JPS59181459A - Metal oxide hydrogen battery - Google Patents

Metal oxide hydrogen battery

Info

Publication number
JPS59181459A
JPS59181459A JP58053757A JP5375783A JPS59181459A JP S59181459 A JPS59181459 A JP S59181459A JP 58053757 A JP58053757 A JP 58053757A JP 5375783 A JP5375783 A JP 5375783A JP S59181459 A JPS59181459 A JP S59181459A
Authority
JP
Japan
Prior art keywords
metal
hydrogen
battery
metal oxide
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58053757A
Other languages
Japanese (ja)
Other versions
JPH0582024B2 (en
Inventor
Motoi Kanda
基 神田
Hiroichi Niki
仁木 博一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58053757A priority Critical patent/JPS59181459A/en
Publication of JPS59181459A publication Critical patent/JPS59181459A/en
Publication of JPH0582024B2 publication Critical patent/JPH0582024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a battery which acquires safe operation without leak of H2 by holding an internal pressure and also suppresses self discharging by using a metal which has an equilibrium plateur pressure at the specific temperature lower than the specific value as the hydrogen absorbing metal for negative plate. CONSTITUTION:A metal having the equilibrium plateur pressure of 1 atom or less at 20 deg.C is used as the hydrogen absorbing metal for hydrogen negative plate 1. As the hydrogen absorbing metal to be used, a metal of lanthanum, mesh metal, iron, titanium, vanadium, magnesium and nickel systems or an alloy of them or other element may be used. Such metal is used as the hydrogen negative plate by adequate method. Meanwhile silver oxide (AgO or Ag2O) or nickel oxy- hydroxide (NiOOH) are used as the positive plate 3 of metal oxide. These are placed closely through a separator 2 and accommodated within a reservoir 6. After adding the aqueous solution of alkali 10, the reservoir 6 is hermetically closed and thereby metal oxide hydrogen battery can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、金属酸化物を正極活物質とし、水素を負極活
物質とする、いわゆる金属酸化物・水素電池に係り、さ
らに詳しくは、その中で水素吸蔵金属を主要構成要素と
する水素負極を改良した金属酸化物・水素電池に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a so-called metal oxide/hydrogen battery in which a metal oxide is used as a positive electrode active material and hydrogen is used as a negative electrode active material. The present invention relates to a metal oxide/hydrogen battery with an improved hydrogen negative electrode whose main component is a hydrogen-absorbing metal.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

水素吸蔵金属を水素極の主要構成要素とする金属酸化物
・水素電池が注目を集めている。これは元来エネルギー
密度の大きなこの電池系を、容積効率的によυ有利にし
、かつより安全に作動させるようにすることにより、特
性的にも信頼性的にも優れた電池を得ることが可能とな
るためである。
Metal oxide hydrogen batteries that use hydrogen storage metal as the main component of the hydrogen electrode are attracting attention. By making this battery system, which originally has a high energy density, more advantageous in volumetric efficiency and operating it more safely, it is possible to obtain a battery with excellent characteristics and reliability. This is because it becomes possible.

従来は水素吸蔵金属として、LaNi5が最も多く試み
られており、かなり良好な結果が得られている。しかし
ながら、密閉された電池容器内の圧力は、水素吸蔵金属
を使わない場合(≦50 kg/ cmt)に比較し小
さくなったとはいえ、依然して常温では2〜5 kg 
/ cm2の値を示していて、例えばニッケルカドミウ
ム電池(0〜1 kg/ Cm’ )に比較すれば高い
圧力であるといえる。電池内の圧力がこのように大気圧
よりも大きいことは、電池容器の構造をある程度強いも
のにする必要がある他に、次の二つの欠点をもつ、一つ
は、電池内の水素気体分子はその分子直径が小さく、そ
のために密閉容器からどうしても徐々に大気へもれやす
く、安全性の面で望ましくないこと、もう一つは、その
結果水素極から吸蔵水素が放出されることになシ、容量
が低下して自己放電を招くことである。
Conventionally, LaNi5 has been tried most often as a hydrogen storage metal, and quite good results have been obtained. However, although the pressure inside the sealed battery container is lower than that in the case where hydrogen storage metal is not used (≦50 kg/cmt), it is still 2 to 5 kg/cmt at room temperature.
/cm2, which can be said to be a high pressure compared to, for example, a nickel cadmium battery (0 to 1 kg/cm'). The fact that the pressure inside the battery is higher than atmospheric pressure has the following two drawbacks, in addition to the need to make the structure of the battery container somewhat strong.One is that the hydrogen gas molecules inside the battery Because of its small molecular diameter, it tends to gradually leak into the atmosphere from a closed container, which is undesirable from a safety standpoint.Secondly, as a result, there is no possibility that occluded hydrogen will be released from the hydrogen electrode. , the capacity decreases and self-discharge occurs.

〔発明の目的〕[Purpose of the invention]

本発明は」1記の欠点を解消するものであり、金が酸化
物・水素電池の電池内圧を保持してH2が漏洩する小な
く電池の安全性を確保し、自己放電をも抑えた金属酸化
物・水素電池を提供する事を目的とするものである。
The present invention solves the drawbacks mentioned in 1. Gold is a metal that maintains the internal pressure of oxide/hydrogen batteries, ensures battery safety without leaking H2, and also suppresses self-discharge. The purpose is to provide oxide/hydrogen batteries.

〔発明の概要〕[Summary of the invention]

本発明け、水素吸蔵金属を主要構成要素とする水素極を
有する金属酸化物・水素電池において、該水素吸蔵金属
として20℃における平衡プラトー圧力がlatm以下
のものを用いたことを特徴とする。
The present invention is characterized in that a metal oxide/hydrogen battery having a hydrogen electrode having a hydrogen storage metal as a main component has an equilibrium plateau pressure of latm or less at 20° C. as the hydrogen storage metal.

使用する水素吸蔵金属は、ランタン(La)系。The hydrogen storage metal used is lanthanum (La).

ミツシュメタル(Mm )系、鉄(Fe)系、チタン(
T1)系、バナジウム(V)系、マグネシウム(Mg)
系、ニッケル(Ni)系などいずれでもよく、マたはそ
れら斤いしは他の元素との合金でもよいが、その平衡プ
ラトー圧が20℃でl atm以下を示すものであれば
よい。
Mitsushi metal (Mm) type, iron (Fe) type, titanium (
T1) type, vanadium (V) type, magnesium (Mg)
The material may be of any type, nickel (Ni) type, etc., or may be alloyed with other elements, as long as its equilibrium plateau pressure is latm or less at 20°C.

具体的には、 ANis−xMx で示されるものが挙げられる。なお上記において特にL
aNi 5−xIxの場合はX≧0.07 MmN i
 3−xFeXの場合はX≧2.1 、 MmNis−
xMnxの場合はX≧0.6とする事が好ましい。
Specifically, what is shown by ANis-xMx is mentioned. In addition, in the above, especially L
For aNi 5-xIx, X≧0.07 MmN i
In the case of 3-xFeX, X≧2.1, MmNis-
In the case of xMnx, it is preferable that X≧0.6.

さらに具体的にはLaNi4γA7o3.MmNitz
Mr+o、sが好ましい。
More specifically, LaNi4γA7o3. MmNitz
Mr+o, s is preferred.

これらの金属を適当な方法で水素電極とし、一方金属酸
化物電極としては、例えば、酸化銀(AgO捷たはAg
2O)あるいはニッケルオキシ水酸化物(Ni00H)
を用いて、これをセパレータを介して密着させて容器内
に収納し、これにアルカリ水溶液を加えてから容器を密
閉して、本発明に係わる金属酸化物・水素電池とするこ
とができる。
These metals can be used as hydrogen electrodes by an appropriate method, while metal oxide electrodes can be made using, for example, silver oxide (AgO oxide or Ag
2O) or nickel oxyhydroxide (Ni00H)
The metal oxide/hydrogen battery according to the present invention can be obtained by placing this in a container in close contact with each other via a separator, adding an alkaline aqueous solution to the container, and then sealing the container.

〔発明の実施例〕[Embodiments of the invention]

次に本発明を実施例にて説明する。水素吸蔵金属として
MmN i tzMn o、sを使用する。
Next, the present invention will be explained using examples. MmN i tzMno,s is used as the hydrogen storage metal.

まず、MmNi42Mno、sは、この元素組成に示さ
れる属酸元索の容量を、粉末状に破砕した後混合し、真
空アーク溶解炉にて溶解し、均一固溶体を得る。
First, MmNi42Mno,s is crushed into a powder having the capacity indicated by this elemental composition, mixed, and melted in a vacuum arc melting furnace to obtain a uniform solid solution.

次に、これを直径5 mm程度オでに破砕し、次にこれ
をいわゆる活性化処理することにより、水素の吸蔵放出
が容易に行なわれる状態とする。このとき金属は50〜
100μm程度の粉末状となる。
Next, this is crushed to a diameter of about 5 mm, and then subjected to a so-called activation treatment, thereby making it easy to absorb and release hydrogen. At this time, the metal is 50~
It becomes a powder with a size of about 100 μm.

活性化して100μm程度の粉末状となった金属と、ポ
リテトラフルオロエチレン(PTFE)の分散液を混合
して十分に混練した後圧さ0.5 mmのシート状物質
とする。このときの混合比は乾燥状態での値として、金
属: PTFE=90 : 10とした。
The activated metal, which has become a powder with a diameter of about 100 μm, and a dispersion of polytetrafluoroethylene (PTFE) are mixed and sufficiently kneaded to form a sheet-like material with a pressure of 0.5 mm. The mixing ratio at this time was metal:PTFE=90:10 as a value in a dry state.

このシート2枚をニッケルネットの両側から圧着して一
体化し、圧さ0.8 mmの水素極用の電極体とした。
These two sheets were pressed together from both sides of the nickel net to form an electrode body for a hydrogen electrode with a pressure of 0.8 mm.

一方、正極としては、ニッケル焼結体に活物質を含浸し
たNi00H[極を使用した。七)くレータとしでは厚
さ0.3 mmのポリアミドの不織布を使用し、電解液
は8 Mo 13 / A!のKOH容液全便用した。
On the other hand, as a positive electrode, a Ni00H electrode made of a nickel sintered body impregnated with an active material was used. 7) A polyamide nonwoven fabric with a thickness of 0.3 mm is used as the filter, and the electrolyte is 8 Mo 13 / A! KOH solution was used for all stools.

第1図は」1記の構成要素を電池に糾んだものである。FIG. 1 shows a battery in which the components listed in ``1'' are assembled.

1は負極、2はセパレータ、3け正極である。4および
5はそれぞれ負極および正極の端子であり、ステンレス
製容器6とは電気的に独立している。なお容器6け、電
池構成要素を組み込んだ後容接して密閉化している。寸
た7は内圧を測定するためのパイプで、8は圧力測定器
である。
1 is a negative electrode, 2 is a separator, and 3 is a positive electrode. 4 and 5 are negative and positive electrode terminals, respectively, and are electrically independent from the stainless steel container 6. The six containers were sealed and sealed after the battery components were assembled. Dimension 7 is a pipe for measuring internal pressure, and 8 is a pressure measuring device.

正極3はセパレータ2でU字につつみ、その両側から本
発明による負極1を接して配置し、アクリル族のホルダ
ー9で密着させた。10は電解液である。正極の容量は
1. OAh 、負極のMmN i 42Mno8は2
. OAh分のH2を吸収する量が充てんされている。
The positive electrode 3 was wrapped in a U-shape with a separator 2, and the negative electrode 1 according to the present invention was placed in contact with both sides of the positive electrode 3, and was brought into close contact with an acrylic holder 9. 10 is an electrolytic solution. The capacity of the positive electrode is 1. OAh, negative electrode MmN i 42Mno8 is 2
.. It is filled with an amount that absorbs H2 equivalent to OAh.

とノillヲ、最初l atm (Okg/ cm2)
の状態にした後、200mAhで5時間充電し、同じく
200mAで1.OVtで放電する(これを1サイクル
とする)ようにして4サイクル繰りかえし、5サイクル
の充電でやめた場合の圧力変化を第2図Aに示す。また
その後24時間経過した後5へ目の放′醒を行なった場
合の圧力変化と放電曲線を第3図BおよびDに示す。比
較のだめに水素吸蔵金属としてLaNi5を使用し、霜
1池作成方法は本実施例と全く間様にして、測定方法も
同一にした結果をそれぞれ@2図a 、 第3図す、d
に示す。なお、湯度はいずれも25℃である。
And no ill, first l atm (Okg/cm2)
After charging at 200mAh for 5 hours, the battery was charged at 200mAh for 1. FIG. 2A shows the pressure change when discharging at OVt (this is considered as one cycle) is repeated for 4 cycles, and charging is stopped after 5 cycles. Further, pressure changes and discharge curves are shown in FIGS. 3B and 3D when the eyes were awakened 24 hours later. For comparison, LaNi5 was used as the hydrogen storage metal, the frost 1 pond creation method was completely different from this example, and the measurement method was also the same.The results are shown in Figure 2a, Figure 3, and d, respectively.
Shown below. In addition, the hot water temperature was 25°C in all cases.

第2図かられかるように、LaNi5では充・酷1のた
びに電池内田力がその平惧5プラトー圧に向って−に昇
するのに対して、MmNit2’Mno、sではほとん
ど上昇しない。寸だ第3図に示すように、24時間放i
6すると、LaN+ sによる水素極の電池では電池内
圧が上昇し、しかも放′酷7時間が旬かくなり、明らか
に自己放電しているのに対し、MmNi 1Mn0.1
1 Kよる水素極の電池では圧力上昇も、自己放・(5
)もほとんどないことがわかる。
As can be seen from FIG. 2, in LaNi5, the battery Uchida force rises to - towards its average plateau pressure every time it is charged or broken, whereas in MmNit2'Mno,s it hardly rises. As shown in Figure 3, 24-hour radio
6, the internal pressure of the battery with a hydrogen electrode using LaN+s increased, and the 7 hours of exposure to the battery increased, clearly self-discharging occurred, whereas the battery with MmNi 1Mn0.1
In batteries with hydrogen electrodes at 1 K, the pressure rise is also caused by self-emission (5
) is also found to be almost non-existent.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば、安全で
しかも自己放電の極めて少ない金属酸化物・水素電池を
得ることができる。
As is clear from the above description, according to the present invention, it is possible to obtain a metal oxide/hydrogen battery that is safe and has extremely low self-discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる金属酸化物・水素電池の構造図
、第2図は5ザイクル充電までの電池内圧の変化を示す
曲線図、第3図は5サイクル充電終了後24時間放置し
たときの電池内圧変化とその後の放電曲線図。 1・・・水素負極、2・・・セパレータ、3・・・金属
酸化物正極、4.5・・・端子、6・・・電池容器、7
・・・圧力測定用パイプ、8・・・圧力計、10・・・
電解液。
Figure 1 is a structural diagram of the metal oxide/hydrogen battery according to the present invention, Figure 2 is a curve diagram showing changes in battery internal pressure up to 5 cycles of charging, and Figure 3 is when left for 24 hours after 5 cycles of charging. Fig. 2 is a diagram showing changes in battery internal pressure and subsequent discharge curves. DESCRIPTION OF SYMBOLS 1... Hydrogen negative electrode, 2... Separator, 3... Metal oxide positive electrode, 4.5... Terminal, 6... Battery container, 7
...Pipe for pressure measurement, 8...Pressure gauge, 10...
Electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 金属酸化物を活物質とする正極と、水素吸蔵合金を主成
分とし水素を活物質とする負極と、アルカリ性の電解液
と、該正極および該負極を分離するセパレータからなる
金属酸化物・水素電池において、前記水素吸蔵金属とし
て20°Cにおける平衡プラトー圧力がlatm以下の
ものを用いた事を特徴とする金属酸化物・水素電池。
A metal oxide/hydrogen battery consisting of a positive electrode containing a metal oxide as an active material, a negative electrode containing a hydrogen storage alloy as a main component and hydrogen as an active material, an alkaline electrolyte, and a separator that separates the positive electrode and the negative electrode. A metal oxide/hydrogen battery characterized in that the hydrogen storage metal has an equilibrium plateau pressure of latm or less at 20°C.
JP58053757A 1983-03-31 1983-03-31 Metal oxide hydrogen battery Granted JPS59181459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053757A JPS59181459A (en) 1983-03-31 1983-03-31 Metal oxide hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053757A JPS59181459A (en) 1983-03-31 1983-03-31 Metal oxide hydrogen battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6282430A Division JP3025770B2 (en) 1994-10-24 1994-10-24 Metal oxide / hydrogen battery

Publications (2)

Publication Number Publication Date
JPS59181459A true JPS59181459A (en) 1984-10-15
JPH0582024B2 JPH0582024B2 (en) 1993-11-17

Family

ID=12951684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053757A Granted JPS59181459A (en) 1983-03-31 1983-03-31 Metal oxide hydrogen battery

Country Status (1)

Country Link
JP (1) JPS59181459A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119059A (en) * 1984-07-04 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS6119060A (en) * 1984-07-04 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS61168871A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS6273564A (en) * 1985-09-26 1987-04-04 Toshiba Corp Metal oxide-hydrogen battery
JPS6280961A (en) * 1985-10-01 1987-04-14 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPS6280962A (en) * 1985-10-01 1987-04-14 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPS63131467A (en) * 1986-11-19 1988-06-03 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
US4837119A (en) * 1986-12-08 1989-06-06 Matsushita Electric Industrial Co., Ltd. Sealed storage battery and method for making its electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234A (en) * 1974-08-19 1976-04-17 Philips Nv
JPS53103910A (en) * 1977-02-23 1978-09-09 Matsushita Electric Ind Co Ltd Production of hydrogen occluded electrode
JPS53111439A (en) * 1977-03-03 1978-09-29 Philips Nv Rechargeable electrochemical battery enclosed from outer atmosphere and method of manufacturing same
JPS5416632A (en) * 1977-07-07 1979-02-07 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode
GB2003927A (en) * 1977-08-02 1979-03-21 Anvar Lanthanum and nickel based alloys their manufacture and their electrochemical applications
US4214043A (en) * 1978-02-03 1980-07-22 U.S. Philips Corporation Rechargeable electrochemical cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234A (en) * 1974-08-19 1976-04-17 Philips Nv
JPS53103910A (en) * 1977-02-23 1978-09-09 Matsushita Electric Ind Co Ltd Production of hydrogen occluded electrode
JPS53111439A (en) * 1977-03-03 1978-09-29 Philips Nv Rechargeable electrochemical battery enclosed from outer atmosphere and method of manufacturing same
JPS5416632A (en) * 1977-07-07 1979-02-07 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode
GB2003927A (en) * 1977-08-02 1979-03-21 Anvar Lanthanum and nickel based alloys their manufacture and their electrochemical applications
US4214043A (en) * 1978-02-03 1980-07-22 U.S. Philips Corporation Rechargeable electrochemical cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119059A (en) * 1984-07-04 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS6119060A (en) * 1984-07-04 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS61168871A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPH0586622B2 (en) * 1985-01-19 1993-12-13 Sanyo Electric Co
JPS6273564A (en) * 1985-09-26 1987-04-04 Toshiba Corp Metal oxide-hydrogen battery
JP2566912B2 (en) * 1985-09-26 1996-12-25 株式会社東芝 Nickel oxide / hydrogen battery
JPS6280961A (en) * 1985-10-01 1987-04-14 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPS6280962A (en) * 1985-10-01 1987-04-14 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH0642367B2 (en) * 1985-10-01 1994-06-01 松下電器産業株式会社 Alkaline storage battery
JPH0642368B2 (en) * 1985-10-01 1994-06-01 松下電器産業株式会社 Alkaline storage battery
JPS63131467A (en) * 1986-11-19 1988-06-03 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
US4837119A (en) * 1986-12-08 1989-06-06 Matsushita Electric Industrial Co., Ltd. Sealed storage battery and method for making its electrode

Also Published As

Publication number Publication date
JPH0582024B2 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH06103972A (en) Sealed type metal oxide hydrogen secondary battery
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
JPH11162505A (en) Nickel-hydrogen battery
JPS59181459A (en) Metal oxide hydrogen battery
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH0447676A (en) Manufacture of sealed storage battery
Miyamura et al. Characteristics of electrodes using amorphousAB2 hydrogen storage alloys
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JP2995893B2 (en) Nickel / metal hydride storage battery
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP2584075B2 (en) Manufacturing method of nickel-hydrogen storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3025770B2 (en) Metal oxide / hydrogen battery
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPH04188561A (en) Alkaline storage battery
JPS60119079A (en) Hydrogen absorption electrode
JPH0465067A (en) Formation method of nickel-hydrogen battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH0517659B2 (en)
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS62291862A (en) Enclosed nickel-hydrogen storage battery
JPS61292855A (en) Metal oxide and hydrogen cell