JPH09237628A - Production of hydrogen storage alloy electrode - Google Patents

Production of hydrogen storage alloy electrode

Info

Publication number
JPH09237628A
JPH09237628A JP8042405A JP4240596A JPH09237628A JP H09237628 A JPH09237628 A JP H09237628A JP 8042405 A JP8042405 A JP 8042405A JP 4240596 A JP4240596 A JP 4240596A JP H09237628 A JPH09237628 A JP H09237628A
Authority
JP
Japan
Prior art keywords
powder
storage alloy
hydrogen
hydrogen storage
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8042405A
Other languages
Japanese (ja)
Inventor
Teruhiko Imoto
輝彦 井本
Hiroshi Nakamura
宏 中村
Tomokazu Yoshida
智一 吉田
Shin Fujitani
伸 藤谷
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8042405A priority Critical patent/JPH09237628A/en
Publication of JPH09237628A publication Critical patent/JPH09237628A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To decrease the number of charging/discharging cycles required for initial activity of an electrode by reducing a coating film made of nickel oxide or nickel hydroxide present at the surface of hydrogen storage alloy powder prior to production of the electrode. SOLUTION: Prior to production of a hydrogen storage alloy electrode, nickel containing hydrogen storage alloy powder covered with a coating film made of at least nickel oxide or nickel hydroxide is reserved for an appropriate period under the hydrogen gas atmosphere in which a temperature is enough to prevent any storage of hydrogen gas in an alloy. In this way, the coating film covering the powder is reduced by the hydrogen gas, so that a nickel active surface is exposed to the surface of the powder. If the hydrogen storage alloy is reserved under the hydrogen gas atmosphere at a temperature lower than the above-described temperature, it is absorbed inward of the alloy powder since the hydrogen gas cannot contribute to the reduction of the coating film made of oxide or hydroxide covering the alloy powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池等
の金属−水素化物蓄電池の負極として利用される水素吸
蔵合金電極に関するものであり、特にNiを含有する水
素吸蔵合金の粉末を用いて作製される水素吸蔵合金電極
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a metal-hydride storage battery such as an alkaline storage battery, and particularly manufactured by using a Ni-containing hydrogen storage alloy powder. The present invention relates to a hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】水素を可逆的に吸蔵/放出する水素吸蔵
合金の特性を利用した二次電池が知られている。この二
次電池として、水素吸蔵合金を負極に利用したアルカリ
蓄電池等の金属−水素化物蓄電池がある。金属−水素化
物蓄電池は、エネルギー密度が大きく、ニッケルカドミ
ウム蓄電池に代わる次世代の二次電池として注目されて
いる。負極に利用される水素吸蔵合金電極は、例えば、
水素吸蔵合金のインゴットを粉砕した粉末を焼結等によ
り成形して作製される。水素吸蔵合金粉末の表面は非常
に活性であるため、空気に僅かでも触れると、直ちに空
気中の酸素と反応し、合金表面が酸化して、酸化物の被
膜が形成される。酸化物被膜は合金の表面活性度を低下
させ、特に蓄電池の初期放電容量の低下の原因となる。
このため、電池を組み立てた後、電池に充放電を数サイ
クルから数十サイクル繰り返して行ない、酸化物被膜を
除去し、粉末表面を活性化して、所望の放電容量を満足
させる必要があり、手間と時間を要した。
2. Description of the Related Art A secondary battery utilizing the characteristics of a hydrogen storage alloy that stores and releases hydrogen reversibly is known. As this secondary battery, there is a metal-hydride storage battery such as an alkaline storage battery using a hydrogen storage alloy for the negative electrode. The metal-hydride storage battery has a large energy density and is drawing attention as a next-generation secondary battery that replaces the nickel-cadmium storage battery. The hydrogen storage alloy electrode used for the negative electrode is, for example,
It is produced by crushing a powder obtained by crushing an ingot of a hydrogen storage alloy by sintering or the like. Since the surface of the hydrogen-absorbing alloy powder is very active, even a slight contact with air immediately reacts with oxygen in the air to oxidize the alloy surface and form an oxide film. The oxide film lowers the surface activity of the alloy, and in particular, causes a decrease in the initial discharge capacity of the storage battery.
For this reason, after the battery is assembled, it is necessary to charge and discharge the battery repeatedly from several cycles to several tens of cycles to remove the oxide film and activate the powder surface to satisfy the desired discharge capacity. And took time.

【0003】従来、粉末表面の酸化物被膜を除去するた
めに、水素吸蔵合金粉末を塩酸に浸漬する「酸処理」を
行なう方法がある(特開平5−225975号公報)。こ
の酸処理は、水素吸蔵合金粉末表面の酸化物被膜のう
ち、希土類金属酸化物の被膜の還元に有効であるが、N
i酸化物の被膜の還元にはあまり有効でなく、Ni水酸
化物が形成される傾向にある。また、塩酸を用いた酸処
理を行なうと、水素吸蔵合金粉末の表面に塩化物イオン
が残留するため、酸処理後、水洗処理を施して塩化物イ
オンを除去する必要がある。しかし、この水洗処理中
に、活性化した合金表面が水中の溶存酸素により再び酸
化される不都合がある。
Conventionally, in order to remove the oxide film on the powder surface, there is a method of performing "acid treatment" in which hydrogen-absorbing alloy powder is immersed in hydrochloric acid (Japanese Patent Laid-Open No. 5-225975). This acid treatment is effective in reducing the rare earth metal oxide coating among the oxide coatings on the surface of the hydrogen storage alloy powder.
It is not very effective in reducing the film of i oxide, and Ni hydroxide tends to be formed. Further, when the acid treatment using hydrochloric acid is carried out, chloride ions remain on the surface of the hydrogen storage alloy powder, and therefore it is necessary to remove the chloride ions by washing with water after the acid treatment. However, there is a disadvantage that the activated alloy surface is re-oxidized by dissolved oxygen in the water during the water washing treatment.

【0004】[0004]

【発明が解決しようとする課題】電極形成に不可欠なN
iを含有する水素吸蔵合金の粉末の場合、粉末表面に存
在する元素成分のうち、Niが主として水素吸蔵/放出
反応の活性点となる。従って、各粉末の合金表面のNi
部分は、活性状態で出来るだけ大量に露出させることが
好ましい。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the case of a hydrogen storage alloy powder containing i, of the elemental components present on the powder surface, Ni is mainly the active site of the hydrogen storage / release reaction. Therefore, the Ni on the alloy surface of each powder
It is preferable that the portion is exposed as much as possible in the activated state.

【0005】本発明の目的は、電極作製前に、水素吸蔵
合金粉末の表面に存在するNi酸化物又はNi水酸化物
等の被膜を還元することにより、作製される水素吸蔵合
金電極の初期活性度を高め、電極の初期活性に必要な充
放電サイクルの回数を減らすことのできる水素吸蔵合金
電極を提供することである。
The object of the present invention is to reduce the initial activity of the hydrogen storage alloy electrode produced by reducing the coating film of Ni oxide or Ni hydroxide existing on the surface of the hydrogen storage alloy powder before producing the electrode. It is an object of the present invention to provide a hydrogen storage alloy electrode capable of increasing the temperature and reducing the number of charge / discharge cycles required for initial activation of the electrode.

【0006】[0006]

【課題を解決する為の手段】上記課題を解決するため
に、本発明は、水素吸蔵合金電極の作製前に、表面に少
なくともNi酸化物又はNi水酸化物の被膜が存在する
Ni含有水素吸蔵合金の粉末を、合金への水素ガスの吸
蔵が起こらない温度に維持された水素ガス雰囲気中で適
当時間保持することにより、粉末表面の被膜を水素ガス
によって還元し、粉末表面にNi活性面が露出するよう
にしたものである。
In order to solve the above-mentioned problems, the present invention provides a Ni-containing hydrogen storage device having a coating film of at least a Ni oxide or a Ni hydroxide present on the surface before preparation of a hydrogen storage alloy electrode. By holding the alloy powder for a suitable time in a hydrogen gas atmosphere maintained at a temperature at which hydrogen gas does not occlude into the alloy, the coating film on the powder surface is reduced by hydrogen gas, and a Ni active surface is formed on the powder surface. It was exposed.

【0007】水素ガス雰囲気の温度を、水素吸蔵合金が
水素ガスを吸蔵しない温度以上とするのは、この温度よ
りも低温の水素ガス雰囲気中に水素吸蔵合金を保持する
と、水素ガスは、合金粉体表面の酸化物又は水酸化物の
被膜の還元に寄与せず、合金粉体の表面から内部に吸収
されてしまうからである。水素ガス雰囲気の温度が上昇
すると、水素吸蔵合金の平衡水素圧が高くなって合金の
水素吸収は起こらなくなり、雰囲気中の水素ガスは、粉
体表面に存在する酸化物等の被膜に作用し、合金表面の
Ni酸化物等を還元して、Niの金属状態にする。水素
ガス雰囲気の温度範囲の上限は、水素吸蔵合金の組織が
熱による拡散作用を実質的に受けない温度が好ましい。
水素吸蔵合金が熱影響を受けて組織が乱れると、合金自
体の活性が低下するからである。水素ガス雰囲気の温度
は、合金の種類にもよるが、後記するMmNi3.1Co
Al0.3Mn0.6の場合だと、約100℃〜500℃で処
理することが望ましい。
The temperature of the hydrogen gas atmosphere is set to a temperature at which the hydrogen storage alloy does not store the hydrogen gas or more. When the hydrogen storage alloy is held in the hydrogen gas atmosphere at a temperature lower than this temperature, the hydrogen gas becomes an alloy powder. This is because it does not contribute to the reduction of the oxide or hydroxide film on the body surface and is absorbed inside from the surface of the alloy powder. When the temperature of the hydrogen gas atmosphere rises, the equilibrium hydrogen pressure of the hydrogen-absorbing alloy becomes high and the hydrogen absorption of the alloy does not occur, and the hydrogen gas in the atmosphere acts on the film such as oxides present on the powder surface, Ni oxide or the like on the surface of the alloy is reduced to a Ni metallic state. The upper limit of the temperature range of the hydrogen gas atmosphere is preferably a temperature at which the structure of the hydrogen storage alloy is not substantially affected by heat.
This is because when the hydrogen storage alloy is thermally affected and the structure is disturbed, the activity of the alloy itself is reduced. The temperature of the hydrogen gas atmosphere depends on the type of alloy, but it will be described later in MmNi 3.1 Co.
In the case of Al 0.3 Mn 0.6 , it is desirable to process at about 100 ° C to 500 ° C.

【0008】還元処理を行なう水素ガス雰囲気の圧力
は、水素ガスが合金中に吸収されるのを防止するため
に、上記温度範囲での水素吸蔵合金の平衡水素圧よりも
低く設定する必要がある。また、水素ガス雰囲気の圧力
は、処理雰囲気の外部から水素ガス雰囲気中に不純物ガ
スが混入するのを防止するために、大気圧よりも高い圧
力にする必要があり、一般的には、大気圧を越えて、1
0atmまでで行なうことが適当である。特に、1.1atm
〜5atmで行なうことが望ましい。最良の特性を得るた
めには、2atm〜5atmが望ましい。
The pressure of the hydrogen gas atmosphere for the reduction treatment must be set lower than the equilibrium hydrogen pressure of the hydrogen storage alloy in the above temperature range in order to prevent the hydrogen gas from being absorbed in the alloy. . Further, the pressure of the hydrogen gas atmosphere needs to be higher than the atmospheric pressure in order to prevent the impurity gas from being mixed into the hydrogen gas atmosphere from the outside of the processing atmosphere. Beyond 1
It is appropriate to carry out up to 0 atm. Especially 1.1 atm
It is desirable to carry out at ~ 5 atm. In order to obtain the best characteristics, 2 atm to 5 atm is desirable.

【0009】水素ガス雰囲気中での保持時間は、合金表
面のNi酸化物又はNi水酸化物の被膜が完全に還元さ
れるように十分な時間とする。具体的には、合金粉末の
処理量、その他条件にもよるが、0.5時間以上が望ま
しい。
The holding time in the hydrogen gas atmosphere is set to a sufficient time so that the Ni oxide or Ni hydroxide film on the alloy surface is completely reduced. Specifically, depending on the amount of alloy powder to be treated and other conditions, 0.5 hours or more is desirable.

【0010】[0010]

【発明の実施の形態】水素吸蔵合金粉末の調製方法は、
特定の方法に限定されるものでなく、機械化粉砕、水素
化粉砕、ガスアトマイズ法等により得ることができる。
なお、実施例2にて詳述するとおり、本発明の水素ガス
還元処理は、ガスアトマイズ法によって調製された粉末
に適用すると、特に優れた効果を奏する。本発明の水素
ガスによる還元処理は、得られた水素吸蔵合金粉末に対
して直接行なってもよいし、水素吸蔵合金粉末に上記酸
処理、または後記するアルカリ処理を施した後に行なっ
てもよい。
BEST MODE FOR CARRYING OUT THE INVENTION A method for preparing a hydrogen storage alloy powder is as follows.
The method is not limited to a particular method, and can be obtained by mechanized pulverization, hydrogenated pulverization, gas atomization method or the like.
As described in detail in Example 2, the hydrogen gas reduction treatment of the present invention exerts a particularly excellent effect when applied to the powder prepared by the gas atomizing method. The reduction treatment with hydrogen gas of the present invention may be performed directly on the obtained hydrogen storage alloy powder, or may be performed after subjecting the hydrogen storage alloy powder to the acid treatment or the alkali treatment described below.

【0011】アルカリ処理は、調製された水素吸蔵合金
粉末を、約60℃〜80℃のアルカリ水溶液に浸漬し、
粉末表面に均一な酸化物及び水酸化物の被膜を形成する
ことにより、粉末の耐食性を向上させる処理である(例
えば、特開昭63−175339参照)。アルカリ処理
後は、アルカリ水溶液の残存成分を除去するために、水
洗し、乾燥させることが望ましい。アルカリ水溶液とし
て、水酸化カリウム水溶液を用いることができる。アル
カリ処理により、粉末表面にNi酸化物及びNi水酸化
物の被膜を予め形成しておくと、粉末表面のNi濃度が
増すため、その後の水素還元処理により、粉末表面で金
属状態に還元されるNi量が多くなり、Niの活性面が
増える利点がある。
In the alkali treatment, the prepared hydrogen storage alloy powder is immersed in an alkaline aqueous solution at about 60 ° C to 80 ° C,
This is a treatment for improving the corrosion resistance of the powder by forming a uniform oxide and hydroxide film on the surface of the powder (see, for example, JP-A-63-175339). After the alkali treatment, it is desirable to wash with water and dry in order to remove the remaining components of the alkali aqueous solution. An aqueous potassium hydroxide solution can be used as the alkaline aqueous solution. If the Ni oxide and Ni hydroxide coatings are previously formed on the powder surface by the alkali treatment, the Ni concentration on the powder surface increases, so that the hydrogen reduction treatment after that reduces the powder surface to a metal state. There is an advantage that the amount of Ni increases and the active surface of Ni increases.

【0012】水素ガスによる還元処理を施した水素吸蔵
合金粉末からの電極の作製は、公知の方法により行なう
ことができる。例えば、電極は、該粉末を結着剤と混合
してペーストを作製し、このペーストをパンチングメタ
ル、発泡メタル、ニッケルメッシュ等の芯体に塗着し、
乾燥後、所望の寸法に切断することにより得ることがで
きる。なお、ペーストには、必要に応じてニッケル粉末
等の導電材を混合することもできる。
An electrode can be produced from a hydrogen storage alloy powder that has been subjected to a reduction treatment with hydrogen gas by a known method. For example, for the electrode, a paste is prepared by mixing the powder with a binder, and the paste is applied to a core body such as punching metal, foam metal or nickel mesh,
After drying, it can be obtained by cutting into desired dimensions. The paste may be mixed with a conductive material such as nickel powder, if necessary.

【0013】水素ガスによる還元処理は、水素吸蔵合金
粉末表面に形成されるNi酸化物又はNi水酸化物の被
膜に対して特に有効であるが、Ni以外にCo酸化物又
はCo水酸化物に対しても同様に金属状態への還元効果
が得られる。
The reduction treatment with hydrogen gas is particularly effective for the Ni oxide or Ni hydroxide coating formed on the surface of the hydrogen storage alloy powder, but for Ni oxide or Co hydroxide in addition to Ni. Similarly, the reduction effect to the metallic state can be obtained.

【0014】[0014]

【実施例】以下、実施例を挙げて本発明を説明する。実施例1 この実施例では、機械粉砕法により得た水素吸蔵合金粉
末に対して、水素ガス還元処理を行なった後、試験セル
用電極とアルカリ蓄電池用電極を作製し、夫々、試験セ
ルとアルカリ蓄電池を組み立てて、初期放電容量を調べ
た。 [粉末の調製]実施例で使用した水素吸蔵合金は、Mm
(ミッシュメタル)、Ni(純度99.9%)、Co、A
l、Mnをモル比1.0:3.1:1.0:0.3:0.6
の割合で含有し、組成式MmNi3.1CoAl0.3Mn
0.6で表わされるものを使用した。水素吸蔵合金粉末
は、機械化粉砕法により平均粒径約80μmに調製さ
れ、粉末表面には酸化物の被膜が形成されている。 [酸処理]水素吸蔵合金粉末を室温にて0.5Nの塩酸
に2時間浸漬し、吸引瀘過の後、水洗乾燥した。 [アルカリ処理]水素吸蔵合金粉末を、80℃の30重
量%水酸化カリウム水溶液に2時間浸漬処理し、吸引瀘
過の後、水洗乾燥した。 [水素ガスによる還元処理]水素吸蔵合金粉末を、ステ
ンレス製の耐熱・耐圧容器に充填し、真空排気した後、
300℃に加熱し、300℃に維持された容器内に2at
mの水素ガスを導入し、0.5時間保持した。
The present invention will be described below with reference to examples. Example 1 In this example, a hydrogen storage alloy powder obtained by a mechanical pulverization method was subjected to a hydrogen gas reduction treatment, and then an electrode for a test cell and an electrode for an alkaline storage battery were produced. The storage battery was assembled and the initial discharge capacity was examined. [Preparation of powder] The hydrogen storage alloy used in the examples is Mm.
(Misch metal), Ni (purity 99.9%), Co, A
1 and Mn in a molar ratio of 1.0: 3.1: 1.0: 0.3: 0.6.
The composition formula is MmNi 3.1 CoAl 0.3 Mn
The one represented by 0.6 was used. The hydrogen storage alloy powder is prepared to have an average particle size of about 80 μm by a mechanical grinding method, and an oxide film is formed on the powder surface. [Acid treatment] The hydrogen-absorbing alloy powder was immersed in 0.5N hydrochloric acid at room temperature for 2 hours, suction-filtered, washed with water and dried. [Alkali treatment] The hydrogen-absorbing alloy powder was immersed in a 30 wt% potassium hydroxide aqueous solution at 80 ° C for 2 hours, suction-filtered, washed with water and dried. [Reduction treatment with hydrogen gas] Hydrogen storage alloy powder was filled in a heat-resistant and pressure-resistant container made of stainless steel, which was evacuated,
2 at in a container heated to 300 ℃ and maintained at 300 ℃
Hydrogen gas of m was introduced and the temperature was maintained for 0.5 hour.

【0015】[試験セル用の電極の作製]各水素吸蔵合
金粉末0.5gを、結着剤(ポリテトラフルオロエチレ
ン:PTFE)0.1gと混合して発泡ニッケル多孔体に
充填し、1.2ton/cm2で加圧成形して、直径20mmの水
素吸蔵合金電極を作製した。 [試験セルの組立]得られた水素吸蔵合金電極を負極
(2)として用いた試験セル(1)を組み立てた。試験セル
(1)は、図1に示す如く、円筒状のポリプロピレン製密
閉容器(11)の上蓋(12)から、負極(2)である水素吸蔵合
金電極、正極(3)である円筒状の焼結式ニッケル極と、
参照極(4)である板状の焼結式ニッケル極が夫々吊り下
げ支持されている。上蓋(12)には、圧力計(15)とリリー
フバルブ(逃し弁)(16)からなるリリーフ管(14)を具えて
いる。容器(1)の内部には、30重量%の水酸化カリウ
ム水溶液(L)が充填されている。正極(3)は、負極の水
素吸蔵合金電極よりも充分に大きな電気化学容量を持つ
電極であって、上蓋(12)を貫通する正極リード(31)によ
り支持されている。また、負極(2)は、正極の円筒内の
ほぼ中央に垂直に位置するように、上蓋(12)を貫通する
負極リード(21)により支持されている。正極リード(3
1)、負極リード(21)の他端は、夫々上蓋の上部で正極端
子(32)、負極端子(22)に接続されている。リリーフ管(1
4)は、容器の内圧が所定圧以上に上昇するのを防止する
ために設けられており、リリーフバルブ(16)の調節によ
り、容器の内圧は一定に保たれる。 [試験セルの初期放電容量の測定]上記構成の試験セル
の負極として、各供試電極を使用し、常温下、50mA/g
で8時間充電し、1時間休止した後、50mA/gで放電休
止電圧0.9Vまで放電し、1時間休止する工程を1サ
イクルとする充放電サイクルを行なって、初期放電容量
(mAh/g)を測定した。
[Preparation of Electrode for Test Cell] 0.5 g of each hydrogen-absorbing alloy powder was mixed with 0.1 g of a binder (polytetrafluoroethylene: PTFE) and filled in a foamed nickel porous body to prepare 1. By pressure forming at 2 ton / cm 2 , a hydrogen storage alloy electrode having a diameter of 20 mm was produced. [Assembly of test cell] The obtained hydrogen storage alloy electrode was used as a negative electrode
The test cell (1) used as (2) was assembled. Test cell
(1) is, as shown in FIG. 1, a cylindrical polypropylene closed container (11), an upper lid (12), a hydrogen storage alloy electrode as a negative electrode (2), and a cylindrical sintering as a positive electrode (3). Formula nickel pole,
Plate-shaped sintered nickel electrodes, which are reference electrodes (4), are suspended and supported. The upper lid (12) is equipped with a pressure gauge (15) and a relief pipe (14) comprising a relief valve (16). The container (1) is filled with a 30% by weight aqueous solution of potassium hydroxide (L). The positive electrode (3) has an electrochemical capacity sufficiently larger than that of the negative electrode hydrogen storage alloy electrode, and is supported by the positive electrode lead (31) penetrating the upper lid (12). Further, the negative electrode (2) is supported by a negative electrode lead (21) penetrating through the upper lid (12) so as to be positioned substantially vertically at the center of the positive electrode in the cylinder. Positive lead (3
1), the other end of the negative electrode lead (21) is connected to the positive electrode terminal (32) and the negative electrode terminal (22) at the upper part of the upper lid, respectively. Relief tube (1
4) is provided to prevent the internal pressure of the container from rising above a predetermined pressure, and the internal pressure of the container is kept constant by adjusting the relief valve (16). [Measurement of initial discharge capacity of test cell] Each test electrode was used as a negative electrode of the test cell having the above-mentioned configuration, and 50 mA / g at room temperature.
After charging for 8 hours at room temperature for 1 hour, discharging at 50mA / g to discharge rest voltage of 0.9V, and then resting for 1 hour.
(mAh / g) was measured.

【0016】[アルカリ蓄電池用の電極の作製]供試用
の各水素吸蔵合金粉末100重量部と、結着剤ポリエチ
レンオキサイド(PEO)5重量%の水溶液20重量部と
を混合してペーストを調製し、このペーストをニッケル
メッキを施したパンチングメタルからなる芯体の両面に
塗着し、室温で乾燥した後、所定の寸法に切断して、水
素吸蔵合金電極を作製した。この水素吸蔵合金電極を負
極として、AAサイズの正極支配型のアルカリ蓄電池
(電池容量1000mAh)を作製した。 [アルカリ蓄電池の組立]アルカリ蓄電池(5)は、図2
に示す如く、正極(6)及び負極(7)が、セパレータ(8)
を介して巻取られた状態で、負極缶(51)内に収容されて
いる。正極(6)は、正極リード(61)を介して封口蓋(52)
に接続され、負極(7)は負極リード(71)を介して負極缶
(51)に接続されている。負極缶(51)の内部には、電解液
が充填されており、封口蓋(52)との接合部には絶縁性の
パッキン(53)が設けられ、電池は密閉されている。封口
蓋(52)の上部には、コイルスプリング(54)を介して正極
外部端子(62)が連繋されており、電池内圧が異常上昇す
ると、コイルスプリング(54)が圧縮されて、電池内部の
ガスが大気中に放出される構成である。正極(6)は公知
の焼結式ニッケル極、セパレータ(8)は耐アルカリ性の
不織布を使用し、電解液は30重量%の水酸化カリウム
水溶液を使用した。 [アルカリ蓄電池の初期放電容量の測定]供試用の各水
素吸蔵合金粉末から構成された電極を負極とする各アル
カリ蓄電池について、常温にて電流0.2Cで6時間充
電した後、電流0.2Cで1.0Vまで放電し、初期放電
容量(1サイクル目の放電容量、mAh)を測定した。
[Preparation of Electrode for Alkaline Storage Battery] 100 parts by weight of each hydrogen storage alloy powder to be tested and 20 parts by weight of an aqueous solution of 5% by weight of polyethylene oxide (PEO) as a binder were mixed to prepare a paste. This paste was applied to both surfaces of a nickel-plated punched metal core, dried at room temperature, and then cut into a predetermined size to prepare a hydrogen storage alloy electrode. Using this hydrogen storage alloy electrode as a negative electrode, an AA size positive electrode-dominated alkaline storage battery
(Battery capacity 1000 mAh) was prepared. [Assembly of alkaline storage battery] The alkaline storage battery (5) is shown in FIG.
As shown in, the positive electrode (6) and the negative electrode (7) are separated by the separator (8).
It is housed in the negative electrode can (51) in a state of being wound via. The positive electrode (6) is provided with a sealing lid (52) via a positive electrode lead (61).
And the negative electrode (7) is connected to the negative electrode can via the negative electrode lead (71).
It is connected to (51). The inside of the negative electrode can (51) is filled with an electrolytic solution, and an insulating packing (53) is provided at a joint with the sealing lid (52), and the battery is sealed. The positive electrode external terminal (62) is connected to the upper part of the sealing lid (52) through the coil spring (54). When the battery internal pressure rises abnormally, the coil spring (54) is compressed to This is a configuration in which gas is released into the atmosphere. A known sintered nickel electrode was used for the positive electrode (6), an alkali resistant non-woven fabric was used for the separator (8), and a 30 wt% potassium hydroxide aqueous solution was used as the electrolytic solution. [Measurement of initial discharge capacity of alkaline storage battery] For each alkaline storage battery having an electrode composed of each hydrogen storage alloy powder for a test as a negative electrode, the battery was charged at a current of 0.2C for 6 hours at room temperature and then a current of 0.2C. Was discharged to 1.0 V and the initial discharge capacity (first cycle discharge capacity, mAh) was measured.

【0017】[試験結果]供試用の各水素吸蔵合金粉末
について、酸処理及びアルカリ処理の有無、水素ガス還
元処理の有無と共に、試験セルの初期放電容量及びアル
カリ蓄電池の初期放電容量の測定結果を表1に示す。
[Test Results] For each hydrogen storage alloy powder to be tested, the results of measurement of the initial discharge capacity of the test cell and the initial discharge capacity of the alkaline storage battery, together with the presence or absence of acid treatment and alkali treatment and the presence or absence of hydrogen gas reduction treatment, are shown. It shows in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】表1において、酸処理、アルカリ処理、水
素ガス還元処理の欄中、「○」印は当該処理を行なった
ことを意味し、「×」印は当該処理を行なわなかったこ
とを意味する。表1の結果から明らかなように、水素ガ
スによる還元処理を施した供試粉末No.1〜No.3からな
る電極は、水素ガスによる還元処理を施していない粉末
No.4〜6からなる電極に比べて、単位重量当りの放電
容量(mAh/g)であっても、アルカリ蓄電池の放電容量(mA
h)であっても、初期放電容量が大きく、初期活性に優れ
ている。これは、水素吸蔵合金粉末に水素ガスによる還
元処理を施すことにより、粉末表面の酸化物被膜、特に
粉末表面のNi及びCo部分に形成された酸化物被膜
が、金属状態に還元されて、粉末の表面が活性になった
と考えられる。また、水素ガスによる還元処理を施した
粉末のうち、酸処理またはアルカリ処理を施した粉末N
o.2及びNo.3から作製された電極は、酸処理、アルカ
リ処理のどちらの処理も施していない粉末No.1から作
製された電極よりも、初期放電容量がさらに優れている
ことがわかる。No.2は、酸処理により、表面の酸化物
の被膜が、水素ガス還元処理前に既にある程度除去され
たものと考えられる。No.3は、アルカリ処理によって
粉末表面に形成されたNi酸化物、Ni水酸化物、Co
酸化物、Co水酸化物等の被膜が、その後の水素ガス還
元処理により、Ni、Coの金属状態により多く還元さ
れたためと考えられる。
In Table 1, in the columns of acid treatment, alkali treatment, and hydrogen gas reduction treatment, "○" means that the treatment was performed, and "X" means that the treatment was not performed. To do. As is clear from the results in Table 1, the electrodes made of the test powders No. 1 to No. 3 which have been subjected to the reduction treatment with hydrogen gas are powders which have not been subjected to the reduction treatment with hydrogen gas
Even if the discharge capacity per unit weight (mAh / g) is higher than that of the electrodes consisting of No. 4 to 6, the discharge capacity (mAh) of alkaline storage battery
Even in h), the initial discharge capacity is large and the initial activity is excellent. This is because when the hydrogen storage alloy powder is subjected to a reduction treatment with hydrogen gas, the oxide coating on the powder surface, particularly the oxide coating formed on the Ni and Co portions of the powder surface, is reduced to a metal state, It is thought that the surface of the is activated. Further, among the powders subjected to the reduction treatment with hydrogen gas, the powder N subjected to the acid treatment or the alkali treatment
It can be seen that the electrodes prepared from No. 2 and No. 3 have a better initial discharge capacity than the electrodes prepared from No. 1 powder which has not been subjected to either acid treatment or alkali treatment. . In No. 2, it is considered that the oxide film on the surface was already removed to some extent by the acid treatment before the hydrogen gas reduction treatment. No. 3 is Ni oxide, Ni hydroxide, Co formed on the powder surface by alkali treatment.
It is considered that the coating film of oxide, Co hydroxide or the like was more reduced by the metallic state of Ni and Co by the subsequent hydrogen gas reduction treatment.

【0020】実施例2 この実施例では、ガスアトマイズ法により得た水素吸蔵
合金粉末に対して、水素ガス還元処理を行なった後、試
験セル用電極とアルカリ蓄電池用電極を作製し、試験セ
ルとアルカリ蓄電池を組み立てて、夫々での初期放電容
量を調べた。使用した粉末の作製法以外は、全て実施例
1と同じである。なお、ここで用いたガスアトマイズ法
は、合金溶湯をアルゴンガスにより噴霧し、球状に形成
させるものである。供試用の各水素吸蔵合金粉末につい
て、酸処理及びアルカリ処理の有無、水素ガス還元処理
の有無と共に、試験セルの初期放電容量及びアルカリ蓄
電池の初期放電容量の測定結果を表2に示す。
Example 2 In this example, a hydrogen storage alloy powder obtained by a gas atomization method was subjected to hydrogen gas reduction treatment, and then a test cell electrode and an alkaline storage battery electrode were prepared. Storage batteries were assembled and the initial discharge capacity of each was examined. Except for the method of producing the powder used, the procedure is the same as in Example 1. The gas atomizing method used here is a method in which a molten alloy is sprayed with argon gas to form a spherical shape. Table 2 shows the measurement results of the initial discharge capacity of the test cell and the initial discharge capacity of the alkaline storage battery as well as the presence or absence of acid treatment and alkali treatment and the presence or absence of hydrogen gas reduction treatment for each hydrogen storage alloy powder for the test.

【0021】[0021]

【表2】 [Table 2]

【0022】表2から明らかなように、水素ガスによる
還元処理を施した供試粉末No.7〜No.9からなる電極
は、水素ガスによる還元処理を施していない粉末No.1
0〜12からなる電極に比べて、単位重量当りの放電容
量(mAh/g)であっても、アルカリ蓄電池の放電容量(mAh)
であっても、初期放電容量が大きく、初期活性に優れて
いる。このように、実施例2のガスアトマイズ粉末も、
上記実施例1の機械粉砕粉末と同じ様な傾向を示すこと
がわかる。なお、表1の粉末No.1〜3と、表2の粉末N
o.6〜8を比較すると、後者の方が放電容量が若干大き
くなっている。この理由として、ガスアトマイズ法によ
り作製した粉末の方が、球形に近く、機械粉砕粉末より
も粉末の表面積が大きいためと考えられる。また、表1
の粉末No.4の初期放電容量(試験セル:222mAh/g、ア
ルカリ蓄電池:620mAh)と粉末No.1の初期放電容量
(試験セル:285mAh/g、アルカリ蓄電池:820mAh)、
更に表2の粉末No.10の初期放電容量(試験セル:17
0mAh/g、アルカリ蓄電池:580mAh)と粉末No.7の初
期放電容量(試験セル:292mAh/g、アルカリ蓄電池:8
40mAh)を比較する。これより、ガスアトマイズ法によ
り得た水素吸蔵合金粉末に水素ガス還元処理を施した合
金粉末の方が、鋳造の機械化粉砕粉末に水素ガス還元処
理を施した合金よりも初期放電容量の上昇率が顕著であ
る。従って、本発明方法は、鋳造の機械化粉砕粉末より
も、ガスアトマイズ法で得た水素吸蔵合金粉末に実施し
た方が、より優れた効果を奏することが判る。
As is clear from Table 2, the electrodes made of the test powders No. 7 to No. 9 which have been subjected to the reduction treatment with hydrogen gas have the powder No. 1 which has not been subjected to the reduction treatment with hydrogen gas.
Even if the discharge capacity per unit weight (mAh / g) is higher than that of an electrode consisting of 0 to 12, the discharge capacity (mAh) of an alkaline storage battery
However, the initial discharge capacity is large and the initial activity is excellent. Thus, the gas atomized powder of Example 2 also
It can be seen that the same tendency as the mechanically pulverized powder of Example 1 above is exhibited. In addition, powder Nos. 1 to 3 in Table 1 and powder N in Table 2
Comparing o.6 to 8, the latter has a slightly larger discharge capacity. It is considered that this is because the powder produced by the gas atomization method has a more spherical shape and has a larger surface area than the mechanically pulverized powder. Table 1
Powder No. 4 initial discharge capacity (test cell: 222mAh / g, alkaline storage battery: 620mAh) and powder No. 1 initial discharge capacity
(Test cell: 285mAh / g, alkaline storage battery: 820mAh),
Furthermore, the initial discharge capacity of powder No. 10 in Table 2 (test cell: 17
0mAh / g, alkaline storage battery: 580mAh) and initial discharge capacity of powder No. 7 (test cell: 292mAh / g, alkaline storage battery: 8)
40 mAh). From this, the hydrogen storage alloy powder obtained by the gas atomization method, the hydrogen gas reduction treatment of the alloy powder, the increase rate of the initial discharge capacity is more remarkable than the alloy subjected to the hydrogen gas reduction treatment of the mechanized pulverized powder of casting Is. Therefore, it is understood that the method of the present invention is more effective when applied to the hydrogen storage alloy powder obtained by the gas atomizing method than to the mechanically pulverized powder for casting.

【0023】実施例3 この実施例では、X線光電子分光法(XPS)を用いて、
水素ガス還元処理前後に粉末の表面分析を行ない、粉末
の表面に存在するNi及びCoの酸化物または水酸化物
が、実際に金属状態に還元されているかどうかを測定し
た。Niに関する結果を図3、Coに関する結果を図4
に示す。なお、水素吸蔵合金の組成はMmNi3.1Co
Al0.3Mn0.6であり、粉末は機械化粉砕粉末を使用し
た。図3を参照すると、水素ガス還元処理前、Ni酸化
物とNi水酸化物のピークは、Niの金属原子よりも高
かったが、水素ガス還元処理後は、Ni酸化物とNi水
酸化物は殆んど検出されず、また、Niの金属原子のピ
ークはさらに高くなっていることがわかる。図4を参照
すると、CoについてもNiの場合と同じ様に、水素ガ
ス還元処理前には、Co水酸化物のピークは、Coの金
属原子よりも高かったが、水素ガス還元処理後は、Co
水酸化物の相対強度は低下し、これに代わってCoの金
属原子のピークが高くなっていることがわかる。図3及
び図4の結果から、粉末表面に存在するNi酸化物、N
i水酸化物、Co水酸化物は、水素ガス還元処理によっ
て金属状態に還元されていることが理解される。
Example 3 In this example, X-ray photoelectron spectroscopy (XPS) was used to
The surface of the powder was analyzed before and after the hydrogen gas reduction treatment, and it was measured whether the oxides or hydroxides of Ni and Co existing on the surface of the powder were actually reduced to the metallic state. The results for Ni are shown in FIG. 3, and the results for Co are shown in FIG.
Shown in The composition of the hydrogen storage alloy is MmNi 3.1 Co.
Al 0.3 Mn 0.6 , and the powder used was a mechanized pulverized powder. Referring to FIG. 3, the peaks of Ni oxide and Ni hydroxide before the hydrogen gas reduction treatment were higher than those of the metal atoms of Ni, but after the hydrogen gas reduction treatment, the Ni oxide and Ni hydroxide were It can be seen that the peaks of the metal atoms of Ni were even higher, with almost no detection. Referring to FIG. 4, similarly to Ni, the peak of Co hydroxide was higher than that of the metal atom of Co before hydrogen gas reduction treatment, but after hydrogen gas reduction treatment, Co
It can be seen that the relative strength of the hydroxide decreases, and the peak of the metal atom of Co increases instead of this. From the results of FIG. 3 and FIG. 4, Ni oxide and N existing on the powder surface
It is understood that i hydroxide and Co hydroxide are reduced to a metal state by the hydrogen gas reduction treatment.

【0024】実施例4 この実施例では、水素ガス雰囲気の温度を変えて、水素
吸蔵合金粉末の水素ガス還元処理を行ない、これら粉末
から、実施例1及び実施例2と同様の方法にて電極を作
製し、試験セル、アルカリ蓄電池に適用して放電試験を
行なった。その結果を表3に示す。なお、使用した水素
吸蔵合金の組成はMmNi3.1CoAl0.3Mn0.6であ
る。
Example 4 In this example, the temperature of the hydrogen gas atmosphere was changed and the hydrogen storage alloy powder was subjected to hydrogen gas reduction treatment. From these powders, electrodes were processed in the same manner as in Examples 1 and 2. Was prepared and applied to a test cell and an alkaline storage battery to perform a discharge test. Table 3 shows the results. The composition of the hydrogen storage alloy used is MmNi 3.1 CoAl 0. 3Mn 0.6.

【0025】[0025]

【表3】 [Table 3]

【0026】表3中、供試粉末No.13〜No.17は機械
粉砕により得た粉末であり、No.18〜No.22はガスア
トマイズ法により得た粉末である。どちらの粉末も、水
素ガス雰囲気の温度が100℃〜500℃のときに、単
位重量当りの放電容量(mAh/g)、アルカリ蓄電池の放電
容量(mAh)とも初期放電容量が高い値を示しているの対
し、水素ガス雰囲気の温度が50℃、550℃のもの
は、初期放電容量が低い。 この理由として、水素ガス
の雰囲気温度が50℃の場合、水素ガスは、粉体表面の
酸化被膜還元作用を行なわずに、粉体の表面から内部に
吸収されてしまうためと考えられる。また、水素ガスの
雰囲気温度が550℃の場合には、水素吸蔵合金は熱の
影響を強く受けて組織が乱れ、合金の活性が低下したた
めと考えられる。
In Table 3, sample powders No. 13 to No. 17 are powders obtained by mechanical grinding, and Nos. 18 to No. 22 are powders obtained by the gas atomizing method. Both powders show high initial discharge capacity in both discharge capacity (mAh / g) per unit weight and discharge capacity (mAh) of alkaline storage battery when the temperature of hydrogen gas atmosphere is 100 ℃ ~ 500 ℃. In contrast, when the hydrogen gas atmosphere temperature is 50 ° C. or 550 ° C., the initial discharge capacity is low. The reason for this is considered to be that when the atmospheric temperature of the hydrogen gas is 50 ° C., the hydrogen gas is absorbed from the inside of the powder surface without performing the oxide film reducing action on the powder surface. It is also considered that when the atmospheric temperature of the hydrogen gas is 550 ° C., the hydrogen storage alloy is strongly affected by heat and the structure is disturbed, and the activity of the alloy is lowered.

【0027】[0027]

【発明の効果】上記の如く、水素吸蔵合金粉末に水素ガ
ス還元処理を施すことにより、粉末表面に形成されたN
i酸化物、Ni水酸化物、Co酸化物、Co水酸化物等
の被膜をNi、Coの金属状態に還元することができる
ので、粉末の表面は活性度が高くなる。従って、この処
理を施した粉末から作製された電極は、活性に優れ、初
期放電容量も高いから、電極を電池等に組込んだ後に行
なう充放電サイクルの回数を少なくすることができる。
As described above, the hydrogen-occlusion alloy powder is subjected to hydrogen gas reduction treatment to form N formed on the powder surface.
Since the coating film of i oxide, Ni hydroxide, Co oxide, Co hydroxide or the like can be reduced to the metallic state of Ni or Co, the surface of the powder has high activity. Therefore, the electrode produced from the powder subjected to this treatment is excellent in activity and has a high initial discharge capacity, so that the number of charge / discharge cycles performed after the electrode is incorporated into a battery or the like can be reduced.

【0028】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The description of the above embodiments is for the purpose of illustrating the present invention and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】試験セルの斜視図である。FIG. 1 is a perspective view of a test cell.

【図2】アルカリ蓄電池の断面図である。FIG. 2 is a sectional view of an alkaline storage battery.

【図3】NiのXPS分析結果を示すグラフである。FIG. 3 is a graph showing the XPS analysis results of Ni.

【図4】CoのXPS分析結果を示すグラフである。FIG. 4 is a graph showing the XPS analysis results of Co.

【符号の説明】[Explanation of symbols]

(1) 試験セル (2) 負極 (5) アルカリ蓄電池 (7) 負極 (1) Test cell (2) Negative electrode (5) Alkaline storage battery (7) Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Ikuro Yonezu 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面に少なくともNi酸化物又はNi水
酸化物の被膜が存在するNi含有水素吸蔵合金の粉末か
ら、水素吸蔵合金電極を作製する方法に於いて、電極作
製前に、Ni含有水素吸蔵合金粉末を、合金への水素ガ
スの吸蔵が起こらない温度に維持された水素ガス雰囲気
中で保持する工程を有しており、粉末表面に水素ガスを
作用させて、粉末表面に存在するNi酸化物又はNi水
酸化物を還元し、粉末表面にNiの活性面を露出させる
ことを特徴とする水素吸蔵合金電極の作製方法。
1. A method for producing a hydrogen-absorbing alloy electrode from a powder of a Ni-containing hydrogen-occluding alloy having a coating film of at least a Ni oxide or a Ni hydroxide on the surface thereof. It has a step of holding the storage alloy powder in a hydrogen gas atmosphere maintained at a temperature at which hydrogen gas is not stored in the alloy. A method for producing a hydrogen storage alloy electrode, which comprises reducing an oxide or a Ni hydroxide to expose an active surface of Ni on a powder surface.
【請求項2】 Ni含有水素吸蔵合金の粉末はCoを含
有している請求項1に記載の水素吸蔵合金電極の作製方
法。
2. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the Ni-containing hydrogen storage alloy powder contains Co.
【請求項3】 水素ガス雰囲気中で保持する前に、Ni
含有水素吸蔵合金粉末を酸性水溶液に浸漬する工程を有
している請求項1又は2に記載の水素吸蔵合金電極の作
製方法。
3. Before holding in a hydrogen gas atmosphere, Ni
The method for producing a hydrogen storage alloy electrode according to claim 1 or 2, comprising a step of immersing the contained hydrogen storage alloy powder in an acidic aqueous solution.
【請求項4】 水素ガス雰囲気中で保持する前に、Ni
含有水素吸蔵合金粉末を60〜100℃のアルカリ水溶
液に浸漬する工程を有している請求項1又は2に記載の
水素吸蔵合金電極の作製方法。
4. Before holding in a hydrogen gas atmosphere, Ni
The method for producing a hydrogen storage alloy electrode according to claim 1 or 2, further comprising a step of immersing the contained hydrogen storage alloy powder in an alkaline aqueous solution at 60 to 100 ° C.
【請求項5】 ニッケル含有水素吸蔵合金粉末は、ガス
アトマイズ法によって調製された粉末であることを特徴
とする請求項1乃至請求項4の何れかに記載の水素吸蔵
合金電極の作製方法。
5. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the nickel-containing hydrogen storage alloy powder is a powder prepared by a gas atomizing method.
JP8042405A 1996-02-29 1996-02-29 Production of hydrogen storage alloy electrode Pending JPH09237628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8042405A JPH09237628A (en) 1996-02-29 1996-02-29 Production of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8042405A JPH09237628A (en) 1996-02-29 1996-02-29 Production of hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH09237628A true JPH09237628A (en) 1997-09-09

Family

ID=12635168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8042405A Pending JPH09237628A (en) 1996-02-29 1996-02-29 Production of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH09237628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066573A1 (en) * 1998-06-18 1999-12-23 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkaline storage battery and method for production thereof, and hydrogen absorbing alloy electrode for alkaline storage battery and method for production thereof
US6482277B2 (en) 2000-03-21 2002-11-19 Sanyo Electric Co., Ltd. Method of manufacturing hydrogen-absorbing alloy electrode
JP3662939B2 (en) * 1997-01-31 2005-06-22 三洋電機株式会社 Hydrogen storage alloy powder and method for producing the same
WO2018123579A1 (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Method for producing negative electrode material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3662939B2 (en) * 1997-01-31 2005-06-22 三洋電機株式会社 Hydrogen storage alloy powder and method for producing the same
WO1999066573A1 (en) * 1998-06-18 1999-12-23 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy for alkaline storage battery and method for production thereof, and hydrogen absorbing alloy electrode for alkaline storage battery and method for production thereof
US6482277B2 (en) 2000-03-21 2002-11-19 Sanyo Electric Co., Ltd. Method of manufacturing hydrogen-absorbing alloy electrode
WO2018123579A1 (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Method for producing negative electrode material

Similar Documents

Publication Publication Date Title
JP3214341B2 (en) Manufacturing method of hydrogen storage alloy for batteries
US6524746B2 (en) Hydrogen absorbing alloy powder and process for producing same
JP4309494B2 (en) Nickel metal hydride secondary battery
JP3393944B2 (en) Hydride rechargeable battery
JPH09237628A (en) Production of hydrogen storage alloy electrode
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
US5865874A (en) Hydrogen storage alloy
JPS59181459A (en) Metal oxide hydrogen battery
JP4183292B2 (en) Secondary battery
JP2001118597A (en) Alkaline secondary cell
WO1998054775A1 (en) Hydrogen storage alloy
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2001266865A (en) Manufacturing method of hydrogen storage alloy electrode
JP2000200612A (en) Rectangular alkaline secondary battery
JP2001223000A (en) Alkaline secondary battery
JP2001223001A (en) Manufacturing method of metallic alloys for hydrogen storage electrode
JP2003068293A (en) Nonsintered positive electrode, its manufacturing method and alkali storage battery using the positive electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH10255779A (en) Manufacture for nickel hydrogen storage battery
JP2000021398A (en) Alkaline secondary battery
JP2634859B2 (en) Electrode manufacturing method
JP2001266862A (en) Manufacturing method of hydrogen storage alloy electrode
JPH08148144A (en) Manufacture of hydrogen storage alloy electrode
JPH1196999A (en) Sealed nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216