JPH09313940A - Ammonia oxidation decomposition catalyst - Google Patents

Ammonia oxidation decomposition catalyst

Info

Publication number
JPH09313940A
JPH09313940A JP8264456A JP26445696A JPH09313940A JP H09313940 A JPH09313940 A JP H09313940A JP 8264456 A JP8264456 A JP 8264456A JP 26445696 A JP26445696 A JP 26445696A JP H09313940 A JPH09313940 A JP H09313940A
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
cerium
cobalt
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8264456A
Other languages
Japanese (ja)
Inventor
Toru Shiomitsu
徹 塩満
Takashi Ogawa
高志 小川
Keiji Tomura
啓二 戸村
Yasuhiko Manabe
保彦 真部
Yusaku Takita
祐作 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8264456A priority Critical patent/JPH09313940A/en
Publication of JPH09313940A publication Critical patent/JPH09313940A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently decompose ammonia at a low temperature by preparing a catalyst for oxidation and decomposition of ammonia by adding cobalt and cerium for the catalyst. SOLUTION: This catalyst for ammonia decomposition suitable for oxidation and decomposition of ammonia recovered from a coke-fueled furnace into nitrogen and water at a temperature as low as 250-400 deg.C contains cobalt and cerium and if necessary manganese. More specifically, the catalyst contains cobalt and cerium as metals or compounds and as the compounds of these elements include inorganic salts such as hydroxides, carbonates, nitrates and organic salts such as acetates besides oxides. The contents of respective components in the catalyst are 10-90wt.% (based on a cobalt metal), preferably 20-80wt.%, of cobalt 10-90wt.% (based on cerium metal), preferably 20-80wt.%, of cerium in the case cobalt and cerium are contained in the catalyst as indispensable components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術】本発明はアンモニア酸化分解用触
媒に関する。さらに詳しくは、コークス炉から回収した
アンモニアを250〜400℃の低温で、窒素と水に酸
化分解するのに適したアンモニア分解用触媒に関する。
TECHNICAL FIELD The present invention relates to a catalyst for ammonia oxidation decomposition. More specifically, it relates to an ammonia decomposition catalyst suitable for oxidatively decomposing ammonia recovered from a coke oven into nitrogen and water at a low temperature of 250 to 400 ° C.

【0002】[0002]

【従来の技術】コークス炉から発生するガス中には、6
〜10g/Nm3のアンモニアが含有されており、これ
は配管の腐食をもたらすと共に、コークス炉ガス燃焼時
にNOxの発生原因となることから、これを除去する必
要がある。コークス炉ガス(以下、COGと記す。)か
らアンモニアを除去する方法としては、一般にCOGを
希硫酸で洗浄し、硫安を回収する方法が採用されてい
た。しかしながら、この方法は、硫安肥料の需要が著し
く減少し、また市場価格が大幅に低落している昨今にお
いては、採算性が著しく悪く、したがって硫安製造によ
るアンモニアの処理方法自体が工業的にほとんど価値の
ないものとなっている。
2. Description of the Related Art The gas generated from a coke oven contains 6
Ammonia of 10 to 10 g / Nm 3 is contained, which causes corrosion of the pipes and causes NOx to be generated when the coke oven gas is burned. Therefore, it is necessary to remove this. As a method for removing ammonia from a coke oven gas (hereinafter referred to as COG), a method of washing COG with diluted sulfuric acid and recovering ammonium sulfate has been generally adopted. However, the demand for ammonium sulfate fertilizer has decreased remarkably and the market price has fallen drastically. There is no.

【0003】現在では、硫安製造を縮小し、他のアンモ
ニア処理法、例えば高純度の液安を製造するフォッサム
法や、アンモニアを分解後、直接燃焼するコッパース
法、触媒の存在下で燃焼するカールスチル法等が採用さ
れている。カールスチル法(アロマティックス、第29
巻、第6号、第7〜12頁、1977年)においては、
COG中のアンモニアを水またはアンモニア水で吸収
し、次いで、アンモニア水を蒸留してアンモニアベーパ
ーとする。アンモニアベーパーは、アンモニア分解用燃
焼炉でCOGおよび空気の存在か、触媒存在下で約10
00℃の温度で完全燃焼される。分解燃焼炉出口排ガス
は、排熱ボイラーで熱回収を行った後、大気に放出され
る。
At present, ammonium sulfate production is reduced, and other ammonia treatment methods such as the Fossum method for producing high-purity liquid ammonium, the Coppers method for directly burning ammonia after decomposing ammonia, and the curl for burning in the presence of a catalyst. Still method etc. are adopted. Karl still method (aromatics, No. 29)
Vol. 6, No. 7, pp. 7-12, 1977),
Ammonia in COG is absorbed with water or aqueous ammonia, and then the aqueous ammonia is distilled into ammonia vapor. Ammonia vapor is used in the combustion furnace for ammonia decomposition in the presence of COG and air or in the presence of a catalyst of about 10
It is completely burned at a temperature of 00 ° C. The exhaust gas from the cracking combustion furnace is discharged to the atmosphere after recovering heat by the exhaust heat boiler.

【0004】このような従来のアンモニア処理法には次
のような問題点がある。従来の燃焼法においては、燃焼
温度が非常に高いため(約1000℃)、反応器に耐熱
材料を使用する必要がある。それに加えて、直接燃焼法
ではNOxの生成を抑制することが困難である。一方、
触媒燃焼法では、一般の触媒反応に比べ極めて過酷な温
度条件が採用されるため、触媒材料にも高い耐熱性が要
求される。また、発生するNOx濃度も50ppm前後
と高い。
The conventional ammonia treatment method has the following problems. In the conventional combustion method, since the combustion temperature is very high (about 1000 ° C.), it is necessary to use a heat resistant material in the reactor. In addition, it is difficult to suppress the generation of NOx by the direct combustion method. on the other hand,
Since the catalytic combustion method employs extremely severe temperature conditions as compared with general catalytic reactions, high heat resistance is also required for the catalyst material. Further, the generated NOx concentration is as high as around 50 ppm.

【0005】本出願人はより低い燃焼温度でアンモニア
を分解しうる触媒の開発を進め、400〜700℃の低
温で分解できる触媒として、アルミナの細孔内にチタニ
アを沈着させたものを担体とし、これに銅又はバナジウ
ムの酸化物を単独又は組み合わせて担持せしめてなるア
ンモニア酸化分解用触媒(特開平2−160047号公
報、特開平3−122010号公報)、銅族元素、クロ
ム族元素、鉄族元素、白金族元素、希土類元素のうちの
少なくとも1種の元素の金属または化合物を含有する触
媒(特開平2−199196号公報)、銅族元素、クロ
ム族元素および鉄族元素のうちの少なくとも1種の元素
の金属または化合物とニッケルを含有するアンモニア分
解用触媒(特開平2−198638号公報)、及び希土
類元素の少なくとも1種の元素の化合物とニッケルを含
有するアンモニア分解用触媒(特開平2−198639
号公報)を開示した。
The present applicant has advanced the development of a catalyst capable of decomposing ammonia at a lower combustion temperature, and as a catalyst capable of decomposing at a low temperature of 400 to 700 ° C., a catalyst having titania deposited in the pores of alumina is used as a carrier. , A catalyst for ammonia oxidation decomposition in which an oxide of copper or vanadium is carried alone or in combination (JP-A 2-160047, JP-A 3-122010), copper group element, chromium group element, iron At least one of a catalyst containing a metal or a compound of at least one element selected from the group consisting of elements, platinum group elements and rare earth elements (JP-A-2-199196), copper group element, chromium group element and iron group element. A catalyst for decomposing ammonia containing nickel or a metal or compound of one element (JP-A-2-198638), and at least a rare earth element. One compound of the element and catalyst for ammonia decomposition containing nickel (JP-A 2-198639
Japanese patent publication).

【0006】[0006]

【発明が解決しようとする課題】これらの触媒のアンモ
ニア分解温度は400℃以上であるのでさらに低温でア
ンモニアを効率よく分解できる触媒の開発が望まれてい
た。
Since the ammonia decomposition temperature of these catalysts is 400 ° C. or higher, it has been desired to develop a catalyst that can decompose ammonia efficiently at a lower temperature.

【0007】本発明はかかる事情に鑑みてなされたもの
であって、その目的は、低温域(400℃以下)でアン
モニアを窒素と水に酸化分解し、発生するNOx濃度も
低い、アンモニア分解触媒を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to oxidize and decompose ammonia into nitrogen and water in a low temperature range (400 ° C. or lower) and to generate a low NOx concentration. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決するべく鋭意検討の結果、触媒としてコバルトを用
い、これにセリウムを組み合わせることによってコバル
トのアンモニア分解活性が著しく向上し、この傾向は特
に400℃以下の低温域において顕著であることを見出
し、この知見に基づいて本発明を完成するに至った。触
媒にセリウムを用いうることは特開平2−199196
号公報に開示されているが、これをコバルトに組み合わ
せることは同公報には示されていない。
As a result of intensive studies to solve the above-mentioned problems, the present inventor uses cobalt as a catalyst, and by combining it with cerium, the ammonia decomposing activity of cobalt is remarkably improved. Was found to be remarkable particularly in a low temperature range of 400 ° C. or lower, and the present invention was completed based on this finding. The fact that cerium can be used as a catalyst is disclosed in JP-A-2-199196.
However, the combination with cobalt is not shown therein.

【0009】すなわち、本発明は、コバルトとセリウム
を含有することを特徴とするアンモニア酸化分解用触媒
に関するものである。
That is, the present invention relates to a catalyst for ammonia oxidation decomposition, which contains cobalt and cerium.

【0010】本発明はまた、コバルトとセリウムとマン
ガンを含有することを特徴とするアンモニア酸化分解用
触媒に関するものである。
The present invention also relates to a catalyst for ammonia oxidation decomposition characterized by containing cobalt, cerium and manganese.

【0011】[0011]

【発明の実施の形態】本発明の触媒は、コバルトとセリ
ウムの金属または化合物を含有する。これらの元素の化
合物としては酸化物のほか、水酸化物、炭酸塩、硝酸塩
等の無機塩、および酢酸塩等の有機塩を含む。上記の化
合物のうち、水酸化物、炭酸塩、硝酸塩等の無機塩及び
酢酸塩等の有機塩は焼成あるいは触媒反応中に分解され
て金属又は金属酸化物に変わる。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst of the present invention contains a metal or compound of cobalt and cerium. The compounds of these elements include oxides, inorganic salts such as hydroxides, carbonates and nitrates, and organic salts such as acetates. Among the above compounds, inorganic salts such as hydroxides, carbonates and nitrates and organic salts such as acetates are decomposed during firing or catalytic reaction to be converted into metal or metal oxide.

【0012】触媒中の各成分の含有率は金属換算で、コ
バルトとセリウムを必須の成分とする場合はコバルトが
10〜90重量%程度、好ましくは20〜80重量%程
度であり、セリウムが、90〜10重量%程度、好まし
くは80〜20重量%程度である。コバルトとセリウム
との比率は金属換算の重量比で10:90〜90:10
程度であり、20:80〜80:20程度が好ましい。
コバルトとセリウムとマンガンを必須の成分とする場合
にはコバルトが10〜60重量%程度、好ましくは20
〜50重量%程度、セリウムが10〜70重量%程度、
好ましくは20〜60重量%程度、そして、マンガンが
10〜60重量%程度、好ましくは20〜50重量%程
度である。セリウムとマンガンの比率はセリウム/マン
ガンの重量比で7/1〜1/6程度、好ましくは3/1
〜2/5程度が好適である。
The content of each component in the catalyst is, in terms of metal, when cobalt and cerium are essential components, cobalt is about 10 to 90% by weight, preferably about 20 to 80% by weight, and cerium is It is about 90 to 10% by weight, preferably about 80 to 20% by weight. The ratio of cobalt to cerium is 10:90 to 90:10 in terms of metal weight ratio.
It is about 20:80 to about 80:20.
When cobalt, cerium and manganese are essential components, cobalt is about 10 to 60% by weight, preferably 20.
~ 50% by weight, cerium about 10-70% by weight,
It is preferably about 20 to 60% by weight, and manganese is about 10 to 60% by weight, preferably about 20 to 50% by weight. The ratio of cerium to manganese is about 7/1 to 1/6 in terms of weight ratio of cerium / manganese, preferably 3/1.
It is preferably about 2/5.

【0013】本発明の触媒にはその触媒活性を損なわな
い範囲でコバルトとセリウムとマンガン以外の成分を含
むことができる。この第3成分の例としては、銅族、ク
ロム族、鉄族、白金族、希土類などの、前記公報開示の
アンモニア酸化分解用触媒成分を挙げることができる。
この第3成分の含有量は50重量%程度以下、通常30
重量%以下である。
The catalyst of the present invention may contain components other than cobalt, cerium and manganese within a range that does not impair the catalytic activity. Examples of the third component include the catalyst components for ammonia oxidation decomposition disclosed in the above publication, such as copper group, chromium group, iron group, platinum group, and rare earth elements.
The content of this third component is about 50% by weight or less, usually 30
% By weight or less.

【0014】この触媒は担体に担持させて使用すること
ができる。この触媒担体としては、アルミナ、シリカゲ
ル、シリカ・アルミナ、チタニア、マグネシア、活性炭
などが使用される。
This catalyst can be used by supporting it on a carrier. As the catalyst carrier, alumina, silica gel, silica-alumina, titania, magnesia, activated carbon or the like is used.

【0015】本発明の触媒は触媒を製造する公知の方法
によって製造することができ、水溶液からの共沈法、蒸
発乾固法等によって製造できる。水溶液を利用する場合
には、コバルト、セリウム、マンガンのいずれも、塩化
物、硝酸塩、酢酸塩等の水溶性化合物を用いればよい。
The catalyst of the present invention can be produced by a known method for producing a catalyst, such as a coprecipitation method from an aqueous solution, an evaporation dryness method and the like. When an aqueous solution is used, any of cobalt, cerium, and manganese may be a water-soluble compound such as chloride, nitrate, or acetate.

【0016】上記のようにして調製された触媒組成物
は、必要により空気中100〜600℃で約1〜10時
間焼成される。
The catalyst composition prepared as described above is optionally calcined in air at 100 to 600 ° C. for about 1 to 10 hours.

【0017】触媒の使用方法は常法によればよく、装置
も固定床、流動床、移動床等のいずれの形式であっても
よい。触媒層に導入するガスは、酸化剤としての酸素と
純粋なアンモニアの混合ガスばかりでなく、窒素、アル
ゴン、ヘリウム等の不活性ガスあるいは、水蒸気、硫化
水素、シアン等のCOGから回収したアンモニア水中に
含まれる成分を含む混合ガスでもよい。
The catalyst may be used according to a conventional method, and the apparatus may be any of a fixed bed, a fluidized bed, a moving bed and the like. The gas to be introduced into the catalyst layer is not only a mixed gas of oxygen as an oxidant and pure ammonia, but also an inert gas such as nitrogen, argon, helium, or ammonia water recovered from COG such as steam, hydrogen sulfide, and cyan. It may be a mixed gas containing components contained in.

【0018】反応温度は200〜500℃程度でよく、
好ましくは220〜400℃、特に好ましくは250〜
350℃である。反応圧力は特に限定されるものではな
く、常圧でもよく、加圧、減圧にすることもできる。
The reaction temperature may be about 200 to 500 ° C,
220 to 400 ° C. is preferable, and 250 to 400 is particularly preferable.
350 ° C. The reaction pressure is not particularly limited, and may be normal pressure, or increased pressure or reduced pressure.

【0019】[0019]

【実施例】以下に、本発明のアンモニア酸化分解触媒の
一実施例を示す。
EXAMPLE An example of the ammonia oxidation decomposition catalyst of the present invention will be shown below.

【0020】(1) 触媒の調製 水約800mlに硝酸コバルト6水和物(Co(NO3)2
・6H2O)14.55gおよび硝酸セリウム6水和物
(Ce(NO3)3・6H2O)21.71gを溶解し、これ
を蒸発乾固した。ついでこのものを空気中550℃で5
時間焼成した。さらに、得られた酸化物粉末を乳鉢を用
いて粉砕し、この粉末を一軸圧成型器を用いてペレット
状に成型し、さらにこのペレットを粉砕して14−32
メッシュの顆粒状に整粒し、触媒を得た。このものの
組成は、Co34−CeO2=58−42(重量比)で
あった。
(1) Preparation of catalyst Cobalt nitrate hexahydrate (Co (NO 3 ) 2
· 6H 2 O) 14.55g and cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O) was dissolved 21.71g, was evaporated to dryness this. Then, this product is heated in air at 550 ° C for 5
Fired for hours. Further, the obtained oxide powder was crushed using a mortar, the powder was molded into pellets using a uniaxial pressure molding machine, and the pellets were further crushed into 14-32.
The catalyst was obtained by sizing to a granular mesh. The composition of this product was Co 3 O 4 —CeO 2 = 58-42 (weight ratio).

【0021】次に水約800mlに硝酸コバルト6水和
物(Co(NO3)2・6H2O)11.65g、硝酸セリウ
ム6水和物(Ce(NO3)3・6H2O)17.37および
硝酸マンガン6水和物(Mn(NO3)2・6H2O)を溶解
し、これを蒸発乾固した。ついでこのものを空気中55
0℃で5時間焼成した。さらに、得られた酸化物粉末を
乳鉢を用いて粉砕し、この粉末を一軸圧成型器を用いて
ペレット状に成型し、さらにこのペレットを粉砕して1
4−32メッシュの顆粒状に整粒し、触媒を得た。
[0021] Then cobalt nitrate hexahydrate in water about 800ml (Co (NO 3) 2 · 6H 2 O) 11.65g, cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O) 17 .37 and manganese nitrate hexahydrate (Mn (NO 3 ) 2 .6H 2 O) were dissolved and evaporated to dryness. Then 55 this in the air
Baking was performed at 0 ° C. for 5 hours. Further, the obtained oxide powder is crushed using a mortar, the powder is molded into pellets using a uniaxial pressure molding machine, and the pellets are crushed to 1
The catalyst was obtained by sizing into 4-32 mesh granules.

【0022】比較実験用に、水約800mlに硝酸コバ
ルト6水和物(Co(NO32・6H2O)29.1gの
みを溶解し、同様の方法で触媒を得た。このものの組
成はCo34であった。
For comparative experiments, only 29.1 g of cobalt nitrate hexahydrate (Co (NO 3 ) 2 .6H 2 O) was dissolved in about 800 ml of water, and a catalyst was obtained by the same method. Its composition was Co 3 O 4 .

【0023】(2) アンモニア酸化分解反応 酸化分解反応は常圧固定床流通反応装置を用いて行っ
た。図1に酸化分解反応装置を示す。
(2) Ammonia Oxidative Decomposition Reaction The oxidative decomposition reaction was carried out using an atmospheric fixed bed flow reactor. FIG. 1 shows an oxidative decomposition reactor.

【0024】この装置は、原料のアンモニア含有溶液容
器8、該アンモニア含有溶液を送液するマイクロフィー
ダーポンプ1、蒸発器2、触媒反応管3、未反応のアン
モニアを吸収する吸収びん5、及びNOx計6からなっ
ている。蒸発器2は外周に加熱ヒーターを備え、下部に
は空気導入管7が接続されている。触媒反応管3も外周
に加熱ヒーターを備え、内部には触媒4が収納されてい
る。触媒反応管3の下端には切替コックが取り付けら
れ、吸収びん5とNOx計6を切り替えられるようにな
っている。
This apparatus comprises a raw material ammonia-containing solution container 8, a micro feeder pump 1 for feeding the ammonia-containing solution, an evaporator 2, a catalytic reaction tube 3, an absorption bottle 5 for absorbing unreacted ammonia, and NOx. It consists of a total of six. The evaporator 2 is provided with a heater on the outer circumference, and an air introduction pipe 7 is connected to the lower part. The catalyst reaction tube 3 is also provided with a heater on the outer circumference, and the catalyst 4 is housed inside. A switching cock is attached to the lower end of the catalytic reaction tube 3 so that the absorption bottle 5 and the NOx meter 6 can be switched.

【0025】原料には、COGから回収される安水に近
い組成のアンモニア含有水溶液(アンモニア:10wt
%、水:87wt%、硫化水素:3wt%、シアン:1
00ppm、タール:0.01wt%)を用い、これをマ
イクロフィーダーポンプ1で蒸発器2に導入した。発生
した蒸気は空気と混合して触媒反応管3に導入した。こ
の時、水溶液の供給量を2cc/h、蒸発器2の温度を
100℃、空気供給量を40cc/minとした。
As a raw material, an ammonia-containing aqueous solution (ammonia: 10 wt%) having a composition similar to that of ammonium hydroxide recovered from COG is used.
%, Water: 87 wt%, hydrogen sulfide: 3 wt%, cyan: 1
(00 ppm, tar: 0.01 wt%), which was introduced into the evaporator 2 by the micro feeder pump 1. The generated vapor was mixed with air and introduced into the catalytic reaction tube 3. At this time, the supply rate of the aqueous solution was 2 cc / h, the temperature of the evaporator 2 was 100 ° C., and the air supply rate was 40 cc / min.

【0026】触媒反応管3は石英製とし、2gの触媒4
を充填した。
The catalytic reaction tube 3 is made of quartz and 2 g of the catalyst 4 is used.
Was charged.

【0027】触媒反応管3の出口ガスは塩酸水溶液(2
N)の吸収びん5に導入し、未反応アンモニアを吸収さ
せた。一定時間吸収させた後、この塩酸水溶液をアンモ
ニア水溶液(0.1N)で中和滴定し、塩酸水溶液に吸
収された未反応アンモニア量を求めた。
The outlet gas of the catalytic reaction tube 3 is an aqueous hydrochloric acid solution (2
N) was introduced into the absorption bottle 5 to absorb unreacted ammonia. After absorption for a certain period of time, the aqueous hydrochloric acid solution was neutralized and titrated with an aqueous ammonia solution (0.1N) to determine the amount of unreacted ammonia absorbed in the aqueous hydrochloric acid solution.

【0028】NOxの分析には常圧式化学発光方式の分
析計6(島津ポータブルNOxアナライザーNOA−3
05)を用い、一定時間ごとに行った。
For the analysis of NOx, an atmospheric pressure type chemiluminescence type analyzer 6 (Shimadzu Portable NOx Analyzer NOA-3
No. 05) was used and the measurement was performed at regular intervals.

【0029】各反応温度におけるアンモニア転化率を図
2に示す。図中、◇は本発明の実施例である触媒を、
□に触媒をそれぞれ用いて得られたものであり、△は
比較例品を用いて得られたものである。
The ammonia conversion rate at each reaction temperature is shown in FIG. In the figure, ◇ indicates the catalyst which is an embodiment of the present invention,
The squares are obtained by using each catalyst, and the triangles are obtained by using the comparative product.

【0030】この図から明らかなように、実施例の触媒
、は、比較例の触媒に比べ、400℃以下の低温
において高いアンモニア分解活性を有しており、顕著な
効果があることがわかる。また、酸化分解反応実験を行
った500℃以下の温度域では、NOxの生成は見られ
なかった。
As is clear from this figure, the catalysts of Examples have a higher ammonia decomposing activity at a low temperature of 400 ° C. or lower than the catalysts of Comparative Examples, and it is clear that they have remarkable effects. Further, in the temperature range of 500 ° C. or lower where the oxidative decomposition reaction experiment was conducted, NOx was not produced.

【0031】また、各反応温度におけるNOx発生量を
図3に示す。
FIG. 3 shows the NOx generation amount at each reaction temperature.

【0032】実施例の触媒は反応温度250℃で20
ppmのNOx発生を伴った。これに対し実施例の触媒
は同じ反応温度で5ppmしかNOxを発生せず、触
媒に比べて優れたNOx発生抑制の効果を示した。
The catalyst of the example has a reaction temperature of 250.degree.
It was accompanied by ppm NOx generation. On the other hand, the catalysts of Examples produced NOx only at 5 ppm at the same reaction temperature, and showed an excellent effect of suppressing NOx generation as compared with the catalyst.

【0033】[0033]

【発明の効果】以上説明したように、本発明のアンモニ
ア酸化分解触媒は、400℃以下の低温において、著し
く高いアンモニア酸化分解活性を有する。また、500
℃以下の温度域でNOxの発生をほとんど伴わずに、ア
ンモニアを分解することができる。マンガンをさらに含
有させることによってNOxの発生をさらに効果的に抑
制することができる。さらに、被処理液中に含まれる硫
化水素、タール等の成分に対する耐被毒性があり、従っ
て、コークス炉から回収したアンモニア水の処理に好適
であるといえる。
As described above, the ammonia oxidative decomposition catalyst of the present invention has remarkably high ammonia oxidative decomposition activity at a low temperature of 400 ° C. or lower. Also, 500
Ammonia can be decomposed in the temperature range of ℃ or less with almost no generation of NOx. Generation of NOx can be suppressed more effectively by further containing manganese. Further, it is resistant to poisoning with respect to components such as hydrogen sulfide and tar contained in the liquid to be treated, and therefore, it can be said that it is suitable for treatment of ammonia water recovered from the coke oven.

【図面の簡単な説明】[Brief description of drawings]

【図1】 アンモニア酸化分解反応実験装置の構成を示
す図である。
FIG. 1 is a diagram showing the configuration of an ammonia oxidation decomposition reaction experimental apparatus.

【図2】 実施例の触媒および比較例の触媒を用いて得
られた反応温度とアンモニアの転化率の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the reaction temperature and the conversion rate of ammonia obtained using the catalyst of the example and the catalyst of the comparative example.

【図3】 実施例の触媒を用いて得られた反応温度とN
Ox発生量との関係を示すグラフである。
FIG. 3 shows the reaction temperature and N obtained by using the catalyst of the example.
It is a graph which shows the relationship with the amount of Ox generation.

【符号の説明】[Explanation of symbols]

1…マイクロフィーダーポンプ 2…蒸発器 3…触媒反応管 4…触媒 5…吸収びん 6…NOx計 1 ... Micro feeder pump 2 ... Evaporator 3 ... Catalytic reaction tube 4 ... Catalyst 5 ... Absorption bottle 6 ... NOx meter

フロントページの続き (72)発明者 戸村 啓二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 真部 保彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 滝田 祐作 大分県大分市宮崎台3−4−33Front page continuation (72) Inventor Keiji Tomura 1-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd. (72) Inventor Yasuhiko Sanbe 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Incorporated (72) Inventor Yusaku Takita 3-4-33 Miyazakidai, Oita City, Oita Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コバルトとセリウムを含有することを特
徴とするアンモニア酸化分解用触媒。
1. A catalyst for oxidizing and decomposing ammonia, which contains cobalt and cerium.
【請求項2】 さらにマンガンを含有することを特徴と
する請求項1記載のアンモニア酸化分解用触媒
2. A catalyst for ammonia oxidation decomposition according to claim 1, which further contains manganese.
JP8264456A 1996-03-25 1996-10-04 Ammonia oxidation decomposition catalyst Pending JPH09313940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8264456A JPH09313940A (en) 1996-03-25 1996-10-04 Ammonia oxidation decomposition catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-67758 1996-03-25
JP6775896 1996-03-25
JP8264456A JPH09313940A (en) 1996-03-25 1996-10-04 Ammonia oxidation decomposition catalyst

Publications (1)

Publication Number Publication Date
JPH09313940A true JPH09313940A (en) 1997-12-09

Family

ID=26408972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8264456A Pending JPH09313940A (en) 1996-03-25 1996-10-04 Ammonia oxidation decomposition catalyst

Country Status (1)

Country Link
JP (1) JPH09313940A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540913A (en) * 1999-04-06 2002-12-03 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Silane-based coating materials with catalytic oxidation and deodorization effects
JP2010510049A (en) * 2006-11-15 2010-04-02 ビーエーエスエフ、カタリスツ、エルエルシー NOx forming catalyst with little or no ammonia and carbon monoxide double oxidation catalyst
JP2010149116A (en) * 2008-12-23 2010-07-08 Sud-Chemie Catalysts Italia Srl Ammonia oxidation catalyst
WO2010107065A1 (en) * 2009-03-17 2010-09-23 株式会社日本触媒 Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
JP2010240646A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method of producing hydrogen using the same
WO2011062390A2 (en) * 2009-11-19 2011-05-26 Sk Innovation Co., Ltd. Catalyst for selective oxidation of nh3 to n2 and method for preparing the same
WO2011125653A1 (en) * 2010-03-31 2011-10-13 株式会社日本触媒 Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878678B2 (en) * 1999-04-06 2012-02-15 ライプニッツ−インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Silane-based coating materials with catalytic oxidation and deodorization effects
JP2002540913A (en) * 1999-04-06 2002-12-03 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Silane-based coating materials with catalytic oxidation and deodorization effects
JP2010510049A (en) * 2006-11-15 2010-04-02 ビーエーエスエフ、カタリスツ、エルエルシー NOx forming catalyst with little or no ammonia and carbon monoxide double oxidation catalyst
KR101634390B1 (en) * 2006-11-15 2016-06-28 바스프 카탈리스트 엘엘씨 CATALYSTS FOR DUAL OXIDATION OF AMMONIA AND CARBON MONOXIDE WITH LOW TO NO NOx FORMATION
JP2010149116A (en) * 2008-12-23 2010-07-08 Sud-Chemie Catalysts Italia Srl Ammonia oxidation catalyst
WO2010107065A1 (en) * 2009-03-17 2010-09-23 株式会社日本触媒 Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
US20120015802A1 (en) * 2009-03-17 2012-01-19 Junji Okamura Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
US8962518B2 (en) 2009-03-17 2015-02-24 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
JP2010240646A (en) * 2009-03-17 2010-10-28 Nippon Shokubai Co Ltd Catalyst for producing hydrogen, and method of producing hydrogen using the same
US10857523B2 (en) 2009-03-17 2020-12-08 Nippon Shokubai Co., Ltd. Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst and process for combusting ammonia using the catalyst
WO2011062390A3 (en) * 2009-11-19 2011-11-10 Sk Innovation Co., Ltd. Catalyst for selective oxidation of nh3 to n2 and method for preparing the same
WO2011062390A2 (en) * 2009-11-19 2011-05-26 Sk Innovation Co., Ltd. Catalyst for selective oxidation of nh3 to n2 and method for preparing the same
US8921258B2 (en) 2009-11-19 2014-12-30 Sk Innovation Co., Ltd. Catalyst for selective oxidation of NH3 to N2 and method for preparing the same
WO2011125653A1 (en) * 2010-03-31 2011-10-13 株式会社日本触媒 Catalyst for decomposing ammonia, method for producing the catalyst and method for producing hydrogen using the catalyst

Similar Documents

Publication Publication Date Title
US4187282A (en) Process for treating a waste gas containing sulfur oxides
US4010238A (en) Proces for selective removal of nitrogen oxides from waste gases
US4040982A (en) Ozonization catalyst
US4124697A (en) Process for the oxidation of hydrogen to water
EA032617B1 (en) Sulphur recovery process with concurrent hydrogen production
JPH02198639A (en) Catalyst for decomposing ammonia
US4031185A (en) Process for making nitrogen oxides contained in flue gas harmless
JPH09313940A (en) Ammonia oxidation decomposition catalyst
US3981971A (en) Process for reducing nitrogen oxides
CN100386134C (en) Purifying catalyst for gas containing cyanogen and its preparing method
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
JP3452570B2 (en) Catalyst for removing sulfur compounds from industrial gas, process for producing the same and use thereof
JP3029512B2 (en) Method for removing nitrous oxide from combustion gas
JP4246584B2 (en) Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater
JPH09253494A (en) Ammonia oxidizing and decomposing catalyst
JPH10174870A (en) Catalyst for production of hydrogen and production of hydrogen
JP2017001010A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using the catalyst
JPH02199196A (en) Treatment of ammonia
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
JPH049573B2 (en)
JPS5824172B2 (en) Ammonia Osankabunkaisuruhouhou
KR20100001315A (en) Catalytic composition for removing nitrogen oxide, and method for producing that, and method for removing nitrogen oxide using the same
JPS60161317A (en) Method for removing oxygen from oxygen-containing gas consisting essentially of carbon monoxide
JPH119964A (en) Method for detoxicating ammonia-containing waste gas
SU986482A1 (en) Catalyst for cleaning gases from carbon oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060609