれを用いたアンモニア処理方
法に関する。
TECHNICAL FIELD The present invention relates to an ammonia decomposition catalyst for removing ammonia contained in exhaust gas of a thermal power plant, a sewage treatment facility, an amine production plant, a food production plant, a human waste treatment facility and the like, and ammonia using the same. Regarding processing method.

【0002】[0002]

【従来の技術】火力発電所ボイラ,下水処理設備,し尿
処理設備,コークス炉製造設備等から排出される排ガス
中のアンモニアは有害物質であり、これら設備の配管等
を腐食するなど悪影響が大きい。従って、こうした排ガ
ス中のアンモニアの除去が注目されている。
2. Description of the Related Art Ammonia in exhaust gas discharged from a thermal power plant boiler, a sewage treatment facility, a human waste treatment facility, a coke oven manufacturing facility and the like is a harmful substance and has a great adverse effect such as corroding pipes of these facilities. Therefore, attention has been paid to the removal of ammonia in the exhaust gas.

【0003】排ガス中のアンモニアを除去する方法とし
て、アンモニア分解触媒を用いる方法がある。例えば、
特開平7−328440号公報に記載されているよう
に、Mn,Cu,Cr,Co,Fe,V,Ni,Mo,
Zn,Rh,Ruから選ばれた金属の10%金属塩水溶
液を、TiO2に含浸担持させた触媒に、330〜43
0℃でアンモニアを含む処理ガスを接触させて無害なN
2とH2Oに分解することが提案されている。
As a method of removing ammonia in exhaust gas, there is a method of using an ammonia decomposition catalyst. For example,
As described in JP-A-7-328440, Mn, Cu, Cr, Co, Fe, V, Ni, Mo,
A catalyst obtained by impregnating and supporting a 10% metal salt aqueous solution of a metal selected from Zn, Rh, and Ru on TiO 2 was added in the range of 330 to 43.
The processing gas containing ammonia is contacted at 0 ° C. and harmless N
It has been proposed to decompose it into 2 and H 2 O.

【0004】[0004]

【発明が解決しようとする課題】従来用いられてきたア
ンモニア分解触媒は、アンモニアを酸化分解する際に窒
素酸化物(NO,NOx,N2O)が発生する。
In the conventionally used ammonia decomposing catalyst, nitrogen oxides (NO, NOx, N 2 O) are generated when oxidatively decomposing ammonia.

【0005】[0005]

【化1】4NH3+5O2=4NO+6H2O 4NH3+7O2=4NO2+6H2O 2NH3+2O2=N2O+3H2O こうした窒素酸化物は大気汚染物質であり、その発生は
最小限度に抑制すべきである。
Embedded image 4NH 3 + 5O 2 = 4NO + 6H 2 O 4NH 3 + 7O 2 = 4NO 2 + 6H 2 O 2NH 3 + 2O 2 = N 2 O + 3H 2 O These nitrogen oxides are air pollutants, and their generation is minimized. Should.

【0006】本明の目的は、上記に鑑み排ガス中に含有
されるアンモニアを極めて効率良く分解し、かつ、窒素
酸化物の副生の恐れが極めて少ないアンモニア分解触媒
とその処理方法を提供することにある。
In view of the above, an object of the present invention is to provide an ammonia decomposing catalyst that decomposes ammonia contained in exhaust gas very efficiently, and has a very low risk of by-product of nitrogen oxides, and a treatment method therefor. It is in.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の要旨は、排ガス中のアンモニアを分解するアンモニ
ア分解触媒として、第一活性成分としてのCu、第二活
性成分としてのFe,Ni,V,Mo,W,Na,K,
Li,Sr,Mg,Ba,Snから選ばれた一種以上の
酸化物との混合物が、酸化物担体に担持されているアン
モニア分解触媒にある。
Means for Solving the Problems The gist of the present invention to achieve the above object is to use Cu as a first active component and Fe, Ni as a second active component as an ammonia decomposition catalyst for decomposing ammonia in exhaust gas. V, Mo, W, Na, K,
A mixture with one or more oxides selected from Li, Sr, Mg, Ba and Sn is the ammonia decomposition catalyst supported on the oxide carrier.

【0008】また、上記アンモニア分解触媒に200〜
500℃でアンモニアを接触させることによりアンモニ
アを酸化分解するアンモニア処理方法にある。
In addition, the above ammonia decomposition catalyst may contain 200 to
It is an ammonia treatment method of oxidizing and decomposing ammonia by contacting it at 500 ° C.

【0009】前記酸化物担体としてはチタニア,アルミ
ナ,シリカ,ジルコニア,ゼオライトから選ばれた一種
以上である。
The oxide carrier is one or more selected from titania, alumina, silica, zirconia and zeolite.

【0010】該アンモニア分解触媒は、200〜500
℃で、理論酸素量以上の空気の共存下で排ガス中のアン
モニアを接触させることにより、効率良くアンモニアを
分解,除去することができ、NOx等の窒素酸化物の副
生を著しく抑制することができる。
The ammonia decomposition catalyst is 200-500.
By contacting ammonia in the exhaust gas at ℃ in the presence of air at a theoretical oxygen amount or more, ammonia can be decomposed and removed efficiently, and by-products of nitrogen oxides such as NOx can be significantly suppressed. it can.

【0011】本発明のアンモニア分解触媒は、加熱処理
することにより触媒活性の回復が顕著であると云う特長
を有する。その回復処理としては、大気中で約500℃
に加熱するだけでよい。
The ammonia decomposition catalyst of the present invention has a feature that the catalytic activity is remarkably recovered by heat treatment. The recovery process is about 500 ℃ in the atmosphere.
Just heat to.

【0012】本発明のアンモニア分解触媒は、排ガス中
のアンモニアを高効率で分解処理することができ、プラ
ント等の排ガス処理設備を簡素化することが可能とな
る。また、下水道設備,し尿処理設備等の排ガス中のア
ンモニアを除去することができる。
The ammonia decomposition catalyst of the present invention can decompose ammonia in exhaust gas with high efficiency, and can simplify exhaust gas processing equipment such as a plant. Further, it is possible to remove the ammonia in the exhaust gas from the sewer system, the human waste treatment facility and the like.

【0013】[0013]

【発明の実施の形態】本発明のアンモニア分解触媒の好
ましい形態は、チタニア、アルミナ,シリカ,ジルコニ
ア,ゼオライトから選ばれた一種以上の酸化物担体の表
面層に、第一活性成分であるCuと、第二活性成分であ
るFe,Ni,V,Mo,W,Na,K,Li,Sr,
Mg,Ba,Snから選ばれた一種以上の酸化物との混
合物を担持させたもので構成される。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred form of the ammonia decomposition catalyst of the present invention is that the first active component, Cu, is added to the surface layer of one or more oxide carriers selected from titania, alumina, silica, zirconia and zeolite. , Fe, Ni, V, Mo, W, Na, K, Li, Sr, which are the second active ingredients,
It is constituted by supporting a mixture with one or more oxides selected from Mg, Ba and Sn.

【0014】本発明のアンモニア分解触媒は、50〜5
00m2/gの比表面積を有するものが好ましい。比表
面積の大きいものほどアンモニアの分解効果が大きいと
云う傾向がある。
The ammonia decomposition catalyst of the present invention is 50 to 5
Those having a specific surface area of 00 m 2 / g are preferable. There is a tendency that the larger the specific surface area, the greater the effect of decomposing ammonia.

【0015】上記酸化物担体の1に対し、第一活性成分
が0.005〜0.5(原子比)、第二活性成分が0.0
1〜0.005(原子比)の割合で含むものが好まし
い。この範囲内において、アンモニア除去の活性が高く
なる。
With respect to 1 of the above oxide carriers, the first active ingredient is 0.005-0.5 (atomic ratio) and the second active ingredient is 0.0.
It is preferable that the content is 1 to 0.005 (atomic ratio). Within this range, the activity of removing ammonia becomes high.

【0016】上記アンモニア分解触媒の製法には、酸化
物担体に通常の混合法,浸漬法,沈殿法,沈着法等で製
造できる。また、製造後のアンモニア分解触媒の形状と
しては使用目的に応じて任意であるが、一般には粒状,
ハニカム状,板状,金網状,三次元網目状等がよい。
As a method for producing the above-mentioned ammonia decomposition catalyst, it can be produced by a usual mixing method, an immersion method, a precipitation method, a deposition method or the like on an oxide carrier. Further, the shape of the ammonia decomposition catalyst after production is arbitrary depending on the purpose of use, but in general,
Honeycomb shape, plate shape, wire mesh shape, three-dimensional mesh shape, etc. are preferable.

【0017】本アンモニア分解触媒の酸化物担体として
用いられるチタニア,アルミナ,シリカ,ジルコニア,
ゼオライト等の原料は、硫酸塩,塩化物,硝酸塩,酸化
物,有機金属化合物等が挙げられる。また、酸化物担体
は沈澱法,加水分解法,湿式混練法等で得た酸化物粉末
を打錠成型法,転動造粒法等により作製することができ
る。
Titania, alumina, silica, zirconia, which is used as an oxide carrier of the present ammonia decomposition catalyst,
Examples of raw materials such as zeolite include sulfates, chlorides, nitrates, oxides, and organometallic compounds. Further, the oxide carrier can be produced by a tableting molding method, a tumbling granulation method or the like from an oxide powder obtained by a precipitation method, a hydrolysis method, a wet kneading method or the like.

【0018】本アンモニア分解触媒の第一活性成分であ
るCuの原料としては硝酸塩,硫酸塩,塩化物,酸化
物,銅系有機化合物等が挙げられるがこれらに限定され
ない。
Examples of the raw material of Cu, which is the first active component of the present ammonia decomposition catalyst, include nitrates, sulfates, chlorides, oxides, and copper-based organic compounds, but are not limited thereto.

【0019】本アンモニア分解触媒の第二活性成分であ
るFe,Ni,V,Mo,W,Na,K,Li,Sr,
Mg,Ba,Snの原料としては硝酸塩,硫酸塩,塩化
物,アンモニウム塩,酸化物,有機金属化合物等が挙げ
られるがこれらに限定されない。
Fe, Ni, V, Mo, W, Na, K, Li, Sr, which are the second active components of the present ammonia decomposition catalyst,
Examples of raw materials for Mg, Ba, and Sn include, but are not limited to, nitrates, sulfates, chlorides, ammonium salts, oxides, and organometallic compounds.

【0020】本発明のアンモニア分解触媒にアンモニア
を含む排ガスを接触させる温度は、200〜500℃の
範囲がよい。更にまた、排ガス中のアンモニアを触媒に
接触させるガス空間速度は1,000〜100,000h
~1の範囲が好ましい。なお、アンモニア分解触媒に接触
させる排ガスは大気圧でよい。
The temperature at which the exhaust gas containing ammonia is brought into contact with the ammonia decomposition catalyst of the present invention is preferably in the range of 200 to 500 ° C. Furthermore, the gas space velocity for contacting ammonia in exhaust gas with the catalyst is 1,000 to 100,000 h.
Range of ~ 1 is preferred. Note that the exhaust gas brought into contact with the ammonia decomposition catalyst may be atmospheric pressure.

【0021】本アンモニア分解触媒の反応は酸化分解反
応である。アンモニアは分解触媒上で理論酸素量以上の
空気の存在下において、無害なN2とH2Oに変換され
る。
The reaction of the present ammonia decomposition catalyst is an oxidative decomposition reaction. Ammonia is converted into harmless N 2 and H 2 O on the cracking catalyst in the presence of air in excess of the theoretical oxygen amount.

【0022】本発明のアンモニア分解触媒は、加熱処理
(大気中で約500℃)によって初期と同等の触媒活性
を容易に回復することができる。
The ammonia decomposition catalyst of the present invention can easily recover the catalytic activity equivalent to the initial level by a heat treatment (about 500 ° C. in the atmosphere).

【0023】[0023]

【実施例】本発明を実施例に基づき具体的に説明する。EXAMPLES The present invention will be specifically described based on examples.

【0024】〔実施例1〕0.5〜1.0mmに破砕され
たチタニア担体の粉末10gを500℃で焼成させる。
次に、硝酸銅(Cu(NO3)3H2O)5.1gと硝酸鉄
(Fe(NO3)39H2O)4.2gを14mlの蒸留水と
混合し溶解した。
Example 1 10 g of titania carrier powder crushed to 0.5 to 1.0 mm is fired at 500 ° C.
It was then mixed with copper nitrate (Cu (NO 3) 3H 2 O) 5.1g iron nitrate (Fe (NO 3) 3 9H 2 O) 4.2g of distilled water 14ml dissolved.

【0025】次いで上記の14mlの溶液のうち7ml
をチタニア担体10gに含浸した。120℃で1時間乾
燥、500℃で1時間焼成した。焼成後、残りの7ml
の溶液を含浸し、120℃で1時間乾燥、500℃で2
時間焼成して、本発明のアンモニア分解触媒Aを得た。
Then 7 ml of the above 14 ml solution
Was impregnated in 10 g of the titania carrier. It was dried at 120 ° C. for 1 hour and calcined at 500 ° C. for 1 hour. After baking, the remaining 7 ml
Impregnated with the above solution, dried at 120 ° C for 1 hour, and dried at 500 ° C for 2 hours.
It was calcined for an hour to obtain the ammonia decomposition catalyst A of the present invention.

【0026】この触媒はTi−Fe−Cuであり、Ti
/Cu(原子比=10/1),Ti/Fe(原子比=1
0/0.5)である。
This catalyst is Ti--Fe--Cu, and Ti
/ Cu (atomic ratio = 10/1), Ti / Fe (atomic ratio = 1
0 / 0.5).

【0027】〔実施例2〕硝酸鉄の代わりに硝酸ニッケ
ル(Ni(NO3)26H2O)3.1gを使用した以外は実
施例1と同じである。この触媒はTi−Ni−Cuであ
り、Ti/Cu(原子比=10/1),Ti/Ni(原
子比=10/0.5)である。これを触媒Bとする。
Example 2 The same as Example 1 except that 3.1 g of nickel nitrate (Ni (NO 3 ) 2 6H 2 O) was used instead of iron nitrate. This catalyst is Ti-Ni-Cu, and is Ti / Cu (atomic ratio = 10/1) and Ti / Ni (atomic ratio = 10 / 0.5). This is designated as catalyst B.

【0028】〔実施例3〕硝酸鉄の代わりにメタバナジ
ン酸アンモニウム(NH4VO3)1.2gを過酸化水素
(30%)に溶解して使用した以外は実施例1と同じで
ある。この触媒はTi−V−Cuであり、Ti/Cu
(原子比=10/1),Ti/V(原子比=10/0.
5)である。これを触媒Cとする。
Example 3 The same as Example 1 except that 1.2 g of ammonium metavanadate (NH 4 VO 3 ) was dissolved in hydrogen peroxide (30%) and used instead of iron nitrate. This catalyst is Ti-V-Cu, Ti / Cu
(Atomic ratio = 10/1), Ti / V (atomic ratio = 10/0.
5). This is designated as catalyst C.

【0029】〔実施例4〕硝酸鉄の代わりにモリブデン
酸アンモニウム((NH4)6MO7242O)1.9g
を過酸化水素(30%)に溶解して使用した以外は実施
例1と同じである。この触媒はTi−Mo−Cuであ
り、Ti/Cu(原子比=10/1),Ti/Mo(原
子比=10/0.5)である。これを触媒Dとする。
[Example 4] 1.9 g of ammonium molybdate ((NH 4 ) 6 MO 7 O 24 H 2 O) in place of iron nitrate
Was the same as Example 1 except that was dissolved in hydrogen peroxide (30%). This catalyst is Ti-Mo-Cu and has Ti / Cu (atomic ratio = 10/1) and Ti / Mo (atomic ratio = 10 / 0.5). This is designated as catalyst D.

【0030】〔実施例5〕硝酸鉄の代わりにタングステ
ン酸アンモニウム((NH41012415H2O)2.
74gを過酸化水素(30%)に溶解して使用した以外
は実施例1と同じである。この触媒はTi−W−Cuで
あり、Ti/Cu(原子比=10/1),Ti/W(原
子比=10/0.5)である。これを触媒Eとする。
Example 5 Ammonium tungstate ((NH 4 ) 10 W 12 O 41 5H 2 O) in place of iron nitrate 2.
Same as Example 1 except that 74 g was dissolved in hydrogen peroxide (30%) and used. This catalyst is Ti-W-Cu, and has Ti / Cu (atomic ratio = 10/1) and Ti / W (atomic ratio = 10 / 0.5). This is designated as catalyst E.

【0031】〔実施例6〕硝酸鉄の代わりに硝酸ナトリ
ウム(NaNO3)0.89gを使用した以外は実施例1
と同じである。この触媒はTi−Na−Cuであり、T
i/Cu(原子比=10/1),Ti/Na(原子比=
10/0.5)である。これを触媒Fとする。
Example 6 Example 1 was repeated except that 0.89 g of sodium nitrate (NaNO 3 ) was used instead of iron nitrate.
Is the same as The catalyst is Ti-Na-Cu, T
i / Cu (atomic ratio = 10/1), Ti / Na (atomic ratio =
10 / 0.5). This is designated as catalyst F.

【0032】〔実施例7〕硝酸鉄の代わりに硝酸カリウ
ム(KNO3)1.1gを使用した以外は実施例1と同じ
である。この触媒はTi−K−Cuであり、Ti/Cu
(原子比=10/1),Ti/K(原子比=10/0.
5)である。これを触媒Gとする。
Example 7 The same as Example 1 except that 1.1 g of potassium nitrate (KNO 3 ) was used instead of iron nitrate. This catalyst is Ti-K-Cu, Ti / Cu
(Atomic ratio = 10/1), Ti / K (atomic ratio = 10/0.
5). This is designated as catalyst G.

【0033】〔実施例8〕硝酸鉄の代わりに硝酸リチウ
ム(LiNO3)0.72gを使用した以外は実施例1と
同じである。この触媒はTi−Li−Cuであり、Ti
/Cu(原子比=10/1),Ti/Li(原子比=1
0/0.5)である。これを触媒Hとする。
[Example 8] The same as Example 1 except that 0.72 g of lithium nitrate (LiNO 3 ) was used in place of iron nitrate. The catalyst is Ti-Li-Cu, Ti-
/ Cu (atomic ratio = 10/1), Ti / Li (atomic ratio = 1)
0 / 0.5). This is designated as catalyst H.

【0034】〔実施例9〕硝酸鉄の代わりに硝酸ストロ
ンチウム(Sr(NO3)2)2.2gを使用した以外は実
施例1と同じである。この触媒はTi−Sr−Cuであ
り、Ti/Cu(原子比=10/1),Ti/Sr(原
子比=10/0.5)である。これを触媒Iとする。
Example 9 The same as Example 1 except that 2.2 g of strontium nitrate (Sr (NO 3 ) 2 ) was used instead of iron nitrate. This catalyst is Ti-Sr-Cu, and is Ti / Cu (atomic ratio = 10/1) and Ti / Sr (atomic ratio = 10 / 0.5). This is designated as Catalyst I.

【0035】〔実施例10〕硝酸鉄の代わりに硝酸マグ
ネシウム(Mg(NO3)26H2O)2.7gを使用した以
外は実施例1と同じである。この触媒はTi−Mg−C
uであり、Ti/Cu(原子比=10/1),Ti/M
g(原子比=10/0.5)である。これを触媒Jとす
る。
Example 10 The same as Example 1 except that 2.7 g of magnesium nitrate (Mg (NO 3 ) 2 6H 2 O) was used instead of iron nitrate. This catalyst is Ti-Mg-C
u, Ti / Cu (atomic ratio = 10/1), Ti / M
g (atomic ratio = 10 / 0.5). This is designated as catalyst J.

【0036】〔実施例11〕硝酸鉄の代わりに硝酸バリ
ウム(Ba(NO3)2)2.7gを使用した以外は実施例
1と同じである。この触媒はTi−Ba−Cuであり、
Ti/Cu(原子比=10/1),Ti/Ba(原子比
=10/0.5)である。これを触媒Kとする。
[0036] Example 11 Barium nitrate instead of iron nitrate (Ba (NO 3) 2) except for using 2.7g were the same as in Example 1. This catalyst is Ti-Ba-Cu,
Ti / Cu (atomic ratio = 10/1) and Ti / Ba (atomic ratio = 10 / 0.5). This is designated as catalyst K.

【0037】〔実施例12〕硝酸鉄の代わりに塩化第1
錫(SnCl22H2O)2.3gを使用した以外は実施
例1と同じである。この触媒はTi−Sn−Cuであ
り、Ti/Cu(原子比=10/1),Ti/Sn(原
子比=10/0.5)である。これを触媒Lとする。
[Example 12] First chloride instead of iron nitrate
Same as Example 1 except that 2.3 g of tin (SnCl 2 2H 2 O) was used. This catalyst is Ti-Sn-Cu, and is Ti / Cu (atomic ratio = 10/1) and Ti / Sn (atomic ratio = 10 / 0.5). This is designated as catalyst L.

【0038】〔比較例1〕0.5〜1.0mmに破砕され
たチタニア担体の粉末30gを500℃で良く乾燥させ
る。10%の硝酸クロム(Cr(NO3)39H2O)溶液
100g中にチタニア担体30gを浸漬した。次いで、
120℃で1時間乾燥、600℃で2時間焼成した。こ
の触媒はCr−Tiである。これを比較例触媒1とす
る。
Comparative Example 1 30 g of a titania carrier powder crushed to 0.5 to 1.0 mm was thoroughly dried at 500 ° C. I was immersed titania support 30g in 10% chromium nitrate (Cr (NO 3) 3 9H 2 O) solution 100 g. Then
It was dried at 120 ° C. for 1 hour and calcined at 600 ° C. for 2 hours. This catalyst is Cr-Ti. This is designated as Comparative Example Catalyst 1.

【0039】〔比較例2〕硝酸鉄の代わりに硝酸コバル
ト(Cn(NO3)26H2O)5.1gを使用した以外は
実施例1と同じである。この触媒はTi−Co−Cuで
あり、Ti/Cu(原子比=10/1),Ti/Co
(原子比=10/0.5)である。これを比較例触媒2
とする。
Comparative Example 2 The same as Example 1 except that 5.1 g of cobalt nitrate (Cn (NO 3 ) 26H 2 O) was used instead of iron nitrate. This catalyst is Ti-Co-Cu, Ti / Cu (atomic ratio = 10/1), Ti / Co
(Atomic ratio = 10 / 0.5). This is Comparative Example Catalyst 2
And

【0040】〔実施例13〕前記実施例で得た触媒A〜
Lおよび比較例触媒1,2のそれぞれを内径19mmの
石英反応管内に設置した。アンモニアの模擬排ガスとし
て空気にアンモニアを希釈,混合したガスを、上記石英
反応管内に導入し触媒と接触させた。反応管出口の模擬
排ガス中のアンモニア量を、イオンクロマト分析計によ
り測定し、アンモニアの分解除去率を求めた。なお、反
応条件は以下の通りである。
Example 13 The catalysts A to C obtained in the above examples
Each of L and Comparative Example catalysts 1 and 2 was placed in a quartz reaction tube having an inner diameter of 19 mm. A gas obtained by diluting and mixing ammonia with air as a simulated exhaust gas of ammonia was introduced into the quartz reaction tube and brought into contact with the catalyst. The amount of ammonia in the simulated exhaust gas at the outlet of the reaction tube was measured by an ion chromatographic analyzer to determine the decomposition removal rate of ammonia. The reaction conditions are as follows.

【0041】アンモニア濃度:3000ppm 水蒸気濃度 :12%(残り空気) 反応温度 :300℃ ガス空間速度 :30,000/h(単位時間当り,触
媒単位体積当りのガス供給量) 図1に実施例触媒A〜Oと比較例触媒1,2との性能比
較を示す。図からも明らかなように、実施例触媒は比較
例触媒に比べアンモニアの除去性能が高く、また、窒素
酸化物の副生もほとんど認められなかった。
Ammonia concentration: 3000 ppm Steam concentration: 12% (remaining air) Reaction temperature: 300 ° C. Gas space velocity: 30,000 / h (gas supply amount per unit time, catalyst unit volume) Catalyst of Example A performance comparison between A to O and comparative example catalysts 1 and 2 is shown. As is clear from the figure, the example catalyst had a higher ammonia removal performance than the comparative catalyst, and almost no nitrogen oxide by-product was observed.

【0042】〔実施例14〕実施例触媒として以下の触
媒を得た。
Example 14 The following catalyst was obtained as an example catalyst.

【0043】 a;Ti(9)−Cu(1)−Fe(1)−V(0.5) b;Ti(9)−Cu(1)−Fe(1)−Mo(0.5) c;Ti(9)−Cu(1)−W(1)−Li(0.5) d;Ti(5)−Al(5)−Cu(1)−Ni(0.5) 図2に本実施例のa〜d触媒と比較例触媒1との性能比
較を示す。図からも明らかなように、実施例触媒は比較
例触媒に比べてアンモニアの除去性能が高く、窒素酸化
物の副生もほとんど認められなかった。
A; Ti (9) -Cu (1) -Fe (1) -V (0.5) b; Ti (9) -Cu (1) -Fe (1) -Mo (0.5) c Ti (9) -Cu (1) -W (1) -Li (0.5) d; Ti (5) -Al (5) -Cu (1) -Ni (0.5) The performance comparison between the example a to d catalysts and the comparative example catalyst 1 is shown. As is clear from the figure, the example catalyst has higher ammonia removal performance than the comparative catalyst, and almost no nitrogen oxide by-product was observed.

【0044】〔実施例15〕前記A〜L触媒において、
チタニア担体の原子比に対する第1活性成分と第2活性
成分の原子比を、以下のように変えて調製した。
Example 15 In the above A to L catalysts,
The atomic ratios of the first active ingredient and the second active ingredient relative to the atomic ratio of the titania carrier were changed as follows.

【0045】 A1;Ti(8)Cu(2)Fe(1.5) A2;Ti(5)Cu(5)Fe(1.5) B1;Ti(8)Cu(2)Ni(1.5) B2;Ti(5)Cu(5)Ni(1.5) C1;Ti(8)Cu(2)V(1.5) C2;Ti(5)Cu(5)V(1.5) D1;Ti(8)Cu(2)Mo(1.5) D2;Ti(5)Cu(5)Mo(1.5) E1;Ti(8)Cu(2)W(1.5) E2;Ti(5)Cu(5)W(1.5) F1;Ti(8)Cu(2)Na(1.5) F2;Ti(5)Cu(5)Na(1.5) G1;Ti(8)Cu(2)K(1.5) G2;Ti(5)Cu(5)K(1.5) H1;Ti(8)Cu(2)Li(1.5) H2;Ti(5)Cu(5)Li(1.5) I1;Ti(8)Cu(2)Sr(1.5) I2;Ti(5)Cu(5)Sr(1.5) J1;Ti(8)Cu(2)Mg(1.5) J2;Ti(5)Cu(5)Mg(1.5) K1;Ti(8)Cu(2)Ba(1.5) K2;Ti(5)Cu(5)Ba(1.5) L1;Ti(8)Cu(2)Sn(1.5) L2;Ti(5)Cu(5)Sn(1.5) A1〜L1触媒,A2〜L2触媒および比較触媒1の性
能評価を実施例13と同様にして求めたアンモニア除去
性能の結果を図3に示す。図からも明らかなように第一
活性成分および第二活性成分の原子比を変化させても、
比較例触媒1に比べてアンモニア除去性能が高いことが
分かる。
A1; Ti (8) Cu (2) Fe (1.5) A2; Ti (5) Cu (5) Fe (1.5) B1; Ti (8) Cu (2) Ni (1.5) ) B2; Ti (5) Cu (5) Ni (1.5) C1; Ti (8) Cu (2) V (1.5) C2; Ti (5) Cu (5) V (1.5) D1 Ti (8) Cu (2) Mo (1.5) D2; Ti (5) Cu (5) Mo (1.5) E1; Ti (8) Cu (2) W (1.5) E2; Ti (5) Cu (5) W (1.5) F1; Ti (8) Cu (2) Na (1.5) F2; Ti (5) Cu (5) Na (1.5) G1; Ti (8 ) Cu (2) K (1.5) G2; Ti (5) Cu (5) K (1.5) H1; Ti (8) Cu (2) Li (1.5) H2; Ti (5) Cu (5) Li (1.5) I1; Ti (8) Cu (2) Sr (1.5 ) I2; Ti (5) Cu (5) Sr (1.5) J1; Ti (8) Cu (2) Mg (1.5) J2; Ti (5) Cu (5) Mg (1.5) K1 Ti (8) Cu (2) Ba (1.5) K2; Ti (5) Cu (5) Ba (1.5) L1; Ti (8) Cu (2) Sn (1.5) L2; Ti (5) Cu (5) Sn (1.5) A1 to L1 catalysts, A2 to L2 catalysts and comparative catalyst 1 were evaluated for performance in the same manner as in Example 13, and the results of ammonia removal performance are shown in FIG. As is clear from the figure, even if the atomic ratio of the first active ingredient and the second active ingredient is changed,
It can be seen that the ammonia removing performance is higher than that of the comparative catalyst 1.

【0046】〔実施例15〕実施例1〜12のA〜L触
媒を用いて、実施例13の実験方法により温度を250
℃,300℃,350℃,400℃に変化させてアンモ
ニアの除去率を求めた。その結果を図4,図5に示す。
Example 15 Using the AL catalysts of Examples 1-12, the temperature was set to 250 by the experimental method of Example 13.
The ammonia removal rate was determined by changing the temperature to 300 ° C, 350 ° C, and 400 ° C. The results are shown in FIGS.

【0047】図4,図5の結果からも明らかなようにい
ずれの触媒の場合も、反応温度を変えても、比較例触媒
1に比べてアンモニアの除去性能が高いことが確認され
た。
As is clear from the results shown in FIGS. 4 and 5, it was confirmed that, in the case of any of the catalysts, the ammonia removing performance is higher than that of the comparative catalyst 1 even if the reaction temperature is changed.

【0048】〔実施例16〕前記A,C,D,F,H,
I,L触媒においてチタニア担体の代わりにアルミナ担
体を用いた以外は、実施例1,3,4,6,8,9,1
2と同様にして作製した。得られた触媒を以下に示す。
[Embodiment 16] A, C, D, F, H,
Examples 1, 3, 4, 6, 8, 9, 1 except that an alumina carrier was used instead of the titania carrier in the I and L catalysts.
It was prepared in the same manner as in 2. The obtained catalyst is shown below.

【0049】A11;Al−Cu−Fe A12;Al−Cu−V A13;Al−Cu−Mo A14;Al−Cu−Na A15;Al−Cu−Li A16;Al−Cu−Sr A17;Al−Cu−Sn A11〜A17触媒および比較例触媒1を用いて、実施
例13と同様にして求めたアンモニアの除去率を図6に
示す。
A11; Al-Cu-Fe A12; Al-Cu-V A13; Al-Cu-Mo A14; Al-Cu-Na A15; Al-Cu-Li A16; Al-Cu-Sr A17; Al-Cu FIG. 6 shows the removal rates of ammonia, which were obtained in the same manner as in Example 13 using the -Sn A11 to A17 catalysts and the comparative catalyst 1.

【0050】図6の結果からも明らかなようにアルミナ
担体に変えてもほとんどアンモニア除去性能は変わらな
い。一方、窒素酸化物の副生も認められなかった。ま
た、比較例触媒1に比べてアンモニアの除去性能が高い
ことが確認された。
As is clear from the results shown in FIG. 6, even if the alumina carrier is changed, the ammonia removing performance hardly changes. On the other hand, no by-product of nitrogen oxide was observed. It was also confirmed that the ammonia removal performance was higher than that of Comparative Example Catalyst 1.

【0051】〔実施例17〕前記A,C,D,F,H,
I,L触媒においてチタニア担体の代わりにシリカ担体
を用いた以外は同である。得られた触媒を以下に示す。
[Embodiment 17] The above A, C, D, F, H,
It is the same except that the silica carrier was used instead of the titania carrier in the I and L catalysts. The obtained catalyst is shown below.

【0052】B11;Si−Cu−Fe B12;Si−Cu−V B13;Si−Cu−Mo B14;Si−Cu−Na B15;Si−Cu−Li B16;Si−Cu−Sr B17;Si−Cu−Sn B11〜B17触媒および比較例触媒1を用いて、実施
例13と同様にして求めたアンモニアの除去率の結果を
図7に示す。
B11; Si-Cu-Fe B12; Si-Cu-V B13; Si-Cu-Mo B14; Si-Cu-Na B15; Si-Cu-Li B16; Si-Cu-Sr B17; Si-Cu FIG. 7 shows the results of ammonia removal rates obtained in the same manner as in Example 13 using the -Sn B11 to B17 catalysts and Comparative Example catalyst 1.

【0053】図7の結果からも明らかなようにシリカ担
体に変えてもほとんどアンモニア除去性能は変わらな
い。一方、窒素酸化物の副生も認められなかった。ま
た、比較例触媒1に比べてアンモニアの除去性能が高い
ことが確認された。
As is clear from the results shown in FIG. 7, even if the silica carrier is changed, the ammonia removing performance hardly changes. On the other hand, no by-product of nitrogen oxide was observed. It was also confirmed that the ammonia removal performance was higher than that of Comparative Example Catalyst 1.

【0054】〔実施例18〕前記A,C,D,F,H,
I,L触媒においてチタニア担体の代わりにジルコニア
担体を用いた以外は同じである。得られた触媒を以下に
示す。
[Embodiment 18] The above A, C, D, F, H,
The same except that a zirconia carrier was used in place of the titania carrier in the I and L catalysts. The obtained catalyst is shown below.

【0055】C11;Zr−Cu−Fe C12;Zr−Cu−V C13;Zr−Cu−Mo C14;Zr−Cu−Na C15;Zr−Cu−Li C16;Zr−Cu−Sr C17;Zr−Cu−Sn C11〜C17触媒および比較例触媒1を用いて実施例
13と同様にして求めたアンモニアの除去率の結果を図
8に示す。
C11; Zr-Cu-Fe C12; Zr-Cu-V C13; Zr-Cu-Mo C14; Zr-Cu-Na C15; Zr-Cu-Li C16; Zr-Cu-Sr C17; Zr-Cu FIG. 8 shows the results of the ammonia removal rate obtained in the same manner as in Example 13 using the -Sn C11 to C17 catalysts and Comparative Example catalyst 1.

【0056】図8の結果からも明らかなようにジルコニ
ア担体に変えてもほとんど除去性能は変わらない。一
方、窒素酸化物の副生も認められなかった。また、比較
例触媒1に比べてアンモニアの除去性能が高いことが確
認された。
As is clear from the results shown in FIG. 8, even if the carrier is changed to the zirconia carrier, the removal performance hardly changes. On the other hand, no by-product of nitrogen oxide was observed. It was also confirmed that the ammonia removal performance was higher than that of Comparative Example Catalyst 1.

【0057】〔実施例19〕前記A,C,D,F,H,
I,L触媒においてチタニア担体の代わりにゼオライト
担体を用いた以外は同である。なお、ゼオライトはHY
型(0.32Na2OAl235.5SiO2)ゼオライト
を用いた。得られた触媒を以下に示す。
Example 19 The above A, C, D, F, H,
The same applies except that a zeolite carrier was used in place of the titania carrier in the I and L catalysts. In addition, zeolite is HY
Type (0.32 Na 2 OAl 2 O 3 5.5 SiO 2 ) zeolite was used. The obtained catalyst is shown below.

【0058】D11;Si−Al−Cu−Fe D12;Si−Al−Cu−V D13;Si−Al−Cu−Mo D14;Si−Al−Cu−Na D15;Si−Al−Cu−Li D16;Si−Al−Cu−Sr D17;Si−Al−Cu−Sn D11〜D17触媒および比較例触媒1を用いて、実施
例13と同様にして求めたアンモニアの除去率の結果を
図9に示す。
D11; Si-Al-Cu-Fe D12; Si-Al-Cu-V D13; Si-Al-Cu-Mo D14; Si-Al-Cu-Na D15; Si-Al-Cu-Li D16; FIG. 9 shows the results of ammonia removal rate obtained in the same manner as in Example 13 using the Si-Al-Cu-Sr D17; Si-Al-Cu-Sn D11 to D17 catalysts and the comparative catalyst 1.

【0059】図9の結果からも明らかなようにゼオライ
ト担体に変えてもほとんどアンモニア除去性能は変わら
ない。一方、窒素酸化物の副生もほとんど認められなか
った。また、比較例触媒1に比べてアンモニアの除去性
能が高いことが確認された。
As is clear from the results shown in FIG. 9, even if the zeolite carrier is changed, the ammonia removing performance hardly changes. On the other hand, almost no nitrogen oxide by-product was observed. It was also confirmed that the ammonia removal performance was higher than that of Comparative Example Catalyst 1.

【0060】〔実施例20〕実施例16のA11触媒を
用いて、比表面積を50m2/g、100m2/g、20
0m2/g、300m2/gと変えたものを調製した。
Example 20 Using the A11 catalyst of Example 16, specific surface areas of 50 m 2 / g, 100 m 2 / g, 20
0m 2 / g, what was changed and 300m 2 / g was prepared.

【0061】〔比較例3〕チタニア担体の代わりにアル
ミナ担体を用いた以外は比較例1と同である。この触媒
の比表面積を100m2/g、200m2/g、300m
2/gと変えたものを調製した。これを比較例触媒3と
する。
Comparative Example 3 The same as Comparative Example 1 except that an alumina carrier was used instead of the titania carrier. The specific surface area of this catalyst is 100 m 2 / g, 200 m 2 / g, 300 m
What changed to 2 / g was prepared. This is designated as Comparative Example Catalyst 3.

【0062】〔実施例21〕比表面積が異なる実施例2
0のA11触媒と比較例触媒3とを用い、実施例16と
同様にして求めたアンモニアの除去率の結果を図10に
示す。図10の結果からも明らかなように本発明の触媒
は比表面積を変えても、比較例触媒3に比べてアンモニ
アの除去性能が高いことが確認された。
[Example 21] Example 2 having different specific surface areas
FIG. 10 shows the results of the ammonia removal rate obtained in the same manner as in Example 16 using the A11 catalyst of 0 and the comparative catalyst 3. As is clear from the results of FIG. 10, it was confirmed that the catalyst of the present invention has a higher ammonia removing performance than the comparative catalyst 3 even if the specific surface area is changed.

【0063】〔実施例22〕第1活性成分と第2活性成
分の原子割合がAl/第一活性成分=10/1とAl/
第2活性成分=20/1となるよう混合溶液を調製し
た。混合溶液にアルミナハニカム担体(縦30mm×横
30mm×長200mm,セル数400□)を浸漬し
た。得られた触媒を以下に示す。
[Embodiment 22] The atomic ratio of the first active ingredient and the second active ingredient is Al / first active ingredient = 10/1 and Al /
A mixed solution was prepared so that the second active ingredient was 20/1. An alumina honeycomb carrier (length 30 mm × width 30 mm × length 200 mm, cell number 400 □) was immersed in the mixed solution. The obtained catalyst is shown below.

【0064】B102;Al−Cu−Fe B103;Al−Cu−V B104;Al−Cu−Mo B105;Al−Cu−Na B106;Al−Cu−Li B107;Al−Cu−Sr B108;Al−Cu−Sn 〔比較例4〕10%硝酸クロム溶液にアルミナハニカム
担体((縦30mm×横30mm×長200mm,セル
数400□)を浸漬した。120℃で1時間乾燥し、5
00℃で2時間焼成して比較例触媒4とした。
B102; Al-Cu-Fe B103; Al-Cu-V B104; Al-Cu-Mo B105; Al-Cu-Na B106; Al-Cu-Li B107; Al-Cu-Sr B108; Al-Cu -Sn [Comparative Example 4] An alumina honeycomb carrier ((length 30 mm x width 30 mm x length 200 mm, number of cells 400 □) was immersed in a 10% chromium nitrate solution.
Comparative catalyst 4 was obtained by calcining at 00 ° C. for 2 hours.

【0065】〔実施例23〕ハニカム触媒を充填する反
応管の内径を35mmに変えた以外は実施例13と同で
ある。これによってアンモニアの除去率を求めた。
[Example 23] The same as Example 13 except that the inner diameter of the reaction tube for filling the honeycomb catalyst was changed to 35 mm. Thus, the removal rate of ammonia was obtained.

【0066】〔実施例24〕前記B102〜B108触
媒および比較例触媒4の性能評価を実施例23の方法に
より、アンモニアの除去率を求めた。その結果を図11
に示す。図11の結果からも明らかなようにハニカム担
体に変えても、粒状触媒とほとんど変わらな結果を得
た。また、比較例触媒4に比べてアンモニアの除去性能
が高いことが確認された。
Example 24 The performance of the B102 to B108 catalysts and Comparative Example catalyst 4 was evaluated by the method of Example 23, and the removal rate of ammonia was obtained. The result is shown in FIG.
Shown in As is clear from the results shown in FIG. 11, even when the honeycomb carrier was changed, the same results as those of the granular catalyst were obtained. It was also confirmed that the ammonia removal performance was higher than that of the comparative catalyst 4.

【0067】〔実施例25〕パイロットプラント用触媒
として平均粒径2〜4mmの粒状担体に、第一活性成分
と第二活性成分を含浸した。120℃で1時間乾燥し、
500℃で2時間焼成した。得られた触媒を以下に示
す。
Example 25 As a catalyst for a pilot plant, a granular carrier having an average particle size of 2 to 4 mm was impregnated with a first active component and a second active component. Dried at 120 ° C for 1 hour,
It was baked at 500 ° C. for 2 hours. The obtained catalyst is shown below.

【0068】 P10;Ti(10)−Cu(1)−Fe(0.5) 〔実施例26〕前記P10触媒をアンモニア酸化分解塔
に充填し使用した場合を示す。
P10; Ti (10) -Cu (1) -Fe (0.5) [Example 26] The case where the above P10 catalyst was packed in an ammonia oxidation decomposition tower and used.

【0069】内径300mmのアンモニア酸化分解塔に
P10のアンモニア分解触媒を設置し、100時間のパ
イロット試験を実施した。排ガス処理条件は以下の通り
である。
A P10 ammonia decomposition catalyst was installed in an ammonia oxidation decomposition tower having an inner diameter of 300 mm, and a pilot test was carried out for 100 hours. Exhaust gas treatment conditions are as follows.

【0070】排ガスの組成:アンモニア濃度(3000
ppm),水蒸気濃度(12%),残り空気 排ガス処理量:100m2/h,触媒形状:2〜4m
m,触媒量:0.05m3 ガス空間速度:10,000/h~1,反応温度:320
℃ その結果、100時間後における酸化分解塔出口のアン
モニアの除去率は99%であり、除去性能の高いことが
確認された。
Exhaust gas composition: Ammonia concentration (3000
ppm), water vapor concentration (12%), residual air Exhaust gas treatment amount: 100 m 2 / h, catalyst shape: 2-4 m
m, catalyst amount: 0.05 m 3 gas space velocity: 10,000 / h ~ 1 , reaction temperature: 320
As a result, the removal rate of ammonia at the outlet of the oxidative decomposition tower after 100 hours was 99%, and it was confirmed that the removal performance was high.

【0071】〔実施例27〕前記P10触媒を火力発電
所廃水処理設備のアンモニア酸化分解塔に充填して使用
した場合を示す。
[Example 27] A case where the above P10 catalyst was used by filling it into an ammonia oxidation decomposition tower of a wastewater treatment facility for a thermal power plant is shown.

【0072】1000MWの石炭火力発電所のエアーヒ
ータ、集塵器、復水器から排出された2g/lのアンモ
ニア態窒素を含有するpH1.36の廃液を貯槽から8
4トン/日で、連続的にpH調整槽に導き、濃度10%
の水酸化ナトリウム溶液を200kg/時で添加してア
ンモニアを発生させた。
A waste liquid having a pH of 1.36 containing 2 g / l of ammonia nitrogen discharged from an air heater, a dust collector and a condenser of a 1000 MW coal-fired power plant is stored in a storage tank.
At 4 tons / day, it is continuously led to a pH adjusting tank and the concentration is 10%.
The sodium hydroxide solution was added at 200 kg / hour to generate ammonia.

【0073】アンモニア発生後の廃液はシックナに導
き、重金属類のスラッジを回収した。シックナからのオ
ーバフロー液を棚段方式のアンモニアストリッパの塔頂
に導き塔底から空気を3500m3/時で供給して、ア
ンモニアをストリッピングした。
The waste liquid after the generation of ammonia was led to a thickener to collect sludge of heavy metals. The overflow liquid from Thickener was introduced to the top of a tray type ammonia stripper, and air was supplied from the bottom of the tower at 3500 m 3 / hr to strip ammonia.

【0074】ストリッピングされたアンモニア含有ガス
は、熱交換器で約300℃まで加熱されて、アンモニア
を分解するアンモニア分解触媒塔を備えた火力発電所廃
水処理設備に導入される。アンモニア分解触媒塔に実施
例16のA15触媒を使用した。運転条件は以下の通り
である。
The stripped ammonia-containing gas is heated to about 300 ° C. in a heat exchanger and introduced into a thermal power plant wastewater treatment facility equipped with an ammonia decomposition catalyst tower for decomposing ammonia. The A15 catalyst of Example 16 was used in the ammonia decomposition catalyst tower. The operating conditions are as follows.

【0075】排ガス処理量:3,000m3/h,触媒
形状:2〜4mm,触媒充填量:0.3m3,ガス空間速
度:10,000/h~1,反応温度:300℃である。
Exhaust gas treatment amount: 3,000 m 3 / h, catalyst shape: 2 to 4 mm, catalyst filling amount: 0.3 m 3 , gas space velocity: 10,000 / h to 1 , reaction temperature: 300 ° C.

【0076】その結果、1000時間後におけるアンモ
ニア分解触媒塔出口のアンモニアの除去率は97%であ
り、アンモニア除去性能の高いことが確認された。
As a result, it was confirmed that the removal rate of ammonia at the outlet of the ammonia decomposition catalyst column after 1000 hours was 97%, and the ammonia removal performance was high.

【0077】[0077]

【発明の効果】本発明のアンモニア分解触媒は、排ガス
中のアンモニア除去効果が優れ、窒素酸化物の副生も著
しく少ないので、耐環境性の上からも優れている。
The ammonia decomposition catalyst of the present invention has an excellent effect of removing ammonia in exhaust gas and a remarkably small amount of nitrogen oxide as a by-product, and is therefore excellent in terms of environmental resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】アンモニア分解触媒性能結果を示す図である。FIG. 1 is a diagram showing an ammonia decomposition catalyst performance result.

【図2】アンモニア分解触媒性能結果を示す図である。FIG. 2 is a diagram showing an ammonia decomposition catalyst performance result.

【図3】アンモニア分解触媒性能結果を示す図である。FIG. 3 is a diagram showing an ammonia decomposition catalyst performance result.

【図4】アンモニア分解触媒性能結果を示す図である。FIG. 4 is a diagram showing an ammonia decomposition catalyst performance result.

【図5】アンモニア分解触媒性能結果を示す図である。FIG. 5 is a diagram showing an ammonia decomposition catalyst performance result.

【図6】アンモニア分解触媒性能結果を示す図である。FIG. 6 is a diagram showing an ammonia decomposition catalyst performance result.

【図7】アンモニア分解触媒性能結果を示す図である。FIG. 7 is a diagram showing an ammonia decomposition catalyst performance result.

【図8】アンモニア分解触媒性能結果を示す図である。FIG. 8 is a diagram showing an ammonia decomposition catalyst performance result.

【図9】アンモニア分解触媒性能結果を示す図である。FIG. 9 is a diagram showing an ammonia decomposition catalyst performance result.

【図10】アンモニア分解触媒性能結果を示す図であ
る。
FIG. 10 is a diagram showing an ammonia decomposition catalyst performance result.

【図11】アンモニア分解触媒性能結果を示す図であ
る。
FIG. 11 is a diagram showing an ammonia decomposition catalyst performance result.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/835 B01J 23/88 A 23/84 ZAB 29/04 A 23/847 32/00 23/88 B01D 53/36 E // B01J 29/04 B01J 23/82 A 32/00 23/84 301A (72)発明者 馬場 研二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 村井 行男 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社 (72)発明者 田中 明雄 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/835 B01J 23/88 A 23/84 ZAB 29/04 A 23/847 32/00 23 / 88 B01D 53/36 E // B01J 29/04 B01J 23/82 A 32/00 23/84 301A (72) Inventor Kenji Baba 7-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Research Co., Ltd. In-house (72) Inventor Yukio Murai 1-14-14 Uchikanda Uchikanda, Chiyoda-ku, Tokyo Hiratsugi Plant Co., Ltd. (72) Inventor Akio Tanaka 1-1-14 Uchikanda Uchikanda, Chiyoda-ku, Tokyo Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中のアンモニアを分解するアンモ
ニア分解触媒であって、第一活性成分としてのCu、第
二活性成分としてのFe,Ni,V,Mo,W,Na,
K,Li,Sr,Mg,Ba,Snから選ばれた一種以
上の酸化物との混合物が、酸化物担体に担持されている
ことを特徴とするアンモニア分解触媒。
1. An ammonia decomposition catalyst for decomposing ammonia in exhaust gas, comprising Cu as a first active component and Fe, Ni, V, Mo, W, Na as a second active component,
An ammonia decomposition catalyst, wherein a mixture with one or more oxides selected from K, Li, Sr, Mg, Ba and Sn is supported on an oxide carrier.
【請求項2】 前記酸化物担体がチタニア,アルミナ,
シリカ,ジルコニア,ゼオライトから選ばれた一種以上
からなる請求項1に記載のアンモニア分解触媒。
2. The oxide carrier is titania, alumina,
The ammonia decomposition catalyst according to claim 1, comprising at least one selected from silica, zirconia, and zeolite.
【請求項3】 前記酸化物担体の1に対し、前記第一活
性成分が0.005〜0.5(原子比)、前記第二活性成
分が0.01〜0.005(原子比)の割合で含む請求項
1に記載のアンモニア分解触媒。
3. The first active ingredient is 0.005-0.5 (atomic ratio), and the second active ingredient is 0.01-0.005 (atomic ratio) with respect to 1 of the oxide carrier. The ammonia decomposition catalyst according to claim 1, which is contained in a ratio.
【請求項4】 前記アンモニア分解触媒の比表面積が5
0m2/g以上である請求項1に記載のアンモニア分解
触媒。
4. The specific surface area of the ammonia decomposition catalyst is 5
The ammonia decomposition catalyst according to claim 1, which has an amount of 0 m 2 / g or more.
【請求項5】 前記アンモニア分解触媒の形状が粒状,
ハニカム状,板状,金網状,三次元網状のいずれかであ
る請求項1に記載のアンモニア分解触媒。
5. The shape of the ammonia decomposition catalyst is granular,
The ammonia decomposition catalyst according to claim 1, which is in the shape of a honeycomb, a plate, a wire mesh, or a three-dimensional mesh.
【請求項6】 アンモニアを触媒により酸化分解して除
去するアンモニア処理方法であって、前記触媒が、第一
活性成分としてのCu、第二活性成分としてのFe,N
i,V,Mo,W,Na,K,Li,Sr,Mg,B
a,Snから選ばれた一種以上の酸化物との混合物が、
酸化物担体に担持されており、該触媒に理論酸素量以上
の空気を共存させ200〜500℃でアンモニアを接触
させて酸化分解することを特徴とするアンモニア処理方
法。
6. A method of treating ammonia by removing ammonia by oxidative decomposition with a catalyst, wherein the catalyst comprises Cu as a first active component and Fe, N as a second active component.
i, V, Mo, W, Na, K, Li, Sr, Mg, B
a, a mixture with one or more oxides selected from Sn,
A method for treating ammonia, which is carried on an oxide carrier, wherein the catalyst is allowed to coexist with air having a theoretical oxygen amount or more and is brought into contact with ammonia at 200 to 500 ° C. for oxidative decomposition.
JP8088052A 1996-04-10 1996-04-10 Ammonia decomposing catalyst and ammonia treatment method Pending JPH09276700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8088052A JPH09276700A (en) 1996-04-10 1996-04-10 Ammonia decomposing catalyst and ammonia treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8088052A JPH09276700A (en) 1996-04-10 1996-04-10 Ammonia decomposing catalyst and ammonia treatment method

Publications (1)

Publication Number Publication Date
JPH09276700A true JPH09276700A (en) 1997-10-28

Family

ID=13932074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8088052A Pending JPH09276700A (en) 1996-04-10 1996-04-10 Ammonia decomposing catalyst and ammonia treatment method

Country Status (1)

Country Link
JP (1) JPH09276700A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240646A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method of producing hydrogen using the same
JP2010240559A (en) * 2009-04-03 2010-10-28 Koyo Thermo System Kk Exhaust gas treatment equipment and exhaust gas treatment apparatus having the same
WO2011125653A1 (en) * 2010-03-31 2011-10-13 株式会社日本触媒 Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst
US8962518B2 (en) 2009-03-17 2015-02-24 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240646A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method of producing hydrogen using the same
US8962518B2 (en) 2009-03-17 2015-02-24 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
US10857523B2 (en) 2009-03-17 2020-12-08 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
JP2010240559A (en) * 2009-04-03 2010-10-28 Koyo Thermo System Kk Exhaust gas treatment equipment and exhaust gas treatment apparatus having the same
WO2011125653A1 (en) * 2010-03-31 2011-10-13 株式会社日本触媒 Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst

Similar Documents

Publication Publication Date Title
US4010238A (en) Proces for selective removal of nitrogen oxides from waste gases
US4210628A (en) Removal of nitrogen oxides
JP3589529B2 (en) Method and apparatus for treating flue gas
JP2020501874A (en) Purifying agent, method for producing the same, purifying method thereof, and purifying method using the purifying agent
WO1999002258A1 (en) Selective catalytic reduction for the removal of nitrogen oxides and catalyst body thereof
JP2005504631A (en) Use of a TiO2 based composition as a catalyst for hydrolyzing COS and / or HCN in a gas mixture
WO1996036561A1 (en) Catalysts and process for selective oxidation
CN113877638B (en) Preparation method for preparing denitration and dioxin removal VOCs integrated catalyst by fractional precipitation method and prepared catalyst
JP4118077B2 (en) Exhaust gas purification method
JPH09276700A (en) Ammonia decomposing catalyst and ammonia treatment method
WO1999036174A1 (en) Sulfide catalysts for reducing so2 to elemental sulfur
JPH07328440A (en) Catalyst for decomposition of ammonia
JPS6029288B2 (en) Catalyst manufacturing method and denitrification method
SU660571A3 (en) Catalyst for purifying waste gas from nitrogen oxides
JPH0741146B2 (en) Deodorization method
JPH09313940A (en) Ammonia oxidation decomposition catalyst
JPH09155364A (en) Treatment of waste water
JPH10151349A (en) Ammonia decomposition catalyst and method for using the same
JPH0290923A (en) Deodorizing method
JP2001038206A (en) Catalyst for treating exhaust gas and method and apparatus for treating exhaust gas
JP3579709B2 (en) Hollandite-type photocatalyst and method for removing phenol in water using the catalyst
JPS6335298B2 (en)
JP3051918B2 (en) Photocatalyst for decomposing nitrate ion in water and method for decomposing and removing nitrate ion
JP3721430B2 (en) Underwater organochlorine purification catalyst
JP3062740B2 (en) Photocatalyst for reductive decomposition and removal of nitric oxide in gas phase and purification method using the catalyst