JP3225608B2 - Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same - Google Patents

Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same

Info

Publication number
JP3225608B2
JP3225608B2 JP19315892A JP19315892A JP3225608B2 JP 3225608 B2 JP3225608 B2 JP 3225608B2 JP 19315892 A JP19315892 A JP 19315892A JP 19315892 A JP19315892 A JP 19315892A JP 3225608 B2 JP3225608 B2 JP 3225608B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
electrode plate
positive electrode
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19315892A
Other languages
Japanese (ja)
Other versions
JPH0613076A (en
Inventor
明弘 川上
泰章 伊藤
安田  秀雄
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP19315892A priority Critical patent/JP3225608B2/en
Publication of JPH0613076A publication Critical patent/JPH0613076A/en
Application granted granted Critical
Publication of JP3225608B2 publication Critical patent/JP3225608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はコバルトを含有するニッ
ケル基板,コバルトと固溶体を形成した水酸化ニッケル
さらにニッケルあるいはコバルトと固溶体を形成しない
水酸化カドミウムとを備えた正極板とその製造法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode plate comprising a nickel substrate containing cobalt, nickel hydroxide forming a solid solution with cobalt, and cadmium hydroxide not forming a solid solution with nickel or cobalt, and a method for producing the same. It is.

【0002】[0002]

【従来の技術】近年、電子機器の発展によって新しい高
性能の二次電池の出現が期待されている。現在、電子機
器の電源としては、ニッケル・カドミウム電池、ニッケ
ル・亜鉛電池、ニッケル・水素化物電池のニッケル系電
池および鉛電池が使用されている。これらの二次電池
は、高容量化とならんで急速充電性能の向上が求められ
ている。そのうち、ニッケル系二次電池は、正極板とし
て水酸化ニッケル電極が使用されている。この正極板の
電極反応は Hイオンの拡散であり、鉛電池の正極の
電極反応のように溶解・析出機構でないことから、高価
格であるが、長寿命で高性能の電極として使用されてい
る。この電極を充電すると水酸化ニッケルはオキシ水酸
化ニッケル(NiOOH)となる。このオキシ水酸化ニ
ッケルはβ形とγ形があるが、充電時にγ−NiOOH
が生成すると31%の体積膨張がおこり、さらにγ−N
iOOHの放電生成物であるα−Ni(OH) になる
と59%の膨張となる。近年、電池の高エネルギー密度
化をはかるために、活物質を多く充填すると、電極の残
留多孔度が小さくなり、活物質が膨張すると電極が厚く
なり、セパレータの電解液が電極に移動して内部抵抗が
増大するいわゆる「ドライアップ」現象が生じたり、電
極が崩壊して短絡が発生することもある。さらに、充電
時間の短縮が要求される用途、すなわち、急速充電をお
こなう場合には、γ−NiOOHの生成がとくにおこり
やすくなるために、その対策が必要になってきた。
2. Description of the Related Art In recent years, with the development of electronic devices, the appearance of new high-performance secondary batteries is expected. At present, nickel-cadmium batteries, nickel-zinc batteries, nickel-based batteries such as nickel-hydride batteries, and lead batteries are used as power supplies for electronic devices. These secondary batteries are required to have an improved rapid charging performance as well as a higher capacity. Among them, a nickel-based secondary battery uses a nickel hydroxide electrode as a positive electrode plate. The electrode reaction of this positive electrode plate is diffusion of H + ions and does not have a dissolution / precipitation mechanism like the electrode reaction of the positive electrode of a lead battery, so it is expensive, but it is used as a long-life, high-performance electrode. I have. When this electrode is charged, the nickel hydroxide becomes nickel oxyhydroxide (NiOOH). This nickel oxyhydroxide has a β form and a γ form, but γ-NiOOH
Is generated, a volume expansion of 31% occurs, and γ-N
α-Ni (OH) 2 , which is a discharge product of iOOH, expands by 59%. In recent years, in order to increase the energy density of a battery, when a large amount of active material is filled, the residual porosity of the electrode decreases, and when the active material expands, the electrode becomes thicker. A so-called "dry-up" phenomenon in which the resistance increases may occur, or the electrodes may collapse and short-circuits may occur. Furthermore, in applications where the charging time is required to be shortened, that is, in the case of performing quick charging, since γ-NiOOH is particularly easily generated, measures have been required.

【0003】従来より、水酸化ニッケル活物質の利用率
を向上させる目的で、活物質に水酸化コバルトを添加す
る方法(例えば電気化学31,47(1936),特許公開公報50-1
32441)、また活物質をニッケル基板に充填したのちCo(O
H)2 を形成させる方法(例えば特許公報昭和57-005018)
・Cd(OH)2 −Ni(OH)2 の二元系を形成させる方法(例え
ば特許公報平2-39063,USP4603094(1984), 特許公報昭56
-36796) ・Ni(OH)2 −Co(OH)2 - Cd(OH)2 の三元系を形
成させる方法(例えば特許公報平3-20860,USP395686(19
76))等が提案されている。さらに、活物質の保持体であ
る焼結ニッケル基板に金属コバルトを含有させる方法も
提案されている(例えば特許公報昭54-1010)。しかしな
がらγ-NiOOHの生成の抑制の観点からは不充分であっ
た。
Conventionally, a method of adding cobalt hydroxide to an active material for the purpose of improving the utilization rate of the nickel hydroxide active material (for example, Electrochemistry 31, 47 (1936), Patent Publication 50-1)
32441) Also, after filling the nickel substrate with the active material, Co (O
H) Method for forming 2 (for example, Patent Publication Showa 57-005018)
A method of forming a binary system of Cd (OH) 2 -Ni (OH) 2 (for example, Japanese Patent Publication No. 2-39063, US Pat.
-36796) · Ni (OH) 2 -Co (OH) 2 - Cd (OH) method of forming a 2 ternary (e.g. Patent Publication Rights 3-20860, USP395686 (19
76)) has been proposed. Furthermore, a method has been proposed in which metallic cobalt is contained in a sintered nickel substrate, which is a holder for an active material (for example, Japanese Patent Publication No. 54-1010). However, it was insufficient from the viewpoint of suppressing the production of γ-NiOOH.

【0004】[0004]

【発明が解決しようとする課題】ニッケル・カドミウム
電池、ニッケル・亜鉛電池、ニッケル・水素化物電池の
ニッケル系電池は、高エネルギー密度化と急速充電化が
求められている。しかしながら、高エネルギー密度電池
や急速充電用電池に使用される水酸化ニッケル正極板は
充放電サイクルが進むと膨潤して厚くなりセパレ−タの
電解液が電極に移動して内部抵抗が増大するドライアッ
プ現象が生じて、電池寿命が短くなるという欠点があっ
た。とくに、活物質保持体であるニッケル基板が85% 以
上のものを使用すると、基板の強度が弱いために、正極
板の膨潤が大きくなるという課題がある。
The nickel-based batteries such as nickel-cadmium battery, nickel-zinc battery, and nickel-hydride battery are required to have high energy density and quick charging. However, the nickel hydroxide positive electrode plate used in high energy density batteries and quick charge batteries swells and becomes thicker as the charge / discharge cycle progresses, and the electrolyte of the separator moves to the electrodes to increase the internal resistance. There is a drawback that an up phenomenon occurs and the battery life is shortened. In particular, when a nickel substrate serving as an active material holding member has a nickel substrate of 85% or more, there is a problem that the strength of the substrate is weak and the swelling of the positive electrode plate is increased.

【0005】[0005]

【課題を解決するための手段】本発明はアルカリ電池用
水酸化ニッケル正極板においてコバルトを含有するニッ
ケル基板,コバルトと固溶体を形成した水酸化ニッケル
さらにニッケルあるいはコバルトと固溶体を形成しない
水酸化カドミウムとを備えることにより、充放電による
正極板の膨潤を抑制し、長寿命の高エネルギー密度電池
や急速充電用電池を提供するものである。とくに、水酸
化ニッケルに固溶するコバルトの含有率がニッケル基板
のコバルトの含有率よりも多いと、より効果的である。
また、本発明は、ニッケル基板の多孔度が85〜98%
のものを使用した高エネルギー密度の正極板の長寿命化
がはかれる。その製造方法としては、コバルトを含有す
るニッケル基板にコバルトと固溶体を形成した水酸化ニ
ッケルを保持させたのち、カドミウムの含有率が10〜80
mol%のコバルトとカドミウムとの混合溶液を浸漬したの
ちアルカリ水溶液で処理し乾燥することが簡易的であ
る。
SUMMARY OF THE INVENTION The present invention relates to a nickel hydroxide positive electrode plate for an alkaline battery, comprising a nickel-containing substrate containing cobalt, nickel hydroxide forming a solid solution with cobalt, and cadmium hydroxide not forming a solid solution with nickel or cobalt. By providing the battery, swelling of the positive electrode plate due to charge and discharge is suppressed, and a long-life high energy density battery or a battery for rapid charging is provided. In particular, it is more effective if the content of cobalt dissolved in nickel hydroxide is higher than the content of cobalt in the nickel substrate.
Further, the present invention provides that the porosity of the nickel substrate is 85 to 98%.
It is possible to prolong the service life of a positive plate having a high energy density by using the above. As a method for producing the same, after holding nickel hydroxide which has formed a solid solution with cobalt on a nickel substrate containing cobalt, the content of cadmium is 10 to 80.
It is simple to immerse a mixed solution of mol% cobalt and cadmium, then treat with an aqueous alkali solution and dry.

【0006】[0006]

【作用】水酸化ニッケル正極板の活物質利用率を向上さ
せる手段としてニッケル多孔体等の活物質保持体に活物
質を充填したのち、硝酸コバルトや硫酸コバルト等のコ
バルト水溶液を含浸したのち、水酸化ナトリウム等のア
ルカリ水溶液で中和して活物質の表面に水酸化コバルト
の層を形成させたのち充電して、導電性のオキシ水酸化
コバルトの層に変化させる方法が一般的に使用されてい
る。また、活物質として、水酸化コバルトを活物質に添
加して水酸化ニッケルと固溶体を形成させたり、あるい
は水酸化カドミウムを添加して、やはり固溶体を形成さ
せることによりγ-NiOOHの生成を抑制して、利用率を向
上させる手段も普遍的な技術として知られている。さら
に、正極活物質である水酸化ニッケルのほかに固溶体を
形成させない水酸化カドミウムを形成させる手段は、過
放電対策として公知の手段である。
As a means for improving the utilization rate of the active material of the nickel hydroxide positive electrode plate, an active material holder such as a porous nickel body is filled with an active material, and then impregnated with an aqueous solution of cobalt such as cobalt nitrate or cobalt sulfate. A method is generally used in which a layer of cobalt hydroxide is formed on the surface of the active material by neutralizing with an aqueous alkali solution such as sodium oxide and then charged to change the layer to a layer of conductive cobalt oxyhydroxide. I have. Also, as an active material, cobalt hydroxide is added to the active material to form a solid solution with nickel hydroxide, or cadmium hydroxide is added to form a solid solution, thereby suppressing the production of γ-NiOOH. Means for improving utilization are also known as universal technologies. Furthermore, means for forming cadmium hydroxide which does not form a solid solution in addition to nickel hydroxide which is a positive electrode active material is a known means as a measure against overdischarge.

【0007】本発明は、高エネルギー密度電池や急速充
電用電池に使用される水酸化ニッケル正極板は充放電サ
イクルが進むと膨潤して厚くなり、セパレータの電解液
が電極に移動して内部抵抗が増大してドライアップ現象
が生じ、電池寿命が短くなるという欠点の原因が、水酸
化ニッケル活物質の充電生成物としてγ−NiOOHが
生成することにあるという従来から知られているものの
ほかに、活物質保持体として使用するニッケル多孔体が
充放電によって酸化をうけて、水酸化ニッケルとなり、
それがγ−NiOOHになるために、正極板が膨潤して
厚くなり、セパレータの電解液が極板に移動することが
大きな原因であることを見いだしたことに基づくもので
ある。そして、その対策として活物質保持体のニッケル
にコバルトを含有させ、さらに活物質の最適化と水酸化
ニッケルや水酸化コバルトと固溶体を形成しない水酸
カドミウムを含有させることによって、基板の酸化で生
成する水酸化ニッケルがさらに酸化されてγ−NiOO
Hになることを抑制する手段を提供するものである。
According to the present invention, a nickel hydroxide positive electrode plate used for a high energy density battery or a battery for rapid charging swells and becomes thicker as the charge / discharge cycle proceeds, and the electrolyte of the separator moves to the electrode to increase the internal resistance. Is increased, a dry-up phenomenon occurs, and the life of the battery is shortened due to the fact that γ-NiOOH is generated as a charge product of the nickel hydroxide active material, in addition to the conventionally known thing. , The nickel porous body used as the active material holding body is oxidized by charging and discharging to become nickel hydroxide,
This is based on the finding that a major cause is that the positive electrode plate swells and becomes thicker because it becomes γ-NiOOH, and the electrolyte of the separator moves to the electrode plate. Then, by incorporating a cobalt nickel active material holder as a countermeasure, by the inclusion of further optimization and hydroxyl cadmium which does not form nickel hydroxide and cobalt hydroxide solid solution of the active material, oxidation of the substrate Is further oxidized to produce γ-NiOO
This is to provide a means for suppressing the occurrence of H.

【0008】[0008]

【実施例】以下、本発明の好適な実施例を用いて説明す
る。 [実施例1]カ−ボニルニッケル粉末と2wt%の金属コバ
ルト粉末とを混合したのち、0.1wt%のメチルセルロ−ズ
水溶液と混練してスラリ−にする。このスラリ−をニッ
ケルメツキした0.1mm の穿孔板に塗布したのち、ヒ−タ
−で乾燥してから水素の還元雰囲気中950 ℃で焼結して
多孔度が85% の焼結ニッケル基板を製作した。つぎに、
この焼結式ニッケル基板に硝酸コバルト2mol% を含む5M
の硝酸ニッケル水溶液を80℃で含浸したのち、80 ℃の5M
の水酸化ナトリウム水溶液に浸漬する。その後、湯洗・
乾燥するという操作を8 回おこなつたのち、最後に10mo
l%のカドミウムを含む1.5Mの硝酸コバルト水溶液を含浸
したのち、80℃の5Mの水酸化ナトリウム水溶液に浸漬す
る(以下この操作を「ポストコ−ト」とよぶ)。その
後、湯洗・乾燥して、理論容量が300 mAh、寸法が0.
8 ×14×52(mm)の本発明の正極板を製作した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described. [Example 1] Carbonyl nickel powder and 2% by weight of metallic cobalt powder are mixed and then kneaded with a 0.1% by weight aqueous solution of methyl cellulose to form a slurry. This slurry is applied to a nickel-plated 0.1 mm perforated plate, dried with a heater, and then sintered at 950 ° C in a reducing atmosphere of hydrogen to produce a sintered nickel substrate with a porosity of 85%. did. Next,
5M containing 2mol% of cobalt nitrate on this sintered nickel substrate
Nickel nitrate aqueous solution at 80 ° C, then
Immersed in an aqueous solution of sodium hydroxide. After that,
After performing the operation of drying 8 times, finally 10mo
After impregnating with a 1.5 M aqueous solution of cobalt nitrate containing 1% of cadmium, it is immersed in a 5 M aqueous solution of sodium hydroxide at 80 ° C. (this operation is hereinafter referred to as “post-coat”). After that, it is washed with hot water and dried to obtain a theoretical capacity of 300 mAh and a size of 0.
An 8 × 14 × 52 (mm) positive electrode plate of the present invention was manufactured.

【0009】実施例1で金属コバルト粉末の含有率を0,
1,2,3,5,10wt% と変えた正極板2 枚と従来から公知の理
論容量500 mAh、寸法が0.7 ×15×52(mm)のカドミウム
負極板3 枚を製作した。
In Example 1, the content of the metallic cobalt powder was reduced to 0,
Two positive plates with 1, 2, 3, 5, and 10 wt% were changed and three cadmium negative plates with a conventionally known theoretical capacity of 500 mAh and dimensions of 0.7 × 15 × 52 (mm) were manufactured.

【0010】つぎに、この正極板を0.12mmのポリ
アミド不織布セパレータで包んだのち、ヒートシールし
た。つづいて、正極板と負極板とを交互に積み重ねて極
板群とした。この極板群と電解液として8.5Mの水酸
化カリウム水溶液1.5mlを用いて公称容量が500
mAhのニッケルメッキした鉄電槽を使用した角形ニッ
ケル・カドミウム電池を製作した。外形寸法は67×1
6.5×(mm)であり、電池には0.5Kg/cm
で作動する安全弁を付けている。金属コバルトの含有
率が0,1,2,3,5,10wt%の電池の符号をそ
れぞれA,B,C,D,E,F,とする。
Next, the positive electrode plate was wrapped with a 0.12 mm polyamide nonwoven fabric separator and heat sealed. Subsequently, a positive electrode plate and a negative electrode plate were alternately stacked to form an electrode plate group. The electrode group and 1.5 ml of an 8.5 M aqueous solution of potassium hydroxide were used as an electrolyte, and the nominal capacity was 500
A prismatic nickel-cadmium battery using a nickel-plated iron battery case of mAh was manufactured. External dimensions are 67 × 1
6.5 × 6 (mm), 0.5 kg / cm for the battery
A safety valve that operates in 2 is attached. The signs of the batteries having a metal cobalt content of 0, 1, 2, 3, 5, and 10 wt% are denoted by A, B, C, D, E, and F, respectively.

【0011】これらの電池を25℃,1Cで70分間充電した
のち、0.5Cの電流で1.0 vまで放電するというサイクル
試験をおこなった。サイクル経過にともなう内部抵抗の
値の変化を図1に示す。同図より、金属コバルトの含有
率が0%のものA は、充放電サイクルが300 回程度になる
と、内部抵抗の値が300mΩにも達することがわかる。こ
のように、内部抵抗の値が急上昇すると電池の放電容量
も減少し、充電電圧も高くなった。一方、金属コバルト
の含有率が1%以上のものB,C,D,E,F は、内部抵抗の上昇
が極端に少なくなっている。電池A を解体して、電池の
エレメントを調査したところ、セパレ−タの電解液は枯
渇しており、正極板は厚く膨れていた。電池の重量減少
は、ほとんどなかったことから、金属コバルトの含有率
が0%のものはニッケル基板が酸化をうけてγ-NiOOHの生
成がおこっていることを意味するものと考えられる。こ
のγ-NiOOHの示成式は K0.33 NiO2 ・0.67H2 O であり、
電解液が正極に吸収されることを意味する。
A cycle test was conducted in which these batteries were charged at 25 ° C. and 1 C for 70 minutes, and then discharged at a current of 0.5 C to 1.0 V. FIG. 1 shows a change in the value of the internal resistance with the passage of the cycle. From the figure, it can be seen that A having a metal cobalt content of 0% has an internal resistance value of as high as 300 mΩ after about 300 charge / discharge cycles. As described above, when the value of the internal resistance sharply increased, the discharge capacity of the battery decreased, and the charging voltage also increased. On the other hand, in B, C, D, E, and F having a metal cobalt content of 1% or more, the rise in internal resistance is extremely small. When the battery A was disassembled and the elements of the battery were examined, the electrolyte of the separator was depleted, and the positive electrode plate was thick and swollen. Since the weight of the battery hardly decreased, it is considered that the case where the content of metallic cobalt is 0% means that the nickel substrate is oxidized and γ-NiOOH is generated. The formula of this γ-NiOOH is K 0.33 NiO 2・ 0.67H 2 O,
It means that the electrolyte is absorbed by the positive electrode.

【0012】金属コバルトの最適含有率は、焼結ニッケ
ル基板の多孔度と活物質を充填したのちの残留多孔度に
よって異なる。実施例1で、残留多孔度が30% 、金属コ
バルトの含有率が1,2,3wt%の正極板( それぞれG,H,I と
する) を製作し、電解液として8MKOH 、対極としてニッ
ケル板2 枚を使用し、充電率が2Cで公称容量の200%を充
電したのち、0.5Cで0V(Hg/Hg0)まで放電し、さらに同じ
条件で充電したのちの極板の厚さの変化を図2に示す。
一般に電極の厚さの増加率が15% を越えると、電池の内
部抵抗の値が上昇することが経験的に判明している。図
から、極板の厚さの増加率を15% 以下に設定するために
はニッケル基板の多孔度が80% の場合には、金属コバル
トの含有率の値を1wt%、多孔度が85% の場合は2wt%、多
孔度が90% の場合は3wt%以上の添加量が必要であること
がわかる。
The optimum content of metallic cobalt depends on the porosity of the sintered nickel substrate and the residual porosity after filling the active material. In Example 1, a positive electrode plate (respectively G, H, I) having a residual porosity of 30% and a metal cobalt content of 1,2,3 wt% was manufactured, and 8MKOH was used as an electrolyte and a nickel plate was used as a counter electrode. Using two sheets, charge at 200% of the nominal capacity at a charge rate of 2C, discharge to 0V (Hg / Hg0) at 0.5C, and change the thickness of the electrode plate after charging under the same conditions. As shown in FIG.
Generally, it has been empirically found that when the rate of increase in the electrode thickness exceeds 15%, the value of the internal resistance of the battery increases. From the figure, in order to set the rate of increase of the electrode plate thickness to 15% or less, when the porosity of the nickel substrate is 80%, the value of the content of metallic cobalt is 1 wt%, and the porosity is 85%. It can be seen that the addition amount is required to be 2 wt% in the case of, and 3 wt% or more in the case of the porosity of 90%.

【0013】つぎに、金属コバルトの含有率が2%、多孔
度が80% のニッケル基板に硝酸コバルト6mol% を含む5M
の硝酸ニッケル水溶液を80℃で含浸したのち、80 ℃の5M
の水酸化ナトリウム水溶液に浸漬する。その後、湯洗・
乾燥するという操作を8 回行った後、ポストコ−トとし
て0,5,10,20,30,60,70,80mol% のカドミウムを含む1.5M
の硝酸コバルト水溶液を含浸したのち、80℃の5Mの水酸
化ナトリウム水溶液に浸漬する。その後、湯洗・乾燥し
て、理論容量が300mAh、寸法が0.8 ×14×52(mm)の本発
明の正極板を製作した。
Next, a nickel substrate having a metal cobalt content of 2% and a porosity of 80% is coated with 5M containing 6 mol% of cobalt nitrate.
Nickel nitrate aqueous solution at 80 ° C, then
Immersed in an aqueous solution of sodium hydroxide. After that,
After performing the drying operation eight times, 1.5M containing 0,5,10,20,30,60,70,80mol% cadmium as post-coat
And then immersed in a 5M aqueous solution of sodium hydroxide at 80 ° C. Thereafter, the resultant was washed with hot water and dried to produce a positive electrode plate of the present invention having a theoretical capacity of 300 mAh and a size of 0.8 × 14 × 52 (mm).

【0014】これらの正極板を電解液として8MKOH 、対
極としてニッケル板2 枚を使用し、充電率が2Cで公称容
量の200%を充電したのち、0.5Cで0V(Hg/Hg0)まで放電
し、さらに同じ条件で充電したのち、湯洗してから乾燥
させて、活物質のX 線回折分析をおこなった。γ-NiOOH
の生成量をγ-NiOOH(003) のピ−ク/(β-NiOOH(001) の
ピ−ク+γ-NiOOH(003) のピ−ク) からもとめ図3に示
す。図からポストコ−トのカドミウム含有率が10mol%以
上になるとγ-NiOOHの生成が抑制され、とくに50mol%以
上になるとその生成量は少なくなることがわかる。実用
的にはカドミウムの含有率は10〜80mol%がよい。ポスト
コ−トでコバルトの含有液とカドミウムの含有液とを別
々にしても同様な効果が得られたが、コバルトとカドミ
ウムの混合溶液を使用した方がプロ−セスが一回で良
く、簡便である。
Using 8MKOH as an electrolyte and two nickel plates as counter electrodes, these positive plates were charged at 200% of the nominal capacity at a charging rate of 2C, and then discharged to 0V (Hg / Hg0) at 0.5C. The battery was further charged under the same conditions, washed with hot water and dried, and subjected to X-ray diffraction analysis of the active material. γ-NiOOH
FIG. 3 shows the production amount of γ-NiOOH (003) / (peak of β-NiOOH (001) + peak of γ-NiOOH (003)). From the figure, it can be seen that when the cadmium content of the postcoat is 10 mol% or more, the production of γ-NiOOH is suppressed, and particularly when the cadmium content is 50 mol% or more, the production amount is reduced. Practically, the content of cadmium is preferably 10 to 80 mol%. The same effect was obtained even if the cobalt-containing solution and the cadmium-containing solution were separated by post-coating, but the use of a mixed solution of cobalt and cadmium requires only one process, and is simple and convenient. is there.

【0015】つぎに、これらの正極板2 枚と従来から公
知の理論容量が500 mAhで、寸法が0.7 ×15×52(mm)の
カドミウム負極板3 枚を製作した。
Next, two of these positive electrode plates and three cadmium negative electrode plates having a conventionally known theoretical capacity of 500 mAh and dimensions of 0.7 × 15 × 52 (mm) were manufactured.

【0016】そして、この正極板を0.12mmのポリ
アミド不織布セパレータで包んだのち、ヒートシールし
た。つづいて、正極板と負極板とを交互に積み重ねて極
板群とした。この極板群と電解液として8.5Mの水酸
化カリウム水溶液1.5mlを用いて公称容量が500
mAhのニッケルメッキした鐵電槽を使用した角形ニッ
ケル・カドミウム電池を製作した。外形寸法は67×1
6.5×(mm)であり、電池には0.5Kg/cm
で作動する安全弁をつけている。ポストコートのカド
ミウム含有率が2,5,10,15mol%の正極板を
使用した電池をJ,K,L,Mとする。この電池を1C
で1.2時間充電したのち、0.2Cで0.5Vまで放
電するというサイクル試験をおこなった場合の容量推移
を図4に示す。図からカドミウムの含有率が2mol%
(J),5mol%(K)のものは、充放電サイクル数
が600回を越えると放電容量が低下するが、カドミウ
ムの含有率が10mol%(L)および15mol%
(M)の本発明による電池の容量は安定して良好である
ことがわかる。
Then, this positive electrode plate was wrapped with a 0.12 mm polyamide nonwoven fabric separator, and then heat sealed. Subsequently, a positive electrode plate and a negative electrode plate were alternately stacked to form an electrode plate group. The electrode group and 1.5 ml of an 8.5 M aqueous solution of potassium hydroxide were used as an electrolyte, and the nominal capacity was 500
A prismatic nickel-cadmium battery using a nickel-plated iron battery case of mAh was manufactured. External dimensions are 67 × 1
6.5 × 6 (mm), 0.5 kg / cm for the battery
The safety valve which operates in 2 is attached. J, K, L, and M are batteries using a positive electrode plate having a cadmium content of 2, 5, 10, and 15 mol% in the post coat. This battery is 1C
FIG. 4 shows a change in capacity when a cycle test was performed in which the battery was charged for 1.2 hours and then discharged at 0.2 C to 0.5 V. From the figure, the cadmium content is 2 mol%.
(J) and 5 mol% (K), the discharge capacity decreases when the number of charge / discharge cycles exceeds 600, but the cadmium content is 10 mol% (L) and 15 mol%.
It can be seen that the capacity of the battery according to the present invention (M) is stable and good.

【0017】このように、カドミウムの含有率が10m
ol%以上になると、充放電サイクル寿命が良くなるの
は活物質およびニッケル基板のニッケルが酸化をうけて
生成する水酸化ニッケルが、充放電サイクル経過ととも
に、充電時にγ−NiOOHになりにくい状態に変化す
るためによるものと考えられる。その機構は、つぎのよ
うに考えられる。すなわち、ポストコート液のカドミウ
ムの含有率が10mol%以上になると中和工程で生成
する水酸化物は、水酸化コバルトと固溶体を形成する水
酸化コバルトのほかに、固溶体を形成しない水酸化カド
ミウムが生成する。水酸化ニッケルが充電時にγ−Ni
OOHになり、その放電生成物はα−Ni(OH)
なるが、このα−Ni(OH)がアルカリ水溶液中で
溶解してβ−Ni(OH)に相変化する。その際に固
溶体を形成しない水酸化カドミウムが活物質中に固溶体
として結晶中に取り込まれる。すると、つづく充電にお
いては、γ−NiOOHの生成が抑制され極板の膨潤が
少なくなり、長寿命となるものと考えられる。なお、ニ
ッケル基板のコバルトの含有率と水酸化ニッケルに固溶
するコバルトの含有率との関係は、水酸化ニッケルに固
溶するコバルトの含有率がニッケル基板のコバルトの含
有率よりも多い方がよかった。これは、ニッケル基板の
酸化によって生成する水酸化ニッケルに含まれるコバル
トの量が多いと活物質よりも活性なものとなり、放電時
にはバルクの活物質よりも優先的に放電され、その放電
生成物が抵抗となって正極の放電性能を低下させるもの
と考えられる。
Thus, the cadmium content is 10 m
% or more, the charge / discharge cycle life is improved because the active material and nickel hydroxide generated by oxidization of nickel on the nickel substrate become less likely to become γ-NiOOH during charging as the charge / discharge cycle progresses. It is thought to be due to change. The mechanism is considered as follows. That is, when the content of cadmium in the post-coat liquid is 10 mol% or more, the hydroxide generated in the neutralization step is, in addition to cobalt hydroxide which forms a solid solution with cobalt hydroxide, cadmium hydroxide which does not form a solid solution. Generate. Nickel hydroxide is charged with γ-Ni
Becomes OOH, the discharge products are the α-Ni (OH) 2, the α-Ni (OH) 2 is a phase change to a β-Ni (OH) 2 is dissolved in an alkaline aqueous solution. At that time, cadmium hydroxide that does not form a solid solution is taken into the crystal as a solid solution in the active material. Then, in the subsequent charging, it is considered that the production of γ-NiOOH is suppressed, the swelling of the electrode plate is reduced, and the life is extended. The relationship between the content of cobalt in the nickel substrate and the content of cobalt dissolved in nickel hydroxide is such that the content of cobalt dissolved in nickel hydroxide is larger than the content of cobalt in the nickel substrate. Was good. This is because if the amount of cobalt contained in the nickel hydroxide generated by oxidation of the nickel substrate is large, it becomes more active than the active material, and at the time of discharge, it is preferentially discharged over the bulk active material. It is considered that the resistance becomes the resistance and lowers the discharge performance of the positive electrode.

【0018】[0018]

【発明の効果】以上述べたように、アルカリ電池用水酸
化ニッケル正極板においてコバルトを含有するニッケル
基板,コバルトと固溶体を形成した水酸化ニッケルさら
にニッケルあるいはコバルトと固溶体を形成しない水酸
化カドミウムとを備えることにより、充放電による正極
板の膨潤を抑制し、長寿命の高エネルギー密度電池や急
速充電用電池を提供するものである。とくに、水酸化ニ
ッケルに固溶するコバルトの含有率がニッケル基板のコ
バルトの含有率よりも多いと、より効果的である。ま
た、本発明は、ニッケル基板の多孔度が85〜98% のもの
を使用した高エネルギー密度の正極板の長寿命化が図れ
る。
As described above, a nickel hydroxide positive electrode plate for an alkaline battery includes a nickel substrate containing cobalt, nickel hydroxide forming a solid solution with cobalt, and cadmium hydroxide not forming a solid solution with nickel or cobalt. Thus, swelling of the positive electrode plate due to charge and discharge is suppressed, and a long-life high energy density battery or a battery for rapid charging is provided. In particular, it is more effective if the content of cobalt dissolved in nickel hydroxide is higher than the content of cobalt in the nickel substrate. Further, according to the present invention, it is possible to extend the life of a positive plate having a high energy density by using a nickel substrate having a porosity of 85 to 98%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の電池と本発明による正極板を使用した密
閉形ニッケル・カドミウム電池の充放電サイクル経過に
ともなう電池の内部抵抗の変化を比較した図。
FIG. 1 is a diagram comparing changes in internal resistance of a conventional battery and a sealed nickel-cadmium battery using a positive electrode plate according to the present invention with the progress of charge / discharge cycles.

【図2】本発明の正極板の極板厚さの増加率と基板の多
孔度との関係を示した図。
FIG. 2 is a diagram showing the relationship between the rate of increase in the electrode plate thickness of the positive electrode plate of the present invention and the porosity of the substrate.

【図3】充電状態のγ-NiOOHの生成状態とカドミウムの
含有率との関係を示した図。
FIG. 3 is a diagram showing a relationship between a state of γ-NiOOH generation in a charged state and a cadmium content.

【図4】本発明による正極板を使用した密閉形ニッケル
・カドミウム電池と従来の電池の充放電サイクルにとも
なう容量保持率を比較した図。
FIG. 4 is a diagram comparing the capacity retention rates of a sealed nickel-cadmium battery using a positive electrode plate according to the present invention and a conventional battery with charge / discharge cycles.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−263047(JP,A) 特開 平2−253559(JP,A) 特開 昭56−143669(JP,A) 特公 平2−39063(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01M 4/14 - 4/62 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-263047 (JP, A) JP-A-2-253559 (JP, A) JP-A-56-143669 (JP, A) 39063 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/14-4/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属ニッケル粉末と金属コバルト粉末とが
焼結されてなるニッケル基板と、コバルトと固溶体を形
成した水酸化ニッケルと、ニッケルまたはコバルトと固
溶体を形成していない水酸化カドミウムとを備えたアル
カリ電池用水酸化ニッケル正極板。
The metal nickel powder and the metal cobalt powder are
The sintered nickel substrate formed by cobalt and the nickel hydroxide solid solution was formed, nickel or cobalt and a solid solution to form nickel hydroxide positive electrode plate for an alkaline battery comprising a Tei no cadmium hydroxide.
JP19315892A 1992-06-25 1992-06-25 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same Expired - Fee Related JP3225608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19315892A JP3225608B2 (en) 1992-06-25 1992-06-25 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19315892A JP3225608B2 (en) 1992-06-25 1992-06-25 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001114472A Division JP3458899B2 (en) 2001-04-12 2001-04-12 Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP2001114487A Division JP3498727B2 (en) 2001-04-12 2001-04-12 Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery

Publications (2)

Publication Number Publication Date
JPH0613076A JPH0613076A (en) 1994-01-21
JP3225608B2 true JP3225608B2 (en) 2001-11-05

Family

ID=16303252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19315892A Expired - Fee Related JP3225608B2 (en) 1992-06-25 1992-06-25 Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3225608B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772185B2 (en) 2000-12-12 2011-09-14 パナソニック株式会社 Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143669A (en) * 1980-04-10 1981-11-09 Sanyo Electric Co Ltd Positive plate for alkaline storage battery
JPS61263047A (en) * 1985-05-16 1986-11-21 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPH0239063A (en) * 1988-07-29 1990-02-08 Canon Inc Image forming device
JPH02253559A (en) * 1989-03-25 1990-10-12 Yuasa Battery Co Ltd Nickel electrode and alkaline storage battery using it

Also Published As

Publication number Publication date
JPH0613076A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP5119577B2 (en) Nickel metal hydride battery
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JP2926732B2 (en) Alkaline secondary battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2001102085A (en) Formation method of airtight type nickel-hydrogen storage battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP4049484B2 (en) Sealed alkaline storage battery
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2926288B2 (en) Nickel-cadmium battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3187882B2 (en) Method for manufacturing alkaline storage battery and method for manufacturing nickel plate for alkaline storage battery
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP3558082B2 (en) Nickel-cadmium secondary battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600307B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees