JPH09259936A - Residual capacity detection method for alkaline battery - Google Patents

Residual capacity detection method for alkaline battery

Info

Publication number
JPH09259936A
JPH09259936A JP8069755A JP6975596A JPH09259936A JP H09259936 A JPH09259936 A JP H09259936A JP 8069755 A JP8069755 A JP 8069755A JP 6975596 A JP6975596 A JP 6975596A JP H09259936 A JPH09259936 A JP H09259936A
Authority
JP
Japan
Prior art keywords
nickel
electrode
potential
alkaline battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8069755A
Other languages
Japanese (ja)
Inventor
Masaharu Watada
正治 綿田
Yukio Yamamoto
幸雄 山本
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP8069755A priority Critical patent/JPH09259936A/en
Publication of JPH09259936A publication Critical patent/JPH09259936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for estimating the residual capacity of an alkaline battery precisely by utilizing the electrode potential itself specific to an active nickel substance. SOLUTION: First, an alkaline battery provided with a nickel electrode using n active substance mixing two types of nickel hydroxides of different composition is prepared. Next, the capacity ratio of the nickel electrodes corresponding to the mixture ratio of the nickel hydroxides of different composition is detected by measuring the potential change correlating to that mixture ratio and then residual capacity is estimated based on the detected capacity raito.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル亜鉛電
池、ニッケル・カドミウム電池やニッケル水素化物電池
等の正極にニッケル電極を用いるアルカリ電池の残存容
量検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the remaining capacity of an alkaline battery such as a nickel zinc battery, a nickel cadmium battery or a nickel hydride battery which uses a nickel electrode as a positive electrode.

【0002】[0002]

【従来の技術】アルカリ電池は、ポータブルエレクトロ
ニクス機器や電動車両などの電源として広範囲な分野で
用いられているが、使用上の重要な課題として、如何に
精度良く電池の残存容量を推定するかがある。従来は、
電池の使用時の電流値を経時的に測定して使用電気量を
算出し、その積算値と電池の初期容量との差から残存容
量を推定したり、電池の充放電時の特性変化を把握して
基準値を設定し、その基準値と測定値の比較により残存
容量を推定するのが一般的である。
2. Description of the Related Art Alkaline batteries are used in a wide range of fields as a power source for portable electronic devices, electric vehicles, and the like. An important issue in use is how to accurately estimate the remaining capacity of a battery. is there. conventionally,
The current value during use of the battery is measured over time to calculate the amount of electricity used, and the remaining capacity is estimated from the difference between the integrated value and the initial capacity of the battery, and the change in characteristics during charge / discharge of the battery is understood. It is common to set a reference value and then estimate the remaining capacity by comparing the reference value with the measured value.

【0003】特に、リチウム2次電池の正極活物質(L
1-x CoO2 )のように、電極電位が電池状態(Li
量)に依存して変化する場合には、該電位を測定するこ
とによって比較的容易に残存容量の推定がなされる。
Particularly, the positive electrode active material (L
i 1-x CoO 2 ) such that the electrode potential is in the battery state (Li
When it changes depending on the quantity, the remaining capacity can be estimated relatively easily by measuring the potential.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ニッケ
ル電極を正極とするアルカリ電池系では、また、その電
池電圧等の特性値が電池状態(残存容量)にほとんど依
存せず一定しており、電池の容量は経時変化することか
ら、従来の残存容量の推定方法では正確な推定が困難で
あり、より有効な電池の残存容量検出方法の開発が課題
として残されている。
However, in an alkaline battery system having a nickel electrode as a positive electrode, the characteristic values such as the battery voltage are almost independent of the battery state (remaining capacity) and are constant. Since the capacity changes with time, it is difficult to accurately estimate it with the conventional method for estimating the remaining capacity, and the development of a more effective method for detecting the remaining capacity of the battery remains as an issue.

【0005】本発明は、上記課題に鑑みてなされたもの
であり、ニッケル活物質に固有の電極電位そのものを利
用することにより精度良くアルカリ電池の残存容量を推
定する方法を提供するものである。
The present invention has been made in view of the above problems, and provides a method for accurately estimating the remaining capacity of an alkaline battery by utilizing the electrode potential itself specific to the nickel active material.

【0006】[0006]

【課題を解決するための手段】本発明は、異なる組成の
水酸化ニッケルを2種類以上混合した活物質を用いたニ
ッケル電極を備えたアルカリ電池を準備し、異なる組成
の水酸化ニッケルの混合比率に対応するニッケル電極の
容量比率を、その混合比率に相関する電位変化を測定す
ることにより検出し、その容量比率から残存容量を推定
することを特徴とする。
According to the present invention, an alkaline battery provided with a nickel electrode using an active material in which two or more kinds of nickel hydroxide having different compositions are mixed is prepared, and a mixing ratio of nickel hydroxide having different compositions is prepared. It is characterized in that the capacity ratio of the nickel electrode corresponding to is detected by measuring the potential change correlated with the mixing ratio, and the remaining capacity is estimated from the capacity ratio.

【0007】本発明は、異なる組成の水酸化ニッケル粉
末の混合物を活物質として用いた場合、そのニッケル電
極の電位は、各単一成分の電位を相加したものになると
の知見に基ずく。例えば、組成Aの水酸化ニッケル粉末
単独のニッケル電極の電位が、組成Bの単独電極の電位
よりも貴であるならば、これら組成の粉末を混合した電
極の電位は、充電過程ではまずBの電位で酸化が始ま
り、その後Aの電位で酸化が進行する。一方、放電過程
では、逆にAの電位で還元がはじまり、次いでBの電位
で還元が進行する。ここで、AからBへの電位の移行時
点は、その混合物の混合比率に相関する。従って混合比
率はそのまま容量比率となるから、AからBへの電位の
移行時点を検出することによって、その時の残存容量及
び充電量等の電池状態を精度よく推定することが可能と
なる。また、AとBの電位差は組成を変えることによっ
て制御でき、2種類以上の水酸化ニッケル粉末を混合使
用した場合も同様である。
The present invention is based on the finding that when a mixture of nickel hydroxide powders having different compositions is used as the active material, the potential of the nickel electrode is the sum of the potentials of the individual components. For example, if the potential of the nickel electrode of the composition A of nickel hydroxide powder alone is nobler than the potential of the composition B of the single electrode, the potential of the electrode mixed with the powders of the composition B is Oxidation starts at the potential, and then proceeds at the potential A. On the other hand, in the discharging process, on the contrary, the reduction starts at the potential of A and then proceeds at the potential of B. Here, the transition point of the potential from A to B correlates with the mixing ratio of the mixture. Therefore, since the mixing ratio becomes the capacity ratio as it is, by detecting the transition time point of the potential from A to B, it becomes possible to accurately estimate the battery state such as the remaining capacity and the charge amount at that time. Further, the potential difference between A and B can be controlled by changing the composition, and the same is true when two or more kinds of nickel hydroxide powder are mixed and used.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を実施
例に基き説明する。ニッケル電極 本実施例では、水酸化ニッケル粒子が充放電サイクルに
伴い形状崩壊するのを防止するために、亜鉛または銅を
固溶した組成の水酸化ニッケルを基本とした。亜鉛また
は銅の添加は、粒子崩壊(電極膨潤)の原因となる低密
度なγ形NiOOHの生成を抑制する作用のあることが
知られている。また、ニッケル活物質の電極電位を変え
るには、主にコバルトを水酸化ニッケルに固溶体添加す
る手法を適用した。即ち、周知のように、ニッケル電極
の電位はコバルトの添加量に応じて卑に変化することを
利用した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below based on Examples. Nickel Electrode In this example, nickel hydroxide having a composition containing zinc or copper as a solid solution was used as a basis in order to prevent the nickel hydroxide particles from collapsing in shape during charge / discharge cycles. It is known that the addition of zinc or copper has an action of suppressing the generation of low-density γ-type NiOOH that causes particle collapse (electrode swelling). Further, in order to change the electrode potential of the nickel active material, a method of adding cobalt to nickel hydroxide as a solid solution was mainly applied. That is, as is well known, the fact that the potential of the nickel electrode changes base depending on the amount of cobalt added was used.

【0009】水酸化ニッケル粉末の組成は、3重量%の
亜鉛を固溶体添加したもの(A粉末)と3重量%の亜鉛
と5重量%のコバルトを固溶体添加したもの(B粉末)
の2種類とした。
The composition of nickel hydroxide powder is 3% by weight of zinc added as a solid solution (A powder), 3% by weight of zinc and 5% by weight of cobalt added as a solid solution (B powder).
There are two types.

【0010】ニッケル電極は、上記のA粉末とB粉末を
均一に混合した粉末に、導電性ネットワーク形成剤とし
て一酸化コバルト粉末10重量%を混合し、カルボキシメ
チルセルロースの増粘液を加えてペースト状とし、約95
%の多孔度のニッケル金属多孔体基板に所定量を充填
し、乾燥・加圧を行って作製した。本実施例ではA粉末
とB粉末の混合比は等量とした。
The nickel electrode is made into a paste by mixing 10% by weight of cobalt monoxide powder as a conductive network forming agent into a powder obtained by uniformly mixing the A powder and the B powder, and adding a thickening liquid of carboxymethyl cellulose. , About 95
A nickel metal porous substrate having a porosity of 10% was filled with a predetermined amount, dried, and pressed to prepare. In this example, the mixing ratio of the A powder and the B powder was the same.

【0011】こうして得たニッケル電極(本発明電極)
の充放電電位曲線を図1に示す。比較として、A粉末の
みを用いた比較電極AおよびB粉末のみを用いた比較電
極Bの充放電電位曲線を合わせて示す。本発明電極の電
位は、比較電極Aと比較電極Bの電位の混成ではなく、
相加的となる。即ち、放電過程では、まず比較電極Aの
放電電位で反応は進行し、A粉末とB粉末の混合比に相
当する時点(この場合中間点)で、比較電極Bの電位に
移行し反応が進む。逆のことが、充電過程でも起こる。
これらの現象は各成分ニッケル活物質が独立に反応に関
与しているためと考えられる。
The nickel electrode thus obtained (the electrode of the present invention)
The charging / discharging potential curve of is shown in FIG. For comparison, the charge / discharge potential curves of the comparative electrode A using only the A powder and the comparative electrode B using only the B powder are also shown. The potential of the electrode of the present invention is not a mixture of the potentials of the reference electrode A and the reference electrode B, but
Be additive. That is, in the discharge process, the reaction first proceeds at the discharge potential of the comparison electrode A, and at the time corresponding to the mixing ratio of the A powder and the B powder (in this case, the intermediate point), the reaction proceeds to the potential of the comparison electrode B and the reaction proceeds. . The opposite happens during the charging process.
It is considered that these phenomena are because each component nickel active material independently participates in the reaction.

【0012】本実施例では、この電位の差は約25mVで
あり、この電位差を検出した時点で残存容量は50%であ
ることになる。この電位差は図2に示すように、コバル
トの固溶体添加量を変えることによって、約50mVの範
囲で制御可能である。電位を制御可能な添加剤は、コバ
ルトに限定されない。例えば、マグネシウムを固溶体添
加することによって電極を貴にすることが可能である。
また、亜鉛、銅の添加は、前述の実施例で記載した通
り、水酸化ニッケル粒子が充放電サイクルに伴い形状崩
壊するのを防止する効果があるが、本発明での電位変化
を生じさせる効果もある。
In this embodiment, this potential difference is about 25 mV, and the remaining capacity is 50% at the time when this potential difference is detected. As shown in FIG. 2, this potential difference can be controlled within a range of about 50 mV by changing the amount of cobalt solid solution added. The additive whose potential can be controlled is not limited to cobalt. For example, it is possible to make the electrode precious by adding magnesium as a solid solution.
Further, the addition of zinc and copper has the effect of preventing the nickel hydroxide particles from collapsing in shape with the charge / discharge cycle as described in the above examples, but the effect of causing a potential change in the present invention. There is also.

【0013】この作用を応用することによって、例えば
残存容量25%の時点を検出するには、A粉末とB粉末を
3対1の割合で混合したニッケル電極を使用すればよ
く、残存容量の検出点を1点以上とするには、3種類以
上のコバルト添加量の異なる組成の粉末を混合したニッ
ケル電極を適用すれば可能となる。このように、異なる
組成の水酸化ニッケル活物質の種類数とその混合比率を
変えて、それらの電位の移行点を任意に設定し、その移
行点を測定することによって電池状態すなわち残存容量
を推定することができる。
By applying this action, for example, in order to detect the time when the remaining capacity is 25%, a nickel electrode in which powder A and powder B are mixed at a ratio of 3: 1 may be used. It is possible to set the number of points to one or more by applying a nickel electrode in which three or more kinds of powders having different cobalt addition amounts are mixed. In this way, the battery state, that is, the remaining capacity is estimated by changing the number of types of nickel hydroxide active materials with different compositions and their mixing ratios, setting the transition points of these potentials arbitrarily, and measuring the transition points. can do.

【0014】アルカリ電池 上記A粉末とB粉末とを均一に混合して形成したニッケ
ル電極を正極とし、水素吸蔵合金電極、亜鉛電極または
カドミウム電極を負極とし、ポリオレフィン系不織布か
らなるセパレータを介在させて、巻回しまたは積層し、
水酸化カリウム水溶液等のアルカリ電解液を注液して、
円筒型または角型の電池を作製した。これらの電池系で
は、負極の電極電位は充放電過程でほとんど変化せず一
定であるために、ニッケル電極の特性が電池電圧にその
まま反映される。従って、前記方法でこれらの電池の残
存容量を推定することができた。
Alkaline battery A nickel electrode formed by uniformly mixing the A powder and the B powder is used as a positive electrode, a hydrogen storage alloy electrode, a zinc electrode or a cadmium electrode is used as a negative electrode, and a separator made of a polyolefin-based nonwoven fabric is interposed. , Rolled or laminated,
Inject an alkaline electrolyte such as aqueous potassium hydroxide,
A cylindrical or prismatic battery was produced. In these battery systems, the electrode potential of the negative electrode hardly changes during the charging / discharging process and is constant, so the characteristics of the nickel electrode are reflected as they are in the battery voltage. Therefore, the remaining capacity of these batteries could be estimated by the above method.

【0015】[0015]

【発明の効果】以上の通り本発明は、アルカリ電池の残
存容量を精度よく簡便に推定できる。また、水酸化ニッ
ケルに固溶体添加する添加剤の種類、添加量を変化させ
ることにより、容易にニッケル電極の電位の制御が可能
となるために、上記残存容量の推定を効果的に行うこと
ができる。
As described above, according to the present invention, it is possible to accurately and easily estimate the remaining capacity of an alkaline battery. In addition, since the potential of the nickel electrode can be easily controlled by changing the type and amount of the additive to be added as a solid solution to nickel hydroxide, it is possible to effectively estimate the remaining capacity. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のニッケル電極と比較電極の充放電電位
曲線を示す図である。
FIG. 1 is a diagram showing charge / discharge potential curves of a nickel electrode and a reference electrode of the present invention.

【図2】本発明のニッケル電極におけるコバルト添加量
と充放電電位の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of cobalt added and the charge / discharge potential in the nickel electrode of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 異なる組成の水酸化ニッケルを2種類以
上混合した活物質を用いたニッケル電極を備えたアルカ
リ電池を準備し、異なる組成の水酸化ニッケルの混合比
率に対応するニッケル電極の容量比率を、その混合比率
に相関する電位変化を測定することにより検出し、その
容量比率から残存容量を推定することを特徴とするアル
カリ電池の残存容量検出方法。
1. An alkaline battery provided with a nickel electrode using an active material in which two or more kinds of nickel hydroxide having different compositions are mixed is prepared, and a capacity ratio of the nickel electrode corresponding to a mixing ratio of nickel hydroxide having different compositions. Is detected by measuring a potential change correlated with the mixing ratio, and the remaining capacity is estimated from the capacity ratio.
【請求項2】 前記ニッケル電極の活物質が、亜鉛、マ
グネシウム、銅又はコバルトを異なる比率で固溶体添加
した水酸化ニッケルである請求項1記載のアルカリ電池
の残存容量検出方法。
2. The method for detecting the remaining capacity of an alkaline battery according to claim 1, wherein the active material of the nickel electrode is nickel hydroxide to which zinc, magnesium, copper or cobalt is added in a solid solution at different ratios.
JP8069755A 1996-03-26 1996-03-26 Residual capacity detection method for alkaline battery Pending JPH09259936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8069755A JPH09259936A (en) 1996-03-26 1996-03-26 Residual capacity detection method for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8069755A JPH09259936A (en) 1996-03-26 1996-03-26 Residual capacity detection method for alkaline battery

Publications (1)

Publication Number Publication Date
JPH09259936A true JPH09259936A (en) 1997-10-03

Family

ID=13411937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8069755A Pending JPH09259936A (en) 1996-03-26 1996-03-26 Residual capacity detection method for alkaline battery

Country Status (1)

Country Link
JP (1) JPH09259936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520120A (en) * 2008-05-07 2011-07-14 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Method for estimating remaining battery capacity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520120A (en) * 2008-05-07 2011-07-14 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Method for estimating remaining battery capacity

Similar Documents

Publication Publication Date Title
US5489314A (en) Manufacturing method of nickel plate and manufacturing method of alkaline battery
JPH09259936A (en) Residual capacity detection method for alkaline battery
US5840442A (en) Method for activating an alkaline rechargeable battery
JPH11297352A (en) Alkaline storage battery
Li et al. An improvement on redox reversibility of cobalt oxyhydroxide in nickel hydroxide electrodes
JP2794825B2 (en) Chemical formation method of nickel hydroxide electrode
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JPH04109556A (en) Closed-type secondary battery
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2625706B2 (en) Alkaline battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2577954B2 (en) Cadmium negative electrode plate and alkaline secondary battery
JP3733037B2 (en) Paste type cadmium negative electrode for alkaline storage battery
JPH0576752B2 (en)
JP2559593B2 (en) Sealed nickel-cadmium battery and its charging method
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JPH1064531A (en) Cadmium negative electrode for alkaline storage battery and manufacture thereof
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0778613A (en) Nickel hydrogen battery
JP3063159B2 (en) Nickel electrode for alkaline battery and battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227