JPH09272433A - Running stabilizing wheel mechanism of segment transporting unmanned vehicle - Google Patents

Running stabilizing wheel mechanism of segment transporting unmanned vehicle

Info

Publication number
JPH09272433A
JPH09272433A JP8111142A JP11114296A JPH09272433A JP H09272433 A JPH09272433 A JP H09272433A JP 8111142 A JP8111142 A JP 8111142A JP 11114296 A JP11114296 A JP 11114296A JP H09272433 A JPH09272433 A JP H09272433A
Authority
JP
Japan
Prior art keywords
wheel
angle
tunnel
unmanned vehicle
curved floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8111142A
Other languages
Japanese (ja)
Inventor
Yasunobu Shiraishi
康信 白石
Manabu Shibata
学 柴田
Toshio Miki
利夫 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Shinko Electric Co Ltd
Original Assignee
Kajima Corp
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Shinko Electric Co Ltd filed Critical Kajima Corp
Priority to JP8111142A priority Critical patent/JPH09272433A/en
Publication of JPH09272433A publication Critical patent/JPH09272433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate such a problem as amplification of the swinging motion of a vehicle body during its run in the case of a segment transporting unmanned vehicle used during tunnel excavation when the segment transporting unmanned vehicle has the ground contact angle of its wheel not perpendicular to the road surface, that is, a curved floor road surface. SOLUTION: A wheel 4 is made possible to be adjusted to its optimum angle by means of a wheel angle controller 11 for controlling a wheel angle and a wheel angle adjusting hydraulic cylinder 12 for swinging a wheel shaft 5 in response to the radius of curvature of a curved floor road surface of a tunnel in roder to adjust the wheel 14 so that the ground contact angle of the wheel may become perpendicular to the curved floor road surface, or on response to the radius of curvature of the curved floor road surface of the tunnel, the wheel 4 is made adjustable to the optimum angle by means of a wheel angle controller to have the wheel angle controlled and a wheel angle adjusting motor for giving turning motion to the wheel shaft.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セグメント搬送用
無人車、詳しくは、トンネル掘削時に用いられるセグメ
ント搬送用無人車の走行安定用車輪機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unmanned vehicle for transporting a segment, and more particularly, to a wheel stabilizing mechanism for an unmanned vehicle for transporting a segment used for tunnel excavation.

【0002】[0002]

【従来の技術】まず、従来のトンネル掘削時に用いられ
るセグメント搬送用無人車について図4を参照して説明
する。図4は、従来のトンネルの曲床路面走行時のセグ
メント搬送用無人車の正面図である。図4において、1
はセグメント搬送用無人車、2は曲床路面、3は無人車
1の車体の揺れの状態である。
2. Description of the Related Art First, an unmanned vehicle for transporting a segment used in a conventional tunnel excavation will be described with reference to FIG. FIG. 4 is a front view of an unmanned vehicle for transporting a segment during traveling on a curved floor surface of a conventional tunnel. In FIG. 4, 1
1 is an unmanned vehicle for segment transportation, 2 is a curved road surface, and 3 is a shaking state of the vehicle body of the unmanned vehicle 1.

【0003】[0003]

【発明が解決しようとする課題】ところが、セグメント
搬送用無人車1は、図4に示されるように、車輪の接地
角が曲床路面2に対して路面と垂直でないために、走行
時に車体の揺れの状態が3のように増幅してしまうとい
う問題があった。
However, in the unmanned vehicle 1 for transporting a segment, as shown in FIG. 4, the ground contact angle of the wheels is not perpendicular to the curved floor surface 2 and therefore the vehicle body of the vehicle body during traveling is reduced. There was a problem that the shaking condition would be amplified like 3.

【0004】[0004]

【課題を解決するための手段】本発明は、上述の問題を
解決するために、第1の発明として、トンネル掘削時に
用いられるセグメント搬送用無人車において、車輪の接
地角がトンネルの曲床路面に対して垂直となるように車
輪を調節するために、トンネルの曲床路面の曲率半径に
対応して、車輪を、車輪角をコントロールさせる車輪角
コントローラ及び車軸を揺動させる車輪角調節用油圧シ
リンダによって最適な角度に調節可能にした走行安定用
車輪機構を提供し、第2の発明として、トンネル掘削時
に用いられるセグメント搬送用無人車において、車輪の
接地角がトンネルの曲床路面に対して垂直となるように
車輪を調節するために、トンネルの曲床路面の曲率半径
に対応して、車輪を、車輪角をコントロールさせる車輪
角コントローラ及び車軸を回動させる車輪角調節用モー
タによって最適な角度に調節可能にした走行安定用車輪
機構を提供しようとするものである。
In order to solve the above-mentioned problems, the present invention provides, as a first invention, an unmanned vehicle for segment transport used during tunnel excavation, wherein the ground contact angle of the wheels is a curved floor surface of the tunnel. In order to adjust the wheel so that it is perpendicular to the wheel, the wheel angle controller that controls the wheel angle and the wheel angle adjustment hydraulic that swings the axle are adjusted according to the radius of curvature of the curved floor surface of the tunnel. A second aspect of the present invention is to provide a traveling stabilizing wheel mechanism that can be adjusted to an optimum angle by a cylinder. In order to adjust the wheels so that they are vertical, the wheel angle controller and the wheel angle controller that controls the wheel angle are set according to the radius of curvature of the curved floor surface of the tunnel. Axle is intended to provide a travel stabilizing wheel mechanism which is adjustable to an optimum angle by the wheel angle adjusting motor for rotating.

【0005】[0005]

【発明の実施の形態】以下、本発明によるセグメント搬
送用無人車の走行安定用車輪機構の実施の形態について
図1乃至図3を参照して説明する。図1は、本発明によ
る基本的な走行安定用車輪機構を有する曲床路面走行時
のセグメント搬送用無人車の正面図、図2は、トンネル
の曲床路面の曲率半径に対応して最適な角度に調節可能
な走行安定用車輪機構の第1の発明に対応する第1の実
施の形態の線図的説明図、図3は、トンネルの曲床路面
の曲率半径に対応して最適な角度に調節可能な走行安定
用車輪機構の第2の発明に対応する第2の実施の形態の
線図的説明図である。 第1の実施の形態:まず、第1の発明に対応する第1の
実施の形態について図1及び図2を参照して説明する。
セグメント搬送用無人車の走行安定用車輪機構の第1の
実施の形態のものは、図1に示されるトンネル掘削時に
用いられるセグメント搬送用無人車1において、車輪の
接地角をトンネルの曲床路面2に対して垂直となるよう
に車輪4を調節するためのもので、トンネルの曲床路面
2の曲率半径Rに対応して、車輪4を、図2に示すよう
に、車輪角をコントロールさせる車輪角コントローラ1
1及び車軸5を揺動させる車輪角調節用油圧シリンダ1
2によって最適な角度に調節可能にしたものである。 第2の実施の形態:つぎに、第2の発明に対応する第2
の実施の形態について図1及び図3を参照して説明す
る。セグメント搬送用無人車の走行安定用車輪機構の第
2の実施の形態のものは、図1に示されるトンネル掘削
時に用いられるセグメント搬送用無人車1において、車
輪の接地角をトンネルの曲床路面2に対して垂直となる
ように車輪4を調節するたのもので、トンネルの曲床路
面2の曲率半径Rに対応して、車輪4を、図3に示すよ
うに、車輪角をコントロールさせる車輪角コントローラ
21及び車軸15を回動させる車輪角調整用モータ22
によって最適な角度に調整可能にしたものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a traveling stabilizing wheel mechanism for an unmanned vehicle for segment transportation according to the present invention will be described below with reference to FIGS. FIG. 1 is a front view of an unmanned vehicle for transporting a segment having a basic traveling-stabilizing wheel mechanism according to the present invention when traveling on a curved floor, and FIG. FIG. 3 is a diagrammatic explanatory view of a first embodiment of a traveling stabilization wheel mechanism that can be adjusted to an angle, and FIG. 3 is an optimum angle corresponding to a radius of curvature of a curved floor surface of a tunnel. FIG. 7 is a diagrammatic explanatory view of a second embodiment of the traveling stabilizing wheel mechanism corresponding to the second invention. First Embodiment: First, a first embodiment corresponding to the first invention will be described with reference to FIGS. 1 and 2.
The first embodiment of the wheel mechanism for stabilizing the travel of the unmanned vehicle for segment transportation is the unmanned vehicle for segment transportation 1 used at the time of excavating the tunnel shown in FIG. It is for adjusting the wheel 4 so as to be perpendicular to the wheel 2, and controls the wheel angle of the wheel 4 as shown in FIG. 2 in accordance with the radius of curvature R of the curved floor surface 2 of the tunnel. Wheel angle controller 1
1 and hydraulic cylinder 1 for wheel angle adjustment for rocking axle 5
It is possible to adjust to an optimum angle by 2. Second Embodiment: Next, a second embodiment corresponding to the second invention
An embodiment will be described with reference to FIGS. 1 and 3. The second embodiment of the wheel mechanism for stabilizing the traveling of the unmanned vehicle for segment transportation is the unmanned vehicle for segment transportation 1 used at the time of excavating the tunnel shown in FIG. The wheel 4 is adjusted so as to be perpendicular to the wheel 2, and the wheel angle is controlled according to the radius of curvature R of the curved floor surface 2 of the tunnel, as shown in FIG. Wheel angle adjusting motor 22 for rotating the controller 21 and the axle 15
It is possible to adjust to the optimum angle by.

【0006】[0006]

【発明の効果】本発明によるセグメント搬送無人車の走
行安定用車輪機構は、上述のように構成されているの
で、車輪の接地角をトンネルの曲床路面に対して垂直と
なるように車輪を調節することが可能となった。
Since the traveling stabilizing wheel mechanism for an unmanned segment transport vehicle according to the present invention is constructed as described above, the wheel is mounted so that the ground contact angle of the wheel is perpendicular to the curved floor surface of the tunnel. It became possible to adjust.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による基本的な走行安定用車輪機構を有
する曲床路面走行時のセグメント搬送用無人車の正面図
である。
FIG. 1 is a front view of an unmanned vehicle for segment transportation during traveling on a curved road surface, which has a basic traveling-stabilizing wheel mechanism according to the present invention.

【図2】トンネルの曲床路面の曲率半径に対応して最適
な角度に調節可能な走行安定用車輪機構の第1の実施の
形態の線図的説明図である。
FIG. 2 is a diagrammatic explanatory diagram of a first embodiment of a traveling-stabilizing wheel mechanism that can be adjusted to an optimum angle corresponding to a radius of curvature of a curved floor surface of a tunnel.

【図3】トンネルの曲床路面の曲率半径に対応して最適
な角度に調節可能な走行安定用車輪機構の第2の実施の
形態の線図的説明図である。
FIG. 3 is a diagrammatic explanatory view of a second embodiment of a traveling stabilizing wheel mechanism that can be adjusted to an optimum angle in accordance with a radius of curvature of a curved floor surface of a tunnel.

【図4】従来のトンネルの曲床路面走行時のセグメント
搬送用無人車の正面図である。
FIG. 4 is a front view of an unmanned vehicle for transporting a segment during traveling on a curved road surface of a conventional tunnel.

【符号の説明】[Explanation of symbols]

1:セグメント搬送用無人車 2:曲床路面 3:車体の揺れの状態 4:車輪 5:車軸 11:車輪角コントローラ 12:車輪角調節用油圧シリンダ 15:車軸 21:車輪角コントローラ 22:車輪角調節用モータ R:曲床路面の曲率半径 1: Unmanned vehicle for segment transportation 2: Curved road surface 3: Shaking state of vehicle body 4: Wheel 5: Axle 11: Wheel angle controller 12: Wheel angle adjusting hydraulic cylinder 15: Axle 21: Wheel angle controller 22: Wheel angle Adjustment motor R: radius of curvature of curved road surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 利夫 三重県伊勢市竹ケ鼻町100番地 神鋼電機 株式会社伊勢製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Miki 100, Takegahana Town, Ise City, Mie Prefecture Shinko Electric Co., Ltd. Ise Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トンネル掘削時に用いられるセグメント
搬送用無人車において、車輪の接地角がトンネルの曲床
路面に対して垂直となるように車輪を調節するために、
トンネルの曲床路面の曲率半径に対応して、車輪を、車
輪角をコントロールさせる車輪角コントローラ及び車軸
を揺動させる車輪角調節用油圧シリンダによって最適な
角度に調節可能にしたことを特徴とするセグメント搬送
用無人車の走行安定用車輪機構。
1. In an unmanned vehicle for segment transportation used during tunnel excavation, in order to adjust a wheel so that a ground contact angle of the wheel is perpendicular to a curved floor surface of the tunnel,
According to the radius of curvature of the curved floor surface of the tunnel, the wheels can be adjusted to an optimum angle by a wheel angle controller for controlling the wheel angle and a wheel angle adjusting hydraulic cylinder for rocking the axle. Wheel mechanism for driving stability of unmanned vehicles for segment transportation.
【請求項2】 トンネル掘削時に用いられるセグメント
搬送用無人車において、車輪の接地角がトンネルの曲床
路面に対して垂直となるように車輪を調節するために、
トンネルの曲床路面の曲率半径に対応して、車輪を、車
輪角をコントロールさせる車輪角コントローラ及び車軸
を回動させる車輪角調節用モータによって最適な角度に
調節可能にしたことを特徴とするセグメント搬送用無人
車の走行安定用車輪機構。
2. In an unmanned vehicle for segment transportation used during tunnel excavation, in order to adjust the wheels so that the ground contact angle of the wheels is perpendicular to the curved floor surface of the tunnel,
A segment characterized in that a wheel can be adjusted to an optimum angle by a wheel angle controller for controlling a wheel angle and a wheel angle adjusting motor for rotating an axle according to a curvature radius of a curved floor surface of a tunnel. Wheel mechanism for stabilizing the traveling unmanned vehicle.
JP8111142A 1996-04-09 1996-04-09 Running stabilizing wheel mechanism of segment transporting unmanned vehicle Pending JPH09272433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8111142A JPH09272433A (en) 1996-04-09 1996-04-09 Running stabilizing wheel mechanism of segment transporting unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8111142A JPH09272433A (en) 1996-04-09 1996-04-09 Running stabilizing wheel mechanism of segment transporting unmanned vehicle

Publications (1)

Publication Number Publication Date
JPH09272433A true JPH09272433A (en) 1997-10-21

Family

ID=14553530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8111142A Pending JPH09272433A (en) 1996-04-09 1996-04-09 Running stabilizing wheel mechanism of segment transporting unmanned vehicle

Country Status (1)

Country Link
JP (1) JPH09272433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728112A3 (en) * 2012-10-30 2017-02-22 Herrenknecht Aktiengesellschaft Device for the transfer of loads during tunnel construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2728112A3 (en) * 2012-10-30 2017-02-22 Herrenknecht Aktiengesellschaft Device for the transfer of loads during tunnel construction

Similar Documents

Publication Publication Date Title
US20060254840A1 (en) Vehicle for traveling over uneven terrain
JPH1067216A (en) Damping control device for stabilizer bar
JPH0549756A (en) Mobile vehicle
JPH09272433A (en) Running stabilizing wheel mechanism of segment transporting unmanned vehicle
JPH0328351B2 (en)
JPH05162516A (en) Vehicle to be used for both tire travelling and track travelling
JP5110055B2 (en) Vehicle control device
JPH05270231A (en) Car suspension device
KR20190070563A (en) Rear suspension system for vehicles
JP2936640B2 (en) Comprehensive control system for auxiliary steering angle and wheel load distribution
JP2894393B2 (en) Caster angle control device for vehicles
JPH03281405A (en) Control device for tire pressure
JP2894392B2 (en) Caster angle control device for vehicles
KR100241375B1 (en) Lateral inclination compensation system for a vehicle
JPH061132A (en) Camber angle control device for vehicle
JPS599925Y2 (en) Rear axle of forklift vehicle
JPH11245858A (en) Crawler type traction equipment and leveling machine having the same
FI87437B (en) Steering device
KR19990017635A (en) Car subframe
JPS6397411A (en) Suspension device
JPH05213037A (en) Camber angle control device for vehicle
KR100192379B1 (en) Suspension control system of semi-trailing arm
JP3620759B2 (en) Automatic propulsion angle variable snow plow or snow grader device
JPH05213036A (en) Camber angle control device for vehicle
JPH07485Y2 (en) Wheeled road surface cutting machine