JPH0290923A - Deodorizing method - Google Patents

Deodorizing method

Info

Publication number
JPH0290923A
JPH0290923A JP63240549A JP24054988A JPH0290923A JP H0290923 A JPH0290923 A JP H0290923A JP 63240549 A JP63240549 A JP 63240549A JP 24054988 A JP24054988 A JP 24054988A JP H0290923 A JPH0290923 A JP H0290923A
Authority
JP
Japan
Prior art keywords
ozone
catalyst
metal oxide
odor
deodorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63240549A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Okitsuji
沖辻 忠夫
Kazuhiko Nagano
永野 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP63240549A priority Critical patent/JPH0290923A/en
Priority to DE1989604276 priority patent/DE68904276T2/en
Priority to EP19890117739 priority patent/EP0361385B1/en
Publication of JPH0290923A publication Critical patent/JPH0290923A/en
Priority to US07/684,093 priority patent/US5214014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decompose odor-causing components and simultaneously make almost all unreactive ozone nonresidual after deodorizing treatment by providing a catalyst consisting chiefly of a metal oxide formed by copper or manganese and a metal oxide formed by titanium and/or silver or gold. CONSTITUTION:To remove odor from malodorous substances such as ammonia and trimethylamine, a catalyst consisting chiefly of a metal oxide formed by Cu, Mn, Co, Fe or Ni and a metal oxide formed by Ti, Ag or Au, is used. The malodorous substance is sent to a catalyst layer 2 wherein the odor-causing components are separated therefrom by ozone from an ozonizer 1. The deodorization in this way brings about a high rate of the odor removal and does not allow the remaining of almost all the ozone harmful to the respiratory organs, etc., after the deodorizing treatment.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、気体等の中に含まれる、臭気を発生ずる成分
(以下、「有臭成分」という)を除去するための脱臭方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a deodorizing method for removing odor-producing components (hereinafter referred to as "odorous components") contained in gases and the like.

〈従来の技術〉 従来、気体中に含まれる有臭成分を除去する方法として
、活性炭、ゼオライト等の多孔質物質を用いる吸着脱臭
法、酸化剤又は還元剤を用いる湿式処理脱臭法、オゾン
分解脱臭法等の種々の脱臭方法が提案されている。
<Prior art> Conventional methods for removing odorous components contained in gas include adsorption deodorization using porous materials such as activated carbon and zeolite, wet processing deodorization using oxidizing agents or reducing agents, and ozonolysis deodorization. Various deodorizing methods have been proposed.

〈発明が解決しようとする課題〉 しかしながら、上記従来の各脱臭方法(以下、「従来方
法」という)はいずれも、充分に満足のいく脱臭方法で
あるとは言い難い。
<Problems to be Solved by the Invention> However, it is difficult to say that each of the conventional deodorizing methods described above (hereinafter referred to as "conventional methods") is a fully satisfactory deodorizing method.

すなわち、吸着脱臭法には、吸着剤が吸着能力を発揮す
る期間が有限であるため、再生等することを要し、脱臭
装置のメンテナンスに多大の労力及び費用が必要となる
という問題がある。
That is, the adsorption deodorization method has a problem in that since the period during which the adsorbent exhibits its adsorption capacity is limited, it requires regeneration, etc., and maintenance of the deodorization device requires a great deal of labor and cost.

また、湿式処理脱臭法には、酸化剤等の薬液の処理が煩
雑であるという問題がある。
In addition, the wet deodorization method has a problem in that processing of chemicals such as oxidizing agents is complicated.

最後のオゾン分解脱臭法には、上記のような問題は無い
ものの、有臭成分の酸化分解による除去か充分でないこ
と及び呼吸器障害等の公害を防止する上で、脱臭処理後
の気体中に含まれるオゾンを分解する必要があること等
の問題がある。
Although the last ozonolysis deodorization method does not have the above-mentioned problems, the removal of odorous components by oxidative decomposition is not sufficient, and in order to prevent pollution such as respiratory disorders, some odor components are removed from the gas after deodorization. There are problems such as the need to decompose the ozone contained.

本発明は、従来のオゾン分解脱臭法が有していたこれら
の問題を解決するためになされたものであって、その目
的とするところは、従来方法に比べて有臭成分の分解除
去能力に優れると共に、脱臭処理後に未反応のオゾンが
殆ど残留しないオゾン分解脱臭法を提供することにある
The present invention was made to solve these problems that the conventional ozonolysis deodorization method had, and its purpose is to improve the ability to decompose and remove odorous components compared to the conventional method. It is an object of the present invention to provide an ozone decomposition deodorization method which is excellent and leaves almost no unreacted ozone after deodorization treatment.

く課題を解決するための手段〉 上記目的を達成するための本発明に係る脱臭方法(以下
、「本発明方法」)は、銅(Cu)、マンガン(Mn)
、コバルト(Co)、鉄(Fe)及びニッケル(Ni)
の中から選ばれた少なくとも一種以上の金属の酸化物と
、チタン(Ti)及び銀(Ag)の中から選ばれた少な
くとも一種以上の金属の酸化物及び/又は金(Au)と
を主成分とする触媒の存在下、オゾンにより酸化分解す
ることにより有臭成分を除去するようにしたものである
Means for Solving the Problems> The deodorizing method according to the present invention (hereinafter referred to as the "method of the present invention") for achieving the above object uses copper (Cu), manganese (Mn),
, cobalt (Co), iron (Fe) and nickel (Ni)
The main components are an oxide of at least one metal selected from the group consisting of an oxide of at least one metal selected from the group consisting of at least one metal oxide selected from the group consisting of titanium (Ti) and silver (Ag) and/or gold (Au). Odorous components are removed by oxidative decomposition using ozone in the presence of a catalyst.

上記本発明方法により除去せんとする有臭成分としては
、アンモニア、トリメチルアミン、硫化水素、メチルメ
ルカプタン、硫化メチル、二硫化メチル、アセトアルデ
ヒド、スチレン、メチルエチルケトン、アクロレイン、
プロピオンアルデヒド、ブチルアルコール、フェノール
、クレゾール、ジフェニルエーテル、酢酸、プロピオン
酸、吉草酸、メチルアミン、ジメチルアミン、スカトー
ル、ジメチルチオエーテル、ジメチルメルカプタン、塩
化水素、塩化アリルが例示される。
The odorous components to be removed by the method of the present invention include ammonia, trimethylamine, hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide, acetaldehyde, styrene, methyl ethyl ketone, acrolein,
Examples include propionaldehyde, butyl alcohol, phenol, cresol, diphenyl ether, acetic acid, propionic acid, valeric acid, methylamine, dimethylamine, skatole, dimethylthioether, dimethylmercaptan, hydrogen chloride, and allyl chloride.

また、本発明方法が実施される分野としては、例えばし
尿処理場、下水処理場、ゴミ焼却処理場、印刷工場、メ
ツキ工場、一般化学工場等から排出される排気ガスの脱
臭処理が挙げられる。
Fields in which the method of the present invention is implemented include, for example, deodorizing treatment of exhaust gas discharged from human waste treatment plants, sewage treatment plants, garbage incineration plants, printing factories, Metsuki factories, general chemical factories, etc.

CuSMn5Co、F e、N iの中から選ばれる少
なくとも一種以上の金属の酸化物と、Ti、Ag、Au
の中から選ばれる少なくとも一種以上の金属の酸化物と
を主成分とする触媒としては、MnO2−Ti02 、
CuO−TiO2、CO304−Ti02 、Fe20
3−TiO2、Fe2O3−Au等の二元触媒を主成分
とするもの及びMnO2−CO304−T i 02、
MnO2−CO304−Ag2O。
An oxide of at least one metal selected from CuSMn5Co, Fe, and Ni, and Ti, Ag, and Au.
Catalysts containing at least one metal oxide selected from among MnO2-Ti02,
CuO-TiO2, CO304-Ti02, Fe20
3-TiO2, those whose main component is a binary catalyst such as Fe2O3-Au, and MnO2-CO304-T i 02,
MnO2-CO304-Ag2O.

N i O−Mn 02−T i 02等の三元触媒を
主成分とするものが例示される。
Examples include those containing a three-way catalyst such as N i O-Mn 02-T i 02 as a main component.

Cu、Mn、Co5F e及びNiの中から選ばれる少
なくとも一種以上の金属の酸化物の好適な含有率(重量
96、以下同様)は、金属単体の含有率に換算して5〜
75%であり、またTi及びAgの中から選ばれる少な
くとも一種以上の金属の酸化物及び/又はAuの好適な
含有率は、金属単体の含有率に換算して25〜95%で
ある。
The preferred content of the oxide of at least one metal selected from Cu, Mn, Co5Fe, and Ni (weight 96, the same applies hereinafter) is 5 to 5 when converted to the content of the single metal.
75%, and the preferred content of at least one metal oxide selected from Ti and Ag and/or Au is 25 to 95% in terms of the content of the elemental metal.

本発明方法において用いられる触媒の形状は特に限定さ
れず、例えばハニカム状、ベレット状、円柱状、板状、
パイプ状等、種々の形状のものを用いることができる。
The shape of the catalyst used in the method of the present invention is not particularly limited, and examples include honeycomb shape, pellet shape, columnar shape, plate shape,
Various shapes such as a pipe shape can be used.

触媒中の活性成分含有率は、50%以上が好ましく、7
5%以上がより好ましい。
The active component content in the catalyst is preferably 50% or more, and 7
More preferably 5% or more.

触媒は、含浸法、混練法、共沈法、沈澱法、酸化物混合
法等の既知の製法を適宜選択して製造することができる
。触媒の製造においては、触媒に賦形性を与えるために
成形助剤を添加したり、機械強度等を向上させるために
無機繊維等の補強剤、有機バインダー等を適宜添加した
りしてもよい。
The catalyst can be manufactured by appropriately selecting a known manufacturing method such as an impregnation method, a kneading method, a coprecipitation method, a precipitation method, or an oxide mixing method. In the production of catalysts, shaping aids may be added to give the catalyst shapeability, and reinforcing agents such as inorganic fibers, organic binders, etc. may be added as appropriate to improve mechanical strength etc. .

脱臭の際に上記触媒と共存させるオゾン(03)は、除
去せんとする有臭成分の種類及び濃度、その他反応温度
、触媒の種類及び量等によって適宜量用いられる。例え
ば、有臭成分としてH2Sを含有する被脱臭気体の場合
は、H2S1モルあたり031〜2モルを共存させるこ
とが好ましく、NH3を含有する被脱臭気体の場合は、
NH31モルあたり031〜3モルを共存させることが
好ましい。また、メチルメルカプタンを含何する被脱臭
気体の場合は、メチルメルカプタン1モルあたり031
〜4モルを共存させることが好ましい。
Ozone (03), which is allowed to coexist with the catalyst during deodorization, is used in an appropriate amount depending on the type and concentration of the odorous component to be removed, the reaction temperature, the type and amount of the catalyst, etc. For example, in the case of a gas to be deodorized containing H2S as an odorous component, it is preferable to allow 031 to 2 mol per mol of H2S to coexist, and in the case of a gas to be deodorized containing NH3,
It is preferable to coexist in an amount of 0.31 to 3 moles per mole of NH3. In addition, in the case of a gas to be deodorized containing methyl mercaptan, 031 per mole of methyl mercaptan
It is preferable to coexist in an amount of 4 mol to 4 mol.

被脱臭気体中に含まれる有臭成分の濃度が高い場合、除
去率を向上させるために03を上記好適瓜を越えて共存
させても良い。但し、多すぎる場合には、脱臭処理後に
余剰の03が残留する場合があるのでこの様なことが無
いように過剰の03を共存させないように配慮する必要
がある。
When the concentration of odorous components contained in the gas to be deodorized is high, in order to improve the removal rate, 03 may be present in an amount exceeding the above-mentioned suitable melon. However, if there is too much 03, excess 03 may remain after the deodorizing treatment, so care must be taken not to allow excess 03 to coexist to prevent this from happening.

脱臭の際の反応温度は、0〜40℃が好ましく、10〜
30°Cがより好ましい。0℃未満の場合、反応速度が
遅くなるからであり、40℃を越える場合、新たに昇温
のためのエネルギーを必要とし不経済であるからである
The reaction temperature during deodorization is preferably 0 to 40°C, and 10 to 40°C.
30°C is more preferred. This is because if the temperature is less than 0°C, the reaction rate becomes slow, and if it exceeds 40°C, additional energy is required to raise the temperature, which is uneconomical.

また、触媒と反応ガスとの接触は、5〜50の面積速度
(A V ; area velocity )で行う
ことが好ましい。これは、面積速度が5未満であると触
媒が多く必要になるからであり、面積速度が50を越え
ると効率が低く所定の分解率が得られないからである。
Further, the contact between the catalyst and the reaction gas is preferably performed at an area velocity (A V ) of 5 to 50. This is because if the areal velocity is less than 5, a large amount of catalyst is required, and if the areal velocity is more than 50, the efficiency is low and a predetermined decomposition rate cannot be obtained.

ここで、面積速度とは、反応ffi(Nm3 /u、u
:Hr)を単位容積の触媒あたりのガス接触面積(m2
 /m3 )で除した値である。
Here, the areal velocity is the reaction ffi (Nm3/u, u
:Hr) is gas contact area per unit volume of catalyst (m2
/m3).

〈実施例〉 以下、本発明を実施例に基づいて詳細に説明する。但し
、本発明は下記の実施例に限定されるものではない。
<Examples> Hereinafter, the present invention will be described in detail based on Examples. However, the present invention is not limited to the following examples.

A、触媒の調製 (実施例1) 比表面積48m2/gのMnOz704gをチタニアゾ
ル(Ti○2含有量:150g/Ω)1034mΩに加
え、これにさらにガラスピーズ250gを加えて、30
分間攪拌混合してスラリを得た。このスラリーを空隙率
81%、ピッチ4.0市のセラミックスファイバ製のコ
ルゲート状ハニカムに含浸させて、Mn 02−T i
 02(モル比率82:18)を担持率95%で担持し
た二元触媒を得た。
A. Preparation of catalyst (Example 1) 704 g of MnOz with a specific surface area of 48 m2/g was added to 1034 mΩ of titania sol (Ti○2 content: 150 g/Ω), and 250 g of glass beads were further added thereto.
A slurry was obtained by stirring and mixing for a minute. This slurry was impregnated into a corrugated honeycomb made of ceramic fibers with a porosity of 81% and a pitch of 4.0.
A two-way catalyst was obtained in which 02 (molar ratio 82:18) was supported at a loading rate of 95%.

(実施例2) 比表面積48m2/gのMnOz30gと比表面積85
m2/gのアナターゼ型TiO270gとをチタニアゾ
ル(T i 02含有fA : 150g/Ω)170
rrlに添加して、30分間攪拌混合してスラリーを得
た。このスラリーを実施例1で用いたものと同仕様のコ
ルゲート状ハニカムに含浸させて、MnO2−TiOz
  (モル比率24ニア6)を担持率101%で担持し
た二元触媒を得た。
(Example 2) 30 g of MnOz with a specific surface area of 48 m2/g and a specific surface area of 85
m2/g of anatase type TiO270g and titania sol (T i 02 containing fA: 150g/Ω) 170g
rrl and stirred and mixed for 30 minutes to obtain a slurry. This slurry was impregnated into a corrugated honeycomb having the same specifications as that used in Example 1, and MnO2-TiOz
A two-way catalyst was obtained in which the catalyst (mole ratio 24 near 6) was supported at a supporting rate of 101%.

(実施例3) 比表面積48m2/gのMnOz30gに代えて、比表
面積62m2/gのCuOを用いたこと以外は実施例2
と同様にしてCuO−Ti02(モル比率24ニア6)
を担持率91%で担持した二元触媒を得た。
(Example 3) Example 2 except that CuO with a specific surface area of 62 m2/g was used instead of 30 g of MnOz with a specific surface area of 48 m2/g.
Similarly, CuO-Ti02 (mole ratio 24 near 6)
A two-way catalyst was obtained in which the following was supported at a loading rate of 91%.

(実弛例4) 比表面積48m2/gのMn0230gに代えて、比表
面積53m2/gのCO3O4を用いたこと以外は実施
例2と同様にしてCo304ri02(モル比率24 
+ 76)を担持率91%で担持した二元触媒を得た。
(Actual Relaxation Example 4) Co304ri02 (mole ratio 24
+76) was supported at a loading rate of 91%.

(実砲例5) 比表面積48m2/gのM n0230gに代えて、比
表面積53m2/gのFe2O3を用いたこと以外は実
施例2と同様にしてFe203TiOz  (モル比率
24 : 76)を担持率78%で担持した二元触媒を
得た。
(Actual gun example 5) Fe203TiOz (molar ratio 24:76) was carried in the same manner as in Example 2 except that Fe2O3 with a specific surface area of 53 m2/g was used instead of 230 g of Mn0 with a specific surface area of 48 m2/g. % of the binary catalyst was obtained.

(実在例6) 酢酸マンガン(四水塩)112g、硝酸コバルト(大水
塩)182g及びメタチタン酸63g(Ti028釘率
:40%)の500mg水溶液を調製した。次いで、攪
拌しつつアンモニア水を徐々に加えて中和し、スラリー
状の沈澱物を生成させた。このときの最終pHは7.0
であった。
(Example 6) A 500 mg aqueous solution containing 112 g of manganese acetate (tetrahydrate), 182 g of cobalt nitrate (large hydrate), and 63 g of metatitanic acid (Ti028 nail ratio: 40%) was prepared. Next, while stirring, aqueous ammonia was gradually added to neutralize the mixture to form a slurry-like precipitate. The final pH at this time is 7.0
Met.

このスラリーを実施例1で用いたものと同仕様のコルゲ
ート状ハニカムに含浸させ、温度450℃で3時間焼成
してMnO2−CO304TiO2(モル比率25 :
 50 : 25)を担持率89%で担持した比表面積
72m2/gの三元触媒を得た。
This slurry was impregnated into a corrugated honeycomb having the same specifications as that used in Example 1, and fired at a temperature of 450°C for 3 hours to form MnO2-CO304TiO2 (mole ratio 25:
A three-way catalyst with a specific surface area of 72 m2/g was obtained, in which 50:25) was supported at a loading rate of 89%.

(実施例7) 酢酸マンガン(四水塩)17.8g、硝酸コバルト(大
水塩)288g及び硝酸銀1,5gの500mΩ水溶液
を調製した。次いで、攪拌しつつこの水溶液に炭酸アン
モニウム水溶液を加えて中和し、スラリー状の沈澱物を
生成させた。このときの最終pHは7.0であった。こ
のスラリーを実施例1で用いたものと同仕様のコルゲー
ト状ハニカムに含浸させ、温度450℃で3時間焼成し
てCo304−Mn02−Ti02  (モル比率20
:40:1)を担持率92%で担持した比表面積65m
2/gの三元触媒を得た。
(Example 7) A 500 mΩ aqueous solution containing 17.8 g of manganese acetate (tetrahydrate), 288 g of cobalt nitrate (large hydrate), and 1.5 g of silver nitrate was prepared. Next, an aqueous ammonium carbonate solution was added to this aqueous solution while stirring to neutralize it, thereby producing a slurry-like precipitate. The final pH at this time was 7.0. This slurry was impregnated into a corrugated honeycomb having the same specifications as that used in Example 1, and fired at a temperature of 450°C for 3 hours.
:40:1) with a loading rate of 92%, with a specific surface area of 65 m.
A three-way catalyst of 2/g was obtained.

(実施例8) 硝酸鋼(大水塩)74.4g、酢酸マンガン(四本塩)
17.8g及び硝酸銀1.5gの500mg水溶液を調
製した。次いで、攪拌しつつこの水溶液に炭酸アンモニ
ウム水溶液を加えて中和し、スラリー状の沈澱物を生成
させた。このときの最終p!(は7.0であった。この
スラリーを実施例1で用いたものと同仕様のコルゲート
状ハニカムに含浸させ、温度450 ’Cで3時間焼成
してCuOCu0−Mn0z−A (モル比率20:4
0:1)を担持率87%で担持した比表面積71m2/
gの三元触媒を得た。
(Example 8) Nitric acid steel (big water salt) 74.4g, manganese acetate (shibon salt)
A 500 mg aqueous solution of 17.8 g and 1.5 g of silver nitrate was prepared. Next, an ammonium carbonate aqueous solution was added to this aqueous solution while stirring to neutralize it, thereby producing a slurry-like precipitate. The final p at this time! (was 7.0. This slurry was impregnated into a corrugated honeycomb having the same specifications as that used in Example 1, and fired at a temperature of 450'C for 3 hours to form CuOCu0-Mn0z-A (mole ratio 20: 4
0:1) at a loading rate of 87%, with a specific surface area of 71 m2/
A three-way catalyst of g was obtained.

(実施例9) 酢酸マンガン(四本塩)112g、硝酸ニッケル(大水
塩)195g及びメタチタン酸(T i 02含有率:
40%)63gの500mΩ水溶液を調製した。次いで
、攪拌しつつアンモニア水を徐々に加えてスラリー状の
沈澱物を生成させた。このときの最終pHは7.0であ
った。このスラリーを実施例1で用いたものと同仕様の
コルゲート状ハニカムに含浸させ、温度450℃で3時
間焼成してMn0z  CO3O4−TiOz(モル比
率25 : 50 : 25)を担持率94%で担持し
た比表面積80m2/gの三元触媒を得た。
(Example 9) 112 g of manganese acetate (tetra salt), 195 g of nickel nitrate (dahydrous salt), and metatitanic acid (T i 02 content:
40%) 63 g of a 500 mΩ aqueous solution was prepared. Next, aqueous ammonia was gradually added while stirring to form a slurry-like precipitate. The final pH at this time was 7.0. This slurry was impregnated into a corrugated honeycomb having the same specifications as that used in Example 1, and fired at a temperature of 450°C for 3 hours to support Mn0zCO3O4-TiOz (molar ratio 25:50:25) at a loading rate of 94%. A three-way catalyst with a specific surface area of 80 m2/g was obtained.

(比較例) 比表面148m2/gのMn0230gと、四塩化チタ
ンとシリカゾルとの混合物(Ti02:5i02が1:
1)70gとを攪拌混合しつつ、アンモニアガスを吹き
込んで中和反応を行い、スラリー状の沈澱物を生成させ
た。得られた沈澱物を充分に水洗した後、温度500℃
で3時間焼成して比表面積162m2/gの二元触媒T
iO2−3i02を得た。
(Comparative example) A mixture of 230 g of Mn0 with a specific surface of 148 m2/g, titanium tetrachloride and silica sol (Ti02:5i02 is 1:
1) While stirring and mixing 70 g, ammonia gas was blown in to perform a neutralization reaction, and a slurry-like precipitate was generated. After thoroughly washing the obtained precipitate with water, the temperature was 500°C.
Two-way catalyst T with a specific surface area of 162 m2/g after firing for 3 hours at
iO2-3i02 was obtained.

B、触媒活性試験 上記実施例1〜9及び比較例で得た各触媒について、第
1図にそのフローシートを示すような試験方式を用いて
下記反応条件で触媒活性試験を行った。図に於いて、(
1)は触媒層であり、該触媒層(1)に導入された被脱
臭気体中に含まれる有臭成分H2S、NHs及びメチル
アミンは、オゾン発生器(2)から触媒層(i)に導か
れたオゾン(03)によって分解される。分解脱臭後の
気体の一部はオゾン分析計(3)に導かれて、そこで残
留オゾン(o3)の定量分析がなされる。また、分解脱
臭後の気体の残部は有臭成分分析計(4)に導かれる。
B. Catalytic Activity Test Catalytic activity tests were conducted on each of the catalysts obtained in Examples 1 to 9 and Comparative Examples above under the following reaction conditions using a test method whose flow sheet is shown in FIG. In the figure, (
1) is a catalyst layer, and the odor components H2S, NHs and methylamine contained in the gas to be deodorized introduced into the catalyst layer (1) are introduced from the ozone generator (2) to the catalyst layer (i). decomposed by ozone (03). A part of the gas after decomposition and deodorization is led to an ozone analyzer (3), where residual ozone (o3) is quantitatively analyzed. Further, the remaining gas after decomposition and deodorization is led to an odorous component analyzer (4).

有臭成分分析計(4)は、ガスクロマトグラフ(H2S
又はメチルアミン分析用)2基及びNH3メータ1基か
らなり、これらの機器にて前記各有臭成分の定量分析が
なされるようになっている。
The odorous component analyzer (4) is a gas chromatograph (H2S
(or for methylamine analysis) and one NH3 meter, and quantitative analysis of each of the above-mentioned odorous components is performed using these devices.

(反応条件) 空間速度:20000/Hr 反応温度:20℃ 有臭成分: H2S % N H3又はメチルメルカプ
タン 上記試験結果を表に示す。
(Reaction conditions) Space velocity: 20000/Hr Reaction temperature: 20° C. Odorous components: H2S % N H3 or methyl mercaptan The above test results are shown in the table.

(以下、余白) 上記表より明らかなように、実施例1〜9で得たいずれ
の触媒も、比較例1及び2で得た触媒に比べて高い有臭
成分除去率(%)を有している。
(Hereinafter, blank space) As is clear from the table above, all the catalysts obtained in Examples 1 to 9 had higher odor component removal rates (%) than the catalysts obtained in Comparative Examples 1 and 2. ing.

また、オゾン残留率(%)については、実施例4で得た
触媒を除く全ての触媒が、比較例1及び2で得た触媒に
比べて低い値を示している。
Moreover, regarding the ozone residual rate (%), all the catalysts except the catalyst obtained in Example 4 show lower values than the catalysts obtained in Comparative Examples 1 and 2.

以上の試験結果より、本発明方法は有臭成分除去率(%
)が高く、しかもオゾン残留率(%)が低い脱臭方法で
あることが分かる。
From the above test results, the method of the present invention has a odorous component removal rate (%
) is a deodorizing method with a high ozone residual rate (%).

〈発明の効果〉 本発明に係るオゾン分解脱臭法は、有臭成分を効率良く
除去することができ、しかも脱臭処理後に呼吸器系統等
に有害なオゾンが殆ど残留しない等、本発明は優れた特
有の効果を奏する。
<Effects of the Invention> The ozone decomposition and deodorization method according to the present invention can efficiently remove odor components, and the present invention has excellent advantages such as almost no ozone harmful to the respiratory system remaining after the deodorization treatment. It has a unique effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は触媒活性試験のフローシートである。 (1)・・触媒層、    (2)・・・オゾン発生器
、(3)・・オゾン分析計、 (4)・・・有臭成分分
析計。
FIG. 1 is a flow sheet of the catalyst activity test. (1)... Catalyst layer, (2)... Ozone generator, (3)... Ozone analyzer, (4)... Odorous component analyzer.

Claims (1)

【特許請求の範囲】[Claims] 1、銅(Cu)、マンガン(Mn)、コバルト(Co)
、鉄(Fe)及びニッケル(Ni)の中から選ばれた少
なくとも一種以上の金属の酸化物と、チタン(Ti)及
び銀(Ag)の中から選ばれた少なくとも一種以上の金
属の酸化物及び/又は金(Au)とを主成分とする触媒
の存在下、オゾンにより酸化分解することにより有臭成
分を除去することを特徴とする脱臭方法。
1. Copper (Cu), manganese (Mn), cobalt (Co)
, an oxide of at least one metal selected from iron (Fe) and nickel (Ni), an oxide of at least one metal selected from titanium (Ti) and silver (Ag), and A deodorizing method characterized by removing odorous components by oxidative decomposition with ozone in the presence of a catalyst containing/or gold (Au) as a main component.
JP63240549A 1988-09-26 1988-09-26 Deodorizing method Pending JPH0290923A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63240549A JPH0290923A (en) 1988-09-26 1988-09-26 Deodorizing method
DE1989604276 DE68904276T2 (en) 1988-09-26 1989-09-26 DEODORIZING METHOD AND DESODORIZING CATALYST.
EP19890117739 EP0361385B1 (en) 1988-09-26 1989-09-26 Deodorizing method and deodorizing catalyst
US07/684,093 US5214014A (en) 1988-09-26 1991-04-12 Deodorizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63240549A JPH0290923A (en) 1988-09-26 1988-09-26 Deodorizing method

Publications (1)

Publication Number Publication Date
JPH0290923A true JPH0290923A (en) 1990-03-30

Family

ID=17061180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63240549A Pending JPH0290923A (en) 1988-09-26 1988-09-26 Deodorizing method

Country Status (1)

Country Link
JP (1) JPH0290923A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253850A (en) * 1989-03-29 1990-10-12 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for treatment of gas containing harmful component and malodorous component
JPH04200638A (en) * 1990-11-30 1992-07-21 Hitachi Ltd Catalyst for oxidization or decomposition of gas containing odorous component and its application product
JPH04371228A (en) * 1991-06-17 1992-12-24 Agency Of Ind Science & Technol Gold catalyst for removal of malodorous substance
JPH0557192A (en) * 1991-08-30 1993-03-09 Agency Of Ind Science & Technol Gold-oxide composite
JP2002529225A (en) * 1998-11-09 2002-09-10 シーメンス アクチエンゲゼルシヤフト Catalyst body and method for reducing halogenated hydrocarbons
CN105561779A (en) * 2016-03-09 2016-05-11 深圳市兴能保环境科技有限公司 Catalytic oxidation desulfurizer for high concentration odor treatment and preparing method thereof
CN112844402A (en) * 2021-01-20 2021-05-28 中国计量大学 Nano cobaltosic oxide supported catalyst for catalytic oxidation of VOCs in biomass boiler flue gas and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182032A (en) * 1987-01-21 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing catalyst
JPS63267440A (en) * 1987-04-24 1988-11-04 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182032A (en) * 1987-01-21 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing catalyst
JPS63267440A (en) * 1987-04-24 1988-11-04 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253850A (en) * 1989-03-29 1990-10-12 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for treatment of gas containing harmful component and malodorous component
JPH04200638A (en) * 1990-11-30 1992-07-21 Hitachi Ltd Catalyst for oxidization or decomposition of gas containing odorous component and its application product
JPH04371228A (en) * 1991-06-17 1992-12-24 Agency Of Ind Science & Technol Gold catalyst for removal of malodorous substance
JPH0557192A (en) * 1991-08-30 1993-03-09 Agency Of Ind Science & Technol Gold-oxide composite
JP2002529225A (en) * 1998-11-09 2002-09-10 シーメンス アクチエンゲゼルシヤフト Catalyst body and method for reducing halogenated hydrocarbons
CN105561779A (en) * 2016-03-09 2016-05-11 深圳市兴能保环境科技有限公司 Catalytic oxidation desulfurizer for high concentration odor treatment and preparing method thereof
CN112844402A (en) * 2021-01-20 2021-05-28 中国计量大学 Nano cobaltosic oxide supported catalyst for catalytic oxidation of VOCs in biomass boiler flue gas and preparation method thereof
CN112844402B (en) * 2021-01-20 2022-10-25 中国计量大学 Nano cobaltosic oxide supported catalyst for catalytic oxidation of VOCs in biomass boiler flue gas and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0275620B1 (en) Method and catalyst for purification of gas
US5214014A (en) Deodorizing catalyst
EP0361385B1 (en) Deodorizing method and deodorizing catalyst
JPH07299331A (en) Dry desulfurization and denitration process
JPH05317717A (en) Catalyzer and preparation of catalyzer
JPH0290923A (en) Deodorizing method
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
JP3072521B2 (en) Method for producing ozone decomposition catalyst
JP3091820B2 (en) Exhaust gas deodorization and denitration catalyst and deodorization and denitration method using the catalyst
JP2000262907A (en) Integrated catalyst and its production
JPS63182032A (en) Deodorizing catalyst
JPH04231059A (en) Method for deodorizing
JPH038447A (en) Catalyst for decomposition of ozone
JP2001104781A (en) Material for removing nitrogen oxide and method for removing it
JPH02149316A (en) Deodorizing method
JPH0549863A (en) Method for deodorization
JPH0564654A (en) Deodorizing method
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JPH04187215A (en) Deodorization method
JPH04277014A (en) Deodorizing method
JPH0398618A (en) Deodorization
JPH10151349A (en) Ammonia decomposition catalyst and method for using the same
JPH057776A (en) Catalyst and its manufacture
JPH05261294A (en) Catalyst for decomposing ozone and its production
JPH04322726A (en) Deodorizing method