JPH04109556A - Closed-type secondary battery - Google Patents

Closed-type secondary battery

Info

Publication number
JPH04109556A
JPH04109556A JP2227162A JP22716290A JPH04109556A JP H04109556 A JPH04109556 A JP H04109556A JP 2227162 A JP2227162 A JP 2227162A JP 22716290 A JP22716290 A JP 22716290A JP H04109556 A JPH04109556 A JP H04109556A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
nickel
reaction
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2227162A
Other languages
Japanese (ja)
Inventor
Tatsuo Horiba
達雄 堀場
Michiko Igawa
井川 享子
Noboru Ebato
江波戸 昇
Jinichi Imahashi
甚一 今橋
Shigeoki Nishimura
西村 成興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2227162A priority Critical patent/JPH04109556A/en
Publication of JPH04109556A publication Critical patent/JPH04109556A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a simple, effective and practical manufacturing method by causing materials to be contained in a positive electrode to be oxidized at potential at which all of the materials are oxidized more easily than a positive electrode active material, i.e., the one which is lower than the charging reaction potential of the positive electrode. CONSTITUTION:In a secondary battery comprising a negative electrode, a positive electrode and a separator, all of which are composed mainly of a hydrogen storage alloy, and an electrolyte distributed over all of them, the positive electrode contains components which are oxidized at potential lower than the charging reaction potential of time positive electrode. The components contained in the positive electrode generate hydrogen during their oxidation process. The oxidation reaction product of the components contained in the positive electrode works in favor of the reaction of positive electrode active material. The components contained in the positive electrode are desirably such metals as lithium, magnesium, aluminium, manganese, iron, cobalt, zinc, cadmium and the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は二次電池に係り、特にニッケルー金属水素化物
電池などの水素吸蔵合金を主成分とする負極を有する密
閉型二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a secondary battery, and particularly to a sealed secondary battery having a negative electrode mainly composed of a hydrogen storage alloy, such as a nickel-metal hydride battery.

従来の技術 各種の小形コードレス機器の急速な普及とともに電源と
なる電池の需要も増大している。使用される小形電池に
は一次電池と二次電池があるが、一般に可動部を有し、
重負荷かつ使用頻度の高い用途の電源としては主として
経済性の理由により、二次電池が好んで使用される。
2. Description of the Related Art With the rapid spread of various small cordless devices, the demand for batteries as power sources is also increasing. There are two types of small batteries used: primary batteries and secondary batteries, but they generally have moving parts.
As a power source for heavy-load and frequently used applications, secondary batteries are preferably used mainly for economical reasons.

これらの二次電池は需要増加とともに、使い易さの点か
ら高容量化、急速充放電化などの要求が高まっている。
As demand for these secondary batteries increases, demands for higher capacity, rapid charging and discharging, etc. are increasing from the viewpoint of ease of use.

中でも一回の充電による機器の使用時間の長くできる高
容量化に対する消費者の要求は根強いものがあり、その
点での技術の開発がたゆまなく続けられて来た。
Among these, there is a deep-rooted consumer demand for higher capacity devices that can extend the usage time of devices with a single charge, and the development of technology in this regard has continued unremittingly.

既存の電池の高容量化とともに新型電池の開発も活発に
行なわれてきた。それらの中でも水素吸蔵合金を主成分
とする負極を有するニッケルー金属水素化物電池は、電
池電圧、放電特性などがニッケルーカドミウム電池とほ
とんど同じで互換性を有しておりながら、電池容量が3
0〜50%増加することが期待できる電池として注目さ
れてきた。この電池はニッケルーカドミウム電池と同様
に密閉化可能である。密閉化の方式はいわゆるノイマン
の密閉化原理にもとづくものであり、電解液量を規制し
、正極と負極の充電可能容量の比を負極寄りして、正極
の方が先に過充電に達し、正極から発生する酸素ガス、
を負極金属の酸化反応により回収して密閉系システムを
構築する。この方式により過充電ムこ対する備えは可能
になる。過放電に対しては、いわゆる放電リザーブと称
する放電予備容量を予め負極に課しておく必要がある。
In addition to increasing the capacity of existing batteries, new types of batteries have been actively developed. Among them, nickel-metal hydride batteries, which have a negative electrode mainly composed of hydrogen-absorbing alloys, have almost the same battery voltage and discharge characteristics as nickel-cadmium batteries, and are compatible with nickel-cadmium batteries, but have a battery capacity of 3.
It has been attracting attention as a battery that can be expected to increase by 0 to 50%. This battery can be sealed like a nickel-cadmium battery. The sealing method is based on the so-called Neumann sealing principle, in which the amount of electrolyte is regulated and the ratio of the chargeable capacity of the positive electrode to the negative electrode is shifted toward the negative electrode, so that the positive electrode reaches overcharging first. oxygen gas generated from the positive electrode,
is recovered through the oxidation reaction of the negative electrode metal to construct a closed system. This method makes it possible to prepare for overcharging. In order to prevent overdischarge, it is necessary to provide the negative electrode with a discharge reserve capacity called a discharge reserve in advance.

これにより過放電、あるいは負極の劣化による寿命の低
下の阻止ができ、長寿命で堅牢な高容量電池が可能とな
る。
This makes it possible to prevent shortening of life due to over-discharge or deterioration of the negative electrode, making it possible to create a durable, high-capacity battery with a long life.

発明が解決しようとする課題 本発明の目的は、水素吸蔵合金を主成分とする負極を有
するニッケルー金属水素化物電池などの密閉型二次電池
の簡便かつ有効な実用的製法を提供することにある。
Problems to be Solved by the Invention An object of the present invention is to provide a simple and effective practical manufacturing method for a sealed secondary battery such as a nickel-metal hydride battery having a negative electrode mainly composed of a hydrogen storage alloy. .

従来の密閉型ニッケルーカドミウム電池では負極(カド
ミウム極)へ放電リザーブを与えるために負極の化成処
理、あるいは金属カドミウムの充填などの方法が用いら
れてきた。しかし、ニッケルー金属水素化物電池では、
負極活物質が気体の水素ないしは金属中の水素原子であ
るためその扱いが困難になってくる。すなわち、負極を
形成後あるいは形成前の水素吸蔵合金に水素を充填する
には、 (1) M + 1 /2H2→ 財    (固気反
応)(2)M +H20+ e  →MH士叶−(固液
反応)M:水素吸蔵合金 のような2通りの方法がある。(1)の方法は水素吸蔵
合金を水素吸蔵平衡圧以上の水素分圧雰囲気において吸
蔵させる方法である。(2)の方法は水素吸蔵合金中へ
電気化学的に水素を取り込む方法であって、ニッケルー
金属水素化物電池の負極の充電反応そのものでありカド
ミウム極の化成処理に相当する。
In conventional sealed nickel-cadmium batteries, methods such as chemical conversion treatment of the negative electrode or filling with metal cadmium have been used to provide a discharge reserve to the negative electrode (cadmium electrode). However, in nickel-metal hydride batteries,
Since the negative electrode active material is gaseous hydrogen or hydrogen atoms in metal, it becomes difficult to handle it. That is, in order to fill the hydrogen storage alloy with hydrogen after forming or before forming the negative electrode, (1) M + 1 /2H2→ goods (solid-gas reaction) (2) M + H20+ e → MH Shikan - (solid-liquid reaction) Reaction) M: There are two methods such as hydrogen storage alloy. Method (1) is a method in which a hydrogen storage alloy is stored in an atmosphere with a hydrogen partial pressure higher than the hydrogen storage equilibrium pressure. Method (2) is a method of electrochemically incorporating hydrogen into a hydrogen storage alloy, which is the charging reaction of the negative electrode of a nickel-metal hydride battery, and corresponds to the chemical conversion treatment of the cadmium electrode.

いずれの方法によって得られた負極であっても、それぞ
れの前処理ののち電池組立て工程においては、前処理と
は異なる雰囲気に置かれるため前処理により充電された
水素が負極から散逸してしまい前処理の効果が著しく低
減する傾向が見られた。この問題点を解決するために電
池組立て工程を水素雰囲気にするなどの改善策が検討さ
れてきた。しかし、その場合電池組立て装置が複雑にな
り作業性が低下して能率が悪くあること、あるいは工程
を水素雰囲気にするため漏洩による危険性の増大とその
防止のための設備の設置による更なる装置の複雑化など
の問題が生じてくる。
No matter which method the negative electrode is obtained, after each pretreatment, in the battery assembly process, it is placed in an atmosphere different from that of the pretreatment, so the hydrogen charged by the pretreatment dissipates from the negative electrode, causing the battery to assemble. There was a tendency for the effectiveness of the treatment to be significantly reduced. In order to solve this problem, improvements such as creating a hydrogen atmosphere in the battery assembly process have been considered. However, in this case, the battery assembly equipment becomes complicated, resulting in lower workability and efficiency.Also, since the process is conducted in a hydrogen atmosphere, the risk of leakage increases, and additional equipment is required to install equipment to prevent it. Problems such as increased complexity arise.

課題を解決するための手段 本発明の特徴は上記従来技術の問題点を解決するために
、密閉型二次電池用正極の中に新たな成分を内蔵するこ
とにより密閉型電池の密閉化の後、あるいは初充電の時
に水素吸蔵合金からなる負極へ放電リザーブを与えるこ
とにある。
Means for Solving the Problems The present invention is characterized in that, in order to solve the above-mentioned problems of the prior art, a new component is built into the positive electrode for a sealed secondary battery, so that it can be used after the sealed battery is sealed. Alternatively, the purpose is to provide a discharge reserve to the negative electrode made of a hydrogen storage alloy at the time of initial charging.

その結果、従来技術の問題点であった水素雰囲気中での
電池の組立て工程が不要となる。
As a result, the process of assembling the battery in a hydrogen atmosphere, which was a problem in the prior art, becomes unnecessary.

密閉化の後に缶内で負極へ放電リザーブを与えるための
方法としては、(1)缶内で電解液と反応して水素を発
生するもの、(2)充電時に酸化されるものを内蔵する
ことが必要である。内蔵されるべき物質は、いずれも正
極活物質よりも酸化されやすい、つまり正極の充電反応
電位よりも低い電位で酸化されることが必要条件となる
Methods for providing a discharge reserve to the negative electrode within the can after sealing include (1) incorporating something that reacts with the electrolyte in the can to generate hydrogen, and (2) incorporating something that oxidizes during charging. is necessary. It is necessary that all substances to be incorporated be oxidized more easily than the positive electrode active material, that is, oxidized at a potential lower than the charging reaction potential of the positive electrode.

また、それらの内蔵物は酸化反応生成物が電極反応の阻
害物質とならないこと、好ましくは電極反応にとってプ
ラスの作用のあることが望まれる。(1)の方式が可能
な物質としてはリチウム、アルミニウムなどの金属があ
る。(2)の方式が可能な物質としてはマグネシウム、
マンガン、鉄、コバルト、亜鉛、カドミウムなどの金属
がある。
Further, it is desired that the oxidation reaction products of these built-in substances do not become inhibitors of the electrode reaction, and preferably that they have a positive effect on the electrode reaction. Materials for which method (1) can be applied include metals such as lithium and aluminum. Substances that can be used in method (2) include magnesium;
Metals include manganese, iron, cobalt, zinc, and cadmium.

本発明の対象の密閉型電池がニッケルー金属水素化物電
池である場合には上記内蔵物質のうちとりわけ、コバル
トが好ましいことが検討の結果明らかになった。特に望
ましい添加量は5〜20G1 t%であった。5wt%
以下では得られる放電リザーブ量が少な過ぎてその効果
が不鮮明であり、20wt%以上になると相対的な電極
容量の減少が大きくなるためである。
As a result of studies, it has become clear that cobalt is particularly preferable among the above-mentioned built-in substances when the sealed battery to which the present invention is applied is a nickel-metal hydride battery. A particularly desirable addition amount was 5 to 20 G1 t%. 5wt%
This is because the amount of discharge reserve obtained below is too small and the effect is unclear, and when it exceeds 20 wt%, the relative electrode capacity decreases greatly.

内蔵物質の正極への添加方法としては電極成形時に活物
質と均一に混合する、あるいは正極と別に成形し正極と
電気的に接続しておくことなどがあるが内蔵物質の酸化
反応生成物が電極反応に有用に作用するものである場合
には活物質と均一に混合しておく方が好ましい。
The built-in substance can be added to the positive electrode by mixing it uniformly with the active material during electrode molding, or by molding it separately from the positive electrode and electrically connecting it to the positive electrode. If it has a useful effect on the reaction, it is preferable to mix it uniformly with the active material.

作用 本発明の作用は、水素吸蔵合金からなる負極へ密閉缶内
において放電リザーブを与えることムこある。その機構
は上記の(])の場合と(2)の場合とでは異なる。す
なわち(1)では添加物と電解液の反応により水素が発
生し、その水素が水素吸蔵合金と前記(1)式によって
反応し負極放電リザーブを与える。(2)では充電時に
添加物が正極活物質に先行して電気化学的に酸化される
。その間、負極では前記(2)式の反応が進み、正常な
充電が進行する。そのため、正負両極の充電量に食違い
が生じ負極の方が多くなる。この差が負極の放電リザー
ブとなる。
Function The function of the present invention is to provide a discharge reserve to a negative electrode made of a hydrogen storage alloy in a sealed can. The mechanism is different between case (]) and case (2) above. That is, in (1), hydrogen is generated by the reaction between the additive and the electrolytic solution, and the hydrogen reacts with the hydrogen storage alloy according to the above formula (1) to provide a negative electrode discharge reserve. In (2), the additive is electrochemically oxidized prior to the positive electrode active material during charging. During this time, the reaction of formula (2) above proceeds at the negative electrode, and normal charging progresses. Therefore, there is a discrepancy in the amount of charge on the positive and negative electrodes, and the amount on the negative electrode is larger. This difference becomes the discharge reserve of the negative electrode.

また、コバルトの効果がとりわけ顕著なのは、上記の放
電リザーブを負極に与えることの他に酸化生成物の水酸
化コバルトが活物質である水酸化ニッケルと固溶体を形
成し結晶格子を歪ませることにより充放電反応速度が向
上すること、あるいは高次の酸化物であるオキシ水酸化
コバルトが活物質粒子表面に析出しその電子導電性によ
り活物質層内部の抵抗低減に寄与しているものと思われ
る。そのほか、亜鉛、カドミウムなどは電池の高温特性
の改善に寄与することも明らかムこなった。
Moreover, the effect of cobalt is particularly remarkable because, in addition to providing the above-mentioned discharge reserve to the negative electrode, cobalt hydroxide, an oxidation product, forms a solid solution with nickel hydroxide, an active material, and distorts the crystal lattice. It is thought that the discharge reaction rate is improved, or that cobalt oxyhydroxide, which is a higher order oxide, is precipitated on the surface of the active material particles and its electronic conductivity contributes to reducing the resistance inside the active material layer. In addition, zinc, cadmium, and other substances that contribute to improving the high-temperature characteristics of batteries were also clearly ignored.

実施例 本発明を密閉型ニッケルー金属水素化物電池に適用した
実施例により更に具体的に説明する。
EXAMPLE The present invention will be explained in more detail by way of an example in which the present invention is applied to a sealed nickel-metal hydride battery.

実施例1 本発明を実施するために用いたニッケル極は、気孔率9
5%の発泡ニッケルを電極基体に用いたペースト式電極
である。活物質である水酸化ニッケル84−t%に対し
、金属コバルト粉末15wt%と結着剤としてのポリビ
ニルアルコール1tst%井 に充分量の水を加えてスラリとし、これ粘記電極基体に
充填した。乾燥後、ローラプレスにより所定の厚さのニ
ッケル極を得た。ニッケル極活物質の充填容量密度は5
70mAh/cm3であった。
Example 1 The nickel electrode used to carry out the present invention had a porosity of 9
This is a paste type electrode that uses 5% foamed nickel as the electrode base. A sufficient amount of water was added to 84-t% nickel hydroxide as an active material, 15 wt% metal cobalt powder, and 1 tst% polyvinyl alcohol as a binder to form a slurry, and the slurry was filled into a adhesive electrode substrate. After drying, a nickel electrode of a predetermined thickness was obtained using a roller press. The filling capacity density of nickel electrode active material is 5
It was 70mAh/cm3.

金属水素化物電極には水素吸蔵合金としてLaN1a、
6Mno−2Alo、zの粉末を用いた。上記ニッケル
極と同様の基体と結着剤により同様の製法で作製した。
The metal hydride electrode contains LaN1a as a hydrogen storage alloy,
6Mno-2Alo, z powder was used. It was manufactured using the same substrate and binder as the nickel electrode described above, and by the same manufacturing method.

これらの電極により単玉型の密閉型ニッケルー金属水素
化物電池電池を作製した。得られた電極を厚さ0.17
mmのポリプロピレン樹脂製不織布のセパレータを介し
て捲回し、電池缶内に挿入した。電解液には31wt%
の水酸化カリウムを含む水溶液に少量の水酸化リチウム
を添加したものを用いた。また、比較のために、ニッケ
ル極の活物質である水酸化ニッケルが96w t%であ
り、金属コバルト粉末が3wt%である以外はすべて上
記実施例と同じ単玉型の密閉型ニッケルー金属水素化物
電池を作製した。電池の充填容量はいずれも10510
5Oとした。これらの電池を室温下で充放電した。1サ
イクル目は0゜ICmAで容量に対し150%充電し、
0.2CmAで終止電圧の1.0Vまで放電した。2サ
イクル目は0.3CmAで容量に対し150%充電し、
0.2Cn+71で終止電圧の1.Ovまで放電した。
A single-cell sealed nickel-metal hydride battery was fabricated using these electrodes. The resulting electrode has a thickness of 0.17
It was wound up with a polypropylene resin nonwoven fabric separator of 1.0 mm in diameter interposed therebetween, and inserted into a battery can. 31wt% in electrolyte
A small amount of lithium hydroxide was added to an aqueous solution containing potassium hydroxide. For comparison, a single-beam sealed nickel-metal hydride was used, which was the same as the above example except that the active material of the nickel electrode, nickel hydroxide, was 96 wt% and the metal cobalt powder was 3 wt%. A battery was created. The filling capacity of both batteries is 10510
It was set to 5O. These batteries were charged and discharged at room temperature. In the first cycle, charge to 150% of the capacity at 0°ICmA,
It was discharged at 0.2 CmA to a final voltage of 1.0 V. The second cycle charges 150% of the capacity at 0.3CmA,
0.2Cn+71 is the final voltage of 1. It was discharged to Ov.

そののち、0.2CmAで引き続いて過放電を続は電圧
の遷移から負極残存容量を求めた。その結果、本実施例
では380mAh、比較例では70mAhの負極残存容
量が確認された。
Thereafter, the battery was overdischarged at 0.2 CmA, and the residual capacity of the negative electrode was determined from the voltage transition. As a result, a negative electrode residual capacity of 380 mAh in this example and 70 mAh in the comparative example was confirmed.

次に、上記と同様に作製してlサイクル目の充放電をし
た電池を0.3CmAで容量に対し150%充電し、0
.2CmAで終止電圧の1.OVまで放電を繰り返すサ
イクル試験評価をした。結果を図面に示す。本発明にな
るAは、従来技術になる比較例Cより優れたサイクル寿
命を示している。
Next, a battery prepared in the same manner as above and charged/discharged for the 1st cycle was charged to 150% of the capacity at 0.3 CmA, and
.. At 2CmA, the final voltage is 1. A cycle test evaluation was conducted in which discharge was repeated until OV. The results are shown in the drawing. A according to the invention exhibits a cycle life superior to Comparative Example C according to the prior art.

実施例2 ニッケル極の組成が活物質である水酸化ニンケル844
%に対し、金属コバルト粉末10iyt%と金属亜鉛粉
末54%を加えた以外はすべて実施例1と同じとした単
玉型の密閉型ニッケルー金属水素化物電池を作製した。
Example 2 The composition of the nickel electrode is hydroxide nickel 844 as the active material
A single-cell sealed nickel-metal hydride battery was produced in the same manner as in Example 1, except that 10iyt% of metal cobalt powder and 54% of metal zinc powder were added.

実施例1と同様にして、2サイクル放電後の負極残存容
量を求めた。その結果、310mAhの残存容量が得ら
れた。
In the same manner as in Example 1, the negative electrode residual capacity after two cycles of discharge was determined. As a result, a remaining capacity of 310 mAh was obtained.

次に、実施例1と同様にして、サイクル試験評価をした
。結果を図面のBに示す。本発明になるBにより従来技
術になる比較例Cより優れたサイクル寿命が得られた。
Next, a cycle test evaluation was performed in the same manner as in Example 1. The results are shown in B of the drawing. With B according to the present invention, a cycle life superior to that of Comparative Example C, which is the prior art, was obtained.

発明の効果 上記実施例の結果から明らかなように、本発明によれば
、ニッケルー金属水素化物電池などの密閉型二次電池に
おいて、電池の密閉化の後、密閉缶内において水素吸蔵
合金からなる負極へ放電リザーブを有効に与えることが
できた。その結果、水素雰囲気中での電池の組立て工程
のような装置が複雑で作業能率が低く、かつ危険性の高
い工程を経ずして、図面に示したような優れた長寿命の
高性能電池を提供することができた。
Effects of the Invention As is clear from the results of the above examples, according to the present invention, in a sealed secondary battery such as a nickel-metal hydride battery, after the battery is sealed, a hydrogen storage alloy made of a hydrogen storage alloy is placed in a sealed can. It was possible to effectively provide discharge reserve to the negative electrode. As a result, we were able to produce high-performance, long-life batteries as shown in the drawings, without going through the process of assembling batteries in a hydrogen atmosphere, which requires complicated equipment, low work efficiency, and is highly dangerous. were able to provide.

また、本発明はニッケルー金属水素化物電池にかかわる
技術であるが、この電池のみならず、ニッケルー亜鉛電
池、ニッケルー鉄電池、酸化銀−金属水素化物電池、二
酸化マンガン−金属水素化物電池、シール鉛電池などの
その他の密閉型二次電池にも適用できる技術である。
Furthermore, the present invention relates to technology related to nickel-metal hydride batteries, but not only nickel-zinc batteries, nickel-iron batteries, silver oxide-metal hydride batteries, manganese dioxide-metal hydride batteries, and sealed lead-acid batteries. This technology can also be applied to other sealed secondary batteries such as

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明になるニッケルー金属水素化物電池と従来
技術になるニッケルー金属水素化物電池のサイクル試験
結果を示す図である。
The drawings are diagrams showing cycle test results of a nickel-metal hydride battery according to the present invention and a nickel-metal hydride battery according to the prior art.

Claims (1)

【特許請求の範囲】 1、水素吸蔵合金を主成分とする負極、正極、セパレー
タおよびそれらの各部分に分布する電解液により構成さ
れる二次電池であって、正極がその充電反応電位よりも
低い電位で酸化される成分を内蔵して形成されることを
特徴とする密閉型二次電池。 2、正極内に内蔵される成分がその酸化過程において水
素を発生する請求項第1項に記載の密閉型二次電池。 3、正極内に内蔵される成分の酸化反応生成物が正極活
物質の反応に有利に作用する請求項第1項に記載の密閉
型二次電池。 4、正極内に内蔵される成分がリチウム、マグネシウム
、アルミニウム、マンガン、鉄、コバルト、亜鉛、カド
ミウムなどの金属である請求項第1〜3項のうちのいず
れか1項に記載の密閉型二次電池。
[Scope of Claims] 1. A secondary battery composed of a negative electrode, a positive electrode, a separator, and an electrolyte distributed in each of these parts, the main component of which is a hydrogen storage alloy, wherein the positive electrode has a charge reaction potential higher than its charging reaction potential. A sealed secondary battery that is formed by containing a component that is oxidized at a low potential. 2. The sealed secondary battery according to claim 1, wherein the component contained in the positive electrode generates hydrogen during its oxidation process. 3. The sealed secondary battery according to claim 1, wherein the oxidation reaction product of the components contained in the positive electrode has an advantageous effect on the reaction of the positive electrode active material. 4. The sealed type battery according to any one of claims 1 to 3, wherein the component contained in the positive electrode is a metal such as lithium, magnesium, aluminum, manganese, iron, cobalt, zinc, or cadmium. Next battery.
JP2227162A 1990-08-29 1990-08-29 Closed-type secondary battery Pending JPH04109556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2227162A JPH04109556A (en) 1990-08-29 1990-08-29 Closed-type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2227162A JPH04109556A (en) 1990-08-29 1990-08-29 Closed-type secondary battery

Publications (1)

Publication Number Publication Date
JPH04109556A true JPH04109556A (en) 1992-04-10

Family

ID=16856466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2227162A Pending JPH04109556A (en) 1990-08-29 1990-08-29 Closed-type secondary battery

Country Status (1)

Country Link
JP (1) JPH04109556A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658947A1 (en) * 1993-12-18 1995-06-21 VARTA Batterie Aktiengesellschaft Nickel/metallic hydride secondary cell
US7675132B2 (en) 1997-12-15 2010-03-09 Osram Gmbh Surface mounting optoelectronic component and method for producing same
US8932886B2 (en) 2004-06-04 2015-01-13 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
WO2015019647A1 (en) * 2013-08-05 2015-02-12 プライムアースEvエナジー 株式会社 Nickel-metal hydride storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658947A1 (en) * 1993-12-18 1995-06-21 VARTA Batterie Aktiengesellschaft Nickel/metallic hydride secondary cell
US7675132B2 (en) 1997-12-15 2010-03-09 Osram Gmbh Surface mounting optoelectronic component and method for producing same
US8932886B2 (en) 2004-06-04 2015-01-13 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
WO2015019647A1 (en) * 2013-08-05 2015-02-12 プライムアースEvエナジー 株式会社 Nickel-metal hydride storage battery

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
US5405714A (en) Method for activating an alkaline storage cell employing a non-sintered type nickel positive electrode
JP2002117842A (en) Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery
JPH04109556A (en) Closed-type secondary battery
JP3414200B2 (en) Alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3614567B2 (en) Sealed nickel metal hydride battery
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3287386B2 (en) Nickel electrode for alkaline storage battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3482478B2 (en) Nickel-metal hydride storage battery
JPS6199277A (en) Metal-hydrogen alkaline storage battery
JPH028419B2 (en)
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS6332856A (en) Closed nickel-hydrogen storage battery