JP3393944B2 - Hydride rechargeable battery - Google Patents

Hydride rechargeable battery

Info

Publication number
JP3393944B2
JP3393944B2 JP01859995A JP1859995A JP3393944B2 JP 3393944 B2 JP3393944 B2 JP 3393944B2 JP 01859995 A JP01859995 A JP 01859995A JP 1859995 A JP1859995 A JP 1859995A JP 3393944 B2 JP3393944 B2 JP 3393944B2
Authority
JP
Japan
Prior art keywords
ions
electrolytic solution
molybdenum
hydrogen storage
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01859995A
Other languages
Japanese (ja)
Other versions
JPH08190931A (en
Inventor
浩 福永
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP01859995A priority Critical patent/JP3393944B2/en
Publication of JPH08190931A publication Critical patent/JPH08190931A/en
Application granted granted Critical
Publication of JP3393944B2 publication Critical patent/JP3393944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素化物二次電池に関
し、さらに詳しくは、充放電サイクル特性および高温貯
蔵特性が優れた水素化物二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydride secondary battery, and more particularly to a hydride secondary battery having excellent charge / discharge cycle characteristics and high temperature storage characteristics.

【0002】[0002]

【従来の技術】水素吸蔵合金は多量の水素を吸蔵、放出
する能力を有しており、これを負極活物質として用いた
水素化物二次電池は、アルカリ水溶液中においても電気
化学的に多量の水素の吸蔵、放出を行うことができる。
2. Description of the Related Art Hydrogen storage alloys have the ability to store and release a large amount of hydrogen. A hydride secondary battery using this as a negative electrode active material has a large electrochemical amount even in an alkaline aqueous solution. It can store and release hydrogen.

【0003】そして、この水素吸蔵合金を活物質とする
水素吸蔵合金電極を負極として用い、ニッケル電極を正
極として用いた水素化物二次電池では、次に示すような
反応式で電池反応が進行する。
Then, in a hydride secondary battery in which a hydrogen storage alloy electrode using this hydrogen storage alloy as an active material is used as a negative electrode and a nickel electrode is used as a positive electrode, a battery reaction proceeds according to the following reaction formula. .

【0004】 〔正極〕 Ni(OH)2 +OH- ⇔ NiOOH+H2 O+e- (1) 〔負極〕 M+H2 O+e- ⇔ M(H)+OH- (2) なお、上記式(2)中のMは、水素吸蔵合金を示す。[Positive electrode] Ni (OH) 2 + OH ⇔ NiOOH + H 2 O + e (1) [Negative electrode] M + H 2 O + e ⇔ M (H) + OH (2) Note that M in the above formula (2) is Indicates a hydrogen storage alloy.

【0005】上記式(1)および式(2)式において、
充電時は、反応が左から右に進む。つまり、負極では、
水素吸蔵合金(M)がアルカリ水溶液中の水(H2 O)
を電気分解し、水素(H)を吸蔵してM(H)となり、
水酸基(OH- )を生じる。そして、その水酸基(OH
- )が正極で水酸化ニッケル〔Ni(OH)2 〕と反応
して、NiOOHとなり、水(H2 O)を生じる。
In the above equations (1) and (2),
When charging, the reaction proceeds from left to right. That is, at the negative electrode,
Hydrogen storage alloy (M) is water (H 2 O) in alkaline aqueous solution
Is electrolyzed to absorb hydrogen (H) and become M (H),
A hydroxyl group (OH ) is produced. And the hydroxyl group (OH
- ) Reacts with nickel hydroxide [Ni (OH) 2 ] at the positive electrode to become NiOOH, producing water (H 2 O).

【0006】放電の場合は、この逆反応が生じ、反応が
右から左に進む。つまり、負極ではM(H)が水素を放
出して水素吸蔵合金(M)に戻る。このように、負極で
は充電で水素の吸蔵が生じ、放電で水素の放出が生じ
る。
In the case of discharge, this reverse reaction occurs and the reaction proceeds from right to left. That is, in the negative electrode, M (H) releases hydrogen and returns to the hydrogen storage alloy (M). As described above, in the negative electrode, hydrogen is occluded by charging and hydrogen is released by discharging.

【0007】このような水素吸蔵合金を負極活物質とし
て用いた水素吸蔵合金電極では、高容量化を図るため、
水素吸蔵合金としてAB2 型水素吸蔵合金やAB5 型水
素吸蔵合金などが用いられているが、これらの水素吸蔵
合金では、その構成元素であるZr、Ti、V、Mm
〔Mmとはミッシュメタルのことであり、このミッシュ
メタルは、通常、モナズ石からトリウムを抽出したの
ち、残渣の塩化物を電解して得られ、La(ランタ
ン)、セリウム(Ce)およびその他の軽希土類元素を
含んでいる〕などが、高温で貯蔵すると、アルカリ電解
液中で水素を発生しながら腐食し、正極に堆積して、正
極の活性を低下させ、劣化を招く。
In the hydrogen storage alloy electrode using such a hydrogen storage alloy as the negative electrode active material, in order to increase the capacity,
AB 2 type hydrogen storage alloys and AB 5 type hydrogen storage alloys are used as hydrogen storage alloys. In these hydrogen storage alloys, the constituent elements Zr, Ti, V and Mm are used.
[Mm is a misch metal, and this misch metal is usually obtained by extracting thorium from monazite and then electrolyzing the residual chloride to obtain La (lanthanum), cerium (Ce) and other When it is stored at a high temperature, it is corroded while generating hydrogen in the alkaline electrolyte and is deposited on the positive electrode, reducing the activity of the positive electrode and causing deterioration.

【0008】また、これらの構成元素は、充放電サイク
ル中に過充電時に正極から発生する酸素により一部酸化
され、水素の吸蔵能力が低下して、水素ガスが発生し
て、電池の内圧が上昇し、電池内から水素や電解液が漏
出するため、サイクル劣化を引き起こす。
Further, these constituent elements are partially oxidized by oxygen generated from the positive electrode during overcharge during the charge / discharge cycle, the hydrogen storage capacity is lowered, hydrogen gas is generated, and the internal pressure of the battery increases. As the temperature rises and hydrogen and electrolyte leak out from the battery, cycle deterioration is caused.

【0009】この水素吸蔵合金電極を負極に用いた水素
化物二次電池において、正極として用いるニッケル電極
としては、焼結式のニッケル電極、ペースト式のニッケ
ル電極のいずれもが使用可能であるが、最近では、高容
量化、低価格化を図るため、その基体に空隙率95体積
%以上で、孔径が数μmから100μm程度の微細孔を
多数有する金属発泡体または繊維状金属多孔体を使用
し、この基体の空隙に水酸化ニッケルを主体とする活物
質ペーストを充填したペースト式のニッケル電極が多用
されるようになってきた(たとえば、特開平1−227
363号公報)。
In the hydride secondary battery using the hydrogen storage alloy electrode as the negative electrode, either a sintered nickel electrode or a paste nickel electrode can be used as the nickel electrode used as the positive electrode. Recently, in order to achieve high capacity and low cost, a metal foam or a fibrous metal porous body having a large number of fine pores with a porosity of 95 vol% or more and a pore size of several μm to 100 μm is used for the substrate. However, paste type nickel electrodes in which an active material paste mainly composed of nickel hydroxide is filled in the voids of the substrate have come to be widely used (for example, JP-A-1-227).
No. 363).

【0010】しかし、ペースト式で作製したニッケル電
極は、ニッケル焼結体を基体として用いた焼結式ニッケ
ル電極に比べて、基体の空隙の孔径が大きいため、高温
貯蔵による腐食によって負極の水素吸蔵合金から溶出し
てきた金属またはその水酸化物が堆積しやすく、その影
響を受けて、正極も劣化を受けやすい。
However, since the paste type nickel electrode has a larger pore size of voids in the base than the sintered nickel electrode using a nickel sintered body as a base, the hydrogen absorption of the negative electrode is caused by corrosion due to high temperature storage. The metal or its hydroxide eluted from the alloy is likely to be deposited, and under the influence of this, the positive electrode is also susceptible to deterioration.

【0011】そこで、高温貯蔵による水素吸蔵合金の腐
食を防止するため、負極の水素吸蔵合金表面をニッケル
(Ni)やコバルト(Co)でメッキし、水素吸蔵合金
の活性を維持して、構成金属の溶出を抑制したり、電池
組立前に負極を高温のアルカリ水溶液で洗浄して、負極
からの溶出物を取り除くことが提案されているが、この
ような負極の処理は、膨大なコストを要し、工業的には
採用しがたい。
Therefore, in order to prevent the corrosion of the hydrogen storage alloy due to high temperature storage, the surface of the hydrogen storage alloy of the negative electrode is plated with nickel (Ni) or cobalt (Co) to maintain the activity of the hydrogen storage alloy and to make the constituent metals. It has been proposed to suppress the elution of the negative electrode, or to wash the negative electrode with a high temperature alkaline aqueous solution to remove the eluate from the negative electrode before assembling the battery, but such negative electrode treatment requires a huge cost. However, it is industrially difficult to adopt.

【0012】また、負極の水素吸蔵合金からの溶出金属
による正極への影響を緩和するために、導電助剤として
のニッケル(Ni)やコバルト(Co)、あるいはそれ
らを含む化合物の添加量を増加することが試みられてい
るが、それらの増加によって、正極の強度が必要以上に
大きくなって柔軟性が消失し、折り曲げなどに対する耐
性が低下して、短絡発生の原因になる。また、前述のよ
うに、ペースト式のニッケル電極では、焼結式電極に比
べて、集電体として作用する基体の骨格部分と活物質の
中心部との間の距離が長いため、導電性が低下して、活
物質の利用率が低くなり、高温貯蔵によって、それが増
長されるという問題がある。
Further, in order to mitigate the influence of the metal eluted from the hydrogen storage alloy of the negative electrode on the positive electrode, the addition amount of nickel (Ni) or cobalt (Co) or a compound containing them as a conductive additive is increased. However, the increase in the positive electrode causes the strength of the positive electrode to increase more than necessary, resulting in a loss of flexibility and a decrease in resistance to bending and the like, which causes a short circuit. In addition, as described above, the paste-type nickel electrode has a longer distance between the skeleton portion of the base body acting as a current collector and the central portion of the active material, as compared with the sintered-type electrode, and thus has a higher conductivity. There is a problem that the utilization rate of the active material is lowered and the utilization rate of the active material is increased by high temperature storage.

【0013】[0013]

【発明が解決しようとする課題】本発明は、従来の水素
化物二次電池が持っていた上記のような問題点を解決
し、充放電サイクル特性および高温貯蔵特性が優れた水
素化物二次電池を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above problems of the conventional hydride secondary battery, and has excellent charge / discharge cycle characteristics and high temperature storage characteristics. The purpose is to provide.

【0014】[0014]

【課題を解決するための手段】本発明は、水酸化カリウ
ムと水酸化リチウムを水に溶解させたアルカリ水溶液か
らなる電解液中にモリブデンイオンと亜鉛イオンを含有
させることによって、上記目的を達成したものである。
The present invention has achieved the above object by incorporating molybdenum ions and zinc ions into an electrolytic solution comprising an alkaline aqueous solution in which potassium hydroxide and lithium hydroxide are dissolved in water. It is a thing.

【0015】上記のようにモリブデンイオンを水酸化カ
リウムと水酸化リチウムを水に溶解させたアルカリ水溶
液からなる電解液中に含有させておくことによって、モ
リブデンイオンが負極の水素吸蔵合金表面に析出または
吸着し、それが充放電サイクル中の水素吸蔵合金の酸化
を抑制し、かつ高温貯蔵中の水素吸蔵合金の腐食を抑制
し、それに亜鉛イオンが加わることによって、その作用
が増大され、それが水素化物二次電池の充放電サイクル
特性や高温貯蔵特性を向上させるものと考えられる。
By containing molybdenum ions in the electrolytic solution composed of an alkaline aqueous solution in which potassium hydroxide and lithium hydroxide are dissolved in water as described above, molybdenum ions are deposited on the surface of the hydrogen storage alloy of the negative electrode or Adsorption, which suppresses the oxidation of the hydrogen storage alloy during charge and discharge cycles, and the corrosion of the hydrogen storage alloy during high temperature storage, and the addition of zinc ions to it increases its action, which results in It is considered to improve the charge / discharge cycle characteristics and the high temperature storage characteristics of the compound secondary battery.

【0016】上記モリブデンイオンの電解液中の含有量
としては、モリブデンの量として、0.01〜8重量%
が好ましく、より好ましくは0.1〜5重量%、さらに
好ましくは0.5〜3重量%である。モリブデンイオン
の電解液中の含有量が上記範囲より少ない場合は、過充
電時の正極から発生する酸素による水素吸蔵合金の酸化
や高温貯蔵中での水素吸蔵合金の腐食を抑制して、電池
の充放電サイクル特性を向上させたり、高温貯蔵特性を
高める効果が充分に発現せず、またモリブデンイオンの
電解液中の含有量が上記範囲より多くなっても、それに
伴う効果の増加がほとんどなく、むしろ水素吸蔵合金の
表面に過剰に吸着し、充放電反応を阻害するおそれがあ
る。
The content of molybdenum ions in the electrolytic solution is 0.01 to 8% by weight as the amount of molybdenum.
Is more preferable, 0.1 to 5% by weight is more preferable, and 0.5 to 3% by weight is still more preferable. When the content of molybdenum ions in the electrolytic solution is less than the above range, oxidation of the hydrogen storage alloy due to oxygen generated from the positive electrode during overcharge and corrosion of the hydrogen storage alloy during high temperature storage are suppressed, and Improve the charge-discharge cycle characteristics, the effect of enhancing the high-temperature storage characteristics is not sufficiently expressed, and even if the content of molybdenum ions in the electrolytic solution is more than the above range, there is almost no increase in the effects accompanying it, Rather, it may be excessively adsorbed on the surface of the hydrogen storage alloy to hinder the charge / discharge reaction.

【0017】上記モリブデンイオンを電解液に含有させ
るには、通常、モリブデンを含む化合物を電解液中に溶
解させる。その溶解にあたっては、既に調製済みの電解
液に上記モリブデン化合物を添加するか、あるいは電解
液の調製時に上記モリブデン化合物が添加される。
In order to contain the above molybdenum ions in the electrolytic solution, a compound containing molybdenum is usually dissolved in the electrolytic solution. To dissolve the molybdenum compound, the molybdenum compound is added to an already prepared electrolytic solution, or the molybdenum compound is added when the electrolytic solution is prepared.

【0018】上記モリブデンイオンを電解液中に含有さ
せるにあたってモリブデンを含む化合物としては、たと
えば、Li6 Mo7 24・12H2 O、MoCl5 、H
2 MoO4 、K2 MoO4 、Na2 MoO4 ・2H
2 O、Na3 〔PO4 ・12MoO3 〕・xH2 O、
(NH4 3 PO4 ・12MoO3 ・3H2 Oなどが挙
げられる。
As the compound containing molybdenum for containing the above molybdenum ions in the electrolytic solution, for example, Li 6 Mo 7 O 24 .12H 2 O, MoCl 5 , H
2 MoO 4, K 2 MoO 4 , Na 2 MoO 4 · 2H
2 O, Na 3 [PO 4 .12 MoO 3 ] .xH 2 O,
(NH 4) such as 3 PO 4 · 12MoO 3 · 3H 2 O and the like.

【0019】本発明において、モリブデンイオンの量を
モリブデンの量として特定するのは、イオンの量の測定
が必ずしも容易でないことと、モリブデンイオンの量と
モリブデンの量との間に実質上ほとんど差がないからで
ある。
In the present invention, the amount of molybdenum ions is specified as the amount of molybdenum because it is not always easy to measure the amount of ions, and there is virtually no difference between the amount of molybdenum ions and the amount of molybdenum. Because there is no.

【0020】また、電解液中に含有させる亜鉛イオンの
量は、亜鉛の量として、0.01〜2重量%が好まし
く、より好ましくは0.1〜1重量%、さらに好ましく
は0.5〜1重量%である。この亜鉛イオンの電解液中
の含有量が上記範囲より少ない場合は、モリブデンイオ
ンの作用を増大させて、電池の充放電サイクル特性を向
上させたり、高温貯蔵特性を高める効果が充分に発現せ
ず、また亜鉛イオンの電解液中の含有量が上記範囲より
多くなっても、それに伴う効果の増加がほとんどない。
The amount of zinc ions contained in the electrolytic solution is preferably 0.01 to 2% by weight, more preferably 0.1 to 1% by weight, still more preferably 0.5 to 1% by weight, as zinc. It is 1% by weight. When the content of this zinc ion in the electrolytic solution is less than the above range, the action of molybdenum ion is increased, the charge / discharge cycle characteristics of the battery are improved, and the effect of enhancing the high temperature storage characteristics is not sufficiently expressed. Moreover, even if the content of zinc ions in the electrolytic solution exceeds the above range, there is almost no increase in the effect.

【0021】この亜鉛イオンを電解液中に含有させる場
合も、通常、亜鉛を含む化合物を電解液中に溶解させる
ことによって行われる。そして、その溶解にあたって
は、既に調製済みの電解液に上記亜鉛化合物を添加する
か、あるいは電解液の調製時に上記亜鉛化合物が添加さ
れる。もとより、この亜鉛イオンの電解液への含有を前
記モリブデンイオンの電解液への含有と同時に行っても
よい。
When the zinc ion is contained in the electrolytic solution, it is usually carried out by dissolving a compound containing zinc in the electrolytic solution. Then, in the dissolution, the zinc compound is added to the already prepared electrolytic solution, or the zinc compound is added at the time of preparing the electrolytic solution. Of course, the zinc ion may be contained in the electrolytic solution at the same time as the molybdenum ion is contained in the electrolytic solution.

【0022】上記のように亜鉛イオンを電解液に含有さ
せるにあたって、電解液に溶解させる亜鉛化合物として
は、特に特定されるものではないが、たとえば、Zn
O、Zn3 (PO4 3 ・4H2 O、Zn(C1835
2 2 などが挙げられる。
When the zinc ion is contained in the electrolytic solution as described above, the zinc compound to be dissolved in the electrolytic solution is not particularly specified.
O, Zn 3 (PO 4) 3 · 4H 2 O, Zn (C 18 H 35 O
2 ) 2 and so on.

【0023】本発明において、この亜鉛イオンに関して
も、その電解液に含有させる量を亜鉛の量として特定す
るのは、亜鉛イオンの測定が必ずしも容易でないこと
と、亜鉛の量と亜鉛イオンの量との間に実質上ほとんど
差がないからである。
In the present invention, it is not always easy to determine the amount of zinc ion contained in the electrolytic solution as the amount of zinc, and the amount of zinc and the amount of zinc ion are determined. This is because there is practically no difference between.

【0024】電解液は、アルカリ水溶液で構成される
が、そのアルカリ水溶液としては、水酸化カリウムと水
酸化リチウムを水に溶解させたものが用いられる。ただ
し、本発明においては、この電解液中に上記のようにモ
リブデンイオンと亜鉛イオンとを含有させる。また、こ
のモリブデンイオンと亜鉛イオンを含有させた電解液に
タングステンイオンおよびクロムイオンよりなる群から
選ばれる少なくとも1種の金属イオンを含有させてもよ
い。そのタングステンイオンを電解液中に含有させるに
あたっては、たとえば、Li2 WO2 、H2 WO4 、K
2 WO4 、Na2WO4 ・2H2 O、(NH4 3 PO
4 ・12WO3 ・3H2 O、Na3 〔PO4 ・12WO
3 〕・xH2 Oなどのタングステンを含む化合物が用い
られ、クロムイオンを電解液中に含有させるにあたって
は、たとえば、K2 Cr2 4 、CrPO4 ・6H
2 O、Ca3 CrO4 ・2H2 O、Na2 CrO4 ・4
2 O、Cs2 CrO4 などのクロムを含む化合物が用
いられる。
The electrolytic solution is composed of an alkaline aqueous solution. As the alkaline aqueous solution, a solution obtained by dissolving potassium hydroxide and lithium hydroxide in water is used. However, in the present invention, the electrolytic solution contains molybdenum ions and zinc ions as described above. Further, the electrolytic solution containing molybdenum ions and zinc ions may contain at least one metal ion selected from the group consisting of tungsten ions and chromium ions. When the tungsten ion is contained in the electrolytic solution, for example, Li 2 WO 2 , H 2 WO 4 , K
2 WO 4 , Na 2 WO 4 · 2H 2 O, (NH 4 ) 3 PO
4・ 12WO 3・ 3H 2 O, Na 3 [PO 4・ 12WO
3 ] .xH 2 O and other compounds containing tungsten are used, and when chromium ions are contained in the electrolytic solution, for example, K 2 Cr 2 O 4 , CrPO 4 .6H
2 O, Ca 3 CrO 4 .2 H 2 O, Na 2 CrO 4 .4
Compounds containing chromium such as H 2 O and Cs 2 CrO 4 are used.

【0025】負極は、たとえば、平織金網、エキスパン
ドメタル、パンチドメタル、発泡金属、ファイバーメタ
ルなどの多孔性金属からなる基体に水素吸蔵合金の粉末
を圧着して焼結する焼結式で作製されたものや、水素吸
蔵合金の粉末を結着剤などと共にペースト状にし、その
ペーストを上記多孔性金属からなる基体に充填し、乾燥
後、プレスなどで圧着してシート状にし、熱処理するペ
ースト式で作製されたものなどが使用できる。
The negative electrode is produced by a sintering method in which a hydrogen storage alloy powder is pressure-bonded to a base made of a porous metal such as a plain weave wire mesh, expanded metal, punched metal, foam metal, or fiber metal to sinter. Or a hydrogen storage alloy powder into a paste with a binder, etc., the paste is filled into a substrate made of the above-mentioned porous metal, dried, and then pressed with a press to form a sheet, which is heat treated. It is possible to use those manufactured in.

【0026】上記負極の活物質として用いる水素吸蔵合
金としては、たとえば、実施例で用いるTi15Zr21
15Ni29Cr5 Co6 Fe1 Mn8 をはじめ、TiZr
VNiCr系、TiNi系、TiNiZr系、LaNi
系、MmNi3 系などの各種水素吸蔵合金が使用可能で
あるが、本発明においては、AB2 型水素吸蔵合金、特
にAとしてチタン(Ti)およびジルコニウム(Zr)
のうち少なくとも1種を含み、Bとしてニッケル(N
i)、バナジウム(V)、クロム(Cr)、コバルト
(Co)、鉄(Fe)およびマンガン(Mn)よりなる
群から選ばれる少なくとも1種を含むAB2 型水素吸蔵
合金と、AB5 型水素吸蔵合金、特にAがMmで、Bが
Ni(ニッケル)、Co(コバルト)、Mn(マンガ
ン)、Al(アルミニウム)およびMo(モリブデン)
よりなる群から選ばれる少なくとも1種を含むAB5
水素吸蔵合金が、高容量を期待できることから好まし
い。
The hydrogen storage alloy used as the active material of the negative electrode is, for example, Ti 15 Zr 21 V used in the examples.
15 Ni 29 Cr 5 Co 6 Fe 1 Mn 8 and TiZr
VNiCr system, TiNi system, TiNiZr system, LaNi
A variety of hydrogen storage alloys such as MnNi series and MmNi 3 series can be used. In the present invention, AB 2 type hydrogen storage alloys, particularly titanium (Ti) and zirconium (Zr) as A are used.
At least one of the above is used, and nickel (N
i), vanadium (V), chromium (Cr), cobalt (Co), iron (Fe) and manganese (Mn), and an AB 2 type hydrogen storage alloy containing at least one selected from the group consisting of AB 5 type hydrogen. Storage alloy, especially A is Mm and B is Ni (nickel), Co (cobalt), Mn (manganese), Al (aluminum) and Mo (molybdenum)
An AB 5 type hydrogen storage alloy containing at least one selected from the group consisting of the following is preferred because a high capacity can be expected.

【0027】負極は、上記のような水素吸蔵合金と基体
とで作製され、カルボキシメチルセルロースやポリテト
ラフルオロエチレンなどの有機バインダは焼結時に炭素
汚染を生じ、メタンガスが発生する原因になるので、含
有させないことが好ましい。
The negative electrode is made of the above hydrogen storage alloy and the substrate, and an organic binder such as carboxymethyl cellulose or polytetrafluoroethylene causes carbon contamination during sintering and causes generation of methane gas. It is preferable not to allow it.

【0028】正極は、たとえば、ニッケル焼結体を基体
とし、これにニッケル酸化物またはニッケル水酸化物を
充填する焼結式で作製されたものや、金網、エキスパン
ドメタル、パンチドメタル、発泡金属、ファイバーメタ
ルなどの多孔性金属を基体とし、これにニッケル酸化物
またはニッケル水酸化物を含有するペーストを充填し、
乾燥後、プレスしてシート状にし、熱処理するペースト
式で作製されたものなどが使用されるが、本発明の実施
にあたっては、たとえば、焼結式やペースト式などで作
製された公知のニッケル電極を使用することができる。
The positive electrode is made, for example, by a sintering method in which a nickel sintered body is used as a base and nickel oxide or nickel hydroxide is filled therein, wire mesh, expanded metal, punched metal, foam metal. , Using a porous metal such as fiber metal as a base, and filling it with a paste containing nickel oxide or nickel hydroxide,
After being dried, it is pressed into a sheet shape and heat-treated. A paste type electrode or the like is used. In the practice of the present invention, for example, a known nickel electrode made by a sintering type or a paste type electrode is used. Can be used.

【0029】正極のニッケル酸化物やニッケル水酸化物
としては、たとえば、一酸化ニッケル(NiO)、二酸
化ニッケル(NiO2 )、水酸化ニッケル〔Ni(O
H)2〕などが挙げられる。これらは、正極が放電状態
にある場合であり、正極が充電状態にある場合には、上
記ニッケル酸化物やニッケル水酸化物は別の化合物とし
て存在する。
Examples of the nickel oxide or nickel hydroxide of the positive electrode include nickel monoxide (NiO), nickel dioxide (NiO 2 ), nickel hydroxide [Ni (O
H) 2 ] and the like. These are the cases where the positive electrode is in a discharged state, and when the positive electrode is in a charged state, the nickel oxide and nickel hydroxide are present as another compound.

【0030】[0030]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明は実施例に記載のもののみ
に限定されることはない。なお、以下の実施例などにお
いて、濃度を示す%は重量%である。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to what is described in the examples. In the following examples and the like,% indicating concentration is% by weight.

【0031】実施例1〜5 市販のTi、Zr、V、Ni、Cr、Co、Fe、Mn
(いずれも純度99.9%以上)の各試料をTi15Zr
2115Ni29Cr5 Co6 Fe1 Mn8 〔(Ti0.42
0.58)(V0.23Ni0.45Cr0.08Co0.05Fe0.01
0.071.78〕の組成になるように配合し、高周波溶解
炉によって加熱溶解し、多相系合金を得た。
Examples 1-5 Commercially available Ti, Zr, V, Ni, Cr, Co, Fe, Mn
Each sample (purity is 99.9% or more) is Ti 15 Zr
21 V 15 Ni 29 Cr 5 Co 6 Fe 1 Mn 8 [(Ti 0.42 Z
r 0.58 ) (V 0.23 Ni 0.45 Cr 0.08 Co 0.05 Fe 0.01 M
n 0.07 ) 1.78 ], and mixed by heating in a high-frequency melting furnace to obtain a multiphase alloy.

【0032】この多相系合金を耐圧容器中で10-4to
rrまで真空引きを行い、アルゴンで3回パージを行っ
た後、水素圧力14kg/cm2 で24時間保持し、水
素を排気し、さらに400℃で加熱して、水素を完全に
脱蔵することにより、粒径20〜100μmのAB2
水素吸蔵合金粉末を得た。
This multiphase alloy is placed in a pressure vessel at a pressure of 10 -4 ton.
After vacuuming to rr and purging with argon three times, hold hydrogen pressure of 14 kg / cm 2 for 24 hours, exhaust hydrogen, and heat at 400 ° C. to completely desorb hydrogen. Thus, an AB 2 type hydrogen storage alloy powder having a particle size of 20 to 100 μm was obtained.

【0033】この水素吸蔵合金粉末を有機バインダーを
用いずに、ニッケルのエキスパンドメタルからなる基体
にロールミルを用いて圧着し、Ar/H2 =99/1の
雰囲気中、875℃で12分間保持した後、30℃まで
冷却し、その後、切断して、厚さ0.30mmで、縦×
横=38mm×129mmのシート状水素吸蔵合金電極
を作製した。
This hydrogen-absorbing alloy powder was pressure-bonded to a substrate made of expanded metal of nickel using a roll mill without using an organic binder, and kept at 875 ° C. for 12 minutes in an atmosphere of Ar / H 2 = 99/1. After that, it is cooled down to 30 ° C., and then cut to have a thickness of 0.30 mm and length ×
A sheet-shaped hydrogen storage alloy electrode having a width of 38 mm × 129 mm was produced.

【0034】一方、正極として用いるペースト式ニッケ
ル電極は、次に示すようにして作製した。平均粒径10
μm、表面積20m2 /gで、亜鉛を2%、コバルトを
1%固溶した水酸化ニッケル〔Ni(OH)2 〕粉末
と、平均粒径2.5μmのカルボニルニッケル粉末と、
平均粒径2.0μmのカルボニルコバルト粉末と、60
%ポリテトラフルオロエチレンディスパージョンと、2
%カルボキシメチルセルロースのナトリウム塩水溶液を
重量比100:10:5:5:50の割合で混合してペ
ースト状にし、このペーストを厚さ1.3mm、空隙率
95体積%のニッケル発泡体からなる基体に充填し、そ
れを80℃で2時間乾燥した後、1ton/cm2 で加
圧し、シート状にした。ついで、それを80℃の30%
水酸化カリウム水溶液に2時間浸漬した。その後、80
℃の温水で2時間洗浄し、100℃で1時間乾燥し、厚
さが0.60mmになるように加圧し、縦×横=38m
m×88mmに切断して、正極として用いるシート状の
ニッケル電極を作製した。
On the other hand, the paste nickel electrode used as the positive electrode was prepared as follows. Average particle size 10
a powder of nickel hydroxide [Ni (OH) 2 ] having a particle size of μm, a surface area of 20 m 2 / g, and a solid solution of zinc of 2% and cobalt of 1%; and a carbonyl nickel powder having an average particle size of 2.5 μm.
Carbonyl cobalt powder having an average particle size of 2.0 μm, 60
% Polytetrafluoroethylene dispersion and 2
% Aqueous solution of sodium salt of carboxymethyl cellulose in a weight ratio of 100: 10: 5: 5: 50 to form a paste, and the paste is a substrate made of nickel foam having a thickness of 1.3 mm and a porosity of 95% by volume. And dried at 80 ° C. for 2 hours, and then pressed at 1 ton / cm 2 to form a sheet. Then, it is 30% of 80 ℃
It was immersed in an aqueous solution of potassium hydroxide for 2 hours. Then 80
Wash with warm water at ℃ for 2 hours, dry at 100 ℃ for 1 hour, pressurize to thickness of 0.60mm, length × width = 38m
A sheet-shaped nickel electrode used as a positive electrode was prepared by cutting into m × 88 mm.

【0035】セパレータには、市販の厚さ0.15mm
のナイロン不織布を縦×横=40mm×235mmに切
断したものを用いた。
The separator has a commercially available thickness of 0.15 mm.
The nylon non-woven fabric was cut into a size of length × width = 40 mm × 235 mm.

【0036】上記シート状の水素吸蔵合金電極とニッケ
ル電極をセパレータを介在させて重ね合わせ、それを渦
巻状に巻回して渦巻状電極体にした。
The sheet-shaped hydrogen-absorbing alloy electrode and the nickel electrode were superposed with a separator interposed therebetween, and they were spirally wound into a spiral electrode body.

【0037】電解液としては、30%水酸化カリウム水
溶液に水酸化リチウムを17g/リットル添加したアル
カリ水溶液を用い、この電解液中にLi6 Mo724
12H2 O、Li2 WO4 、K2 Cr2 4 、ZnOを
添加して、モリブデンイオン、タングステンイオン、ク
ロムイオン、亜鉛イオンを表1に示す濃度(ただし、金
属量として)で含有させた。
As the electrolytic solution, an alkaline aqueous solution prepared by adding 17 g / liter of lithium hydroxide to a 30% potassium hydroxide aqueous solution was used. Li 6 Mo 7 O 24
12H 2 O, Li 2 WO 4 , K 2 Cr 2 O 4 , and ZnO were added to contain molybdenum ions, tungsten ions, chromium ions, and zinc ions at the concentrations shown in Table 1 (however, as the amount of metal). .

【0038】[0038]

【表1】 [Table 1]

【0039】なお、添加されたLi6 Mo7 24・12
2 O、Li2 WO4 、K2 Cr24 、ZnOなどは
電解液中に溶解し、それらに含有されていたモリブデン
(Mo)、タングステン(W)、クロム(Cr)、亜鉛
(Zn)などは解離して、電解液中にそれぞれモリブデ
ンイオン、タングステンイオン、クロムイオン、亜鉛イ
オンなとどして含有されることになる。
Incidentally, the added Li 6 Mo 7 O 24 · 12
H 2 O, Li 2 WO 4 , K 2 Cr 2 O 4 , ZnO, etc. are dissolved in the electrolytic solution, and molybdenum (Mo), tungsten (W), chromium (Cr), zinc (Zn) contained in them are dissolved. ) And the like are dissociated to be contained in the electrolytic solution such as molybdenum ion, tungsten ion, chromium ion, and zinc ion.

【0040】つぎに、前記の渦巻状電極体を単3サイズ
の電池ケースに入れ、上記のようにモリブデンイオンと
亜鉛イオンとを含有させた電解液を注入し、常法により
封口して図1に示す構造の水素化物二次電池を作製し
た。
Next, the spirally wound electrode body was put in an AA size battery case, the electrolytic solution containing molybdenum ions and zinc ions was injected as described above, and the container was sealed by a conventional method. A hydride secondary battery having the structure shown in was produced.

【0041】ここで、図1に示す電池について説明する
と、1は正極、2は負極、3はセパレータ、4は渦巻状
電極体、5は電池ケース、6は環状ガスケット、7は封
口蓋、8は端子板、9は封口板、10は金属バネ、11
は弁体、12は正極リード体、13は絶縁体、14は絶
縁体である。
The battery shown in FIG. 1 will now be described. 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a spiral electrode body, 5 is a battery case, 6 is an annular gasket, 7 is a sealing lid, and 8 is a sealing lid. Is a terminal plate, 9 is a sealing plate, 10 is a metal spring, 11
Is a valve body, 12 is a positive electrode lead body, 13 is an insulator, and 14 is an insulator.

【0042】正極1は上記のようにペースト式で製造し
たニッケル電極からなり、負極2は前記のように製造し
た水素吸蔵合金電極からなり、セパレータ3はナイロン
不織布からなるものである。そして、上記正極1と負極
2はこのセパレータ3を介して重ね合わせられ、渦巻状
に巻回して渦巻状電極体4として電池ケース5内に挿入
され、その上部には絶縁体14が配置されている。
The positive electrode 1 is composed of the nickel electrode manufactured by the paste method as described above, the negative electrode 2 is composed of the hydrogen storage alloy electrode manufactured as described above, and the separator 3 is composed of the nylon nonwoven fabric. The positive electrode 1 and the negative electrode 2 are superposed on each other with the separator 3 interposed therebetween, spirally wound and inserted into the battery case 5 as the spirally wound electrode body 4, and the insulator 14 is arranged on the upper portion thereof. There is.

【0043】環状ガスケット6はナイロン66で作製さ
れ、封口蓋7は端子板8と封口板9とで構成され、電池
ケース5の開口部はこの封口蓋7と上記環状ガスケット
6とで封口されている。
The annular gasket 6 is made of nylon 66, the sealing lid 7 is composed of a terminal plate 8 and a sealing plate 9, and the opening of the battery case 5 is sealed by the sealing lid 7 and the annular gasket 6. There is.

【0044】つまり、電池ケース5内に渦巻状電極体4
や絶縁体14などを挿入した後、電池ケース5の開口端
近傍部分に底部が内周側に突出した環状の溝5aを形成
し、その溝5aの内周側突出部で環状ガスケット6の下
部を支えさせて環状ガスケット6と封口蓋7とを電池ケ
ース5の開口部に配置し、電池ケース5の溝5aから先
の部分を内方に締め付けて電池ケース5の開口部を封口
蓋7と環状ガスケット6とで封口している。
That is, the spiral electrode body 4 is placed in the battery case 5.
After inserting the insulator 14 and the like, an annular groove 5a having a bottom protruding toward the inner peripheral side is formed in the vicinity of the open end of the battery case 5, and the inner peripheral protruding portion of the groove 5a forms a lower portion of the annular gasket 6. The annular gasket 6 and the sealing lid 7 are placed in the opening of the battery case 5 by supporting the above, and the portion of the battery case 5 beyond the groove 5a is tightened inward so that the opening of the battery case 5 becomes the sealing lid 7. It is sealed with the annular gasket 6.

【0045】上記端子板8にはガス排出孔8aが設けら
れ、封口板9にはガス検知孔9aが設けられ、端子板8
と封口板9との間には金属バネ10と弁体11とが配置
されている。そして、封口板9の外周部を折り曲げて端
子板8の外周部を挟み込んで端子板8と封口板9とを固
定している。
The terminal plate 8 is provided with a gas discharge hole 8a, the sealing plate 9 is provided with a gas detection hole 9a, and the terminal plate 8 is provided.
The metal spring 10 and the valve body 11 are arranged between the sealing plate 9 and the sealing plate 9. Then, the outer peripheral portion of the sealing plate 9 is bent to sandwich the outer peripheral portion of the terminal plate 8 to fix the terminal plate 8 and the sealing plate 9.

【0046】この電池は、通常の状況下では金属バネ1
0の押圧力により弁体11がガス検知孔9aを閉鎖して
いるので、電池内部は密閉状態に保たれているが、電池
内部にガスが発生して電池内圧が異常に上昇した場合に
は、金属バネ10が収縮して弁体11とガス検知孔9a
との間に隙間が生じ、電池内部のガスはガス検知孔9a
およびガス排出孔8aを通過して電池外部に放出され、
電池破裂が防止できるように構成されている。
This battery has a metal spring 1 under normal circumstances.
Since the valve body 11 closes the gas detection hole 9a by the pressing force of 0, the inside of the battery is kept in a sealed state, but when gas is generated inside the battery and the internal pressure of the battery rises abnormally, , The metal spring 10 contracts and the valve body 11 and the gas detection hole 9a
A gap is created between the gas inside the battery and the gas inside the battery and the gas detection hole 9a
And is discharged to the outside of the battery through the gas discharge hole 8a,
It is configured to prevent the battery from bursting.

【0047】比較例1 従来技術にしたがって、電解液にモリブデンイオンや亜
鉛イオンなどの金属イオンを一切含有させなかった以外
は、実施例1と同様にして水素化物二次電池を作製し
た。
Comparative Example 1 A hydride secondary battery was produced in the same manner as in Example 1 except that the electrolytic solution did not contain any metal ions such as molybdenum ions and zinc ions according to the prior art.

【0048】比較例2〜8 表2に示すように、モリブデンイオン、タングステンイ
オン、クロムイオンを含有させた電解液を用いた以外
は、実施例1と同様にして水素化物二次電池を作製し
た。なお、電解液に上記金属イオンを含有させるにあた
っては、Li6 Mo7 24・12H2 O、Li2
4 、K2 Cr2 4 を電解液に添加した。
Comparative Examples 2 to 8 As shown in Table 2, a hydride secondary battery was produced in the same manner as in Example 1 except that an electrolytic solution containing molybdenum ions, tungsten ions and chromium ions was used. . In addition, when the above-mentioned metal ions are contained in the electrolytic solution, Li 6 Mo 7 O 24 · 12H 2 O, Li 2 W
O 4 and K 2 Cr 2 O 4 were added to the electrolytic solution.

【0049】[0049]

【表2】 [Table 2]

【0050】上記実施例1〜5の電池および比較例1〜
8の電池を60℃で17時間保存してエイジングした
後、0.1C(110mA)で15時間充電し、0.2
C(220mA)で1.0Vまで放電した。この充放電
サイクルを放電容量が一定になるまで繰り返した。充放
電サイクル試験は、充電1C(1.0A)×1.2時間
(電池温度50℃カット)、放電1C(1.1A、1.
0Vカット)で行い、放電容量が800mAhになった
時点をサイクル数とした。その結果を表3に示す。
Batteries of Examples 1 to 5 and Comparative Examples 1 to 1
The battery of Example 8 was stored at 60 ° C. for 17 hours, aged, and then charged at 0.1 C (110 mA) for 15 hours to give 0.2.
It was discharged to 1.0 V with C (220 mA). This charge / discharge cycle was repeated until the discharge capacity became constant. In the charge / discharge cycle test, charge 1 C (1.0 A) × 1.2 hours (battery temperature 50 ° C. cut), discharge 1 C (1.1 A, 1.
It was performed at 0 V cut), and the time when the discharge capacity reached 800 mAh was defined as the number of cycles. The results are shown in Table 3.

【0051】また、上記実施例1〜5の電池および比較
例1〜8の電池を60℃で20日間貯蔵し、貯蔵後、上
記と同様に充放電を放電容量が一定になるまで繰り返
し、貯蔵前の放電容量に対する貯蔵後の放電容量の保持
率を調べた。その結果を容量保持率として表3に示す。
なお、この容量保持率は、上記記載からも明らかである
ように、下記の式から求められるものである。また、貯
蔵前の各電池の放電容量はいずれも1100mAhであ
る。
The batteries of Examples 1 to 5 and Comparative Examples 1 to 8 were stored at 60 ° C. for 20 days, and after storage, charging and discharging were repeated until the discharge capacity became constant, and then stored. The retention rate of the discharge capacity after storage with respect to the previous discharge capacity was investigated. The results are shown in Table 3 as the capacity retention rate.
The capacity retention rate is obtained from the following equation, as is clear from the above description. The discharge capacity of each battery before storage is 1100 mAh.

【0052】 [0052]

【0053】また、上記貯蔵後の電池を充電1C(1.
0A)×1.2時間(電池温度50℃カット)、放電1
C(1.1A、1.0Vカット)で充放電させ、放電容
量が800mAhになるまでのサイクル数を調べた。そ
の結果も表3に示す。
Further, the battery after storage is charged at 1C (1.
0A) x 1.2 hours (battery temperature cut 50 ° C), discharge 1
The battery was charged and discharged with C (1.1 A, 1.0 V cut), and the number of cycles until the discharge capacity reached 800 mAh was examined. The results are also shown in Table 3.

【0054】[0054]

【表3】 [Table 3]

【0055】表3に示すように、実施例1〜5の電池
は、サイクル数が多く、また貯蔵後の容量保持率も高
く、電解液中にモリブデンイオンと亜鉛イオンを含有さ
せることによって、充放電サイクル特性を向上させるこ
とができ、また高温貯蔵した場合の容量保持率を高く
し、サイクル数を増加させることができた。
As shown in Table 3, the batteries of Examples 1 to 5 had a large number of cycles and a high capacity retention rate after storage, and the batteries were charged by containing molybdenum ions and zinc ions. The discharge cycle characteristics could be improved, the capacity retention rate at high temperature storage could be increased, and the number of cycles could be increased.

【0056】実施例6〜10 市販のMm(La、Ce、Nd、Prを含有)、Ni、
Co、Mn、Al、Mo(いずれも純度99.9%以
上)の各試料をMm(La0.32Ce0.48Nd0.15Pr
0.04)Ni3.55Co0.75Mn0.4 Al0.3 Mo0.04の組
成になるように配合し、高周波溶解炉によって加熱溶解
し、多相系合金を得た。
Examples 6 to 10 Commercially available Mm (containing La, Ce, Nd and Pr), Ni,
Each sample of Co, Mn, Al and Mo (all having a purity of 99.9% or more) was Mm (La 0.32 Ce 0.48 Nd 0.15 Pr).
0.04 ) Ni 3.55 Co 0.75 Mn 0.4 Al 0.3 Mo 0.04 were compounded so as to have a composition, and heated and melted in a high frequency melting furnace to obtain a multiphase alloy.

【0057】この多相系合金を耐圧容器中で10-4to
rrまで真空引きを行い、アルゴンで3回パージを行っ
た後、水素圧力14kg/cm2 で24時間保持し、水
素を排気し、さらに400℃で加熱して、水素を完全に
脱蔵することにより、粒径20〜100μmのAB5
水素吸蔵合金粉末を得た。
This multiphase alloy was placed in a pressure vessel at 10 −4 to
After vacuuming to rr and purging with argon three times, hold hydrogen pressure of 14 kg / cm 2 for 24 hours, exhaust hydrogen, and heat at 400 ° C. to completely desorb hydrogen. Thus, an AB 5 type hydrogen storage alloy powder having a particle size of 20 to 100 μm was obtained.

【0058】電解液としては、30%水酸化カリウム水
溶液に水酸化リチウムを17g/リットル添加したアル
カリ水溶液を用い、この電解液中にモリブデンイオン、
タングステンイオン、クロムイオン、亜鉛イオンを実施
例1〜5と同様に表4に示す濃度で含有させた。
An alkaline aqueous solution prepared by adding 17 g / liter of lithium hydroxide to a 30% aqueous potassium hydroxide solution was used as the electrolytic solution.
Tungsten ions, chromium ions, and zinc ions were contained at the concentrations shown in Table 4 as in Examples 1-5.

【0059】[0059]

【表4】 [Table 4]

【0060】上記AB5 型水素吸蔵合金と電解液を用い
た以外は、実施例1と同様にして水素化物二次電池を作
製した。
A hydride secondary battery was produced in the same manner as in Example 1 except that the AB 5 type hydrogen storage alloy and the electrolytic solution were used.

【0061】比較例9 従来技術にしたがって、電解液にモリブデンイオンや亜
鉛イオンなどの金属イオンを一切含有させなかった以外
は、実施例6と同様にしてAB5 型水素吸蔵合金を用い
た水素化物二次電池を作製した。
Comparative Example 9 A hydride using an AB 5 type hydrogen storage alloy in the same manner as in Example 6 except that the electrolytic solution did not contain any metal ions such as molybdenum ions and zinc ions according to the conventional technique. A secondary battery was produced.

【0062】比較例10〜16 表5に示すように、モリブデンイオン、タングステンイ
オン、クロムイオンを比較例2〜8と同様に含有させた
電解液を用いた以外は、実施例6と同様にしてAB5
水素吸蔵合金を用いた水素化物二次電池を作製した。
Comparative Examples 10 to 16 As shown in Table 5, the same procedure as in Example 6 was carried out except that an electrolytic solution containing molybdenum ions, tungsten ions and chromium ions was used in the same manner as in Comparative Examples 2 to 8. A hydride secondary battery using an AB 5 type hydrogen storage alloy was produced.

【0063】[0063]

【表5】 [Table 5]

【0064】上記実施例6〜10の電池および比較例9
〜16の電池を実施例1と同様にエイジングした後、実
施例1と同様に充放電サイクル試験を行って、サイクル
数を調べ、また実施例1と同様に高温貯蔵試験を行っ
て、容量保持率およびサイクル数を調べた。その結果を
表6に示す。
Batteries of Examples 6 to 10 and Comparative Example 9
After aging the batteries of Nos. 16 to 16 in the same manner as in Example 1, a charge / discharge cycle test was performed in the same manner as in Example 1 to check the number of cycles, and a high temperature storage test was performed in the same manner as in Example 1 to retain the capacity. The rates and number of cycles were examined. The results are shown in Table 6.

【0065】[0065]

【表6】 [Table 6]

【0066】表6に示すように、実施例6〜10の電池
は、サイクル数が多く、また貯蔵後の容量保持率も高
く、この実施例6〜10のようにAB5 型水素吸蔵合金
を用いた場合も、前記実施例1〜5のAB2 型水素吸蔵
合金を用いた場合と同様に、電解液中にモリブデンイオ
ンと亜鉛イオンを含有させることによって、充放電サイ
クル特性を向上させることができ、また高温貯蔵した場
合の容量保持率を高くし、かつサイクル数を増加させる
ことができた。
As shown in Table 6, the batteries of Examples 6 to 10 had a large number of cycles and a high capacity retention rate after storage. As shown in Examples 6 to 10, the AB 5 type hydrogen storage alloys were used. When used, the charge-discharge cycle characteristics can be improved by containing molybdenum ions and zinc ions in the electrolytic solution, as in the case of using the AB 2 type hydrogen storage alloys of Examples 1 to 5 above. In addition, the capacity retention rate when stored at high temperature was increased, and the number of cycles could be increased.

【0067】[0067]

【発明の効果】以上説明したように、本発明では、水酸
化カリウムと水酸化リチウムを水に溶解させたアルカリ
水溶液からなる電解液中にモリブデンイオンと亜鉛イオ
ンを含有させることによって、充放電サイクル特性およ
び高温貯蔵特性が優れた水素化物二次電池を提供するこ
とができた。
As described above, according to the present invention, molybdenum ions and zinc ions are contained in an electrolytic solution composed of an alkaline aqueous solution in which potassium hydroxide and lithium hydroxide are dissolved in water, so that the charge-discharge cycle is improved. It was possible to provide a hydride secondary battery having excellent characteristics and high-temperature storage characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素化物二次電池の一実施例を模式的
に示す断面図である。
FIG. 1 is a sectional view schematically showing an example of a hydride secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 Negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/30 H01M 4/38 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 10/30 H01M 4/38

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル酸化物またはニッケル水酸化物
を含む正極と、水素吸蔵合金を含む負極と、水酸化カリ
ウムと水酸化リチウムを水に溶解させたアルカリ水溶液
からなる電解液と、不織布からなるセパレータを有する
水素化物二次電池において、電解液中にモリブデンイオ
と亜鉛イオンを含有させたことを特徴とする水素化物
二次電池。
1. A positive electrode containing nickel oxide or nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and potassium hydroxide.
Um and an electrolyte consisting of an alkali aqueous solution of lithium hydroxide dissolved in water, the hydride secondary battery having a separator made of nonwoven fabric, and characterized in that it contained molybdenum ions and zinc ions in the electrolyte Hydride rechargeable battery.
【請求項2】 モリブデンイオンの電解液中での含有量
が、モリブデンの量として0.1〜5重量%であり、亜
鉛イオンの電解液中での含有量が、亜鉛量として0.
1〜1重量%であることを特徴とする請求項1記載の水
素化物二次電池。
Wherein the content of the electrolytic solution of the molybdenum ions is at 0.1 to 5% by weight as the amount of molybdenum content in an electrolytic solution of zinc ions, as the amount of zinc 0.
The hydride secondary battery according to claim 1, which is 1 to 1% by weight.
【請求項3】 上記電解液が、タングステンイオンおよ
びクロムイオンよりなる群から選ばれる少なくとも1種
の金属イオンを含有していることを特徴とする請求項1
または2記載の水素化物二次電池。
3. The electrolytic solution comprises tungsten ions and
And at least one selected from the group consisting of chromium ions
The metal ion of claim 1 is contained.
Alternatively, the hydride secondary battery described in 2.
JP01859995A 1995-01-10 1995-01-10 Hydride rechargeable battery Expired - Fee Related JP3393944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01859995A JP3393944B2 (en) 1995-01-10 1995-01-10 Hydride rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01859995A JP3393944B2 (en) 1995-01-10 1995-01-10 Hydride rechargeable battery

Publications (2)

Publication Number Publication Date
JPH08190931A JPH08190931A (en) 1996-07-23
JP3393944B2 true JP3393944B2 (en) 2003-04-07

Family

ID=11976116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01859995A Expired - Fee Related JP3393944B2 (en) 1995-01-10 1995-01-10 Hydride rechargeable battery

Country Status (1)

Country Link
JP (1) JP3393944B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217000A (en) 1999-02-26 2001-08-10 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
US7590408B2 (en) 2002-04-03 2009-09-15 Qualcomm Incorporated Systems and methods for early determination of network support for mobile IP
US7342894B2 (en) 2002-04-03 2008-03-11 Qualcomm Incorporated System and method for transparent Mobile IP registration within PPP negotiation
KR100461877B1 (en) * 2002-08-09 2004-12-14 한국전기연구원 Lithium sulfur secondary battery
JP5849768B2 (en) * 2012-02-28 2016-02-03 三洋電機株式会社 Alkaline storage battery and alkaline storage battery system
WO2014068868A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Nickel metal hydride storage battery and storage battery system
JP6200897B2 (en) * 2012-10-30 2017-09-20 三洋電機株式会社 Storage battery module and storage battery system
JP2015032507A (en) * 2013-08-05 2015-02-16 プライムアースEvエナジー株式会社 Nickel hydrogen storage battery
US10573932B2 (en) 2017-06-02 2020-02-25 California Institute Of Technology High capacity corrosion resistant V-based metal hydride electrodes for rechargeable metal hydride batteries

Also Published As

Publication number Publication date
JPH08190931A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
US5965295A (en) Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
JP3393944B2 (en) Hydride rechargeable battery
JP3394095B2 (en) Nickel hydride rechargeable battery
US20030140483A1 (en) Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH0888020A (en) Hydride secondary battery
EP1054463A1 (en) Positive electrode, alkaline secondary battery, and method for manufacturing alkaline secondary battery
JP3925963B2 (en) Alkaline secondary battery
US6368748B1 (en) Nickel-metal hydride storage cell having a high capacity and an excellent cycle characteristic and manufacturing
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH11162468A (en) Alkaline secondary battery
JP4183292B2 (en) Secondary battery
JP2001357872A (en) Nickel-hydrogen secondary battery
JP2563638B2 (en) Hydrogen storage alloy electrode
JP2001313069A (en) Nickel hydrogen storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP6951047B2 (en) Alkaline secondary battery
JP3379893B2 (en) Paste-type positive electrode for alkaline secondary battery and method for producing alkaline secondary battery
JP3789702B2 (en) Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPH09237628A (en) Production of hydrogen storage alloy electrode
JP2000200612A (en) Rectangular alkaline secondary battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3214570B2 (en) Hydride rechargeable battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees