JPH09147839A - Manufacture of negative electrode for nonaqueous electrolyte secondary battery - Google Patents

Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Info

Publication number
JPH09147839A
JPH09147839A JP7310515A JP31051595A JPH09147839A JP H09147839 A JPH09147839 A JP H09147839A JP 7310515 A JP7310515 A JP 7310515A JP 31051595 A JP31051595 A JP 31051595A JP H09147839 A JPH09147839 A JP H09147839A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
carbon
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7310515A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nitta
芳明 新田
Shoichiro Watanabe
庄一郎 渡邊
Harunari Shimamura
治成 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7310515A priority Critical patent/JPH09147839A/en
Publication of JPH09147839A publication Critical patent/JPH09147839A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent metal lithium from bing deposited like needles on an electrode plate surface of a negative electrode and provide a negative electrode having higher capacity than a conventional graphite material. SOLUTION: A negative electrode 5 is made by using a carbonaceous substance obtained in such a manner that predetermined kinds of pitch, which are once melted and thereafter in which carbon block of 1 to 5 parts by weight is dispersed, are carbonized at 600 to 1000 deg.C in an inert atmosphere and pulverized, and also a composite carbon material made by mixing a second carbon substrate material of 1 to 10 parts by weight, which comprizes carbon black or flake graphite having electric conductivity of 10<1> S/cm or more, into the carbonaceous substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の、とくにその負極に用いる炭素質物質の改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a carbonaceous material used for its negative electrode.

【0002】[0002]

【従来の技術】リチウムを負極として用いる非水電解液
二次電池は、従来のニッケルカドミウム電池や鉛蓄電池
と比較して高エネルギー密度が期待でき、多くの研究が
なされている。しかし、金属リチウムを負極に用いると
充電時に負極上にリチウムのデンドライトが発生し、内
部短絡を起こしやすくなって信頼性の低い電池となると
いう問題があった。このような課題を解決するために負
極にリチウムを吸蔵,放出できる炭素質物質を用いる方
法が提案されている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium as a negative electrode are expected to have a higher energy density than conventional nickel-cadmium batteries and lead-acid batteries, and many studies have been conducted. However, when metallic lithium is used for the negative electrode, there is a problem that a dendrite of lithium is generated on the negative electrode during charging and an internal short circuit is likely to occur, resulting in a battery with low reliability. In order to solve such a problem, a method of using a carbonaceous substance capable of inserting and extracting lithium in the negative electrode has been proposed.

【0003】炭素質物質を用いる一例として、例えば特
開昭57−208079号公報、特開昭58−1024
64号公報には黒鉛化の発達したグラファイトが示され
ている。しかし、黒鉛材料を負極に用いた場合、充電時
にリチウムが可逆的に作動できるのは理論上C6Li
(炭素原子6個に対しリチウム原子1個)であり、電気
化学的容量では372mAh/gに留まる。
As an example of using a carbonaceous substance, for example, JP-A-57-208079 and JP-A-58-1024.
Japanese Unexamined Patent Publication No. 64 discloses graphite having advanced graphitization. However, when a graphite material is used for the negative electrode, it is theoretically possible that lithium can reversibly operate during charging.
(1 lithium atom for 6 carbon atoms) and remains at an electrochemical capacity of 372 mAh / g.

【0004】このため、所定の有機化合物を不活性雰囲
気下中1000℃以下の比較的低温の条件下で熱処理す
ることにより、372mAh/gを越える電気容量を有
する炭素質物質を得られることが報告されている。この
ような炭素質物質を得るためには、液相法と固相法、気
相法による合成法を用いられる。まず、液相法において
は、その出発原料である有機化合物原料としてピッチ、
コールタール、あるいは特開昭63−216267号公
報や特開昭63−216272号公報、特開平5−31
4975号公報に提案されているような有機化合物の重
縮合体を用いる。
Therefore, it is reported that a carbonaceous material having an electric capacity of more than 372 mAh / g can be obtained by heat-treating a predetermined organic compound in an inert atmosphere at a relatively low temperature of 1000 ° C. or lower. Has been done. In order to obtain such a carbonaceous material, a liquid phase method, a solid phase method, and a gas phase method are used. First, in the liquid phase method, pitch as an organic compound raw material which is the starting material,
Coal tar, or JP-A-63-216267, JP-A-63-216272, or JP-A-5-31
A polycondensate of an organic compound as proposed in Japanese Patent No. 4975 is used.

【0005】一方、固相法においては、特開平4−30
8670号公報に示されているようなセルロースなどの
有機天然高分子や、特開昭58−209864号公報、
特開平4−206259号公報、特開平4−31926
5号公報に示されているフェノール樹脂、フラン樹脂、
ポリアクリロニトリル(PAN)、レーヨンなどを出発
原料として用いる。
On the other hand, in the solid phase method, Japanese Patent Laid-Open No. 4-30
Organic natural polymers such as cellulose as disclosed in JP-A-8670, JP-A-58-209864,
JP-A-4-206259, JP-A-4-31926
Phenol resin, furan resin, and
Polyacrylonitrile (PAN), rayon, etc. are used as a starting material.

【0006】気相法ではメタン、プロパン等の炭化水素
ガスを用いて合成するのが一般的であり、これらを混合
して用いることも提案されている。
In the gas phase method, synthesis is generally performed using a hydrocarbon gas such as methane and propane, and it has been proposed to use a mixture of these.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記の有機材
料を単に1000℃以下の温度領域で熱処理した炭素質
物質は黒鉛層が十分に成長していないため、電気伝導度
が低く(例えば104Ω・cm)、電池を構成した場合
には内部抵抗が上昇し、特に高率放電時において放電電
圧が著しく低下するという問題があった。
However, the carbonaceous material obtained by simply heat-treating the above organic material in the temperature range of 1000 ° C. or lower has a low electric conductivity because the graphite layer is not sufficiently grown (for example, 10 4 Ω · cm), when a battery is constructed, the internal resistance rises, and there is a problem that the discharge voltage drops remarkably, especially during high-rate discharge.

【0008】また、とくに液相で炭化反応を進行させる
場合には、炭化反応進行時に多量の揮発性成分(例えば
水素ガス)が反応系外に除去され、炭化収率が著しく低
くなっていた。また、これらのガス発生伴い、炭素質物
質中に多数のポアが生成し、見掛け密度が0.2〜0.
4g/cm3となり、極板構成時の充填効率が低下して
いた。このような炭化収率や充填効率の低下は電池のエ
ネルギー密度を減少させる原因となっていた。
Further, particularly when the carbonization reaction proceeds in the liquid phase, a large amount of volatile components (for example, hydrogen gas) are removed out of the reaction system when the carbonization reaction proceeds, and the carbonization yield is remarkably lowered. Further, as these gases are generated, many pores are generated in the carbonaceous material, and the apparent density is 0.2 to 0.
It was 4 g / cm 3 , and the filling efficiency when the electrode plate was constructed was reduced. Such a decrease in carbonization yield and filling efficiency has been a cause of reducing the energy density of the battery.

【0009】本発明はこのような課題を解決するもので
あり、炭化収率に優れ、ガス発生に伴う多数のポアの生
成を抑制して密度の大きい炭素質物質を得て、これを負
極に用いることにより高エネルギー密度で高率放電特性
に優れた非水電解液二次電池を提供するものである。
The present invention is intended to solve such problems, and it is possible to obtain a carbonaceous material having a high carbon density and a large density by suppressing the generation of a large number of pores due to gas generation, and using this as a negative electrode. A non-aqueous electrolyte secondary battery having high energy density and excellent high rate discharge characteristics is provided by using the same.

【0010】[0010]

【課題を解決するための手段】このような問題を解決す
るために、本発明はコールタールピッチ、石油ピッチ、
縮合多環芳香族炭化水素化合物の重縮合で得られる有機
合成ピッチ、またはヘテロ原子含有縮合多環芳香族炭化
水素化合物の重縮合で得られる有機合成ピッチを一旦溶
融した後、これに1〜5重量部のカーボンブラックを分
散し、不活性雰囲気下600〜1000℃の温度で炭化
して得た炭素質物質を非水電解液二次電池用負極に用い
るものである。また、電気伝導度が101S/cm以上
であるカーボンブラック、燐片状黒鉛等の第2の炭素材
料を前記炭素質物質に対し1〜10重量部混合した負極
に用いるものである。
In order to solve such problems, the present invention provides a coal tar pitch, a petroleum pitch,
An organic synthetic pitch obtained by polycondensation of a condensed polycyclic aromatic hydrocarbon compound or an organic synthetic pitch obtained by polycondensation of a heteroatom-containing condensed polycyclic aromatic hydrocarbon compound is once melted, and then 1-5 A carbonaceous substance obtained by dispersing parts by weight of carbon black and carbonizing it at a temperature of 600 to 1000 ° C. in an inert atmosphere is used for a negative electrode for a non-aqueous electrolyte secondary battery. A second carbon material such as carbon black or flake graphite having an electric conductivity of 10 1 S / cm or more is used for the negative electrode in which 1 to 10 parts by weight of the carbonaceous material is mixed.

【0011】前記炭素質物質は、粉末X線回折法によっ
て得られる層間距離d(002)が0.34〜0.38
nmであり、かつ平均粒径が5〜20μmであり、水素
と炭素の原子数の比率H/Cが0.005〜0.2であ
ることが好ましい。
The carbonaceous material has an interlayer distance d (002) of 0.34 to 0.38 obtained by a powder X-ray diffraction method.
It is preferable that the average particle diameter is 5 nm, the average particle diameter is 5 to 20 μm, and the ratio H / C of the number of atoms of hydrogen and carbon is 0.005 to 0.2.

【0012】また、前記縮合多環芳香族炭化水素化合物
がナフタレン、アントラセン、インデン、テトラリン、
フェナントレンもしくはこれらの縮合多環芳香族炭化水
素化合物にCn2n+1もしくはCn2n-1(nは2〜4)
で示される側鎖が付加した有機化合物であり、前記ヘテ
ロ原子含有縮合多環芳香族炭化水素化合物がキノリン、
ピロールもしくはこれらのヘテロ縮合多環芳香族炭化水
素化合物にCn2n+1もしくはCn2n-1(nは1〜4)
で示される側鎖が付加した有機化合物を用いるのが好ま
しい。
The fused polycyclic aromatic hydrocarbon compound is naphthalene, anthracene, indene, tetralin,
Phenanthrene or C n H 2n + 1 or C n H 2n-1 in these condensed polycyclic aromatic hydrocarbon compounds (n is 2-4)
Is a side chain-added organic compound, wherein the heteroatom-containing condensed polycyclic aromatic hydrocarbon compound is quinoline,
C n H 2n + 1 or C n H 2n-1 (n is 1 to 4) in pyrrole or these hetero-condensed polycyclic aromatic hydrocarbon compounds
It is preferable to use an organic compound to which a side chain shown by is added.

【0013】[0013]

【発明の実施の形態】本発明は、ピッチ類の軟化点を上
げて炭化過程で発生する水素ガスを抑制して収率を高め
るとともにさらに高収率を実現するため、炭化過程で溶
融状態になっている液相のピッチ中に固体のカーボンブ
ラックを分散させ、ガス発生に伴うと見られる液相の膨
張を抑えて炭化を促進されることができる。これは、未
だ、溶融状態の液相中でピッチの炭化が進むとき、発生
する水素ガスがカーボンブラックのミクロなストラクチ
ャーに吸着され、次いでガス吸収した固体カーボンブラ
ックが熱対流によって気液界面に露出したとき、大気中
に水素ガスを放出するといったポンプのような役割があ
ると考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention increases the softening point of pitches to suppress hydrogen gas generated in the carbonization process to increase the yield and achieve a higher yield. The solid carbon black is dispersed in the pitch of the liquid phase which has become, and the expansion of the liquid phase which is considered to be caused by gas generation can be suppressed to promote the carbonization. This is because when carbonization of pitch progresses in the molten liquid phase, hydrogen gas generated is adsorbed on the microstructure of carbon black, and then solid carbon black that has absorbed gas is exposed to the gas-liquid interface by thermal convection. At that time, it is considered to have a role like a pump that releases hydrogen gas into the atmosphere.

【0014】このような方法で炭化を行うと、高収率が
期待されると同時にガス発生が少ないため、比較的均質
な反応が行われポアの発生が激減する。これにより真密
度の大きい炭素質物質が得られる。
When carbonization is carried out by such a method, a high yield is expected and at the same time, a small amount of gas is generated, so that a relatively homogeneous reaction is performed and the generation of pores is drastically reduced. As a result, a carbonaceous material having a high true density can be obtained.

【0015】また、この炭素質物質に、カーボンブラッ
ク、燐片状黒鉛等の炭素材料を添加することにより電子
伝導のネットワークが強固になり、炭素質物質自身の反
応性がさらに高まるとともに電池の内部抵抗が軽減で
き、高率充放電が可能になる。
Further, by adding a carbon material such as carbon black or flake graphite to this carbonaceous material, the electron conduction network is strengthened, the reactivity of the carbonaceous material itself is further increased, and the inside of the battery is increased. Resistance can be reduced and high rate charging / discharging becomes possible.

【0016】[0016]

【実施例】【Example】

(実施例1)以下、図面と共に本発明の実施例を説明す
る。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0017】図1に本発明の負極を評価するための評価
用電池の縦断面図を示す。図1において、1は耐有機電
解液性のステンレス鋼板を加工した電池ケース、2は同
材料の封口板、3は同材料の集電体で、電池ケース1の
内面にスポット溶接されている。4は金属リチウムで、
封口板2の内部に圧着されている。5は本発明の負極で
あり、6は微孔性のポリプロピレン製セパレーター、7
はポリプロピレン製絶縁ガスケットである。この評価用
電池の寸法は直径20mm、電池総高1.6mmであ
る。
FIG. 1 shows a vertical sectional view of an evaluation battery for evaluating the negative electrode of the present invention. In FIG. 1, 1 is a battery case formed by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate made of the same material, and 3 is a current collector made of the same material, which is spot-welded to the inner surface of the battery case 1. 4 is metallic lithium,
It is crimped inside the sealing plate 2. 5 is a negative electrode of the present invention, 6 is a microporous polypropylene separator, 7
Is an insulating gasket made of polypropylene. The dimensions of the battery for evaluation are 20 mm in diameter and 1.6 mm in total battery height.

【0018】負極活物質として、後に詳細に説明する複
合炭素材料90重量部に対し、結着剤としてポリフッ化
ビニリデン10重量部を混合して得られる合剤の所定量
を集電体3の上に成形して電極とし、これを150℃で
減圧乾燥した後、負極として電池に組立てた。電解液は
炭酸エチレン、1、3−ジメトキシエタンの等体積混合
溶媒に溶質として過塩素酸リチウムを1モル/リットル
の濃度で溶解して用いた。上記負極は電池の組み立て
後、充電することにより電気化学的にリチウムイオンが
挿入される。
As a negative electrode active material, a predetermined amount of a mixture obtained by mixing 10 parts by weight of polyvinylidene fluoride as a binder with 90 parts by weight of a composite carbon material, which will be described in detail later, is applied on the current collector 3. Was formed into an electrode, dried under reduced pressure at 150 ° C., and then assembled into a battery as a negative electrode. The electrolytic solution was prepared by dissolving lithium perchlorate at a concentration of 1 mol / liter as a solute in an equal volume mixed solvent of ethylene carbonate and 1,3-dimethoxyethane. After the battery is assembled, the negative electrode is charged to electrochemically insert lithium ions.

【0019】上記の評価用電池は、本発明による負極の
充放電特性を評価するために構成したものであるため、
金属リチウム4が放電する方向に電流を通じると、リチ
ウムの溶解とともに本発明の負極5にリチウムイオンが
吸蔵されて充電される。また、本発明の負極5が放電す
る方向に電流を通じた場合にはリチウムイオンが放出さ
れて金属リチウム4の表面にリチウムが電析する。この
電池は電気容量的に金属リチウム4が大過剰の状態で構
成されており、実質的には評価用電池の特性は本発明の
負極5の特性を示すものとして評価できる。これらの評
価用電池を常温(20℃)で、0.5mA/cm2とし
て、電圧2.0Vから0Vの範囲で充放電試験を行い、
放電容量とサイクル特性について検討した。
Since the above-mentioned evaluation battery is constructed to evaluate the charge / discharge characteristics of the negative electrode according to the present invention,
When a current is passed in a direction in which the metallic lithium 4 is discharged, lithium ions are dissolved and lithium ions are occluded and charged in the negative electrode 5 of the present invention. Further, when a current is passed in the discharging direction of the negative electrode 5 of the present invention, lithium ions are released and lithium is electrodeposited on the surface of the metallic lithium 4. This battery is constructed in a state of a large excess of metallic lithium 4 in terms of electric capacity, and the characteristics of the evaluation battery can be evaluated substantially as the characteristics of the negative electrode 5 of the present invention. These evaluation batteries were subjected to a charge / discharge test at room temperature (20 ° C.) at 0.5 mA / cm 2 in a voltage range of 2.0V to 0V.
The discharge capacity and cycle characteristics were examined.

【0020】電気化学的特性以外の評価方法について簡
単に説明する。見掛け密度の測定は、試料を常温でタッ
プすることなく単位重量あたりの体積を測定した。真比
重は、定法にしたがってピクノメータを用いて測定し
た。電気抵抗は、試料を一定加圧状態にしたうえで直流
電流を印加しその電圧応答を測定するいわゆる4端子法
により測定した。結晶パラメータは粉末X線回折法によ
り格子パラメータを算出した。粒度分布は湿式法のレー
ザー式粒度分布測定法で測定を行った。試料の水素/炭
素の原子数比であるH/Cは燃焼法により炭酸ガス成分
から数値を求めた。
Evaluation methods other than the electrochemical characteristics will be briefly described. The apparent density was measured by measuring the volume per unit weight without tapping the sample at room temperature. The true specific gravity was measured using a pycnometer according to a standard method. The electric resistance was measured by a so-called four-terminal method in which a direct current was applied to the sample under a constant pressure and the voltage response thereof was measured. As the crystal parameter, a lattice parameter was calculated by the powder X-ray diffraction method. The particle size distribution was measured by a laser type particle size distribution measuring method of a wet method. H / C, which is the hydrogen / carbon atomic ratio of the sample, was calculated from the carbon dioxide gas component by the combustion method.

【0021】炭素質物質を得る方法の概要は、次のよう
である。コールタールピッチ、石油ピッチ、縮合多環芳
香族炭化水素化合物の重縮合で得られる有機合成ピッ
チ、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重
縮合で得られる有機合成ピッチの各単体からなるピッチ
類を所定量秤量し、これをアルゴンガスの不活性雰囲気
下で加熱し液相化する。一旦溶融した後、これに所定量
のカーボンブラックを分散し、さらに600〜1000
℃の温度で炭化する。炭化焼成を所定時間経た後、自然
冷却しこれを粉砕することで炭素質物質が得られる。次
いで、この炭素質物質にカーボンブラックあるいは燐片
状黒鉛からなる第2の炭素基質材料を所定量混合するこ
とによって複合炭素材料とし、電気化学評価用試料とし
た。
The outline of the method for obtaining the carbonaceous material is as follows. Coal tar pitch, petroleum pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compound, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compound containing hetero atom A predetermined amount of pitches is weighed and heated in an inert atmosphere of argon gas to form a liquid phase. After melting once, a predetermined amount of carbon black is dispersed therein, and further 600 to 1000
Carbonize at a temperature of ° C. After a predetermined time of carbonization and firing, the material is naturally cooled and crushed to obtain a carbonaceous material. Next, a predetermined amount of a second carbon substrate material composed of carbon black or flake graphite was mixed with this carbonaceous material to prepare a composite carbon material, which was used as a sample for electrochemical evaluation.

【0022】具体例で説明する。まず、コールタールピ
ッチ50gをアルゴンガスの不活性雰囲気下で加熱し液
相化する。一旦溶融した後、これに0.5〜7重量部の
カーボンブラックを分散し、さらに500〜1200℃
の温度で炭化する。炭化焼成を3時間経た後、自然冷却
しこれを粉砕することで炭素質物質を得た。次いで、こ
の炭素質物質に燐片状黒鉛からなる第2の炭素基質材料
を0.5〜12重量部混合することによって複合炭素材
料とし、電気化学評価用試料とした。
A specific example will be described. First, 50 g of coal tar pitch is heated in an inert atmosphere of argon gas to form a liquid phase. After melting once, 0.5 to 7 parts by weight of carbon black is dispersed therein, and further 500 to 1200 ° C.
Carbonize at the temperature of. After carbonization and firing for 3 hours, it was naturally cooled and crushed to obtain a carbonaceous material. Then, 0.5 to 12 parts by weight of a second carbon substrate material composed of flake graphite was mixed with this carbonaceous material to form a composite carbon material, which was used as a sample for electrochemical evaluation.

【0023】炭化焼成温度を800℃とし、溶融後に加
える分散用カーボンブラック量を0.5〜7重量部の範
囲としたときの見掛け密度の変化を(表1)に示した。
The change in apparent density when the carbonization and firing temperature was 800 ° C. and the amount of dispersion carbon black added after melting was in the range of 0.5 to 7 parts by weight is shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】(表1)から分かるようにカーボンブラッ
ク量が1.0重量部以下では効果が現れず、逆に5.0
重量部以上で見掛け密度が再び減少する。したがって8
00℃の条件では1〜5重量部が好ましい。なお、この
際の結晶パラメータd(002)はカーボンブラックの
量に関係なく0.36nmであった。
As can be seen from (Table 1), when the amount of carbon black is 1.0 part by weight or less, the effect is not exhibited, and conversely 5.0.
The apparent density decreases again when the amount is more than the weight part. Therefore 8
It is preferably 1 to 5 parts by weight under the condition of 00 ° C. The crystal parameter d (002) at this time was 0.36 nm regardless of the amount of carbon black.

【0026】次に、特性の良好であったカーボンブラッ
ク量を2.0重量部とした時、種々の炭化焼成温度によ
る見掛け密度変化、結晶パラメータd(002)、比導
電率、電気化学的放電容量(不可逆容量は計算に入れな
い)、水素/炭素比(H/C)、必要導電材量(負極板
の比導電率が100S/cmを得るために必要な第2の
炭素基質材料の添加量)についての結果を(表2)に示
す。
Next, when the amount of carbon black having good characteristics was set to 2.0 parts by weight, the apparent density change due to various carbonization and firing temperatures, the crystal parameter d (002), the specific conductivity, and the electrochemical discharge. capacity (irreversible capacity is not counting), hydrogen / carbon ratio (H / C), the second carbon matrix material specific conductivity of required conductive material amount (negative electrode plates required to obtain a 10 0 S / cm Table 2 shows the results regarding the addition amount of.

【0027】なお、比較例として黒鉛材料(2900℃
処理で熱処理した炭素材)を負極活物質とし、本発明の
負極と同様の配合比と製法で作成した負極を用いた評価
用電池の結果についても(表2)に示す。
As a comparative example, a graphite material (2900 ° C.
The results of the evaluation battery using the negative electrode prepared by the same compounding ratio and manufacturing method as the negative electrode of the present invention with the carbon material heat treated in the treatment) as the negative electrode active material are also shown in (Table 2).

【0028】[0028]

【表2】 [Table 2]

【0029】(表2)より、放電容量は600〜100
0℃が良好で比較例よりも高容量が得られる。この炭化
焼成温度領域に相当する物性は、d(002)が0.3
5〜0.38nm、比導電率が1〜10S/cm、H/
Cが0.09〜0.18であり、必要導電材量は1〜5
重量部であった。炭素質物質の比導電率が100のオー
ダーであっても第2の炭素基質材料が1%程度必要な理
由は炭素質物質粒子間の接合において粒子の形態効果
(最密充填による粒間電子伝導ネットワークの形成)を
十分に引き出すことができなかったからであると考えて
いる。
From Table 2, the discharge capacity is 600-100.
The temperature is good at 0 ° C. and a higher capacity than that of the comparative example can be obtained. The physical properties corresponding to this carbonization and firing temperature range are such that d (002) is 0.3.
5 to 0.38 nm, specific conductivity 1 to 10 S / cm, H /
C is 0.09 to 0.18 and the required amount of conductive material is 1 to 5
Parts by weight. Intergranular electronic carbonaceous specific conductivity 10 0-order is a also a second need reasons about 1% carbon substrate material substances according effects (closest packing of particles in the junction between the carbonaceous material particles This is because the formation of the conduction network) could not be sufficiently brought out.

【0030】炭素質物質の平均粒径が20μm以上の場
合、平均粒径が10μmの場合に比べて活物質としての
比表面積が3/4まで低下し、十分な電気化学的特性が
得られない。逆に平均粒径が5μm以下では比表面積の
点では良いが、極板充填密度は平均粒径が10μmを用
いたときのおよそ2/3まで低下し、電池として十分な
電気化学的特性を反映させることができない。したがっ
て、用いるべき炭素質物質の平均粒径は5〜20μmの
ものを用いるべきと考える。
When the average particle size of the carbonaceous material is 20 μm or more, the specific surface area as the active material is reduced to 3/4 as compared with the case where the average particle size is 10 μm, and sufficient electrochemical characteristics cannot be obtained. . On the contrary, when the average particle size is 5 μm or less, the specific surface area is good, but the electrode plate packing density is reduced to about 2/3 of that when the average particle size is 10 μm, which reflects sufficient electrochemical characteristics as a battery. I can't let you do it. Therefore, it is considered that the carbonaceous material to be used should have an average particle size of 5 to 20 μm.

【0031】本実施例の場合、分散用カーボンブラック
が2重量部であったが、1〜5重量部の範囲であっても
ほぼ同様の結果と効果が得られる。これは炭素質物質が
炭化焼成温度によって結晶学的あるいは電気特性的な物
性が決められている理由によると考えている。すなわち
分散用カーボンブラックの量は液相での炭化過程で急激
なガス発生による膨張を制限する作用があるのみで、そ
の他の物性因子は炭化焼成温度が支配的であることによ
ると考えている。
In the case of this embodiment, the dispersing carbon black was 2 parts by weight, but substantially the same result and effect can be obtained even in the range of 1 to 5 parts by weight. It is considered that this is because the physical properties of the carbonaceous material are determined crystallographically or electrically depending on the carbonization and firing temperature. That is, it is considered that the amount of the dispersing carbon black only has a function of limiting the expansion due to the rapid gas generation in the carbonization process in the liquid phase, and the other physical property factors are that the carbonization firing temperature is dominant.

【0032】なお、ここで加えた第2の炭素基質材料
は、負極として必要な100S/cmを得るためにはこ
れ以上の比導電率(例えば101S/cm以上)を有す
る必要性がある。これを満たす他の素材として高導電性
を有すカーボンブラックがある。
The second carbon substrate material added here must have a specific conductivity (for example, 10 1 S / cm or more) higher than this in order to obtain 10 0 S / cm required for the negative electrode. There is. Another material satisfying this is carbon black having high conductivity.

【0033】(実施例2)石油系ピッチ50gをアルゴ
ンガスの不活性雰囲気下で加熱し液相化する。一旦溶融
した後、これに0.5〜7重量部のカーボンブラックを
分散し、さらに500〜1200℃の温度で炭化する。
炭化焼成を3.5時間経た後、自然冷却しこれを粉砕す
ることで炭素質物質を得た。次いで、この炭素質物質に
燐片状黒鉛からなる第2の炭素基質材料を0.5〜12
重量部混合することによって複合炭素材料とし、電気化
学評価用試料とした。
Example 2 50 g of petroleum-based pitch is heated in an inert atmosphere of argon gas to form a liquid phase. After melting once, 0.5 to 7 parts by weight of carbon black is dispersed therein, and further carbonized at a temperature of 500 to 1200 ° C.
After 3.5 hours of carbonization and calcination, it was naturally cooled and crushed to obtain a carbonaceous material. Then, a second carbon substrate material composed of flake graphite is added to the carbonaceous material in an amount of 0.5 to 12
By mixing parts by weight, a composite carbon material was obtained, which was used as a sample for electrochemical evaluation.

【0034】炭化焼成温度を800℃とし、溶融後に加
える分散用カーボンブラック量を0.5〜7重量部の範
囲としたときの見掛け密度の変化を(表3)に示した。
Table 3 shows the changes in apparent density when the carbonization and firing temperature was 800 ° C. and the amount of carbon black for dispersion added after melting was in the range of 0.5 to 7 parts by weight.

【0035】[0035]

【表3】 [Table 3]

【0036】(表3)から分かるようにカーボンブラッ
ク量が1.0重量部以下では効果が現れず、逆に5.0
重量部以上で見掛け密度が再び減少する。したがって8
00℃の条件では1〜5重量部が好ましい。なお、この
際の結晶パラメータd(002)はカーボンブラックの
量に関係なく0.36nmであった。
As can be seen from (Table 3), when the amount of carbon black is 1.0 part by weight or less, the effect does not appear, and conversely 5.0.
The apparent density decreases again when the amount is more than the weight part. Therefore 8
It is preferably 1 to 5 parts by weight under the condition of 00 ° C. The crystal parameter d (002) at this time was 0.36 nm regardless of the amount of carbon black.

【0037】次に、特性の比較的良好であったカーボン
ブラック量を2.0重量部とした時、種々の炭化焼成温
度による見掛け密度変化、結晶パラメータd(00
2)、比導電率、電気化学的放電容量(不可逆容量は計
算に入れない)、水素/炭素比(H/C)、必要導電材
量(負極板の比導電率が100S/cmを得るために必
要な第2の炭素基質材料の添加量)についての結果を
(表4)に示す。
Next, when the amount of carbon black having relatively good characteristics was set to 2.0 parts by weight, the apparent density change and the crystal parameter d (00
2), specific conductivity, electrochemical discharge capacity (irreversible capacity is not included in calculation), hydrogen / carbon ratio (H / C), necessary conductive material amount (specific conductivity of negative electrode plate is 10 0 S / cm). The results regarding the amount of the second carbon-based material required to be obtained) are shown in (Table 4).

【0038】なお、比較例として黒鉛材料(2900℃
処理で熱処理した炭素材)を負極活物質とし、本発明の
負極と同様の配合比と製法で作成した負極を用いた評価
用電池の結果についても(表4)に示す。
As a comparative example, a graphite material (2900 ° C.
Table 4 also shows the results of the battery for evaluation using the negative electrode prepared by the same compounding ratio and manufacturing method as the negative electrode of the present invention, in which the carbon material heat-treated in the treatment was used as the negative electrode active material.

【0039】[0039]

【表4】 [Table 4]

【0040】(表4)より、放電容量は600〜100
0℃が良好で比較例よりも高容量が得られる。この炭化
焼成温度領域に相当する物性は、d(002)が0.3
6〜0.38nm、比導電率が1〜10S/cm、H/
Cが0.09〜0.17であり、必要導電材量は1〜5
重量部であった。炭素質物質の比導電率が100のオー
ダーであっても第2の炭素基質材料が1%程度必要な理
由は炭素質物質粒子間の接合において粒の形態効果(最
密充填による粒間電子伝導ネットワークの形成)を十分
に引き出すことができなかったからであると考えてい
る。
From Table 4, the discharge capacity is 600-100.
The temperature is good at 0 ° C. and a higher capacity than that of the comparative example can be obtained. The physical properties corresponding to this carbonization and firing temperature range are such that d (002) is 0.3.
6 to 0.38 nm, specific conductivity 1 to 10 S / cm, H /
C is 0.09 to 0.17, and the required amount of conductive material is 1 to 5
Parts by weight. Intergranular electronic carbonaceous specific conductivity 10 0-order is a also a second need reasons about 1% carbon substrate material substances due to the grain in the form effect (close-packed at the junction between the carbonaceous material particles This is because the formation of the conduction network) could not be sufficiently brought out.

【0041】用いるべき炭素質物質の平均粒径は(実施
例1)で説明したとおりで、5〜20μmのものを用い
るべきと考える。
The average particle size of the carbonaceous material to be used is as described in (Example 1), and it is considered that the average particle size of 5 to 20 μm should be used.

【0042】本実施例の場合、分散用カーボンブラック
が2重量部であったが、1〜5重量部の範囲であっても
ほぼ同様の結果と効果が得られる。これは炭素質物質が
炭化焼成温度によって結晶学的あるいは電気特性的な物
性が決められている理由によると考えている。すなわち
分散用カーボンブラックの量は液相での炭化過程で急激
なガス発生による膨張を制限する作用があるのみで、そ
の他の物性因子は炭化焼成温度が支配的であることによ
ると考えている。
In the case of this embodiment, the dispersing carbon black was 2 parts by weight, but substantially the same results and effects can be obtained even in the range of 1 to 5 parts by weight. It is considered that this is because the physical properties of the carbonaceous material are determined crystallographically or electrically depending on the carbonization and firing temperature. That is, it is considered that the amount of the dispersing carbon black only has a function of limiting the expansion due to the rapid gas generation in the carbonization process in the liquid phase, and the other physical property factors are that the carbonization firing temperature is dominant.

【0043】なお、ここで加えた第2の炭素基質材料は
(実施例1)で説明したとおりで、101S/cm以上
の比導電率を有する燐片性黒鉛あるいはカーボンブラッ
クがある。
The second carbon substrate material added here is as described in (Example 1), and there is flake graphite or carbon black having a specific conductivity of 10 1 S / cm or more.

【0044】(実施例3)縮合多環芳香族炭化水素化合
物としてナフタレンを用い、これを重縮合して得られる
有機合成ピッチ(ナフタレンピッチ)50gをアルゴン
ガスの不活性雰囲気下で加熱し液相化する。一旦溶融し
た後、これに0.5〜7重量部のカーボンブラックを分
散し、さらに500〜1200℃の温度で炭化する。炭
化焼成を2.5時間経た後、自然冷却しこれを粉砕する
ことで炭素質物質を得た。次いで、この炭素質物質に燐
片状黒鉛からなる第2の炭素基質材料を0.5〜12重
量部混合することによって複合炭素材料とし、電気化学
評価用試料とした。
Example 3 50 g of an organic synthetic pitch (naphthalene pitch) obtained by polycondensing naphthalene as a condensed polycyclic aromatic hydrocarbon compound was heated in an inert atmosphere of argon gas to form a liquid phase. Turn into. After melting once, 0.5 to 7 parts by weight of carbon black is dispersed therein, and further carbonized at a temperature of 500 to 1200 ° C. After 2.5 hours of carbonization and calcination, it was naturally cooled and crushed to obtain a carbonaceous material. Then, 0.5 to 12 parts by weight of a second carbon substrate material composed of flake graphite was mixed with this carbonaceous material to form a composite carbon material, which was used as a sample for electrochemical evaluation.

【0045】炭化焼成温度を700℃とし、溶融後に加
える分散用カーボンブラック量を0.5〜7重量部の範
囲としたときの見掛け密度の変化を(表5)に示した。
Table 5 shows the changes in apparent density when the carbonization and firing temperature was 700 ° C. and the amount of carbon black for dispersion added after melting was in the range of 0.5 to 7 parts by weight.

【0046】[0046]

【表5】 [Table 5]

【0047】(表5)から分かるようにカーボンブラッ
ク量が1.0重量部以下では効果が現れず、逆に5.0
重量部以上で見掛け密度が再び減少する。したがって7
00℃の条件では1〜5重量部が好ましい。なお、この
際の結晶パラメータd(002)はカーボンブラックの
量に関係なく0.36nmであった。
As can be seen from (Table 5), when the amount of carbon black is 1.0 part by weight or less, the effect does not appear, and conversely 5.0.
The apparent density decreases again when the amount is more than the weight part. Therefore 7
It is preferably 1 to 5 parts by weight under the condition of 00 ° C. The crystal parameter d (002) at this time was 0.36 nm regardless of the amount of carbon black.

【0048】次に、特性の比較的良好であったカーボン
ブラック量を5.0重量部とした時、種々の炭化焼成温
度による見掛け密度変化、結晶パラメータd(00
2)、比導電率、電気化学的放電容量(不可逆容量は計
算に入れない)、水素/炭素比(H/C)、必要導電材
量(負極板の比導電率が100S/cmを得るために必
要な第2の炭素基質材料の添加量)についての結果を
(表6)に示す。
Next, when the amount of carbon black, which had relatively good characteristics, was 5.0 parts by weight, the apparent density change and the crystal parameter d (00
2), specific conductivity, electrochemical discharge capacity (irreversible capacity is not included in calculation), hydrogen / carbon ratio (H / C), necessary conductive material amount (specific conductivity of negative electrode plate is 10 0 S / cm). The results regarding the amount of the second carbon-based material required to be obtained) are shown in (Table 6).

【0049】なお、比較例として黒鉛材料(2900℃
処理で熱処理した炭素材)を負極活物質とし、本発明の
負極と同様の配合比と製法で作成した負極を用いた評価
用電池の結果についても(表6)に示す。
As a comparative example, a graphite material (2900 ° C.
The results of the evaluation battery using the negative electrode prepared by the same compounding ratio as the negative electrode of the present invention and the negative electrode active material of the present invention are also shown in Table 6.

【0050】[0050]

【表6】 [Table 6]

【0051】(表6)より、放電容量は600〜100
0℃が良好で比較例よりも高容量が得られる。この炭化
焼成温度領域に相当する物性は、d(002)が0.3
6〜0.38nm、比導電率が1〜10S/cm、H/
Cが0.005〜0.15であり、必要導電材量は1〜
5重量部であった。炭素質物質の比導電率が100のオ
ーダーであっても第2の炭素基質材料が1%程度必要な
理由は炭素質物質粒子間の接合において粒の形態効果
(最密充填による粒間電子伝導ネットワークの形成)を
十分に引き出すことができなかったからであると考えて
いる。
From Table 6, the discharge capacity is 600-100.
The temperature is good at 0 ° C. and a higher capacity than that of the comparative example can be obtained. The physical properties corresponding to this carbonization and firing temperature range are such that d (002) is 0.3.
6 to 0.38 nm, specific conductivity 1 to 10 S / cm, H /
C is 0.005 to 0.15, and the required amount of conductive material is 1 to
It was 5 parts by weight. Intergranular electronic carbonaceous specific conductivity 10 0-order is a also a second need reasons about 1% carbon substrate material substances due to the grain in the form effect (close-packed at the junction between the carbonaceous material particles This is because the formation of the conduction network) could not be sufficiently brought out.

【0052】用いるべき炭素質物質の平均粒径は(実施
例1)で説明したとおりで、5〜20μmのものを用い
るべきと考える。
The average particle size of the carbonaceous material to be used is as described in (Example 1), and it is considered that the average particle size of 5 to 20 μm should be used.

【0053】本実施例の場合、分散用カーボンブラック
が5重量部であったが、1〜5重量部の範囲であればほ
ぼ同様の結果と効果が得られる。これは炭素質物質が炭
化焼成温度によって結晶学的あるいは電気特性的な物性
が決められている理由によると考えている。すなわち分
散用カーボンブラックの量は液相での炭化過程で急激な
ガス発生による膨張を制限する作用があるのみで、その
他の物性因子は炭化焼成温度が支配的であることによる
と考えている。
In the case of this example, the dispersing carbon black was 5 parts by weight, but substantially the same results and effects can be obtained in the range of 1 to 5 parts by weight. It is considered that this is because the physical properties of the carbonaceous material are determined crystallographically or electrically depending on the carbonization and firing temperature. That is, it is considered that the amount of the dispersing carbon black only has a function of limiting the expansion due to the rapid gas generation in the carbonization process in the liquid phase, and the other physical property factors are that the carbonization firing temperature is dominant.

【0054】なお、ここで加えるべき第2の炭素基質材
料は(実施例1)で説明したとおりで、101S/cm
以上の比導電率を有す燐片状黒鉛あるいはカーボンブラ
ックがある。
The second carbon substrate material to be added here is as described in (Example 1), and is 10 1 S / cm.
There are scaly graphite or carbon black having the above specific conductivity.

【0055】このほか、インデン、ナフタリン、テトラ
リン、アントラセン、フェナントレンなどの縮合環を有
するものに同様の効果が得られる。さらに例えばナフタ
レンにメチル基が付加されたようなメチルナフタレン、
すなわち縮合多環芳香族炭化水素化合物にCn2n+1
n2n-1(nは2〜4)で示される側鎖が付加した有
機化合物を出発原料に用いても同様の効果が得られる。
In addition, similar effects can be obtained with those having a condensed ring such as indene, naphthalene, tetralin, anthracene and phenanthrene. Further, for example, methylnaphthalene in which a methyl group is added to naphthalene,
That is, a condensed polycyclic aromatic hydrocarbon compound is added to C n H 2n + 1 ,
C n H 2n-1 similar effect (n is 2-4) by using a starting material organic compound in which the side chains are added represented by is obtained.

【0056】(実施例4)ヘテロ原子含有縮合多環芳香
族炭化水素化合物としてピロールを用い、これを重縮合
して得られる有機合成ピッチ50gをアルゴンガスの不
活性雰囲気下で加熱し液相化する。一旦溶融した後、こ
れに0.5〜7重量部のカーボンブラックを分散し、さ
らに500〜1200℃の温度で炭化する。炭化焼成を
3.0時間経た後、自然冷却しこれを粉砕することで炭
素質物質を得た。次いで、この炭素質物質に燐片状黒鉛
からなる第2の炭素基質材料を0.5〜12重量部混合
することによって複合炭素材料とし、電気化学評価用試
料とした。
Example 4 Pyrrole was used as a condensed polycyclic aromatic hydrocarbon compound containing a hetero atom, and 50 g of an organic synthetic pitch obtained by polycondensation of this was heated in an inert atmosphere of argon gas to form a liquid phase. To do. After melting once, 0.5 to 7 parts by weight of carbon black is dispersed therein, and further carbonized at a temperature of 500 to 1200 ° C. After carbonization and calcination for 3.0 hours, it was naturally cooled and crushed to obtain a carbonaceous material. Then, 0.5 to 12 parts by weight of a second carbon substrate material composed of flake graphite was mixed with this carbonaceous material to form a composite carbon material, which was used as a sample for electrochemical evaluation.

【0057】炭化焼成温度を700℃とし、溶融後に加
える分散用カーボンブラック量を0.5〜7重量部の範
囲としたときの見掛け密度の変化を(表7)に示す。
Table 7 shows the changes in apparent density when the carbonization and firing temperature was 700 ° C. and the amount of carbon black for dispersion added after melting was in the range of 0.5 to 7 parts by weight.

【0058】[0058]

【表7】 [Table 7]

【0059】(表7)から分かるようにカーボンブラッ
ク量が1.0重量部以下では効果が現れず、逆に5.0
重量部以上で見掛け密度が再び減少する。したがって7
00℃の条件では1〜5重量部が好ましい。なお、この
際の結晶パラメータd(002)はカーボンブラックの
量に関係なく0.37nmであった。
As can be seen from (Table 7), when the amount of carbon black is 1.0 part by weight or less, the effect does not appear, and conversely 5.0.
The apparent density decreases again when the amount is more than the weight part. Therefore 7
It is preferably 1 to 5 parts by weight under the condition of 00 ° C. The crystal parameter d (002) at this time was 0.37 nm regardless of the amount of carbon black.

【0060】次に、特性の比較的良好であったカーボン
ブラック量を2.0重量部とした時、種々の炭化焼成温
度による見掛け密度変化、結晶パラメータd(00
2)、比導電率、電気化学的放電容量(不可逆容量は計
算に入れない)、水素/炭素比(H/C)、必要導電材
量(負極板の比導電率が100S/cmを得るために必
要な第2の炭素基質材料の添加量)についての結果を
(表8)に示す。
Next, when the amount of carbon black, which had relatively good characteristics, was set to 2.0 parts by weight, the apparent density change due to various carbonization and firing temperatures and the crystal parameter d (00
2), specific conductivity, electrochemical discharge capacity (irreversible capacity is not included in calculation), hydrogen / carbon ratio (H / C), necessary conductive material amount (specific conductivity of negative electrode plate is 10 0 S / cm). The results regarding the amount of the second carbon-based material added necessary to obtain the same are shown in (Table 8).

【0061】なお、比較例として黒鉛材料(2900℃
処理で熱処理した炭素材)を負極活物質とし、本発明の
負極と同様の配合比と製法で作成した負極を用いた評価
用電池の結果についても(表8)に示す。
As a comparative example, a graphite material (2900 ° C.
Table 8 also shows the results of the evaluation battery using the negative electrode prepared by the same compounding ratio and manufacturing method as the negative electrode of the present invention, in which the carbon material heat-treated in the treatment was used as the negative electrode active material.

【0062】[0062]

【表8】 [Table 8]

【0063】(表8)より、放電容量は600〜100
0℃が良好で比較例よりも高容量が得られる。この炭化
焼成温度領域に相当する物性は、d(002)が0.3
4〜0.38nm、比導電率が1〜10S/cm、H/
Cが0.10〜0.20であり、必要導電材量は1〜1
0重量部であった。炭素質物質の比導電率が100のオ
ーダーであっても第2の炭素基質材料が1%程度必要な
理由は炭素質物質粒子間の接合において粒の形態効果
(最密充填による粒間電子伝導ネットワークの形成)を
十分に引き出すことができなかったからであると考えて
いる。
From Table 8, the discharge capacity is 600-100.
The temperature is good at 0 ° C. and a higher capacity than that of the comparative example can be obtained. The physical properties corresponding to this carbonization and firing temperature range are such that d (002) is 0.3.
4 to 0.38 nm, specific conductivity 1 to 10 S / cm, H /
C is 0.10 to 0.20 and the required amount of conductive material is 1 to 1.
0 parts by weight. Intergranular electronic carbonaceous specific conductivity 10 0-order is a also a second need reasons about 1% carbon substrate material substances due to the grain in the form effect (close-packed at the junction between the carbonaceous material particles This is because the formation of the conduction network) could not be sufficiently brought out.

【0064】用いるべき炭素質物質の平均粒径は(実施
例1)で説明したとおりで、5〜20μmのものを用い
るべきと考える。
The average particle size of the carbonaceous material to be used is as described in (Example 1), and it is considered that the average particle size of 5 to 20 μm should be used.

【0065】本実施例の場合、分散用カーボンブラック
量が2重量部であったが、1〜10重量部の範囲であれ
ばほぼ同様の結果と効果が得られる。これは炭素質物質
が炭化焼成温度によって結晶学的あるいは電気特性的な
物性が決められている理由によると考えている。すなわ
ち分散用カーボンブラックの量は液相での炭化過程で急
激なガス発生による膨張を制限する作用があるのみで、
その他の物性因子は炭化焼成温度が支配的であることに
よると考えている。
In the case of this example, the amount of carbon black for dispersion was 2 parts by weight, but if the amount is in the range of 1 to 10 parts by weight, substantially the same results and effects can be obtained. It is considered that this is because the physical properties of the carbonaceous material are determined crystallographically or electrically depending on the carbonization and firing temperature. That is, the amount of carbon black for dispersion only serves to limit expansion due to rapid gas generation in the carbonization process in the liquid phase,
It is thought that the other physical properties are due to the fact that the carbonization firing temperature is dominant.

【0066】なお、ここで加えるべき第2の炭素基質材
料は(実施例1)で説明したとおりで、101S/cm
以上の比導電率を有す燐片性黒鉛あるいはカーボンブラ
ックがある。
The second carbon substrate material to be added here is as described in (Example 1) and is 10 1 S / cm.
There are scaly graphite or carbon black having the above specific conductivity.

【0067】このほか、キノリンなどのヘテロ原子含有
縮合環を持つものに同様の効果が得られる。さらに例え
ばキノリンにメチル基が付加されたようなジメチルキノ
リン、すなわちヘテロ原子含有縮合多環芳香族炭化水素
化合物にCn2n+1,Cn2n -1(nは2〜4)で示され
る側鎖が付加した有機化合物を出発原料に用いても同様
の効果が得られる。
In addition to this, the same effect can be obtained for those having a condensed ring containing a hetero atom such as quinoline. Further, for example dimethyl quinoline as a methyl group attached to quinoline, i.e. represented by C n H 2n + 1, C n H 2n -1 (n is 2-4) heteroatom-containing condensed polycyclic aromatic hydrocarbon compound Similar effects can be obtained by using an organic compound having a side chain added thereto as a starting material.

【0068】実施例1〜4で説明してきた複合炭素材料
を用いた負極の電極表面からは針状のリチウムが観測さ
れることはなかった。
Needle-like lithium was not observed from the electrode surface of the negative electrode using the composite carbon material described in Examples 1 to 4.

【0069】本発明の複合炭素材料を活物質とする負極
は0.5mA/cm2で充放電した場合に、金属リチウ
ムの電位に対して、充電電位の平坦部は約0.3V、放
電電位の平坦部は約0.4Vの値を示す。したがって、
例えばこれらの負極とLiCoO2を活物質とする正極
を組み合わせた場合には、平坦放電電圧が約3.6Vの
非水電解液二次電池を構成できる。なお、本発明におけ
る正極活物質はLiCoO2の他にLiNiO2,LiM
nO2,LiMn24などのリチウムを吸蔵・放出可能
な正極活物質を用いた、いわゆるロッキングチェアタイ
プの非水電解液二次電池などに広く応用でき、これらの
電池の高性能化に極めて効果的である。
When the negative electrode using the composite carbon material of the present invention as the active material was charged and discharged at 0.5 mA / cm 2 , the flat portion of the charging potential was about 0.3 V with respect to the potential of metallic lithium, and the discharging potential was Shows a value of about 0.4V. Therefore,
For example, when these negative electrodes and a positive electrode using LiCoO 2 as an active material are combined, a non-aqueous electrolyte secondary battery having a flat discharge voltage of about 3.6 V can be constructed. The positive electrode active material in the present invention may be LiNiO 2 or LiM in addition to LiCoO 2.
It can be widely applied to so-called rocking chair type non-aqueous electrolyte secondary batteries using positive electrode active materials capable of inserting and extracting lithium such as nO 2 and LiMn 2 O 4, and is extremely useful for improving the performance of these batteries. It is effective.

【0070】[0070]

【発明の効果】以上説明したように、本発明により得ら
れる複合炭素材料を負極とすると、高容量を有し、さら
に充放電反応に伴う負極の電極表面上の針状結晶を抑え
得る非水電解液二次電池が提供できる。
As described above, when the composite carbon material obtained according to the present invention is used as a negative electrode, it has a high capacity and is capable of suppressing needle-like crystals on the electrode surface of the negative electrode due to charge / discharge reaction. An electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】負極の評価用電池の縦断面図FIG. 1 is a vertical sectional view of a battery for evaluating a negative electrode.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 集電体 4 金属リチウム 5 負極 6 セパレーター 7 ガスケット 1 Battery Case 2 Sealing Plate 3 Current Collector 4 Metal Lithium 5 Negative Electrode 6 Separator 7 Gasket

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】コールタールピッチ、石油ピッチ、縮合多
環芳香族炭化水素化合物の重縮合で得られる有機合成ピ
ッチ、またはヘテロ原子含有縮合多環芳香族炭化水素化
合物の重縮合で得られる有機合成ピッチを溶融し、この
溶融物にカーボンブラックを分散した後、不活性雰囲気
下で600℃〜1000℃で炭化して得た炭素質物質を
用いて負極を作製する非水電解液二次電池用負極の製造
法。
1. An organic synthetic pitch obtained by polycondensation of coal tar pitch, petroleum pitch, a condensed polycyclic aromatic hydrocarbon compound, or an organic synthesis obtained by a polycondensation of a heteroatom-containing condensed polycyclic aromatic hydrocarbon compound. For a non-aqueous electrolyte secondary battery, in which a pitch is melted, carbon black is dispersed in the melt, and then carbonized at 600 ° C. to 1000 ° C. in an inert atmosphere to produce a negative electrode using a carbonaceous material. Negative electrode manufacturing method.
【請求項2】炭素質物質に、電気伝導度が10S/cm
以上である炭素材料を前記炭素質物質に対して1〜10
重量部混合して負極を作製する請求項1記載の非水電解
液二次電池用負極の製造法。
2. A carbonaceous material having an electric conductivity of 10 S / cm.
The above carbon material is 1 to 10 with respect to the carbonaceous material.
The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is produced by mixing by weight.
【請求項3】カーボンブラックの添加量は、溶融した有
機合成ピッチに対して1〜5重量%である請求項1記載
の非水電解液二次電池用負極の製造法。
3. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of carbon black added is 1 to 5% by weight based on the molten organic synthetic pitch.
【請求項4】炭素質物質の粉末X線回折法による層間距
離d(002)が0.34〜0.38nmであり、かつ
平均粒径が5〜20μmである請求項1記載の非水電解
液二次電池用負極の製造法。
4. The nonaqueous electrolysis according to claim 1, wherein the carbonaceous material has an inter-layer distance d (002) of 0.34 to 0.38 nm and an average particle diameter of 5 to 20 μm as measured by a powder X-ray diffraction method. Manufacturing method of negative electrode for liquid secondary battery.
【請求項5】炭素質物質が有する水素と炭素の原子数の
比率H/Cが0.005〜0.2である請求項1記載の
非水電解液二次電池用負極の製造法。
5. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the carbonaceous material has a hydrogen / carbon atom ratio H / C of 0.005 to 0.2.
【請求項6】炭素質物質に添加する炭素材料がカーボン
ブラックあるいは燐片状黒鉛である請求項1記載の非水
電解液二次電池用負極の製造法。
6. The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon material added to the carbonaceous material is carbon black or flake graphite.
【請求項7】縮合多環芳香族炭化水素化合物がナフタレ
ン、アントラセン、インデン、テトラリン、フェナント
レンもしくはこれらにCn2n+1もしくはCn 2n-1(n
は2〜4)で示される側鎖が付加された有機化合物であ
る請求項1記載の非水電解液二次電池用負極の製造法。
7. A fused polycyclic aromatic hydrocarbon compound is naphthale.
N, anthracene, indene, tetralin, phenant
Ren or C to thesenH2n + 1Or CnH 2n-1(N
Is an organic compound to which a side chain represented by 2 to 4) is added
The method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1.
【請求項8】ヘテロ原子含有縮合多環芳香族炭化水素化
合物がキノリン、ピロールもしくはこれらにCn2n+1
もしくはCn2n-1(nは1〜4)で示される側鎖が付
加された有機化合物である請求項1記載の非水電解液二
次電池用負極の製造法。
8. A condensed polycyclic aromatic hydrocarbon compound containing a hetero atom is quinoline, pyrrole, or C n H 2n + 1.
Alternatively, the method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, which is an organic compound to which a side chain represented by C n H 2n-1 (n is 1 to 4) is added.
JP7310515A 1995-11-29 1995-11-29 Manufacture of negative electrode for nonaqueous electrolyte secondary battery Pending JPH09147839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7310515A JPH09147839A (en) 1995-11-29 1995-11-29 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7310515A JPH09147839A (en) 1995-11-29 1995-11-29 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09147839A true JPH09147839A (en) 1997-06-06

Family

ID=18006164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7310515A Pending JPH09147839A (en) 1995-11-29 1995-11-29 Manufacture of negative electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09147839A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054769A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing an electrode for non-aqueous electrolytic cells
WO1998054770A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing an electrode for non-aqueous electrolytic cells
WO1999008334A1 (en) * 1997-08-05 1999-02-18 Sony Corporation Carbonaceous precursor, carbonaceous anode material, and nonaqueous rechargeable battery
WO1999062130A1 (en) 1998-05-27 1999-12-02 Tdk Corporation Method of producing an electrode for non-aqueous electrolytic secondary cells
WO2004114443A1 (en) * 2003-06-24 2004-12-29 Electric Power Development Co., Ltd. Negative electrode material, negative electrode, nonaqueous secondary cell composed of the negative electrode and positive electrode
WO2007086603A1 (en) * 2006-01-30 2007-08-02 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and process for producing the same
JP2009004304A (en) * 2007-06-25 2009-01-08 Nippon Carbon Co Ltd Negative electrode active material for lithium secondary battery and negative electrode using it
JP2009117094A (en) * 2007-11-05 2009-05-28 Tokai Carbon Co Ltd Carbon particle powder for lithium-ion secondary battery anode material, its manufacturing method, and lithium-ion secondary battery anode material
JP5062596B2 (en) * 2006-11-10 2012-10-31 東海カーボン株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
KR101365568B1 (en) * 2006-07-19 2014-02-20 니폰 카본 컴퍼니 리미티드 Negative electrode active material for Lithium Ion Rechargeable Battery and negative Electrode using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054769A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing an electrode for non-aqueous electrolytic cells
WO1998054770A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing an electrode for non-aqueous electrolytic cells
WO1999008334A1 (en) * 1997-08-05 1999-02-18 Sony Corporation Carbonaceous precursor, carbonaceous anode material, and nonaqueous rechargeable battery
WO1999062130A1 (en) 1998-05-27 1999-12-02 Tdk Corporation Method of producing an electrode for non-aqueous electrolytic secondary cells
US6428841B1 (en) * 1998-05-27 2002-08-06 Tdk Corporation Method of producing an electrode for non-aqueous electrolytic secondary cells
WO2004114443A1 (en) * 2003-06-24 2004-12-29 Electric Power Development Co., Ltd. Negative electrode material, negative electrode, nonaqueous secondary cell composed of the negative electrode and positive electrode
WO2007086603A1 (en) * 2006-01-30 2007-08-02 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and process for producing the same
JP4844943B2 (en) * 2006-01-30 2011-12-28 東海カーボン株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
KR101298306B1 (en) * 2006-01-30 2013-08-20 도카이 카본 가부시키가이샤 Negative electrode material for lithium ion secondary battery and process for producing the same
KR101365568B1 (en) * 2006-07-19 2014-02-20 니폰 카본 컴퍼니 리미티드 Negative electrode active material for Lithium Ion Rechargeable Battery and negative Electrode using the same
JP5062596B2 (en) * 2006-11-10 2012-10-31 東海カーボン株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
JP2009004304A (en) * 2007-06-25 2009-01-08 Nippon Carbon Co Ltd Negative electrode active material for lithium secondary battery and negative electrode using it
JP2009117094A (en) * 2007-11-05 2009-05-28 Tokai Carbon Co Ltd Carbon particle powder for lithium-ion secondary battery anode material, its manufacturing method, and lithium-ion secondary battery anode material

Similar Documents

Publication Publication Date Title
CA2125003C (en) Non-aqueous liquid electrolyte secondary battery
JP4161376B2 (en) Non-aqueous electrolyte secondary battery
US7608366B2 (en) Nonaqueous electrolytic secondary battery and method of producing anode material thereof
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
US20070092429A1 (en) Methods of preparing carbon-coated particles and using same
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
CA2225239A1 (en) Non-aqueous electrolyte secondary cell
KR20160065107A (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JPH09147839A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP3401646B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JPH10241690A (en) Lithium secondary battery negative electrode
JPH05266880A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JPH0773868A (en) Nonaqueous electrolyte secondary battery and manufacture of negative electrode thereof
JPH07326343A (en) Negative electrode material for nonaqueous electrolytic secondary battery and its manufacture
WO2021166359A1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JP2004207252A (en) Anode material for non-aqueous solvent secondary battery
JP3064662B2 (en) Non-aqueous electrolyte secondary battery
JP3052565B2 (en) Non-aqueous electrolyte secondary battery
JPH0834108B2 (en) Non-aqueous solvent secondary battery
JP3787943B2 (en) Non-aqueous electrolyte secondary battery
JPH08180873A (en) Manufacture of negative electrode material and nonaqueous electrolytic secondary battery