JP2577954B2 - Cadmium negative electrode plate and alkaline secondary battery - Google Patents

Cadmium negative electrode plate and alkaline secondary battery

Info

Publication number
JP2577954B2
JP2577954B2 JP63111193A JP11119388A JP2577954B2 JP 2577954 B2 JP2577954 B2 JP 2577954B2 JP 63111193 A JP63111193 A JP 63111193A JP 11119388 A JP11119388 A JP 11119388A JP 2577954 B2 JP2577954 B2 JP 2577954B2
Authority
JP
Japan
Prior art keywords
cadmium
electrode plate
negative electrode
battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63111193A
Other languages
Japanese (ja)
Other versions
JPH01281667A (en
Inventor
吉村  公志
安田  秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63111193A priority Critical patent/JP2577954B2/en
Publication of JPH01281667A publication Critical patent/JPH01281667A/en
Application granted granted Critical
Publication of JP2577954B2 publication Critical patent/JP2577954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明はカドミウム負極板と、その負極板を用いたア
ルカリ二次電池に関するものである。
Description: TECHNICAL FIELD The present invention relates to a cadmium negative electrode plate and an alkaline secondary battery using the negative electrode plate.

従来の技術とその課題 現在、二次電池としては、主として鉛電池およびニッ
ケル−カドミウム電池が用いられているが、特にニッケ
ル−カドミウム電池は、高率放電での特性が良好である
ことや、鉛電池に比べて寿命が長いなどの理由によって
需要が急増している。また一方では、近年の電子機器の
小型化、軽量化などに伴って、高容量化や充電時間の短
縮が二次電池に対して要求されている。
2. Description of the Related Art At present, lead batteries and nickel-cadmium batteries are mainly used as secondary batteries. In particular, nickel-cadmium batteries have good characteristics in high-rate discharge and lead-free batteries. Demand is increasing rapidly due to its longer life than batteries. On the other hand, with the recent reduction in size and weight of electronic devices, there is a demand for secondary batteries to have higher capacity and shorter charging time.

カドミウム負極板を用いた従来のアルカリ二次電池に
は次のような問題がある。それはカドミウム負極板に関
するもので、充放電反応に関与しない水酸化カドミウム
を多く有していることである。つまり、水酸化カドミウ
ムの水素ガス発生までの充電効率は、通常90%程度であ
り、残り約10%の水酸化カドミウムは何等役に立つこと
もなく不要な体積を占めている。さらにニッケル−カド
ミウム電池を例にとると、電池の密閉状態を保つため
に、負極板内に正極板の容量の20%以上のいわゆるリザ
ーブの水酸化カドミウムが必要があった。このリザーブ
の水酸化カドミウムは正極活物質の保持体である金属ニ
ッケルの活物質化や電池内の空間体積を補償するもので
あり、放電容量には寄与しない。これらの水酸化カドミ
ウムを有していることが、カドミウム負極板および電池
の高容量化を防げている一因である。
A conventional alkaline secondary battery using a cadmium negative electrode plate has the following problems. It relates to a cadmium negative electrode plate, and has a large amount of cadmium hydroxide which does not participate in the charge / discharge reaction. That is, the charging efficiency of cadmium hydroxide until hydrogen gas generation is usually about 90%, and the remaining 10% of cadmium hydroxide occupies an unnecessary volume without any use. Further, taking a nickel-cadmium battery as an example, a so-called reserve cadmium hydroxide of 20% or more of the capacity of the positive electrode plate was required in the negative electrode plate in order to keep the battery sealed. The cadmium hydroxide in the reserve compensates for the conversion of the metallic nickel, which is a support for the positive electrode active material, into an active material and the space volume in the battery, and does not contribute to the discharge capacity. The presence of these cadmium hydroxides is one of the factors that can prevent the cadmium negative electrode plate and the battery from increasing in capacity.

また、従来のニッケル−カドミウム電池は、電池の密
閉状態を保つために定電流で充電した場合には電流を約
1CA以下に抑えなければならないという問題を有してい
る。これは、充電電流を1C以上に大きくした場合には、
過充電領域において正極板から発生した全ての酸素ガス
を負極板で吸収することができずに、結局は安全弁が作
動して電解液の減少を起こし、容量低下と寿命特性の劣
化を起こすためである。そこで、特願昭62−83582号や
特願昭63−13345号で提案されているように、充電時に
おける負極板の水素発生にいたる過程の電位変化を充電
電圧の変化として検出して充電制御を容易にし、かつ急
速充電を可能にする試みがあるが、負極板の充電効率の
点で不十分である。
In addition, a conventional nickel-cadmium battery reduces the current when charged at a constant current in order to keep the battery sealed.
There is a problem that it must be kept below 1 CA. This means that if the charging current is increased to 1C or more,
In the overcharge region, all the oxygen gas generated from the positive electrode plate cannot be absorbed by the negative electrode plate, and eventually the safety valve operates to cause a decrease in the electrolyte, which causes a reduction in capacity and a deterioration in life characteristics. is there. Thus, as proposed in Japanese Patent Application Nos. 62-83582 and 63-13345, charge control is performed by detecting a potential change in the process of generating hydrogen on the negative electrode plate during charging as a change in charging voltage. Attempts have been made to make the charging easier and to enable rapid charging, but the charging efficiency of the negative electrode plate is insufficient.

課題を解決するための手段 本発明は、カドミウム負極板と、その負極板を備えた
アルカリ二次電池に関するものであって該負極板は、酸
化第1スズを全カドミウム量に対し0.2〜20重量%含有
することを特徴とするものである。
Means for Solving the Problems The present invention relates to a cadmium negative electrode plate, and an alkaline secondary battery provided with the negative electrode plate, wherein the negative electrode plate contains stannous oxide in an amount of 0.2 to 20% by weight based on the total amount of cadmium. %.

また、本発明の電池ではカドミウム負極板に酸化第1
スズを含有させる代わりに電解液中に酸化第1スズを含
有させることも可能である。
In addition, in the battery of the present invention, the cadmium negative electrode plate has
Instead of containing tin, it is also possible to include stannous oxide in the electrolyte.

作用 カドミウム負極板の充電効率について検討した結果、
負極活物質中あるいはアルカリ電解液中に酸化第1スズ
を含有させることによって充電効率が高くなることがわ
かった。
Action As a result of examining the charging efficiency of the cadmium negative electrode plate,
It was found that charging efficiency was increased by adding stannous oxide in the negative electrode active material or the alkaline electrolyte.

例えば、酸化カドミウムを0.1C(論理容量基準)の電
流で充電した際の水素ガスが発生するまでの充電効率は
約90%であるが、酸化第1スズを酸化カドミウムの全カ
ドミウム量に対し0.2重量%以上添加した場合には充電
効率が96%以上に向上する。
For example, when cadmium oxide is charged with a current of 0.1 C (based on a logical capacity), the charging efficiency until hydrogen gas is generated is about 90%, but stannous oxide is 0.2% of the total cadmium amount of cadmium oxide. When added by weight% or more, the charging efficiency is improved to 96% or more.

また、酸化第1スズを含有するアルカリ電解液を用い
ることによっても、酸化第1スズをカドミウム負極板に
含有させたのと同様に充電効率は向上する。
Also, by using an alkaline electrolyte containing stannous oxide, the charging efficiency is improved in the same manner as when stannous oxide is contained in a cadmium negative electrode plate.

この場合、電解液中に存在する酸化第1スズの量は、
カドミウム負極板中に存在する全カドミウム量に対し0.
1〜24重量%とするのが望ましい。また、このような充
電効率の優れた負極板を用いて、その負極板の充電時の
水素発生にいたる電位変化を端子電圧の変化として検出
すれば充電制御が容易であり、その時点で定電圧に設定
すれば過充電領域では電流が小さくなるために、急速充
電が可能でしかも電解液の減量のないアルカリ二次電池
となる。
In this case, the amount of stannous oxide present in the electrolyte is
The amount of cadmium is 0.1% based on the total amount of cadmium present in the negative electrode plate.
Desirably, it is 1 to 24% by weight. Further, by using such a negative electrode plate having excellent charge efficiency and detecting a potential change leading to the generation of hydrogen during charging of the negative plate as a change in terminal voltage, charge control is easy, and at that time a constant voltage is obtained. When the value is set to, the current is reduced in the overcharge region, so that an alkaline secondary battery that can be rapidly charged and has no decrease in the amount of the electrolyte is obtained.

実施例 以下本発明を好適な実施例を用いて詳細に説明する。Examples Hereinafter, the present invention will be described in detail using preferred examples.

本発明の目的は、充電効率の優れたカドミウム負極板
を得ることであり、またそれを電池に適用することであ
る。従って、まず最初にカドミウム負極板について述べ
る。
An object of the present invention is to obtain a cadmium negative electrode plate having excellent charging efficiency, and to apply it to a battery. Therefore, the cadmium negative electrode plate will be described first.

[実施例1] 酸化カドミウム粉末479mgと酸化第1スズ15mgとを混
合してから、230kg/cm2の圧力で加圧成形し、厚みが約2
mmで理論容量が200mAhの錠剤とした。さらにこの錠剤を
200メッシュのニッケル網で包んで負極とした。これを
負極板(イ)とする。
Example 1 After mixing 479 mg of cadmium oxide powder and 15 mg of stannous oxide, the mixture was pressed under a pressure of 230 kg / cm 2 to have a thickness of about 2 kg.
Tablets having a theoretical capacity of 200 mAh in mm were prepared. In addition, this tablet
The negative electrode was wrapped with a 200 mesh nickel net. This is referred to as a negative electrode plate (a).

[実施例2] 水酸化カドミウム粉末546mgと酸化第1スズ15mgを混
合した後、実施例1と同様にして、理論容量が200mAhの
錠剤形負極板を制作した。これを負極板(ロ)とする。
Example 2 After mixing 546 mg of cadmium hydroxide powder and 15 mg of stannous oxide, a tablet-shaped negative electrode plate having a theoretical capacity of 200 mAh was produced in the same manner as in Example 1. This is referred to as a negative electrode plate (b).

[従来例1] 実施例1における配合から、酸化第1スズを削除した
以外は全て実施例1と同様にして論理容量が200mAhの錠
剤形負極板を製作した。これを負極板(ハ)とする。
[Conventional Example 1] A tablet-type negative electrode plate having a logical capacity of 200 mAh was manufactured in the same manner as in Example 1 except that stannous oxide was omitted from the formulation in Example 1. This is referred to as a negative electrode plate (c).

これらの負極板を比重1.250(20℃)の水酸化カリウ
ム水溶液中で、対極にニッケル平板2枚を用いて、20mA
の電流で15時間充電を行った後、100mAの電流で放電し
て酸化水銀電極を基準として0Vまでの放電容量を測定
し、さらに100mAの電流で充電して水素ガスが発生する
までの電気量から充電効率を求めた。なお充電効率は以
下の式(1)から算出した。
These negative plates were placed in an aqueous solution of potassium hydroxide having a specific gravity of 1.250 (20 ° C.), and two nickel flat plates were used as counter electrodes at 20 mA.
After charging for 15 hours, discharge at 100 mA and measure the discharge capacity up to 0 V with respect to the mercury oxide electrode, then charge with 100 mA to generate electricity until hydrogen gas is generated. The charging efficiency was determined from. The charging efficiency was calculated from the following equation (1).

その結果を第1表に示した。 The results are shown in Table 1.

この結果から酸化第1スズを含有した本発明の負極板
(イ)および(ロ)は、従来例の負極板(ハ)に比べて
充電効率の絶対値が約10%高く、ほぼ100%に近いこと
を示している。また放電容量は、その差がさらに顕著で
あり、活物質が酸化カドミウムのみである負極板(ハ)
は、その値が22mAhとほとんど放電できないのに対し、
酸化第1スズを含有した本発明の負極板(イ)および
(ロ)はそれぞれ125mAh,127mAhであり、高い値を示し
ている。
From this result, the negative electrode plates (a) and (b) of the present invention containing stannous oxide have an absolute value of the charging efficiency about 10% higher than that of the conventional negative electrode plate (c) and almost 100%. It is close. The difference in discharge capacity is even more remarkable, and the negative electrode plate (c) in which the active material is only cadmium oxide
Can hardly discharge at 22 mAh,
The negative electrode plates (a) and (b) of the present invention containing stannous oxide have high values of 125 mAh and 127 mAh, respectively.

このように酸化第1スズを添加することによってカド
ミウム活物質の充電効率および放電時の活物質利用率を
高めることができる。
By adding stannous oxide in this manner, the charge efficiency of the cadmium active material and the utilization rate of the active material during discharging can be increased.

なお、充電効率の算出に1サイクル目ではなく、2サ
イクル目のデーターを用いたのは以下の理由による。
The reason for using the data of the second cycle instead of the first cycle for calculating the charging efficiency is as follows.

酸化第1スズを添加していない負極板(ハ)では、電
解液浸漬後の電位が酸化水銀電極を基準として約−0.1V
であるのに対し、酸化第1スズを添加した負極板(イ)
および(ロ)では約−0.8〜−0.9Vであり異なってい
る。
In the negative electrode plate (c) to which stannous oxide was not added, the potential after immersion in the electrolyte was about -0.1 V with respect to the mercury oxide electrode.
On the other hand, a negative electrode plate to which stannous oxide is added (a)
In (b) and (-), the difference is about -0.8 to -0.9V.

酸化第1スズを添加していない負極板(ハ)では、1
サイクル目の充電において、水素ガスが発生するまでの
充電電気量と生成した金属カドミウムの容量とが一致す
るのに対し、酸化第1スズを添加した負極板(イ)およ
び(ロ)では一致せず生成した金属カドミウムの容量の
方が大きくなっている。
In the negative electrode plate (c) to which stannous oxide was not added, 1
In the charge in the cycle, the amount of electricity charged until hydrogen gas is generated matches the capacity of the generated metal cadmium, whereas the amounts of the negative electrode plates (a) and (b) to which stannous oxide is added match. The capacity of the generated metal cadmium is larger.

以上のことから酸化第1スズを添加した負極板(イ)
および(ロ)ではおそらく(2)式と(3)式の素反応
からなる(4)式、あるいは(5)式と(6)式の素反
応からなる(7)式の反応によって金属カドミウムの生
成が起きているものと考えられる。
From the above, the negative electrode plate to which stannous oxide was added (a)
In (b), metal cadmium is probably produced by the reaction of the formula (4) consisting of the elementary reactions of the formulas (2) and (3) or the reaction of the formula (7) consisting of the elementary reactions of the formulas (5) and (6). It is considered that generation is occurring.

SnO+H2O→SnO2+2H++2e …(2)Cd(OH)+2e→Cd+2OH- …(3) SnO+Cd(OH)→SnO2+Cd+H2O …(4) SnO+2H2O→SnO3 --+4H++2e …(5)Cd(OH)+2e→Cd+2OH- …(6) SnO+Cd(OH)→SnO3 --+Cd+2H+ …(7) そしてこのカドミウム活物質の還元によって極板内に
導電性のネットワークが生成することによって、放電容
量が向上し、また充電効率が向上しているものと考えら
れる。
SnO + H 2 O → SnO 2 + 2H + + 2e ... (2) Cd (OH) 2 + 2e → Cd + 2OH - ... (3) SnO + Cd (OH) 2 → SnO 2 + Cd + H 2 O ... (4) SnO + 2H 2 O → SnO 3 - + 4H + + 2e ... (5) Cd (OH) 2 + 2e → Cd + 2OH - ... (6) SnO + Cd (OH) 2 → SnO 3 - + Cd + 2H + ... (7) and conductive in the electrode plate by the reduction of the cadmium active material It is considered that the discharge capacity is improved and the charging efficiency is improved by the generation of the network.

以上の実施例では酸化カドミウム粉末あるいは水酸化
カドミウム粉末を活物質として用いたが、この他に金属
カドミウム粉末を用いた場合の酸化第1スズの効果を調
べた結果でも充電効率の絶対値で約5%,放電容量で約
10%の向上が認められた。
In the above embodiment, cadmium oxide powder or cadmium hydroxide powder was used as an active material. In addition to this, the effect of stannous oxide when metal cadmium powder was used was examined. 5%, about discharge capacity
A 10% improvement was observed.

次にカドミウム活物質が混合系である場合について説
明する。
Next, a case where the cadmium active material is a mixed system will be described.

[実施例3] 酸化カドミウム粉末240mgと金属カドミウム粉末210mg
と酸化第1スズ15mgとを混合してから230kg/cm2の圧力
で加圧成形して厚みが約2mmで全カドミウムの理論容量
が200mAhの錠剤とした。さらにこの錠剤を20メッシュの
ニッケル網で包んで負極板とした。これを負極板(ニ)
とする。
[Example 3] 240 mg of cadmium oxide powder and 210 mg of metal cadmium powder
And 15 mg of stannous oxide were mixed and pressed under a pressure of 230 kg / cm 2 to obtain a tablet having a thickness of about 2 mm and a total cadmium theoretical capacity of 200 mAh. Further, this tablet was wrapped with a nickel mesh of 20 mesh to obtain a negative electrode plate. This is the negative electrode plate (d)
And

[実施例4] 水酸化カドミウム粉末273mgと金属カドミウム粉末210
mgと酸化第1スズ15mgとを混合した後、実施例3と同様
にして負極板を製作した。これを負極板(ホ)とする。
[Example 4] Cadmium hydroxide powder 273 mg and metal cadmium powder 210
mg and 15 mg of stannous oxide were mixed, and a negative electrode plate was produced in the same manner as in Example 3. This is referred to as a negative electrode plate (e).

[従来例2] 酸化カドミウム粉末240mgと金属カドミウム粉末210mg
とを混合した後、実施例3と同様にして負極板を製作し
た。これを負極板(ヘ)とする。
[Conventional Example 2] 240 mg of cadmium oxide powder and 210 mg of metal cadmium powder
, And a negative electrode plate was manufactured in the same manner as in Example 3. This is referred to as a negative electrode plate (f).

これらの負極板を比重1.250(20℃)の水酸化カリウ
ム水溶液中で対極にニッケル平板2枚を用いて配合時に
おける酸化カドミウムあるいは水酸化カドミウムの理論
容量を基準として1Cの電流で充放電を行い充電効率およ
び放電容量を測定した。なお、充電効率の算出には2サ
イクル目のデーターを用いた。その結果を第2表に示
す。
These negative plates are charged and discharged with a current of 1C based on the theoretical capacity of cadmium oxide or cadmium hydroxide at the time of blending using two nickel plates as counter electrodes in an aqueous solution of potassium hydroxide having a specific gravity of 1.250 (20 ° C). Charge efficiency and discharge capacity were measured. The data of the second cycle was used for calculating the charging efficiency. Table 2 shows the results.

第2表の結果から、酸化第1スズを加えた本発明の負
極板(ニ)および(ホ)は、先の第1表の結果と同様
に、酸化第1スズを加えていない従来の負極板(ヘ)よ
りも充電効率が高く、ほぼ100%に近い値を示してい
る。また放電容量についても本発明の負極板(ニ)およ
び(ホ)は従来の負極板(ヘ)よりも約10%高いことを
示している。
From the results in Table 2, the negative electrode plates (d) and (e) of the present invention to which stannous oxide was added were the same as the results in Table 1 above, except that the conventional negative electrode to which stannous oxide was not added was used. The charging efficiency is higher than that of the plate (f), indicating a value close to 100%. Also, the discharge capacity of the negative electrode plates (d) and (e) of the present invention is about 10% higher than that of the conventional negative electrode plate (f).

以上の結果からわかるように、カドミウム活物質の種
類に関係なく、酸化第1スズを加えることによって充電
効率および放電容量が向上しており、これによって実質
的な容量密度を高くすることができる。
As can be seen from the above results, irrespective of the type of the cadmium active material, the addition of stannous oxide improves the charging efficiency and the discharge capacity, thereby increasing the substantial capacity density.

ただし、カドミウム活物質に対する酸化第1スズの添
加量には適切な範囲があり、添加量が多くなると不都合
が生じることがわかった。従って、次に酸化第1スズの
適切な添加量を調べるために以下の試料負極板を製作し
た。
However, the addition amount of stannous oxide to the cadmium active material has an appropriate range, and it has been found that an increase in the addition amount causes inconvenience. Therefore, the following sample negative electrode plate was manufactured in order to examine an appropriate addition amount of stannous oxide.

[実施例5] 酸化カドミウム粉末479mgと添加量を変えた酸化第1
スズとを混合してから、230kg/cm2の圧力で加圧成形し
て錠剤とした。さらにこの錠剤を20メッシュのニッケル
網で包んでカドミウムの理論容量が200mAhの負極板とし
た。これを負極板群(ト)とする。
[Example 5] Cadmium oxide powder 479 mg and oxidized cadmium oxide powder with different amounts added
After mixing with tin, tablets were formed by pressing under a pressure of 230 kg / cm 2 . Further, the tablet was wrapped with a 20 mesh nickel mesh to form a negative electrode plate having a theoretical capacity of cadmium of 200 mAh. This is referred to as a negative electrode plate group (g).

[実施例6] 水酸化カドミウム粉末546mgと添加量を変えた酸化第
1スズとを混合した後、実施例5と同様にしてカドミウ
ムの理論容量が200mAhの錠剤形負極板を製作した。これ
を負極板群(チ)とする。
Example 6 After mixing 546 mg of cadmium hydroxide powder and stannous oxide with different amounts added, a tablet-type negative electrode plate having a theoretical cadmium capacity of 200 mAh was produced in the same manner as in Example 5. This is referred to as a negative electrode plate group (h).

[実施例7] 金属カドミウム粉末419mgと添加量を変えた酸化第1
スズとを混合した後、実施例5と同様にしてカドミウム
の理論容量が200mAhの錠剤形負極板を製作した。これを
負極板群(リ)とする。
Example 7 Oxidation No. 1 in which the amount of addition was changed to 419 mg of metal cadmium powder
After mixing with tin, a tablet-shaped negative electrode plate having a cadmium theoretical capacity of 200 mAh was produced in the same manner as in Example 5. This is referred to as a negative electrode plate group (R).

次にこれらの負極板のうち負極板群(ト)および
(チ)を比重1.250(20℃)の水酸化カリウム水溶液中
で対極にニッケル平板2枚を用いて、20mAの電流で15時
間充電を行った後、さらに100mAの電流で水素ガスが発
生するまで充電して充電効率を求めた。
Next, among these negative electrode plates, the negative electrode plate groups (g) and (h) were charged in a potassium hydroxide aqueous solution having a specific gravity of 1.250 (20 ° C) using two nickel flat plates as counter electrodes at a current of 20 mA for 15 hours. After the operation, the battery was charged with a current of 100 mA until hydrogen gas was generated, and the charging efficiency was obtained.

一方、負極板群(リ)については比重1.250(20℃)
の水酸化カリウム水溶液中で対極にニッケル平板2枚を
用いて20mAの電流で酸化水銀電極を基準として0Vまで放
電した後、100mAの電流で充電するという操作を2回繰
り返し、2回目の水素ガスが発生するまでの電気量から
充電効率を求めた。これらの結果を第3表に示す。
On the other hand, the specific gravity of the negative electrode plate group (R) is 1.250 (20 ° C)
The operation was repeated twice using a two nickel flat plate as a counter electrode in an aqueous solution of potassium hydroxide at a current of 20 mA, discharging to 0 V with respect to the mercury oxide electrode, and charging the battery with a current of 100 mA twice. The charging efficiency was determined from the amount of electricity up to the occurrence of electricity. Table 3 shows the results.

第3表から全カドミウム量に対し0.2重量%以上の酸
化第1スズを含有している場合に充電効率が高いことが
わかる。
Table 3 shows that the charging efficiency is high when stannous oxide is contained in an amount of 0.2% by weight or more based on the total amount of cadmium.

しかし酸化第1スズの添加量が約30重量%以上になる
と、例えば第1図に示したように放電初期に金属スズの
放電に基ずくと考えられる二段階の電位変化が現れるこ
とや、放電終期の電位の変化がなだらかになるなどの現
象が現れることから酸化第1スズの添加量は全カドミウ
ム量に対し0.1重量%以上20重量%以下とするのが適し
ている。
However, when the addition amount of stannous oxide is about 30% by weight or more, for example, as shown in FIG. 1, a two-stage potential change that is considered to be based on the discharge of metallic tin appears at the beginning of discharge, Since phenomena such as a gradual change in the potential at the final stage appear, it is suitable that the amount of stannous oxide is 0.1% by weight or more and 20% by weight or less based on the total amount of cadmium.

なお、全カドミウム量とはカドミウム負極板に含まれ
るCd原子の総量である。
The total cadmium amount is the total amount of Cd atoms contained in the cadmium negative electrode plate.

次に酸化第1スズをアルカリ電解液中に溶解した場合
のカドミウム負極板の特性について述べる。ここでは酸
化第1スズの効果を明確にするためにカドミウム負極板
の活物質は酸化カドミウム粉末479mgのみとし、先の実
施例と同様の方法で錠剤形の負極板を2枚製作した。電
解液としては比重1.250(20℃)の水酸化カリウム水溶
液と、これに酸化第1スズを溶解したものと2種類用意
した。酸化第1スズを添加した方を電解液(a),添加
しない方を電解液(b)とする。なお、電解液(a)に
含まれる酸化第1スズは30mgである。
Next, characteristics of the cadmium negative electrode plate when stannous oxide is dissolved in an alkaline electrolyte will be described. Here, in order to clarify the effect of stannous oxide, only 479 mg of cadmium oxide powder was used as the active material of the cadmium negative electrode plate, and two tablet-type negative electrode plates were manufactured in the same manner as in the previous example. Two kinds of electrolyte solutions were prepared: an aqueous solution of potassium hydroxide having a specific gravity of 1.250 (20 ° C.) and a solution of stannous oxide dissolved in the aqueous solution. The one to which stannous oxide is added is referred to as an electrolyte (a), and the one to which stannous oxide is not added is referred to as an electrolyte (b). Note that stannous oxide contained in the electrolyte solution (a) is 30 mg.

そしてニッケル平板2枚を対極として用い、また酸化
水銀電極を参照電極として用いて、カドミウム負極板の
理論容量を基準として0.5Cの通電電流で充放電を行っ
た。通電はカドミウム負極板を電解液に浸漬してから2
時間後に開始した。その結果を第2図に示す。
Using two nickel flat plates as a counter electrode and a mercury oxide electrode as a reference electrode, charging and discharging were performed at a current of 0.5 C based on the theoretical capacity of the cadmium negative electrode plate. Apply current after immersing the cadmium negative electrode plate in the electrolyte.
Started after hours. The result is shown in FIG.

1サイクル目の充電特性を比較すると、酸化第1スズ
を添加していない電解液(b)を用いた場合には、充電
初期から終始カドミウム負極板の電位は−1.21〜−1.25
であり、多量の水素ガスを発生していた。一方、酸化第
1スズを添加した電解液(a)を用いた場合には、カド
ミウム負極板は、充電初期に一時的に分極が大きくなっ
て水素ガスを発生するが、すぐに分極は小さくなって水
素ガスの発生は止まり、その後は水酸化カドミウムの充
電が良好に進行している。
Comparing the charging characteristics in the first cycle, when the electrolytic solution (b) to which stannous oxide was not added was used, the potential of the cadmium negative electrode plate from the beginning of charging to the end of charging was -1.21 to -1.25.
And a large amount of hydrogen gas was generated. On the other hand, when the electrolytic solution (a) to which stannous oxide is added is used, the cadmium negative electrode plate temporarily increases polarization at the initial stage of charging to generate hydrogen gas, but immediately decreases polarization. As a result, the generation of hydrogen gas has stopped, and the charging of cadmium hydroxide has proceeded favorably thereafter.

また放電特性を比較すると、電解液(b)ではカドミ
ウム負極板の容量は約2分間でしかないのに対し、電解
液(a)では約50分間の容量であった。
When the discharge characteristics were compared, the capacity of the cadmium negative electrode plate was only about 2 minutes in the case of the electrolytic solution (b), whereas it was about 50 minutes in the case of the electrolytic solution (a).

さらに2サイクル目の充電における充電効率を比較す
ると電解液(a)を用いた場合には約98%であったのに
対し、電解液(b)を用いた場合には約90%であった。
Further, when the charging efficiency in the second cycle charging was compared, it was about 98% when using the electrolytic solution (a), whereas it was about 90% when using the electrolytic solution (b). .

なお、これらと同様のセルを用いて1サイクル目充電
後のカドミウム負極板に含まれる金属カドミウム量を化
学分析した結果、酸化第1スズを添加した電解液(a)
を用いた場合は、カドミウム活物質のほぼ100%が金属
カドミウムに変化していたのに対し、電解液(b)を用
いた場合には約35%しか変化しておらず充電電気量のほ
とんどが水素ガス発生に消費されていたことがわかっ
た。
The amount of metal cadmium contained in the cadmium negative electrode plate after the first charge was chemically analyzed using cells similar to those described above. As a result, the electrolytic solution (a) containing stannous oxide was added.
Almost 100% of the cadmium active material was changed to metal cadmium when using the electrolyte, whereas only about 35% changed when using the electrolyte (b), and almost Was consumed for hydrogen gas generation.

このように酸化第1スズを電解液に添加することによ
ってもカドミウム負極板の充電効率を高めることができ
る。電解液に添加した場合の効果はおそらくSnOが
(8)式によって電解液に溶解し、(9)式と(6)式
の素反応からなる(10)の反応が起こり、負極板に金属
カドミウムが生成して、その金属カドミウムの導電性の
ネットワークが形成することによるものと考えられる。
Thus, the charging efficiency of the cadmium negative electrode plate can also be increased by adding stannous oxide to the electrolytic solution. The effect when added to the electrolyte is probably that SnO dissolves in the electrolyte according to equation (8) and the reaction (10) consisting of elementary reactions of equations (9) and (6) occurs, and the metal cadmium is added to the negative electrode plate. Is generated to form a conductive network of the metal cadmium.

SnO+H2OHSnO2 -+H+ …(8) HSnO2 -→SnO2+H++2e …(9)Cd(OH)+2e→Cd+2OH- …(6) HSnO2 -+Cd(OH)→SnO2+H++Cd+2OH- …(10) そして、この場合にも酸化第1スズの添加量には適切
な範囲がある。従って次に電解液中に酸化第1スズを加
えた場合の添加量の影響について説明する。カドミウム
負極板の活物質は酸化カドミウム粉末479mgとし、今ま
での実施例と同様にして、理論容量が200mAhで厚みが約
2mmの錠剤形の負極板を製作した。
SnO + H 2 OHSnO 2 + H + (8) HSnO 2 → SnO 2 + H + + 2e (9) Cd (OH) 2 + 2e → Cd + 2OH (6) HSnO 2 + Cd (OH) 2 → SnO 2 + H + + Cd + 2OH - ... (10 ) Then, the amount of stannous oxide in this case there is a suitable range. Therefore, the effect of the amount of stannous oxide added to the electrolyte will be described next. The active material of the cadmium negative electrode plate was 479 mg of cadmium oxide powder, and the theoretical capacity was 200 mAh and the thickness was about
A 2 mm tablet-shaped negative electrode plate was manufactured.

電解液は比重1.250(20℃)の水酸化カリウム水溶液
に酸化第1スズを0〜140mg溶解したものを用意した。
As the electrolytic solution, a solution prepared by dissolving 0 to 140 mg of stannous oxide in an aqueous solution of potassium hydroxide having a specific gravity of 1.250 (20 ° C.) was prepared.

そしてそれぞれの電解液中に試料負極板を浸漬し、対
極としてニッケル平板2枚を用いて20mAの電流で15時間
充電を行った後、100mAの電流で酸化水銀電極基準で0V
まで放電し、さらに100mAの電流で充電して水素ガスが
発生するまでの電気量から充電効率を求めた。その結果
を第3図に示す。
Then, the sample negative electrode plate was immersed in each electrolytic solution, and charged with 20 mA current for 15 hours using two nickel flat plates as counter electrodes, and then 0 V with 100 mA current based on the mercury oxide electrode.
And then charged with a current of 100 mA to determine the charging efficiency from the amount of electricity until hydrogen gas was generated. FIG. 3 shows the results.

第3図から酸化第1スズの量が0.5mg以上で充電効率
が向上していることがわかる。しかし、酸化第1スズの
量が120mg以上では、第1図に示したのと同様の不都合
が生じたため酸化第1スズの添加量は0.5〜100mgとする
のが適している。なお、この酸化第1スズの添加量を全
カドミウム量に対して表示すると0.1〜24重量%とな
り、負極板中に酸化第1スズを含有させた場合の添加量
とほぼ一致する。
FIG. 3 shows that the charging efficiency was improved when the amount of stannous oxide was 0.5 mg or more. However, when the amount of stannous oxide is 120 mg or more, the same inconvenience as shown in FIG. 1 occurs. Therefore, the amount of stannous oxide to be added is suitably 0.5 to 100 mg. The amount of stannous oxide added is 0.1 to 24% by weight based on the total amount of cadmium, which is almost the same as the amount of stannous oxide contained in the negative electrode plate.

なお、この実施例では酸化第1スズの効果を明確にす
るために導電性の物質を故意に添加していない。導電性
の物質,例えば金属カドミウム粉末やニッケル粉末をカ
ドミウム負極板中に添加し、さらに電解液に酸化第1ス
ズを添加した場合には、充電効率がほぼ100%になるこ
とを確認している。
In this embodiment, a conductive substance is not intentionally added to clarify the effect of stannous oxide. It has been confirmed that when a conductive substance, for example, metal cadmium powder or nickel powder is added to a cadmium negative electrode plate, and when stannous oxide is further added to the electrolytic solution, the charging efficiency becomes almost 100%. .

また以上の実施例で用いた各原料の性状は次の通りで
ある。
The properties of each raw material used in the above examples are as follows.

〈酸化カドミウム粉末〉 アトマイズ法によって製作した平均粒子径1μmのも
の 〈水酸化カドミウム粉末〉 上記の酸化カドミウム粉末を精製水中に浸漬して水和
させたもの 〈金属カドミウム粉末〉 電気化学的な置換法によって製作した平均粒子径2μ
mのもの 〈酸化第1スズ〉 試薬 次に以上の実施例で説明した極めて高い充電効率を有
する本発明のカドミウム負極板を用いた電池の評価を行
った。
<Cadmium oxide powder> One with an average particle diameter of 1 μm manufactured by the atomization method <Cadmium hydroxide powder> The above cadmium oxide powder immersed in purified water and hydrated <Cadmium metal powder> Electrochemical substitution method 2μ average particle size
m <Stannous oxide> Reagent Next, the battery using the cadmium negative electrode plate of the present invention having extremely high charging efficiency described in the above examples was evaluated.

本発明のカドミウム負極板はリザーブの水酸化カドミ
ウムを必要とする従来のニッケル−カドミウム電池に使
用できる他に、これよりも高容量化と充電時間の短縮が
可能であるリザーブの水酸化カドミウムを有しない電池
に使用した場合にその効果がより著しい。それは、本発
明のカドミウム負極板の充電効率が優れていることに起
因する。従って以下の実施例ではリザーブの水酸化カド
ミウムを有しない電池を例にして説明する。
The cadmium negative electrode plate of the present invention can be used for a conventional nickel-cadmium battery that requires a reserve cadmium hydroxide, and also has a reserve cadmium hydroxide that can have a higher capacity and a shorter charging time. The effect is more significant when used in batteries that do not. This is because the cadmium negative electrode plate of the present invention has excellent charging efficiency. Accordingly, in the following examples, a battery having no cadmium hydroxide reserve will be described as an example.

本発明のアルカリ電池に使用できる正極活物質は水酸
化ニッケル,二酸化マンガンおよび酸化銀である。これ
らのうち一般的に多く用いられている活物質は水酸化ニ
ッケルであるので、ニッケル−カドミウム電池を中心に
して説明する。
The positive electrode active materials that can be used in the alkaline battery of the present invention are nickel hydroxide, manganese dioxide, and silver oxide. Among these, the active material that is generally used is nickel hydroxide, and therefore, the description will be focused on nickel-cadmium batteries.

本発明に用いるカドミウム負極板は、基本的に以下に
示す集電体を用いて製造することができる。すなわち、
ニッケルや銅やカドミウムの網,エクスパンデッドメタ
ル,穿孔板あるいは集電体と活物質保持体を兼ねる三次
元構造の金属発泡体や金属繊維のマットである。
The cadmium negative electrode plate used in the present invention can be basically manufactured using the following current collector. That is,
It is a mat of nickel, copper or cadmium net, expanded metal, perforated plate or three-dimensional metal foam or metal fiber which also serves as a current collector and active material holder.

また、鉄にニッケルメッキしたものや、鉄あるいはニ
ッケルに銅メッキしたもの、さらに鉄,ニッケルあるい
は銅にカドミウムメッキしたものも使用できる。
In addition, iron plated with nickel, iron or nickel plated with copper, and iron, nickel or copper plated with cadmium can also be used.

[実施例8] 酸化カドミウム粉末60部と金属カドミウム粉末40部と
酸化第1スズ1部と長さ1mmのポリプロピレン製の短繊
維0.1部とを1.5重量%のポリビニルアルコールを含むエ
チレングリコール30mlで混合してペースト状にする。こ
のペーストを5μmの銅メッキした穿孔鋼板に塗着し、
次いで乾燥、加圧して酸化カドミウムの理論容量が960m
Ah,寸法が2.9×14×52(mm)の負極板を製作した。
Example 8 60 parts of cadmium oxide powder, 40 parts of metal cadmium powder, 1 part of stannous oxide, and 0.1 part of 1 mm long polypropylene short fiber were mixed with 30 ml of ethylene glycol containing 1.5% by weight of polyvinyl alcohol. To make a paste. This paste is applied to a 5 μm copper-plated perforated steel plate,
Then, dry and pressurize the theoretical capacity of cadmium oxide to 960m
Ah, a negative electrode plate with dimensions of 2.9 × 14 × 52 (mm) was manufactured.

一方、正極板は次の方法で製作した。 On the other hand, the positive electrode plate was manufactured by the following method.

多孔度が約80%の焼結式ニッケル基板に、コバルトの
含有率が8%の硝酸コバルトと硝酸ニッケルとの混合水
溶液[PH=2、比重1.50(20℃)]を含浸した後、比重
1.200(20℃)の水酸化ナトリウム水溶液に浸漬し、湯
洗、乾燥する。この操作を繰り返して、理論容量400mA
h,寸法が1.4×14×52mmの正極板を製作した。
A sintered nickel substrate having a porosity of about 80% is impregnated with a mixed aqueous solution of cobalt nitrate and nickel nitrate having a cobalt content of 8% [PH = 2, specific gravity 1.50 (20 ° C)], and then has a specific gravity.
Immerse in 1.200 (20 ° C) sodium hydroxide solution, wash with hot water and dry. Repeat this operation to set the theoretical capacity to 400 mA.
h, a positive electrode plate with dimensions of 1.4 × 14 × 52 mm was manufactured.

次に負極板1枚を厚さ0.2mmのポリアミドの不織布に
包んだ後、正極板2枚の間にはさみ、電解液として比重
1.250(20℃)の水酸化カリウム水溶液2.4mlを用いて、
公称容量が700mAhの合成樹脂製の電槽を用いたニッケル
−カドミウム電池(A)を製作した。外形寸法は67×1
6.5×8(mm)であり、0.1kg/cm2で作動する安全弁を付
けている。また、この電池の負極板中の酸化カドミウム
は電解液を入れると以下の式(11)に示す反応によって
水を消費するため、その消費分に相当する水を余分に注
入した。
Next, one negative electrode plate is wrapped in a non-woven polyamide fabric having a thickness of 0.2 mm, and then sandwiched between two positive electrode plates to obtain a specific gravity as an electrolyte.
Using 2.4 ml of 1.250 (20 ° C.) aqueous potassium hydroxide solution,
A nickel-cadmium battery (A) using a synthetic resin battery case with a nominal capacity of 700 mAh was manufactured. External dimensions are 67 x 1
6.5 × a 8 (mm), and with a safety valve operating at 0.1 kg / cm 2. In addition, since cadmium oxide in the negative electrode plate of this battery consumes water by the reaction shown in the following formula (11) when the electrolytic solution is charged, extra water corresponding to the consumed amount was injected.

CdO+H2O→Cd(OH) (11) [実施例9] 水酸化カドミウム粉末63部と金属カドミウム粉末37部
と酸化第1スズ1部と長さ1mmのポリプロピレン製の短
繊維とを1.5重量%のポリビニルアルコールを含むエチ
レングリコール30mlで混合してペースト状にする。この
ペーストを20メッシュの銅のエクスパンデッドメタルに
塗着し、次いで乾燥、加圧して水酸化カドミウムの理論
容量が960mAh,寸法が2.9×14×52(mm)の負極板を製作
した。
CdO + H 2 O → Cd (OH) 2 (9) [Example 9] 1.5 parts by weight of 63 parts of cadmium hydroxide powder, 37 parts of metal cadmium powder, 1 part of stannous oxide, and 1 mm long polypropylene short fiber. Mix with 30 ml of ethylene glycol containing% polyvinyl alcohol to form a paste. This paste was applied to a copper expanded metal of 20 mesh, dried and pressed to produce a negative electrode plate having a theoretical capacity of cadmium hydroxide of 960 mAh and dimensions of 2.9 × 14 × 52 (mm).

一方、正極板は次の方法で製作した。 On the other hand, the positive electrode plate was manufactured by the following method.

多孔度が約80%の焼結式ニッケル基板にコバルトの含
有率が15重量%の硝酸コバルトと硝酸ニッケルとの混合
水溶液[PH=2、比重1.5(20℃)]を含浸し220℃で1
時間加熱処理を行ない、次いで比重1.200(20℃)の水
酸化ナトリウム水溶液に浸漬し、湯洗、乾燥するという
操作を繰り返して、論理容量400mAh,寸法が1.4×14×52
(mm)の正極板を製作した。
A sintered nickel substrate having a porosity of about 80% is impregnated with a mixed aqueous solution of cobalt nitrate and nickel nitrate having a cobalt content of 15% by weight [PH = 2, specific gravity 1.5 (20 ° C.)].
Heat treatment for one hour, then immerse in an aqueous solution of sodium hydroxide having a specific gravity of 1.200 (20 ° C), wash with hot water, and dry. Repeat the operation to obtain a logical capacity of 400 mAh and dimensions of 1.4 × 14 × 52.
(Mm) positive electrode plate was manufactured.

次にこのようにして製作した正極板および負極板を用
いて実施例8と同様な構成の公称容量が650mAhの角形ニ
ッケル−カドミウム電池(B)を製作した。
Next, a prismatic nickel-cadmium battery (B) having a nominal capacity of 650 mAh and a configuration similar to that of Example 8 was manufactured using the positive electrode plate and the negative electrode plate manufactured as described above.

[実施例10] 実施例8における負極板の集電体すなわち銅メッキし
た穿孔鋼板の代わりに厚さ5μmのカドミウムメッキし
た穿孔鋼板を用いた以外は全て実施例8と同様にして公
称容量700mAhの角形ニッケル−カドミウム電池(C)を
製作した。
Example 10 The same procedure as in Example 8 was repeated except that a cadmium-plated perforated steel plate having a thickness of 5 μm was used instead of the current collector of the negative electrode plate, that is, the copper-plated perforated steel plate in Example 8, and the nominal capacity was 700 mAh. A prismatic nickel-cadmium battery (C) was manufactured.

[実施例11] 水酸化カドミウム粉末63部と金属カドミウム粉末37部
と長さ1mmのポリプロピレン製の短繊維とを1.5重量%の
ポリビニルアルコールを含むエチレングリコール30mlで
混合してペースト状にする。このペーストを20メッシュ
の銅のエクスパンデッドメタルに塗着し、乾燥、加圧し
て水酸化カドミウムの理論容量が960mAh,寸法が2.9×14
×52(mm)の負極板を製作した。
Example 11 63 parts of cadmium hydroxide powder, 37 parts of metal cadmium powder, and 1 mm long polypropylene short fiber were mixed with 30 ml of ethylene glycol containing 1.5% by weight of polyvinyl alcohol to form a paste. The paste is applied to a 20-mesh copper expanded metal, dried and pressed to obtain a theoretical capacity of cadmium hydroxide of 960 mAh and a size of 2.9 × 14.
A negative electrode plate of × 52 (mm) was manufactured.

一方、正極板は次の方法で製作した。 On the other hand, the positive electrode plate was manufactured by the following method.

多孔度が約80%の焼結式ニッケル基板に、コバルトの
含有率が15重量%の硝酸コバルトと硝酸ニッケルとの混
合水溶液[PH=2、比重1.5(20℃)]を含浸し、比重
1.200(20℃)の水酸化ナトリウム水溶液に浸漬し、次
いで湯洗、乾燥するという操作を繰り返して、理論容量
400mAh,寸法が1.4×14×52(mm)の正極板を製作した。
A sintered nickel substrate having a porosity of about 80% is impregnated with a mixed aqueous solution of cobalt nitrate and nickel nitrate having a cobalt content of 15% by weight [PH = 2, specific gravity 1.5 (20 ° C)].
Immerse in 1.200 (20 ° C) aqueous solution of sodium hydroxide, then rinse with hot water and dry.
A 400 mAh positive electrode plate with dimensions of 1.4 × 14 × 52 (mm) was manufactured.

次に負極板1枚を厚さ0.2mmのポリアミドの不織布で
包んだ後に正極板2枚の間にはさみ、電解液として12mg
の酸化第1スズを含む比重1.250(20℃)の水酸化カリ
ウム水溶液2.4mlを用いて公称容量が650mAhの角形ニッ
ケル−カドミウム電池(D)を製作した。なお、電解液
に含まれる酸化第1スズは、カドミウム負極板中の全カ
ドミウムに対し約0.3%となっている。
Next, one negative electrode plate was wrapped with a 0.2-mm-thick polyamide nonwoven fabric, and then sandwiched between two positive electrode plates.
A square nickel-cadmium battery (D) having a nominal capacity of 650 mAh was produced using 2.4 ml of an aqueous solution of potassium hydroxide having a specific gravity of 1.250 (20 ° C.) containing stannous oxide. In addition, stannous oxide contained in the electrolytic solution was about 0.3% of all cadmium in the cadmium negative electrode plate.

[比較例1] 実施例8における負極板の配合から酸化第1スズを削
除した以外は全て実施例8と同様にして公称容量700mAh
の角形ニッケル−カドミウム電池(E)を製作した。
Comparative Example 1 A nominal capacity of 700 mAh was obtained in the same manner as in Example 8 except that stannous oxide was omitted from the composition of the negative electrode plate in Example 8.
The square nickel-cadmium battery (E) was manufactured.

以上のようにして製作した電池(A),(B),
(C),(D)および(E)の負極板のリザーブ用水酸
化カドミウムはほとんどなく、負極活物質中の水酸化カ
ドミウムの含有量は重量比で正極活物質の水酸化ニッケ
ルの約0.95倍[2.73(g/Ah)/2.88(g/Ah)]となって
いる。また負極板の製作に用いた酸化カドミウム等の原
料の性状は負極板の実施例と同様である。
The batteries (A), (B),
There is almost no cadmium hydroxide for reserve in the negative electrodes of (C), (D) and (E), and the content of cadmium hydroxide in the negative electrode active material is about 0.95 times the weight of nickel hydroxide of the positive electrode active material [ 2.73 (g / Ah) /2.88 (g / Ah)]. The properties of the raw materials such as cadmium oxide used in the production of the negative electrode plate are the same as those in the examples of the negative electrode plate.

次にそれぞれの電池を20℃において最大電流3Cの電流
で1.90Vの定電圧充電を30分間行った後、0.2Cの電流で
0.5Vまで放電するという充放電サイクルを250回行っ
た。1サイクル目の放電容量を100とした場合の各サイ
クルにおける容量保持率を第4図に示す。第4図から本
発明の電池(A),(B),(C)および(D)は比較
電池(E)よりも容量保持率が明らかに高いことがわか
る。この原因は本発明の電池の負極活物質の充電効率が
極めて高く、3Cのような大きな電流であっても充電終期
の負極電位の立ち上がりまでの充電電気量が多いためで
あり、また充電効率のサイクルにおける低下がほとんど
ないためである。
Next, each battery was charged at a constant voltage of 1.90 V at a maximum current of 3 C at 20 ° C. for 30 minutes, and then at a current of 0.2 C.
A charge / discharge cycle of discharging to 0.5 V was performed 250 times. FIG. 4 shows the capacity retention ratio in each cycle when the discharge capacity in the first cycle is 100. From FIG. 4, it can be seen that the batteries (A), (B), (C) and (D) of the present invention have a clearly higher capacity retention than the comparative battery (E). The reason for this is that the charge efficiency of the negative electrode active material of the battery of the present invention is extremely high, and even with a large current such as 3 C, a large amount of electricity is charged until the negative electrode potential rises at the end of charging. This is because there is almost no decrease in the cycle.

以上のように、本発明の電池は、定電圧制御という簡
便な充電方法で超急速充電が可能であり、容量保持率が
優れている。
As described above, the battery of the present invention can perform ultra-rapid charging by a simple charging method called constant voltage control, and is excellent in capacity retention.

なお、充電方法は、最大電流を規制して定電圧充電す
る方法を適用したがこの方法は、従来のニッケル−カド
ミウム電池で用いられている定電流で充電した後、充電
電圧がガス吸収によって低下するのを検出して充電を打
切る方法やガス吸収による発熱を検出して充電を打切る
方法のような複雑な充電システムではない。また本発明
の特徴のひとつは従来ニッケル−カドミウム電池ではそ
の適用が困難であった定電圧充電方式が容易に行えるこ
とである。すなわち従来のニッケル−カドミウム電池で
は充電過程の電圧と充電終期の電圧との差が高々150〜2
00mVと少なかったため、定電圧充電方式が適用できなか
ったが、本発明による電池の場合にはその差が0.2C以上
の電流で400mV以上にも達するあめに充電電圧の変化を
検出することが容易である。この場合、定電流で充電し
て、充電電圧の上昇を検出してから電流を下げてもよい
し、定電圧で充電してもよい。なお、従来の焼結式極版
を用いた公称容量が700mAhの円筒形ニッケル−カドミウ
ム電池(AAサイズ)を最大電流3Cの電流で1.9Vの定電圧
充電を30分間行ったところ、安全弁が作動して液漏れが
発生した。このことは従来の電池の充電電圧が1.9Vに達
しないために過充電されたことによるものである。
The charging method used was a method of charging at a constant voltage by regulating the maximum current.However, after charging at a constant current used in a conventional nickel-cadmium battery, the charging voltage decreased due to gas absorption. It is not a complicated charging system such as a method of detecting charging and terminating charging or a method of detecting heat generation due to gas absorption and terminating charging. One of the features of the present invention is that a constant voltage charging system, which has been conventionally difficult to apply to a nickel-cadmium battery, can be easily performed. That is, in the conventional nickel-cadmium battery, the difference between the voltage in the charging process and the voltage at the end of charging is 150 to 2 at most.
The constant voltage charging method could not be applied because it was as small as 00 mV, but in the case of the battery according to the present invention, it is easy to detect a change in the charging voltage as soon as the difference reaches 400 mV or more at a current of 0.2 C or more. It is. In this case, the battery may be charged at a constant current and the current may be reduced after detecting an increase in the charging voltage, or the battery may be charged at a constant voltage. When a conventional nickel-cadmium battery (AA size) with a nominal capacity of 700 mAh using a conventional sintered plate was charged at a constant current of 1.9 V with a maximum current of 3 C for 30 minutes, the safety valve was activated. And a liquid leak occurred. This is because the conventional battery was overcharged because the charging voltage did not reach 1.9V.

このように本発明の電池では、充電終期の負極板の電
位変化を大きくすることが有利であり、集電体の表面
は、基本的に水素発生の過電圧が大きい銅あるいはカド
ミウムであるもの、例えば銅やカドミウムの網,エクス
パンデッドメタル,穿孔板あるいは集電体と活物質保持
体を兼ねる三次元構造の金属発泡体や金属繊維のマット
等、さらに材質としては鉄あるいはニッケルに銅メッキ
したものが適している。しかし、水素発生の過電圧が小
さいニッケルの集電体であっても、活物質にニッケル粉
末等の水素過電圧の小さい物質を少なくすることによっ
て、例えば5重量%以下にすれば集電体として用いるこ
とができる。
Thus, in the battery of the present invention, it is advantageous to increase the potential change of the negative electrode plate at the end of charging, and the surface of the current collector is basically a copper or cadmium having a large overvoltage of hydrogen generation, for example, Copper or cadmium net, expanded metal, perforated plate or three-dimensional metal foam or metal fiber mat that also serves as a current collector and active material holder, and copper or copper plated iron or nickel Is suitable. However, even a nickel current collector having a small overvoltage for hydrogen generation can be used as a current collector if the active material is reduced to, for example, 5% by weight or less by reducing a material having a small hydrogen overvoltage such as nickel powder. Can be.

以上の本発明実施例では、正極活物質として水酸化ニ
ッケルを用いて説明したが、活物質として二酸化マンガ
ンを用いてもニッケル−カドミウム電池と同様な効果が
現れる。以下に、本発明を二酸化マンガン−カドミウム
電池に適用した場合について好適な実施例を上げて説明
する。
In the above embodiments of the present invention, nickel hydroxide was used as the positive electrode active material. However, even when manganese dioxide was used as the active material, the same effect as that of a nickel-cadmium battery was obtained. Hereinafter, a case where the present invention is applied to a manganese dioxide-cadmium battery will be described with reference to preferred embodiments.

[実施例12] 金属カドミウム粉末100部と、酸化第1スズ1部と長
さ1mmのポリプロピレン製の短繊維0.1部とを1.5重量%
のポリビニルアルコールを含むエチレングリコール30ml
で混合してペースト状にする。このペーストを銅エクス
パンデッドメタルに塗着し、次いで乾燥,加圧して金属
カドミウム容量が800mAhで寸法が2.9×14×52(mm)の
負極板を製作した。一方、正極板は次の方法で製作し
た。
[Example 12] 1.5 parts by weight of 100 parts of metal cadmium powder, 1 part of stannous oxide and 0.1 part of 1 mm long polypropylene short fiber
30 ml of ethylene glycol containing polyvinyl alcohol
To make a paste. This paste was applied to a copper expanded metal, and then dried and pressed to produce a negative electrode plate having a metal cadmium capacity of 800 mAh and dimensions of 2.9 × 14 × 52 (mm). On the other hand, the positive electrode plate was manufactured by the following method.

二酸化マンガン(γ−MnO2)80部とグラファイト10部
とを60重量%のポリテトラフルオロエチレンの水性ディ
スパージョン30mlで混練した後、ローラーでシート状に
し、20メッシュのニッケル網に両面からさらに加圧して
理論容量が200mAh,寸法が1.4×14×52(mm)の正極板を
製作した。
After kneading 80 parts of manganese dioxide (γ-MnO 2 ) and 10 parts of graphite with 30 ml of an aqueous dispersion of 60% by weight of polytetrafluoroethylene, the mixture is formed into a sheet by a roller, and further added to a 20 mesh nickel mesh from both sides. By pressing, a positive electrode plate having a theoretical capacity of 200 mAh and dimensions of 1.4 × 14 × 52 (mm) was manufactured.

次に先の負極板1枚を厚さ0.2mmのポリビニルアルコ
ール製の不織布で包んだ後、正極板2枚の間にはさみ、
電解液として比重1.350(20℃)の水酸化カリウム水溶
液を2.7ml用い、公称容量が240mAhで合成樹脂電槽を用
いた角形二酸化マンガン−カドミウム電池(F)を製作
した。外径寸法は67×16.5×8(mm)であり、0.1kg/cm
2で作動する安全弁を付けている。
Next, after wrapping the above-mentioned one negative electrode plate with a non-woven fabric made of polyvinyl alcohol having a thickness of 0.2 mm, sandwiched between the two positive electrode plates,
A rectangular manganese dioxide-cadmium battery (F) having a nominal capacity of 240 mAh and a synthetic resin battery case was manufactured using 2.7 ml of an aqueous potassium hydroxide solution having a specific gravity of 1.350 (20 ° C.) as an electrolyte. The outer diameter is 67 x 16.5 x 8 (mm), 0.1kg / cm
Equipped with a safety valve that operates on 2 .

[比較例2] 実施例12の負極板の配合から酸化第1スズを削除した
以外は全て実施例12と同様にして比較例の角形二酸化マ
ンガン−カドミウム電池(G)を製作した。
Comparative Example 2 A prismatic manganese dioxide-cadmium battery (G) of a comparative example was manufactured in the same manner as in Example 12 except that stannous oxide was omitted from the composition of the negative electrode plate of Example 12.

以上のようにして製作した電池(F)および(G)を
0.2Cの電流で100mAh放電し、次いで同じ電流で1.6Vまで
充電するという条件で充放電したときの容量推移の結果
を第5図に示した。
The batteries (F) and (G) manufactured as described above
FIG. 5 shows the results of the change in capacity when the battery was charged and discharged under the condition that the battery was discharged at a current of 0.2 C for 100 mAh and then charged at the same current up to 1.6 V.

第5図から充電効率が優れ、かつ充電効率のサイクル
における低下がほとんどない負極板を有する本発明の電
池(F)は、比較電池(G)に比べて明らかに容量低下
が小さく、1000サイクルを経過してもほとんど容量が低
下しなかった。
From FIG. 5, it is clear that the battery (F) of the present invention having the negative electrode plate which has excellent charge efficiency and has almost no decrease in the cycle of the charge efficiency has a significantly smaller capacity decrease than the comparative battery (G), Even after the passage, the capacity hardly decreased.

なお、これらの電池のリザーブ用水酸化カドミウムは
ほとんど含まれていない状態となっている。つまり、負
極板に含まれる水酸化カドミウムの含有量は重量比で正
極活物質の二酸化マンガンの約0.84倍[2.73(g/Ah)/
2.34(g/Ah)]となっている。
In addition, these batteries are in a state where cadmium hydroxide for reserve is hardly contained. In other words, the content of cadmium hydroxide contained in the negative electrode plate is about 0.84 times the weight of manganese dioxide of the positive electrode active material [2.73 (g / Ah) /
2.34 (g / Ah)].

以上にニッケル−カドミウム電池および二酸化マンガ
ン−カドミウム電池を例にとって説明したが、正極活物
質として酸化銀を用いても充電制御が容易な酸化銀−カ
ドミウム電池を得ることができる。
The nickel-cadmium battery and the manganese dioxide-cadmium battery have been described above as examples. However, even if silver oxide is used as the positive electrode active material, a silver oxide-cadmium battery whose charge control is easy can be obtained.

[実施例13] 金属カドミウム粉末100部と酸化第1スズ1部と長さ1
mmのポリプロピレン製の短繊維0.1部とを1.5重量%のポ
リビニルアルコールを含むエチレングリコール30mlで混
合してペースト状にする。このペーストを5μmのカド
ミウムメッキしたエクスパンデッドメタルに塗着し、次
いで乾燥,加圧して金属カドミウムの理論容量が1000mA
hで寸法が3×14×52(mm)の負極板を製作した。
[Example 13] 100 parts of metal cadmium powder, 1 part of stannous oxide and length 1
0.1 part of short polypropylene fiber of 0.1 mm is mixed with 30 ml of ethylene glycol containing 1.5% by weight of polyvinyl alcohol to form a paste. This paste is applied to a 5 μm cadmium-plated expanded metal, and then dried and pressed to make the theoretical capacity of the metal cadmium 1000 mA.
A negative electrode plate having dimensions of 3 × 14 × 52 (mm) was manufactured at h.

一方、正極板は以下の方法で製作した。 On the other hand, the positive electrode plate was manufactured by the following method.

活物質である酸化銀粉末と集電体である銀のエクスパ
ンデッドメタルとを常法によって加圧成形したものを水
酸化カリウム水溶液中で電界酸化した後水洗,乾燥して
理論容量が500mAhで寸法が1.3×14×52(mm)の正極板
を製作した。
A silver oxide powder as an active material and a silver expanded metal as a current collector are formed under pressure by a conventional method, and then subjected to electric field oxidation in an aqueous solution of potassium hydroxide, washed with water and dried to obtain a theoretical capacity of 500 mAh. A positive electrode plate having dimensions of 1.3 × 14 × 52 (mm) was manufactured.

次にに先の負極板1枚を厚さ0.02mmのセロファンで4
重に巻いた後に正極板2枚の間にはさみ、電解液として
比重1.250(20℃)の水酸化カリウム水溶液3mlを用いて
公称容量が500mAhの角形酸化銀−カドミウム電池(H)
を製作した。外径寸法は67×16.5×8(mm)であり、電
槽は合成樹脂製のものを用いた。また0.5kg/cm2の圧力
で作動する安全弁を取り付けている。
Next, the one negative electrode plate was placed in a cellophane with a thickness of 0.02 mm for 4 times.
After being wound twice, sandwiched between two positive electrode plates, using a 3 ml aqueous solution of potassium hydroxide having a specific gravity of 1.250 (20 ° C.) as an electrolytic solution, a rectangular silver oxide-cadmium battery (H) having a nominal capacity of 500 mAh (H)
Was made. The outer diameter was 67 × 16.5 × 8 (mm), and the battery case was made of synthetic resin. A safety valve that operates at a pressure of 0.5 kg / cm 2 is installed.

[比較例3] 実施例13の負極板の配合から酸化第1スズを削除した
以外は全て実施例13と同様にして角形酸化銀−カドミウ
ム電池(I)を製作した。
Comparative Example 3 A square silver oxide-cadmium battery (I) was produced in the same manner as in Example 13 except that stannous oxide was omitted from the composition of the negative electrode plate of Example 13.

なお、これらの電池のリザーブ用水酸化カドミウム
は、ほとんどない状態であり、負極板に含まれる水酸化
カドミウムの含有量は重量比で正極活物質の銀の約1.4
倍[2.73(g/Ah)/2.01(g/Ah)]となっている。
Cadmium hydroxide for reserve of these batteries is almost nonexistent, and the content of cadmium hydroxide contained in the negative electrode plate is about 1.4% of silver of the positive electrode active material by weight ratio.
[2.73 (g / Ah) /2.01 (g / Ah)].

以上のようにして製作した電池(H)および(I)を
20℃で0.2Cの電流で300mAh放電した後に、同じ電流で充
電するという操作を繰り返した時の充電電圧特性を第6
図に示した。
The batteries (H) and (I) produced as described above
After repeating the operation of charging at the same current after discharging 300mAh at a current of 0.2C at 20 ° C, the charge voltage characteristics when the operation was repeated were as follows.
Shown in the figure.

第6図から本発明の酸化銀−カドミウム電池(H)の
充電終期の電圧上昇は、比較電池(I)よりも遅くに起
きており、その充電効率はほぼ100%である。この2つ
の電池の電圧上昇の時期が異なるのは負極板の充電効率
に基ずくものであり、本発明の電池は優れた容量保持率
を有することが明らかである。
From FIG. 6, the voltage rise at the end of charging of the silver oxide-cadmium battery (H) of the present invention occurs later than in the comparative battery (I), and its charging efficiency is almost 100%. The difference in the timing of the voltage rise between the two batteries is based on the charging efficiency of the negative electrode plate, and it is clear that the battery of the present invention has an excellent capacity retention.

以上の実施例で本発明のカドミウム負極板および電池
の特性について説明した。
In the above examples, the characteristics of the cadmium negative electrode plate and the battery of the present invention have been described.

本発明のカドミウム負極板の集電体としては、各実施
例で説明したように、その表面がニッケル,銅あるいは
カドミウムであればよい。つまり、その素材としてはニ
ッケル,銅,カドミウムの他に鉄の表面にニッケル,銅
あるいはカドミウムの層を有するものや、ニッケルの表
面に銅あるいはカドミウムの層を有するもの、さらに銅
の表面にカドミウムの層を有するものである。
As described in each embodiment, the current collector of the cadmium negative electrode plate of the present invention may have a surface of nickel, copper or cadmium. In other words, the materials include nickel, copper, and cadmium, as well as those having a layer of nickel, copper, or cadmium on the surface of iron, those having a layer of copper or cadmium on the surface of nickel, and those of cadmium on the surface of copper. It has a layer.

またその形状としてはエクスパンデッドメタル,網,
穿孔板,発泡体あるいは繊維マットが使用できる。
The shape is expanded metal, net,
Perforated plates, foams or fiber mats can be used.

発明の効果 以上に述べたように本発明のカドミウム負極板は充電
効率が極めて高いために、不活性な水酸化カドミウムを
ほとんど有していない。従って従来のカドミウム負極板
に比べて実質的な容量密度は高くなる。
Effect of the Invention As described above, the cadmium negative electrode plate of the present invention has very high charging efficiency, and therefore has almost no inactive cadmium hydroxide. Therefore, the substantial capacity density is higher than that of the conventional cadmium negative electrode plate.

また、これを用いたアルカリ二次電池では正・負極活
物質の量比を調節することによって充電制御が容易で、
かつ1C以上の大電流による超急速充電が可能である。ま
た、この電池にはリザーブ用の水酸化カドミウムがほと
んど必要でないために高容量化が可能である。
In addition, in an alkaline secondary battery using this, charge control is easy by adjusting the amount ratio of the positive and negative electrode active materials,
And ultra-rapid charging with a large current of 1C or more is possible. In addition, since this battery hardly needs cadmium hydroxide for reserve, high capacity can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明のカドミウム負極板において、酸化第
1スズの添加量が放電特性に及ぼす影響を示した図。第
2図は、本発明の電池において酸化第1スズを電解液に
添加した場合の効果を明確にした図。第3図は、本発明
の電池において、電解液中の酸化第1スズの量とカドミ
ウム負極板の充電効率との関係を示した図。第4図は、
本発明のニッケル−カドミウム電池と比較のための電池
とを充放電サイクルにおける容量保持率で比較した図。
第5図は本発明の二酸化マンガン−カドミウム電池と比
較のための電池とを充放電サイクルにおける容量保持率
で比較した図。第6図は本発明の酸化銀−カドミウム電
池と比較のための電池とを充電特性で比較した図。
FIG. 1 is a view showing the effect of the amount of stannous oxide added on discharge characteristics in a cadmium negative electrode plate of the present invention. FIG. 2 is a view clarifying the effect of adding stannous oxide to an electrolytic solution in the battery of the present invention. FIG. 3 is a diagram showing the relationship between the amount of stannous oxide in the electrolyte and the charging efficiency of the cadmium negative electrode plate in the battery of the present invention. FIG.
The figure which compared the nickel-cadmium battery of this invention with the battery for a comparison by the capacity | capacitance retention in the charge / discharge cycle.
FIG. 5 is a diagram comparing a manganese dioxide-cadmium battery of the present invention and a battery for comparison in terms of capacity retention in a charge / discharge cycle. FIG. 6 is a diagram comparing the silver oxide-cadmium battery of the present invention and a battery for comparison in terms of charging characteristics.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】全カドミウム量に対し0.2重量%以上20重
量%以下の酸化第1スズを含有することを特徴とするカ
ドミウム負極板。
1. A cadmium negative electrode plate comprising 0.2% by weight or more and 20% by weight or less of stannous oxide based on the total amount of cadmium.
【請求項2】水酸化ニッケル,二酸化マンガンあるいは
酸化銀のいずれかを活物質の主体とする正極板とカドミ
ウム負極板とアルカリ電解液とを備えたアルカリ二次電
池において、該アルカリ電解液中にカドミウム負極板中
の全カドミウム量に対し0.1重量%以上24重量%以下の
酸化第1スズを含有することを特徴とするアルカリ二次
電池。
2. An alkaline secondary battery comprising a positive electrode plate mainly composed of nickel hydroxide, manganese dioxide or silver oxide as an active material, a cadmium negative electrode plate, and an alkaline electrolyte. An alkaline secondary battery comprising stannous oxide in an amount of 0.1% by weight or more and 24% by weight or less based on the total amount of cadmium in a cadmium negative electrode plate.
【請求項3】水酸化ニッケル,二酸化マンガンあるいは
酸化銀のいずれかを活物質の主体とする正極板と請求項
1記載のカドミウム負極板とを備えたことを特徴とする
アルカリ二次電池。
3. An alkaline secondary battery comprising: a positive electrode plate mainly composed of nickel hydroxide, manganese dioxide or silver oxide as an active material; and the cadmium negative electrode plate according to claim 1.
JP63111193A 1988-05-06 1988-05-06 Cadmium negative electrode plate and alkaline secondary battery Expired - Lifetime JP2577954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111193A JP2577954B2 (en) 1988-05-06 1988-05-06 Cadmium negative electrode plate and alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111193A JP2577954B2 (en) 1988-05-06 1988-05-06 Cadmium negative electrode plate and alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH01281667A JPH01281667A (en) 1989-11-13
JP2577954B2 true JP2577954B2 (en) 1997-02-05

Family

ID=14554853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111193A Expired - Lifetime JP2577954B2 (en) 1988-05-06 1988-05-06 Cadmium negative electrode plate and alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2577954B2 (en)

Also Published As

Publication number Publication date
JPH01281667A (en) 1989-11-13

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
US4603094A (en) Alkaline storage battery
US5840442A (en) Method for activating an alkaline rechargeable battery
JP2577954B2 (en) Cadmium negative electrode plate and alkaline secondary battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2926732B2 (en) Alkaline secondary battery
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2730137B2 (en) Alkaline secondary battery and charging method thereof
JP2553902B2 (en) Alkaline secondary battery
JP2952272B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2797440B2 (en) Alkaline secondary battery