WO1998054769A1 - Method of producing an electrode for non-aqueous electrolytic cells - Google Patents

Method of producing an electrode for non-aqueous electrolytic cells Download PDF

Info

Publication number
WO1998054769A1
WO1998054769A1 PCT/JP1998/002312 JP9802312W WO9854769A1 WO 1998054769 A1 WO1998054769 A1 WO 1998054769A1 JP 9802312 W JP9802312 W JP 9802312W WO 9854769 A1 WO9854769 A1 WO 9854769A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
graphite
weight
parts
Prior art date
Application number
PCT/JP1998/002312
Other languages
French (fr)
Japanese (ja)
Inventor
Tadayoshi Iijima
Shigeo Kurose
Tetsuya Takahashi
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to KR10-1999-7010919A priority Critical patent/KR100502530B1/en
Priority to AU74517/98A priority patent/AU7451798A/en
Publication of WO1998054769A1 publication Critical patent/WO1998054769A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing an electrode for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery in which an electrode active material layer comprising an active material, a scale-like graphite, and a binder is coated on a current collector
  • the present invention relates to a method for manufacturing an electrode for use.
  • the electrodes of this battery are manufactured by coating the active material with a binder, forming an active material layer coating on a current collector, and drying.
  • the active material used for the electrode has poor electrical conductivity except for a part, and therefore, a conductive material is used.
  • the role of the conductive material in the electrode is important, and if the conductive material does not work effectively, problems such as a decrease in battery capacity and a deterioration in cycle life will occur.
  • lithium ion secondary battery for example, when carbon is used as the active material in the negative electrode, when lithium enters the active material and expands and contracts, it contracts. In a lithium-ion secondary battery, charge and discharge are repeated, and the active material expands and contracts repeatedly. During contraction, the contact between the active material and the conductive material deteriorates, which gradually deteriorates the battery.
  • a carbon black such as acetylene black is used as a conductive material.
  • a ⁇ a negative electrode using an alkali metal as an active material, a non-aqueous electrolyte, and a positive electrode are provided.
  • a method for producing a related battery electrode for example, a polyacene-based skeleton structure which is a heat-treated phenolic resin and has an atomic ratio of hydrogen atoms to Z carbon atoms of 0.5 to 0.05 is used.
  • a method for producing a battery electrode comprising an insoluble and infusible substrate having a specific surface area value of at least 600 m 2 Zg by a BET method, wherein the powder of the insoluble and infusible substrate is a conductive material and a binder.
  • a method for producing an electrode for a battery comprising: forming the mixture under pressure or applying or applying pressure on a support. ”(Japanese Patent Application Laid-Open No. 63-310146) No.).
  • the current collector of the coating film is used due to the large surface area of the acetylene black.
  • the adhesiveness to the electrode was poor and the film was easily peeled off, or the coating film was too hard, the flexibility was poor, and the electrode was easily broken.
  • the particle size of the conductive material is reduced, but the cycle life is poor when graphite particles having a small particle size are used.
  • the present invention has been made in view of the above problems, and provides an electrode for a non-aqueous electrolyte battery having good charge / discharge characteristics such as discharge capacity and charge / discharge cycle life and improved physical characteristics. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result of producing an electrode for a non-aqueous electrolyte battery using an active material and a flake-like graphite, using the active material, By mixing and pulverizing the iron, the above-mentioned problems were solved, and the object was achieved. That is, the present invention relates to a method for producing an electrode for a non-aqueous electrolyte battery, in which (1) an electrode active material layer comprising an active material, a scale-like graphite, and a binder is coated on a current collector.
  • the active material is a positive electrode active material.
  • An object of the present invention is to provide an electrode for a non-aqueous electrolyte battery having improved charge / discharge characteristics such as discharge capacity and charge / discharge cycle life and physical properties of a coating film.
  • a conductive material is used because the electric conductivity of the active material is poor.
  • the larger the amount of conductive material the more active material
  • the amount of active material in the volume will decrease and the capacity of the battery will decrease. For this reason, efforts are being made to reduce the amount of conductive material while extracting the performance of active materials.
  • non-aqueous electrolyte secondary batteries decreases with each use, and deterioration occurs.
  • one of the causes of deterioration of non-aqueous electrolyte secondary batteries is the contact between the active material in the electrode and the conductive material. It is considered that the battery is deteriorated and the electricity cannot be extracted to the outside, resulting in deterioration of the battery.
  • carbon black such as acetylene black or graphite is used as the conductive material.Acetylene black has a large specific surface area, but if the active material is carbon, the contact with carbon is considered to be not so good. I have.
  • acetylene black is easy to take an aggregated form, and therefore, although the specific surface area is large, the ratio of the area where the surface of acetylene black is in contact with the active material to the surface area of acetylene black as a whole is not large. If the amount of acetylene black is reduced for the purpose of improving the physical properties of the electrode, the effect as a conductive material is reduced.
  • JP-A-1 one 1 0 5 4 5 wherein as the 9 discloses, describes a non-aqueous electrolyte secondary battery using L i M n 2 0 4 and Graph eye DOO, grapher I bets weight Although 8 to 22% by weight is said to be good, it means that the effect as a conductive material is not exhibited unless a certain amount is added. This is probably because the specific surface area of the conductive material is small, and unless the amount is increased, the contact surface between the conductive material and the active material does not increase.
  • the conductive material used in the present invention is a scale-shaped graphite.
  • a graphite is a natural graphite or an artificial graphite, and its shape is like a scale.
  • the scaly shape in the present invention refers to a shape in which thin layers such as a scaly shape, a scaly shape, a flaky shape, a laminar shape, and a mica shape are laminated.
  • the shape of the natural graphite varies depending on the place of production, but it may be such that the shape is changed to the scale-like shape referred to in the present invention by post-processing such as pulverization and classification. It is preferable that the artificial graphite exhibit the flake shape immediately after the synthesis, but it may be formed into a flake shape by post-processing such as pulverization and classification, similarly to natural graphite. Among these graphites, the classified graphite is most preferable because the scale-like structure is uniform.
  • Graphites that exhibit such scaly shapes include the LF series of Chuetsu Graphite Works, the UFG series of Showa Denko KK, the KS series of LONZA, and the MICROCARB of Kansai Thermochemical Co., Ltd. -G series, Ecos carbon series of Ecos Giken Co., Ltd., scaly Daraite, scaly graphite, etc. which are produced naturally.
  • the center particle size of the graphite is preferably from 1 to 100 ⁇ m, more preferably from 4 to 50 m.
  • L i x M y 0 2 is typically a lithium-containing metal oxide represented by the formula, or similar metal sulfide or the like.
  • L i C o 0 2, L i N i X C ox 0 2, L i ⁇ ⁇ 2 0 4 and the like are preferable.
  • the center particle diameter is preferably from 1 to 30 ⁇ m, more preferably from 7 to 20 m.
  • Examples of the negative electrode active material that can be used in the present invention include amorphous carbon, petroleum coke, coal coke, vapor-grown carbon fiber, non-graphitizable carbon, polymer carbon, and tin oxide.
  • Non-graphitizable carbon and polymer carbon having high hardness are preferred.
  • Polymer carbon refers to a carbon material obtained by heat-treating a high polymer having a crosslinked structure in an inert atmosphere, and is obtained by carbonization of cellulose, phenolic resin, furfural resin, polyparaphenylene, polyatalilonitrile, and the like.
  • the center particle diameter of the negative electrode active material is preferably from 1 to 30 x m, more preferably from 4 to 15 m.
  • the present invention is characterized in that the effect is exhibited with a small amount even with a graphite having a large particle size. Since the graphite is cleaved, even if it is cleaved even with a large grain size, the grain size hardly decreases even if the specific surface area increases. However, the graphites are stacky, and if you try to loosen the stacked ones and give them poor shearing force, you can easily stack them. For example, if you try to grind graphite with a ball mill or the like, it will be crushed, but the stack will be slow.
  • the stack is measured as a surface in the measurement gas, but the surface is not used effectively in terms of contact with the active material.
  • the surfaces stick together and cannot be measured even with the measurement gas. At this point, it is difficult to grind the graphite, and if you try to grind it so that it does not stack, the particle size will decrease.
  • the regrapher is prepared by mixing and grinding the active material and graphite.
  • the purpose is to create an effective surface that can come into contact with the active material, while keeping the particle size as small as possible.
  • Mixing and crushing graphite with the active material of the present invention means that the active material acts on the graphite to crush the graphite and to remove the stack or the stack. Further, when the central particle size of the graphite is larger than the central particle size of the active material, a more excellent effect is exhibited.
  • the central particle size of the graphite is more preferably at least twice the central particle size of the active material.
  • the amount of the conductive material varies depending on the specific surface area of the active material and the like, but is preferably 0.1 to 15 wt%, more preferably 2 to 10 wt% in the coating film.
  • the central particle diameter in the present invention is a cumulative percentage diameter having a frequency accumulation of 50%, as measured using a laser particle size analyzer such as a Microtrack manufactured by Nikkiso Co., Ltd.
  • the mixing and pulverization includes dry pulverization using Hogkawa Micron's Ongmill or the like and wet pulverization using a kneading apparatus.
  • the method of kneading using a kneading device is relatively simple and can grind graphite strongly.
  • the scale-like graphite has low hardness and lubricity, and the active material has relatively high hardness.
  • the scaly graphite is pulverized so that it can be peeled off at the crystal plane.
  • the use of Daraite for the negative electrode acts both as a conductive material and as an active material, which is advantageous in terms of capacity.
  • the active material When dry milling is carried out, the active material is first set in a proportion as high as possible with respect to the total amount of conductive material consisting of flake-like graphite, and this is mixed into an angmill-diet mill. The impact and shear are applied to the graphite from the active material to remove the graphite stack and / or crush. Afterwards, to achieve the desired final compounding ratio Insufficient materials are added, and if necessary, dispersion is performed with a stirring mixer such as a hypermixer, dissolver, or sand grinder mill, and final adjustment is performed so that the electrode active material layer paint meets the conditions of the applicator.
  • a stirring mixer such as a hypermixer, dissolver, or sand grinder mill
  • the active material When wet mixing and pulverizing, first, the active material is mixed in a ratio as high as possible with respect to the total amount of conductive material consisting of flake-like graphite, and then the binder solution and binder are added. Add the agent or solvent and knead using a kneader. After that, add the insufficient material to achieve the desired final compounding ratio, and if necessary, disperse it with a stirring mixer such as a hyper mixer, dissolver, or sand grinder mill, and apply the electrode active material layer paint. Make final adjustments to meet machine requirements.
  • a stirring mixer such as a hyper mixer, dissolver, or sand grinder mill
  • the mixing ratio of the conductive material and the active material is 0.1 to 40 parts by weight, preferably 2 to 15 parts by weight.
  • the above-mentioned kneading machine refers to a device that applies shear between a rotary blade and a kneading tank, which is called a kneader (kneading machine), and can be either a single processing type or a continuous processing type.
  • the single processing type include an open type edder and a pressurized eder.
  • the open type is not suitable for achieving the object of the present invention because the upper part is open, so that a gap is generated, and the pressurized type can minimize the air gap, so that the efficiency is the highest. The effect of the present invention can be obtained well.
  • a continuous processing type kneader if used, there will be a slight gap as compared with the pressurized type because of the feed-out (feed) structure. Being able to be continuous including post-treatment such as dilution and dissolution Is preferred.
  • Specific examples of the rotating blade used for such a kneader include a ⁇ type, a Z type, a cam type, a roller type, an S type, a fish tail type, and a Banbury type.
  • these kneaders include stand-alone kneaders such as the MS-type pressurized kneader of Moriyama Seisakusho, KRC kneader of Kurimoto Steel Works, Fuji Boudanenel, Kobe Works, and extruders such as Toshiba Machinery. Continuous kneaders, desk-type kneaders manufactured by Irie Shokai Co., Ltd., kneaders manufactured by Takabayashi Rika Co., Ltd., and small-sized machines such as Laboplastomill and Brabender manufactured by Toyo Seiki Co., Ltd.
  • Other devices having a function similar to a kneader include a two-roll mill and a Banbury mixer.
  • a thermoplastic resin or a polymer having rubber elasticity can be used singly or as a mixture.
  • the binder include a fluorinated polymer, a polybutyl alcohol, and a carboxymethino. Resenolerose, hydroxypropinoresenorelose, regenerated cenorellose diacetyl cellulose, polyvinyl chloride, polybutylpyrrolidone, polyethylene, polypropylene, EPDM, sulfonated EPDM, SBR, polybutadiene, polyethylene oxide, etc. .
  • the fluorine-containing polymer preferably has an atomic ratio of fluorine atom to carbon atom of 0.75 or more and 1.5 or less, more preferably 0.75 or more and 1.3 or less. When this value is larger than 1.5, the battery capacity cannot be sufficiently obtained, and when it is smaller than 0.75, the binder dissolves in the electrolytic solution.
  • fluorinated polymers include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride monotrifluoride copolymer, ethylene-tetrafluoroethylene copolymer, and propylene-tetrafluoroethylene copolymer.
  • a fluorine-containing polymer in which main-chain hydrogen is substituted with an alkyl group are fluorine-containing polymer in which main-chain hydrogen is substituted with an alkyl group.
  • the solvent has low solubility in the electrolytic solution and there is a solvent that can be dissolved.
  • the solvent has low solubility in the electrolytic solution and there is a solvent that can be dissolved.
  • vinylidene fluoride-based polymer it is soluble in the carbonate-based solvent used in the electrolytic solution. Although difficult, it can be dissolved in solvents such as N, N-dimethylformamide and N-methylpyrrolidone.
  • the amount of such a binder varies depending on the specific surface area of the active material and the conductive material, the particle size, the strength of the target electrode, and the like, but is preferably 2 to 20 wt% in the coating film, and 3 to 15 wt%. wt% is more preferred.
  • a general organic solvent can be used, and specifically, saturated hydrocarbons such as hexane and aromatics such as toluene and xylene. Hydrocarbons, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methylethylketone, methylisobutylketone and diisobutylketone, esters such as ethylacetate and butylacetate, tetrahydrofuran, dioxane, Ethers such as acetyl ether, N, N-dimethylformamide, N-methylpyrrolidone, N, N-amides such as dimethylacetamide, halogenated hydrocarbons such as ethylene chloride and chlorobenzene, etc.
  • amide-based solvents include fluorine-containing solvents. These solvents are preferable because they can dissolve the polymer, and these solvents can be used alone or
  • the current collector having such an electrode active material composition may be any current collector that does not cause a chemical change in the configured battery.
  • Examples thereof include aluminum, copper, stainless steel, nickel, titanium, and fired. Carbon or the like can be used, and those surfaces may be treated with carbon, nickel, titanium, or silver, but aluminum is particularly preferred in consideration of oxidation resistance, electrode flexibility and cost, and the like. Foil or copper foil is preferred.
  • Electrode active material composition by generally well-known coating methods such as the lade method, knife method, ethus extrusion method, curtain method, gravure method, bar coat method, dip method, kiss coat method and squeeze method
  • the paint is applied.Etrus extrusion method is particularly preferable.By selecting the solvent composition and drying conditions of the paint so that the paint is applied at a speed of 5 to 100 m / min, good
  • the surface condition of the coating layer can be obtained.
  • the thickness, length and width of the coating layer are determined by the size of the final battery, but it is preferable to adjust the thickness of the coating layer after coating by a commonly used press process.
  • the pressure is preferably 0.2 to 10 tZ cm, and the processing temperature is preferably 10 to 150 ° C.
  • FIG. 1 is a sectional view of a cell for measuring charge / discharge characteristics.
  • the symbols in the figure indicate the following.
  • the active material layer was produced as follows.
  • Active material layer paint composition Active material Non-graphitizable carbon: 80 Center particle size 4.2 ⁇ ⁇
  • 100 parts by weight of PVDF was dissolved in 90 parts by weight of NMP to prepare 100 parts by weight of a binder solution.
  • 80 parts by weight of non-graphitizable carbon and 10 parts by weight of a conductive material were dry-mixed with a hyper mixer, and the mixture was charged into a pressure kneader.
  • 50 parts by weight of the above binder solution was added to the mixture, and the mixture was kneaded for 60 minutes while the jacket of the pressure kneader was cooled with water to carry out mixing and grinding.
  • the kneaded material was removed, 50 parts by weight of a binder solution and 60 parts by weight of NMP were added, and dissolved with a hyper mixer to obtain an active material layer paint.
  • Example 2 Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, press-mold with a roller press machine and cut to predetermined size Thus, an electrode of Example 1 was obtained. (Example 2)
  • Example 1 was repeated, except that the conductive material was changed to KS15 (Graphite, center particle size: 8 im, manufactured by LONZA).
  • Example 3 Example 1 was carried out in the same manner as in Example 1 except that the conductive material was changed to KS44 (Graphite having a center particle size of 17 ⁇ manufactured by LON ZA).
  • Example 4 Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater.After drying, apply the same paint on the back side.After drying, press-mold with a roller press machine to a specified size. By cutting, the electrode of Example 3 was obtained. (Example 4)
  • Example 1 was carried out in the same manner as in Example 1 except that the conductive material of Example 1 was changed to scaly natural graphite (LF- 18A center particle size of 18 / m, made by Chuetsu Graphite).
  • scaly natural graphite LF- 18A center particle size of 18 / m, made by Chuetsu Graphite.
  • Example 5 Apply the finished paint to one side of the rolled copper foil current collector with a blade coater '' After drying, apply the same paint on the back side '' After drying, compression-mold with a roller press machine and cut to a predetermined size Thus, an electrode of Example 4 was obtained. (Example 5)
  • Example 1 was repeated except that the conductive material of Example 1 was changed to KS6 (Graphite core particle size of 3.8 ⁇ manufactured by LON ZA).
  • Example 1 was repeated, except that the conductive material was changed to acetylene black (DENKA BLACK manufactured by Denki Kagaku Kogyo).
  • Example 1 was carried out in the same manner as in Example 1 except that the conductive material was changed to vapor grown carbon fiber (VGCF manufactured by Showa Denko). Apply the finished paint to one side of the rolled copper foil current collector with a blade coater, dry it, apply the same paint to the back side, dry it, compress it with a roller press machine, and cut it to a predetermined size Thus, an electrode of Comparative Example 2 was obtained. (Comparative Example 3)
  • PVDF 100 parts by weight was dissolved in 90 parts by weight of NMP to prepare 100 parts by weight of a binder solution.
  • 100 parts by weight of non-graphitizable carbon and 10 parts by weight of a conductive material (Graphite KS 25 made by LON ZA) were dry-mixed with a hyper mixer, and 100 parts by weight of the above binder solution and N were added to this mixture.
  • MP 60 parts by weight was added, and the mixture was stirred and mixed for 60 minutes to obtain an active material layer paint.
  • the paint obtained in Comparative Example 4 was dispersed using a pin-type sand grinder mill using zirconia beads as a dispersion medium so that the residence time of the disperser was 60 minutes, to obtain a paint.
  • the finished paint is applied to one side of the rolled copper foil current collector with a blade coater. After applying and drying, the same paint was applied and dried on the back side, and then compression-molded with a roller press machine and cut into a predetermined size to obtain an electrode of Comparative Example 7. Evaluation method
  • the viscosity of the active material layer paint was measured using a composite plate viscometer, and the yield value was determined from the relationship between shear rate and stress.
  • Example 1 to 5 and Comparative Examples 1 to 7 were cut into a length of 25 mm and a width of 2 O mm, and the upper end was removed with a width of 5 mm to form a 20 mm square electrode layer. Left. A stainless wire was spot-welded as a lead to the upper end from which the electrode layer had been removed to form this electrode (working electrode).
  • a charge / discharge capacity measurement cell was prepared as shown in FIG. 1 and charged / discharged as follows.
  • a beaker 1 a pair of counter electrodes 4 using a lithium plate connected to a stainless steel wire, a lugine tube 6 having a similar reference electrode 5, and an electrode (working electrode) 3 created above between the counter electrodes
  • Electrolyte 7 was prepared by dissolving 1 mo 1/1 lithium perchlorate as an electrolyte salt in a mixed solvent of ethylene power and getyl carbonate in a volume ratio of 1: 1.
  • a cell for measurement was prepared by sealing the beaker and lugine tube with a silicon stopper.
  • This cell is charged and discharged 5 times at a constant current of 2 mA from 0 V to 2 V (Potentia 1 vs. Li / Li + ), and during the first Li ion release. was measured and used as the initial capacity. The fifth capacity was also measured, and the charge / discharge cycle characteristics were obtained.
  • Example 6 The active material layer was produced as follows.
  • Example 6 An electrode of Example 6 was obtained.
  • Example 6 was carried out in the same manner as in Example 6, except that the conductive material was changed to KS6 (Granpite center diameter: 3.8 m, manufactured by LONZA). Apply the finished paint to one side of the aluminum foil current collector with a blade coater. 'Dry and then apply the same paint to the back.'
  • KS6 Garpite center diameter: 3.8 m, manufactured by LONZA
  • Example 7 The electrode of Example 7 was obtained by compression molding with a roller press and cutting to a predetermined size.
  • Example 6 was carried out in the same manner as in Example 6, except that the conductive material was changed to acetylene black (DENKA BLACK manufactured by Denki Kagaku Kogyo).
  • PVDF 6 parts by weight of PVDF was dissolved in 54 parts by weight of NMP to prepare 60 parts by weight of a binder solution.
  • 90 parts by weight of the active material and 4 parts by weight of a conductive material (Graphite KS25 manufactured by LONZA) are dry-mixed with a hypermixer, and 60 parts by weight of the above binder solution and 13 parts by weight of NMP are added to the mixture. The mixture was stirred and mixed for 60 minutes to obtain an active material layer paint.
  • the finished paint is applied to one side of the aluminum foil current collector with a blade coater, dried and then the same paint is applied to the back side.After drying, the product is compression molded with a roller press and cut to a predetermined size. Thus, an electrode of Comparative Example 9 was obtained.
  • the active material layer was produced as follows.
  • Conductive material Granzite KS 25 4 made by LONZA 4 1 1 ⁇ m Binder Elpha Tochem Japan KYNAR 74 1: 4 Polyvinylidene fluoride (PVDF)
  • Solvent N-methyl-2-pyrrolidone (NMP) 67 parts by weight 4 parts by weight of binder was dissolved in 36 parts by weight of solvent to prepare 40 parts by weight of binder solution.
  • 2 parts by weight of the active material 9 and 4 parts by weight of the conductive material were dry-mixed with a hyper mixer, and the mixture was charged into a pressure kneader.
  • 13 parts by weight of the above binder solution was added, and the mixture in the pressurized kneader was kneaded for 30 minutes while being cooled with water, so that the mixture was ground.
  • the kneaded material was removed and 27 parts by weight of a binder solution and 31 parts by weight of a solvent were added and dissolved by a hypermixer to obtain an active material layer paint.
  • Example 8 Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, press-mold with a roller press machine and cut to predetermined size Thus, an electrode of Example 8 was obtained. (Example 9)
  • Example 8 was carried out in the same manner as in Example 6, except that the conductive material was changed to KS6 (Granpite center particle size: 3.8 m, manufactured by LONZA).
  • Example 9 An electrode of Example 9 was obtained.
  • binder solution 4 parts by weight of the binder was dissolved in 36 parts by weight of the solvent to prepare 40 parts by weight of the binder solution.
  • 9 parts by weight of the active material 9 and 4 parts by weight of the conductive material were dry-mixed with a hypermixer, and 40 parts by weight of the binder solution and the solvent were added to the mixture.
  • Example 8 was carried out in the same manner as in Example 1 except that the conductive material in Example 8 was changed to acetylene black (DENKA BLACK manufactured by Denki Kagaku Kogyo).
  • the finished paint is applied to one side of the aluminum foil current collector with a blade coater. 'After drying, apply the same paint to the back side.'After drying, press-mold with a roller press and cut to a predetermined size. Thus, an electrode of Comparative Example 11 was obtained.
  • JISK 54 00 8.5.1 A test was conducted according to the grid method, and the adhesion of the coating film to the aluminum foil was examined. Cut one side of the coating film coated on both sides of the aluminum foil with a tester (ER I CHS EN MODEL 295 1 mm interval 1 single blade) and make cuts in a grid pattern according to JIS. Scored.
  • the electrode for a non-aqueous electrolyte battery produced by the method of the present invention has good charge / discharge characteristics such as discharge capacity and charge / discharge cycle life, and has improved physical characteristics. It can be used effectively (

Abstract

A method of producing an electrode for non-aqueous electrolytic cells by applying, onto the collectors, an electrode-activating substance which comprises an activating substance, scaly graphite and a binder, characterized in that the graphite is mixed with the activating substance and then pulverized. The method provides an electrode for secondary cells which can impart a large capacity to the cells and increase the flexibility of the cells.

Description

明 細 書 非水電解質電池用電極の製造方法 技術分野  Description Method for manufacturing electrodes for non-aqueous electrolyte batteries
本発明は、 非水電解質電池用電極の製造方法に関し、 活物質と、 鱗片 状を呈するグラフアイ トと、 結合剤とからなる電極活物質層を、 集電体 上に塗布した非水電解質電池用電極の製造方法に関する。 背景技術  The present invention relates to a method for manufacturing an electrode for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery in which an electrode active material layer comprising an active material, a scale-like graphite, and a binder is coated on a current collector The present invention relates to a method for manufacturing an electrode for use. Background art
高放電電位、 高放電容量の非水電解質電池の中で、 最近、 リチウムを 吸蔵 ·放出するリチウムイオン 2次電池が実用化されている。 この電池 の電極は活物質を結合剤を用いて活物質層塗料とし、 集電体上に塗着、 乾燥して製造される。  Among non-aqueous electrolyte batteries with high discharge potential and high discharge capacity, lithium ion secondary batteries that occlude and release lithium have recently been put into practical use. The electrodes of this battery are manufactured by coating the active material with a binder, forming an active material layer coating on a current collector, and drying.
電極に用いられる活物質は一部を除いて電気伝導度が悪く このため導 電材が使用される。 電極においては導電材の役割は重要で導電材が有効 にはたらかないと電池の容量が低くなるとかサイクル寿命が悪くなる等 の不具合が発生する。  The active material used for the electrode has poor electrical conductivity except for a part, and therefore, a conductive material is used. The role of the conductive material in the electrode is important, and if the conductive material does not work effectively, problems such as a decrease in battery capacity and a deterioration in cycle life will occur.
リチウムイオン 2次電池においては、 例えば負極で活物質として炭素 を用いた場合、 リチウムが活物質に入ることによりそれが膨張し出ると きには収縮する。 リチウムイオン 2次電池では充放電を繰リ返すため活 物質が膨張収縮を繰り返すことになる。 収縮時に活物質と導電材との接 触性が悪くなリこのため次第に電池が劣化する。  In a lithium ion secondary battery, for example, when carbon is used as the active material in the negative electrode, when lithium enters the active material and expands and contracts, it contracts. In a lithium-ion secondary battery, charge and discharge are repeated, and the active material expands and contracts repeatedly. During contraction, the contact between the active material and the conductive material deteriorates, which gradually deteriorates the battery.
非水電解質 2次電池として、 導電材としてアセチレンブラック等の力 一ボンブラックを用いる、 例えば 「アルカリ金属を活物質とする負極と、 非水電解質と、 正極とを備え、 前記正極の導電材が多量の金属 T i粉体 と少量のカーボンブラックからなることを'特徴とする非水電解質 2次電 池。 」 (特開昭 6 2 - 1 5 7 6 1号公報) や、 活物質として L i M n 2 04、 導電材としてグラフアイ トを用いる、 例えば 「L i M n 24及び グラフアイ トを主体とする正極と負極と非水電解質よりなり、 上記 L i M n 204とグラフアイ トの合計量中のグラフアイ トの割合が 8〜 2 2重 量%であることを特徴とする非水電解質 2次電池。 」 (特開平 1 一 1 0 5 4 5 9号公報) 等がある。 As the non-aqueous electrolyte secondary battery, a carbon black such as acetylene black is used as a conductive material. For example, a `` a negative electrode using an alkali metal as an active material, a non-aqueous electrolyte, and a positive electrode are provided. Non-aqueous electrolyte characterized by a large amount of metal Ti powder and a small amount of carbon black pond. "(JP 6 2 - 1 5 7 6 1 JP) and, L i M n 2 0 4 as an active material, using a graph eye bets as the conductive material, for example," L i M n 24 and Graph I preparative consists positive electrode, a negative electrode and a nonaqueous electrolyte mainly composed of, wherein the ratio of the graph eye bets in the total amount of the L i M n 2 0 4 and graph eye bets is 8-2 double amount% Non-aqueous electrolyte secondary battery. "(Japanese Patent Application Laid-Open No. H11-54959).
又、 関連する電池用電極との製造方法として例えば 「フエノール系樹 脂の熱処理物であって、 水素原子 Z炭素原子の原子数比が 0 . 5〜0 . 0 5であるポリァセン系骨格構造を有し、 B E T法による比表面積値が 少なく とも 6 0 0 m 2Z gである不溶不融性基体よリ成る電池用電極の 製造法において、 該不溶不融性基体の粉末を導電材及びバインダ一と混 合し、 該混合物を加圧成形する又は支持体上に塗布又は加圧付着させる ことを特徴とする電池用電極の製造法。 」 (特開昭 6 3 - 3 0 1 4 6 0 号公報) 等がある。 As a method for producing a related battery electrode, for example, a polyacene-based skeleton structure which is a heat-treated phenolic resin and has an atomic ratio of hydrogen atoms to Z carbon atoms of 0.5 to 0.05 is used. A method for producing a battery electrode comprising an insoluble and infusible substrate having a specific surface area value of at least 600 m 2 Zg by a BET method, wherein the powder of the insoluble and infusible substrate is a conductive material and a binder. A method for producing an electrode for a battery, comprising: forming the mixture under pressure or applying or applying pressure on a support. ”(Japanese Patent Application Laid-Open No. 63-310146) No.).
導電材としてアセチレンブラック等のカーボンブラックを用いた例え ば前記特開昭 6 2 - 1 5 7 6 1号公報に記載の場合は、 アセチレンブラ ックの表面積が大きいことから塗膜の集電体への付着性が悪く剥がれや すいとか、 塗膜が固くなり過ぎ柔軟性が悪くなって電極が割れやすくな るという問題があった。  For example, in the case of using carbon black such as acetylene black as the conductive material in the above-mentioned Japanese Patent Application Laid-Open No. Sho 62-15761, the current collector of the coating film is used due to the large surface area of the acetylene black. There was a problem that the adhesiveness to the electrode was poor and the film was easily peeled off, or the coating film was too hard, the flexibility was poor, and the electrode was easily broken.
前記特開平 1 一 1 0 5 4 5 9号公報記載の導電材としてグラフアイ ト を用いた場合は、 塗膜の柔軟性はよいが、 グラフアイ トの中心粒径が小 さいものはサイクル寿命が悪く、 大きいものは量を多く入れないと導電 材としての効果が発揮されづらいものであった。  When graphite is used as the conductive material described in JP-A-H11-549, the flexibility of the coating film is good, but the graphite having a small center particle diameter has a poor cycle life. However, it was difficult to achieve the effect as a conductive material unless a large amount was added.
又前記特開昭 6 3 - 3 0 1 4 6 0号公報の発明では導電材の粒径を小 さくするものであるが、 粒径が小さいグラフアイ トを用いた場合はサイ クル寿命が悪いものであった。 本発明は上記のような問題点に鑑みて、 放電容量及び充放電サイクル 寿命等の充放電特性がよく物理的特性が改善された非水電解質電池用電 極を提供するものである。 発明の開示 Also, in the invention of the above-mentioned Japanese Patent Application Laid-Open No. 63-310460, the particle size of the conductive material is reduced, but the cycle life is poor when graphite particles having a small particle size are used. Was something. The present invention has been made in view of the above problems, and provides an electrode for a non-aqueous electrolyte battery having good charge / discharge characteristics such as discharge capacity and charge / discharge cycle life and improved physical characteristics. Disclosure of the invention
本発明者らは上記の課題を解決すべく鋭意研究の結果、 活物質と鱗片 状を呈するグラフアイ トを用いる非水電解質電池用電極の製造にあたリ、 該活物質を用いて該グラフアイ トを混合粉砕することによリ、 前記の課 題が解決し、 その目的が達成できることを見出し本発明に到達した。 即ち、 本発明は (1) 活物質と、 鱗片状を呈するグラフアイ トと、 結 合剤とからなる電極活物質層を、 集電体上に塗布した非水電解質電池用 電極の製造方法において、 前記活物質を用いて前記グラフアイ トを混合 粉砕したことを特徴とする非水電解質電池用電極の製造方法、 (2) グ ラファイ トの中心粒径が前記活性物質の中心粒径より大きい前記 (1) 記載の非水電解質電池用電極の製造方法、 (3) 導電材の配合量が塗膜 中の 0. 1〜1 5w t%である前記 (1) 又は (2) 記載の非水電解質 電池用電極の製造方法、 (4) 活物質が負極活物質である前記 (1) 又 は (2) 記載の非水電解質電池用電極の製造方法、 (5) 活物質が正極 活物質である前記 (1) 又は (2) 記載の非水電解質電池用電極の製造 方法、 に関する。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result of producing an electrode for a non-aqueous electrolyte battery using an active material and a flake-like graphite, using the active material, By mixing and pulverizing the iron, the above-mentioned problems were solved, and the object was achieved. That is, the present invention relates to a method for producing an electrode for a non-aqueous electrolyte battery, in which (1) an electrode active material layer comprising an active material, a scale-like graphite, and a binder is coated on a current collector. A method for producing an electrode for a non-aqueous electrolyte battery, wherein the graphite is mixed and pulverized using the active material, (2) the central particle size of graphite is larger than the central particle size of the active material (1) The method for producing an electrode for a non-aqueous electrolyte battery according to (1), (3) the non-aqueous electrolyte battery according to (1) or (2), wherein the amount of the conductive material is 0.1 to 15 wt% in the coating film. (4) The method for producing an electrode for a non-aqueous electrolyte battery according to the above (1) or (2), wherein the active material is a negative electrode active material. (5) The active material is a positive electrode active material. The method for producing an electrode for a non-aqueous electrolyte battery according to the above (1) or (2), wherein
以下、 本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明は放電容量及び充放電サイクル寿命等の充放電特性と塗膜の物 理的特性が改善された非水電解質電池用電極を提供することを目的にし ている。  An object of the present invention is to provide an electrode for a non-aqueous electrolyte battery having improved charge / discharge characteristics such as discharge capacity and charge / discharge cycle life and physical properties of a coating film.
非水電解質電池の電極では一部のものを除いては活物質の電気伝導度 が悪いため導電材が使用される。 一般的には導電材の量が多い方が活物 質の持っている性能を引き出しやすいが、 多く入れると体積中の活物質 量が減ってしまい電池としては容量が減ってしまうことになる。 このた め活物質の性能を引き出しながら導電材料を少なくするように努力され ている。 Except for a part of the electrodes of the non-aqueous electrolyte battery, a conductive material is used because the electric conductivity of the active material is poor. Generally, the larger the amount of conductive material, the more active material Although it is easy to bring out the performance that quality possesses, if you add too much, the amount of active material in the volume will decrease and the capacity of the battery will decrease. For this reason, efforts are being made to reduce the amount of conductive material while extracting the performance of active materials.
また非水電解質 2次電池は使用を重ねるごとに容量が減っていく劣化 が起こるが、 非水電解質 2次電池が劣化していく原因の一つに電極中の 活物質と導電材との接触性が悪くなり外部に電気が取リ出せなくなって 電池として劣化するということが考えられる。 通常導電材にはァセチレ ンブラック等のカーボンブラックやグラフアイ ト等が使用されるがァセ チレンブラックは比表面積は大きいが活物質が炭素だとそれとの接触性 はそれほどよくないと考えられている。  In addition, the capacity of non-aqueous electrolyte secondary batteries decreases with each use, and deterioration occurs.However, one of the causes of deterioration of non-aqueous electrolyte secondary batteries is the contact between the active material in the electrode and the conductive material. It is considered that the battery is deteriorated and the electricity cannot be extracted to the outside, resulting in deterioration of the battery. Normally, carbon black such as acetylene black or graphite is used as the conductive material.Acetylene black has a large specific surface area, but if the active material is carbon, the contact with carbon is considered to be not so good. I have.
また、 アセチレンブラックを用いた塗膜は集電体への付着性が悪く剥 がれやすかったり、 電極塗膜が固くなり電極の柔軟性が悪くなって卷き 敢リ時に電極が切れる等の不具合が発生しやすい。 アセチレンブラック は集合した形態をと リやすくこのため比表面積が大きい割にはァセチレ ンブラックの表面が活物質と接触している面積とアセチレンブラック全 体の表面積の比は大きくない。 電極の物理的特性の改善を目的としてァ セチレンブラックの量を減らせば導電材としての効果が低くなってしま う。  In addition, coatings using acetylene black have poor adhesion to the current collector and are easily peeled off, and the coatings of the electrodes become hard and the flexibility of the electrodes deteriorates, causing the electrodes to cut when they are wound. Is easy to occur. Acetylene black is easy to take an aggregated form, and therefore, although the specific surface area is large, the ratio of the area where the surface of acetylene black is in contact with the active material to the surface area of acetylene black as a whole is not large. If the amount of acetylene black is reduced for the purpose of improving the physical properties of the electrode, the effect as a conductive material is reduced.
アセチレンブラックに比べればグラフアイ トを用いた電極の柔軟性は よい。 アセチレンブラックに比べてグラフアイ トは比表面積が小さいの で活物質とグラフアイ トの接触面をなるベく多くするため粒径が小さい ものを用いたリ量を多く入れたリ していた。 前記特開昭 6 3 - 3 0 1 4 6 0号公報の導電材の記載には粒径が小さければ小さいほど効果がある と記載されているが、 前記の通り、 粒径が小さいグラフアイ トを用いた 場合はサイクル寿命が悪い。 これは粒径が小さいことから導電材同士の CT/JP98/02312 つながりが悪いためと考えている。 Compared to acetylene black, the flexibility of electrodes using graphite is better. Compared to acetylene black, graphite has a smaller specific surface area, so that the contact surface between the active material and the graphite is increased as much as possible. The description of the conductive material in JP-A-63-310460 describes that the smaller the particle size is, the more effective it is. As described above, the graphite having a small particle size is effective. When using, the cycle life is poor. This is because of the small particle size, CT / JP98 / 02312 I think that the connection is bad.
又、 前記特開平 1 一 1 0 5 4 5 9号公報には前記の通り、 L i M n 2 04とグラフアイ トを用いた非水電解質 2次電池が記載され、 グラファ ィ ト量が 8〜 2 2重量%がよいとされているが、 ある程度量を多く入れ ないと導電材としての効果が発揮されないことを意味している。 これは 導電材の比表面積が小さいので量を多く入れないと導電材と活物質との 接触面が増えないためであろう。 比較的粒径の大きい導電材を量を多く 用いてやればサイクル寿命がよい電極はできるのだが、 その分体積中の 活物質量が減ってしまうため電池としての容量は小さくなってしまう。 本発明において用いられる導電材は、 鱗片状を呈するグラフアイ トを 用いる。 このようなグラフアイ トは、 天然黒鉛あるいは人造黒鉛であつ て、 その形状が鱗片状を呈するものである。 本発明における鱗片状とは、 鱗片状、 鱗状、 薄片状、 層状、 雲母状などの薄層が積層された形状を指 す。 具体的に天然黒鉛は、 その産地によって形状が異なるが、 粉砕、 分 級などの後加工によって、 形状を本発明でいう鱗片状を呈するようにし たものであってもかまわない。 また人造黒鉛は、 合成直後から上記の鱗 片状を呈するものが好ましいが、 天然黒鉛同様に、 粉砕、 分級などの後 加工で鱗片状を呈するようにしてもよい。 これらの黒鉛の中でも、 鱗片 状構造がそろうなどの理由から分級した黒鉛がもっとも好ましい。 この ような鱗片状を呈するグラフアイ トとしては、 (株) 中越黒鉛工業所の L Fシリーズ、 昭和電工 (株) の U F Gシリーズ、 L O N Z A (株) の K Sシリーズ、 関西熱化学 (株) の M I C R O C A R B〇一 Gシリーズ, ェコス技研 (株) のェコスカーボンシリーズ、 天然に産する鱗片状ダラ フアイ ト、 鱗状グラフアイ トなどがある。 Further, the JP-A-1 one 1 0 5 4 5 wherein as the 9 discloses, describes a non-aqueous electrolyte secondary battery using L i M n 2 0 4 and Graph eye DOO, grapher I bets weight Although 8 to 22% by weight is said to be good, it means that the effect as a conductive material is not exhibited unless a certain amount is added. This is probably because the specific surface area of the conductive material is small, and unless the amount is increased, the contact surface between the conductive material and the active material does not increase. An electrode with a good cycle life can be obtained by using a relatively large amount of conductive material having a relatively large particle size, but the amount of active material in the volume is reduced by that amount, and the capacity as a battery is reduced. The conductive material used in the present invention is a scale-shaped graphite. Such a graphite is a natural graphite or an artificial graphite, and its shape is like a scale. The scaly shape in the present invention refers to a shape in which thin layers such as a scaly shape, a scaly shape, a flaky shape, a laminar shape, and a mica shape are laminated. Specifically, the shape of the natural graphite varies depending on the place of production, but it may be such that the shape is changed to the scale-like shape referred to in the present invention by post-processing such as pulverization and classification. It is preferable that the artificial graphite exhibit the flake shape immediately after the synthesis, but it may be formed into a flake shape by post-processing such as pulverization and classification, similarly to natural graphite. Among these graphites, the classified graphite is most preferable because the scale-like structure is uniform. Graphites that exhibit such scaly shapes include the LF series of Chuetsu Graphite Works, the UFG series of Showa Denko KK, the KS series of LONZA, and the MICROCARB of Kansai Thermochemical Co., Ltd. -G series, Ecos carbon series of Ecos Giken Co., Ltd., scaly Daraite, scaly graphite, etc. which are produced naturally.
グラフアイ トの中心粒径は 1〜 1 0 0 μ mが好ましく、 4〜5 0 m がよリ好ましい。 本発明において使用可能な正極活物質としては L i x My 0 2 (Mは金 属) の一般式であらわされるリチウム含有金属酸化物、 あるいは同様の 金属硫化物等がある。 L i C o 02、 L i N i X C o x 02、 L i Μ η 2 04等が好ましい。 その中心粒径は 1 〜 3 0 μ mが好ましく、 7〜 2 0 mがより好ましい。 The center particle size of the graphite is preferably from 1 to 100 μm, more preferably from 4 to 50 m. As the positive electrode active material usable in the present invention (the M metals) L i x M y 0 2 is typically a lithium-containing metal oxide represented by the formula, or similar metal sulfide or the like. L i C o 0 2, L i N i X C ox 0 2, L i Μ η 2 0 4 and the like are preferable. The center particle diameter is preferably from 1 to 30 μm, more preferably from 7 to 20 m.
本発明において使用可能な負極活物質としては無定形炭素、 石油コー クス、 石炭コークス、 気相成長炭素繊維、 難黒鉛化性炭素、 ポリマー力 一ボン、 スズ酸化物等があるが、 本発明では硬度の高い難黒鉛化性炭素、 ポリマーカーボンが好ましい。 ポリマーカーボンは架橋構造を有する高 重合体を不活性雰囲気中で熱処理して得られる炭素材を指しセルロース、 フエノール樹脂、 フルフラール樹脂、 ポリパラフエ二レン、 ポリ アタ リ ロニトリルなどの炭素化によって得られる。 負極活物質の中心粒径は 1 〜 3 0 x mが好ましく、 4 〜 1 5 μ mがより好ましい。  Examples of the negative electrode active material that can be used in the present invention include amorphous carbon, petroleum coke, coal coke, vapor-grown carbon fiber, non-graphitizable carbon, polymer carbon, and tin oxide. Non-graphitizable carbon and polymer carbon having high hardness are preferred. Polymer carbon refers to a carbon material obtained by heat-treating a high polymer having a crosslinked structure in an inert atmosphere, and is obtained by carbonization of cellulose, phenolic resin, furfural resin, polyparaphenylene, polyatalilonitrile, and the like. The center particle diameter of the negative electrode active material is preferably from 1 to 30 x m, more preferably from 4 to 15 m.
本発明は粒径の大きいグラフアイ トでも少ない量で効果が発揮される という点に特徴がある。 グラフアイ トは劈開性があるため、 粒径が大き いグラフアイ トでも劈開させれば比表面積が増えても粒径はほとんど小 さくならない。 ただしグラフアイ トはスタックしゃすく、 スタックした ものをほぐそうとして下手に剪断力等をあたえると余計にスタツクさせ てしまいやすい。 例えばボールミル等でグラフアイ トを粉砕しようとす ると粉砕はされるがスタックもしゃすい。  The present invention is characterized in that the effect is exhibited with a small amount even with a graphite having a large particle size. Since the graphite is cleaved, even if it is cleaved even with a large grain size, the grain size hardly decreases even if the specific surface area increases. However, the graphites are stacky, and if you try to loosen the stacked ones and give them poor shearing force, you can easily stack them. For example, if you try to grind graphite with a ball mill or the like, it will be crushed, but the stack will be slow.
スタックしたものは測定気体では面として測定されるが、 活物質との 接触という点ではその面は有効に利用されていない。 スタックしたもの に圧を加えると面同士がくつついて測定気体でも測定されなくなつてい く。 このような点でグラフアイ トの粉砕は難しくスタックさせないよう 粉砕しょうとすると粒径が小さくなつてしまう。  The stack is measured as a surface in the measurement gas, but the surface is not used effectively in terms of contact with the active material. When pressure is applied to the stacked objects, the surfaces stick together and cannot be measured even with the measurement gas. At this point, it is difficult to grind the graphite, and if you try to grind it so that it does not stack, the particle size will decrease.
本発明では活物質とグラフアイ トを混合粉砕することによリグラファ ィ トに活物質と接触できる有効な面を作り出しながらその粒径をなるベ く小さく しないようにするものである。 本発明の活物質を用いてグラフ アイ トを混合粉砕するとは、 活物質をグラフアイ トに作用させてグラフ アイ トを粉砕、 およびノまたは、 スタックが取リ除かれることをいう。 さらにグラフアイ トの中心粒径が活物質の中心粒径より大きいとよりす ぐれた効果が発揮される。 グラフアイ トの中心粒径は活物質の中心粒径 の 2倍以上であることがより好ましい。 導電材の配合量は、 活物質の比 表面積等にょリ異なるが、 塗膜中の 0 . 1〜 1 5 w t %が好ましく、 2 〜 1 0 w t %がよリ好ましい。 In the present invention, the regrapher is prepared by mixing and grinding the active material and graphite. The purpose is to create an effective surface that can come into contact with the active material, while keeping the particle size as small as possible. Mixing and crushing graphite with the active material of the present invention means that the active material acts on the graphite to crush the graphite and to remove the stack or the stack. Further, when the central particle size of the graphite is larger than the central particle size of the active material, a more excellent effect is exhibited. The central particle size of the graphite is more preferably at least twice the central particle size of the active material. The amount of the conductive material varies depending on the specific surface area of the active material and the like, but is preferably 0.1 to 15 wt%, more preferably 2 to 10 wt% in the coating film.
本発明の中心粒径とは日機装 (株) 製マイクロ トラック等のレーザー 粒度分析計を用いて測定され、 頻度累積が 5 0 %である累積パーセント 径をいう。  The central particle diameter in the present invention is a cumulative percentage diameter having a frequency accumulation of 50%, as measured using a laser particle size analyzer such as a Microtrack manufactured by Nikkiso Co., Ltd.
混合粉砕はホソカワミクロン (株) のオングミル等を用いた乾式粉砕 や混練装置を用いた湿式粉砕がある。 混練装置を用いて混練する方法が 比較的簡単で強力にグラフアイ トを粉砕することができる。  The mixing and pulverization includes dry pulverization using Hogkawa Micron's Ongmill or the like and wet pulverization using a kneading apparatus. The method of kneading using a kneading device is relatively simple and can grind graphite strongly.
本発明の鱗片状を呈するグラフアイ トと活物質の混合粉砕では、 鱗片 状を呈するグラフアイ トは硬度が低く潤滑性があり、 活物質は比較的硬 度が高いので、 活物質をあまり壊さなで鱗片状を呈するグラフアイ トは 結晶面ではがれるように粉砕される。 リチウムイオン 2次電池ではダラ フアイ トを負極に用いると導電材としてのはたらきと活物質としてのは たらきをするので容量の点でも有利である。  In the mixed grinding of the scale-like graphite and the active material according to the present invention, the scale-like graphite has low hardness and lubricity, and the active material has relatively high hardness. The scaly graphite is pulverized so that it can be peeled off at the crystal plane. In lithium-ion secondary batteries, the use of Daraite for the negative electrode acts both as a conductive material and as an active material, which is advantageous in terms of capacity.
乾式で混合粉砕を行うときには、 まず鱗片状を呈するグラフアイ トか らなる導電材の全量に対して、 活物質を可能な範囲で高い比率に設定し て配合し、 これをオングミルゃジエツ トミルに投入し活物質からグラフ アイ トに衝撃力や剪断力を加えてグラフアイ トのスタックを取り除き、 および/または、 粉砕する。 その後目的とする最終配合比となるように 不足する材料を加えて必要に応じて、 ハイパーミキサー、 ディゾルバー、 サンドグラインダーミル等の攪拌混合機による分散を行って、 電極活物 質層塗料を塗布機の条件にあうように最終調整を行う。 When dry milling is carried out, the active material is first set in a proportion as high as possible with respect to the total amount of conductive material consisting of flake-like graphite, and this is mixed into an angmill-diet mill. The impact and shear are applied to the graphite from the active material to remove the graphite stack and / or crush. Afterwards, to achieve the desired final compounding ratio Insufficient materials are added, and if necessary, dispersion is performed with a stirring mixer such as a hypermixer, dissolver, or sand grinder mill, and final adjustment is performed so that the electrode active material layer paint meets the conditions of the applicator.
湿式で混合粉砕を行うときには、 まず鱗片状を呈するグラフアイ トか らなる導電材の全量に対して、 活物質を可能な範囲で高い比率に設定し て配合し、 そこに結合剤溶液、 結合剤、 または溶剤を加え、 混練機を使 用して混練する。 その後目的とする最終配合比となるように不足する材 料を加えて必要に応じて、 ハイパーミキサー、 ディゾルバー、 サンドグ ラインダーミル等の攪拌混合機による分散を行って、 電極活物質層塗料 を塗布機の条件にあうように最終調整を行う。 混合粉砕に混練機を用い る場合には、 使用する混練機の混練容積に見合う材料量を配合して、 十 分に混練を行う必要があリ、 混練機に空隙が無いように混練操作しない と、 グラフアイ トの粉砕が不十分になリ、 本発明の目的を達成し難くな る。  When wet mixing and pulverizing, first, the active material is mixed in a ratio as high as possible with respect to the total amount of conductive material consisting of flake-like graphite, and then the binder solution and binder are added. Add the agent or solvent and knead using a kneader. After that, add the insufficient material to achieve the desired final compounding ratio, and if necessary, disperse it with a stirring mixer such as a hyper mixer, dissolver, or sand grinder mill, and apply the electrode active material layer paint. Make final adjustments to meet machine requirements. When using a kneading machine for mixing and grinding, it is necessary to mix the amount of material corresponding to the kneading volume of the kneading machine to be used and perform sufficient kneading, and do not perform the kneading operation so that there is no gap in the kneading machine. As a result, the grinding of the graphite becomes insufficient, and it becomes difficult to achieve the object of the present invention.
導電材と活物質の混合割合は 0 . 1〜4 0重量部、 好ましくは 2〜 1 5重量部である。  The mixing ratio of the conductive material and the active material is 0.1 to 40 parts by weight, preferably 2 to 15 parts by weight.
上記の混練機には、 ニーダー (捏和機) と称される回転ブレードと混 練槽との間で剪断を与える装置をいい、 その形式は単独処理型、 連続処 理型のいずれであってもよく、 単独処理型の例としては、 オープン型二 ーダ一、 加圧型エーダーなどを挙げられる。 オープン型は上部が開放さ れているために、 空隙が生じてしまうので本発明の目的を達成すること は不向きであリ、 加圧型は空隙を最小限に設定することができるので最 も効率よく本発明の効果を得ることができる。 また、 連続処理型のニー ダーを用いると、 送リ出し (フィード) 構造を有するため加圧型に比べ てわずかに空隙が生じるが本発明の効果を損なうことなく、 予備混合な どの前処理、 混練、 希釈 '溶解などの後処理を含めて連続化できること から好ましい。 このようなニーダ一に用いられる回転ブレードの具体例 としては∑型、 Z型、 カム型、 ローラ型、 S型、 フィッシュテール型、 バンバリ一型などを掲げることができる。 これらのニーダ一の具体例と しては、 森山製作所の M S式加圧式ニーダーなどの単独型ニーダー、 栗 本鉄鋼所の K R Cニーダー、 不二バウダネル、 神戸製鉄所、 東芝機械な どのェクス トルーダーなどの連続ニーダー、 さらに、 株式会社入江商会 製の卓上型ニーダー、 高林理化株式会社製の捏和機、 株式会社東洋精機 のラボプラス トミルやブラベンダーのような小型ものを挙げることがで き、 またこれらのニーダ一に類する機能を有するその他の装置としては、 二本ロールミル、 バンバリーミキサーなどをあげることができる。 The above-mentioned kneading machine refers to a device that applies shear between a rotary blade and a kneading tank, which is called a kneader (kneading machine), and can be either a single processing type or a continuous processing type. Examples of the single processing type include an open type edder and a pressurized eder. The open type is not suitable for achieving the object of the present invention because the upper part is open, so that a gap is generated, and the pressurized type can minimize the air gap, so that the efficiency is the highest. The effect of the present invention can be obtained well. Also, if a continuous processing type kneader is used, there will be a slight gap as compared with the pressurized type because of the feed-out (feed) structure. Being able to be continuous including post-treatment such as dilution and dissolution Is preferred. Specific examples of the rotating blade used for such a kneader include a ∑ type, a Z type, a cam type, a roller type, an S type, a fish tail type, and a Banbury type. Specific examples of these kneaders include stand-alone kneaders such as the MS-type pressurized kneader of Moriyama Seisakusho, KRC kneader of Kurimoto Steel Works, Fuji Boudanenel, Kobe Works, and extruders such as Toshiba Machinery. Continuous kneaders, desk-type kneaders manufactured by Irie Shokai Co., Ltd., kneaders manufactured by Takabayashi Rika Co., Ltd., and small-sized machines such as Laboplastomill and Brabender manufactured by Toyo Seiki Co., Ltd. Other devices having a function similar to a kneader include a two-roll mill and a Banbury mixer.
本発明において使用可能な結合剤としては、 熱可塑性樹脂またはゴム 弾性を有するポリマーを、 一種または混合して用いることができ、 結合 剤の例としては、 フッ素系ポリマー、 ポリ ビュルアルコール、 カルボキ シメチノレセノレロース、 ヒ ドロキシプロピノレセノレロース、 再生セノレロース ジァセチルセルロース、 ポリ ビニルクロリ ド、 ポリ ビュルピロリ ドン、 ポリエチレン、 ポリプロピレン、 E P D M、 スルホン化 E P D M、 S B R、 ポリブタジエン、 ポリエチレンォキシド等を挙げることができる。 これらの中でも含フッ素系ポリマ一は、 フッ素原子ノ炭素原子の原子比 が 0 . 7 5以上1 . 5以下でぁリ、 さらに好ましくは、 0 . 7 5以上1 . 3以下であるものが好ましく、 この値が、 1 . 5より大きい場合、 電池 の容量が充分に得られず、 0 . 7 5未満の場合、 電解液に結合剤が溶解 する。 このような含フッ素系ポリマーとしてはポリテトラフルォロェチ レン、 ポリフッ化ビニリデン、 フッ化ビニリデン一三フッ化工チレン共 重合体、 エチレンーテトラフルォロエチレン共重合体、 プロピレンーテ トラフルォロエチレン共重合体等が挙げられ、 更に主鎖の水素をアルキ ル基で置換した含フッ素系ポリマーも用いることができ、 これらの中で も選択溶解性を示す (電解液に対する溶解性が低く、 溶解可能な溶媒が ある) ことが好ましく、 例えばフッ化ビニリデン系ポリマーの場合、 電 解液に用いられるカーボネート系の溶媒等には溶解しにくいが、 N, N —ジメチルホルムアミ ド、 N —メチルピロリ ドン等の溶剤には溶解可能 である。 このような結合剤の配合量は、 活物質や導電材の比表面積、 粒 度、 目的とする電極の強度等により異なるが、 塗膜中の 2〜2 0 w t % が好ましく、 3〜1 5 w t %がより好ましい。 As the binder that can be used in the present invention, a thermoplastic resin or a polymer having rubber elasticity can be used singly or as a mixture. Examples of the binder include a fluorinated polymer, a polybutyl alcohol, and a carboxymethino. Resenolerose, hydroxypropinoresenorelose, regenerated cenorellose diacetyl cellulose, polyvinyl chloride, polybutylpyrrolidone, polyethylene, polypropylene, EPDM, sulfonated EPDM, SBR, polybutadiene, polyethylene oxide, etc. . Among these, the fluorine-containing polymer preferably has an atomic ratio of fluorine atom to carbon atom of 0.75 or more and 1.5 or less, more preferably 0.75 or more and 1.3 or less. When this value is larger than 1.5, the battery capacity cannot be sufficiently obtained, and when it is smaller than 0.75, the binder dissolves in the electrolytic solution. Examples of such fluorinated polymers include polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride monotrifluoride copolymer, ethylene-tetrafluoroethylene copolymer, and propylene-tetrafluoroethylene copolymer. And a fluorine-containing polymer in which main-chain hydrogen is substituted with an alkyl group. It is also preferable to exhibit selective solubility (the solvent has low solubility in the electrolytic solution and there is a solvent that can be dissolved). For example, in the case of vinylidene fluoride-based polymer, it is soluble in the carbonate-based solvent used in the electrolytic solution. Although difficult, it can be dissolved in solvents such as N, N-dimethylformamide and N-methylpyrrolidone. The amount of such a binder varies depending on the specific surface area of the active material and the conductive material, the particle size, the strength of the target electrode, and the like, but is preferably 2 to 20 wt% in the coating film, and 3 to 15 wt%. wt% is more preferred.
また、 このような電極活物質層塗料用の溶剤としては、 一般の有機溶 剤を使用する事ができ、 具体的にはへキサン等の飽和炭化水素類、 トル ェン、 キシレン等の芳香属炭化水素類、 メタノール、 エタノール、 プロ パノール、 ブタノーノレ等のアルコール類、 アセトン、 メチルェチルケト ン、 メチルイソブチルケトン、 ジイソプチルケトン等のケトン類、 酢酸 ェチル、 酢酸ブチル等のエステル類、 テトラヒ ドロフラン、 ジォキサン、 ジェチルエーテル等のエーテル類、 N, N —ジメチルホルムアミ ド、 N 一メチルピロリ ドン、 N, N —ジメチルァセトアミ ド等のアミ ド類、 ェ チレンクロライ ド、 クロルベンゼン等のハロゲン化炭化水素等の有機溶 媒をあげることができるが、 これらのなかでもアミ ド系の溶剤が含フッ 素系ポリマーを溶解可能なため好ましく、 これらの溶剤は単独でも 2種 以上の混合したものでも使用することができる。  As a solvent for such an electrode active material layer coating material, a general organic solvent can be used, and specifically, saturated hydrocarbons such as hexane and aromatics such as toluene and xylene. Hydrocarbons, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methylethylketone, methylisobutylketone and diisobutylketone, esters such as ethylacetate and butylacetate, tetrahydrofuran, dioxane, Ethers such as acetyl ether, N, N-dimethylformamide, N-methylpyrrolidone, N, N-amides such as dimethylacetamide, halogenated hydrocarbons such as ethylene chloride and chlorobenzene, etc. Among these, amide-based solvents include fluorine-containing solvents. These solvents are preferable because they can dissolve the polymer, and these solvents can be used alone or in combination of two or more.
さらに、 このような電極活物質組成の集電体としては、 構成された電 池において化学変化を起こさない電子伝導体であれば何でもよいが、 例 えばアルミニウム、 銅、 ステンレス、 ニッケル、 チタン、 焼成炭素等を 用いることができ、 さらにこれらの表面にカーボン、 ニッケル、 チタン あるいは銀を処理させたものであってもよいが、 とくに耐酸化性、 電極 の柔軟性およびコス トなどを考慮すればアルミニウム箔または銅箔が望 ましい。 この集電体上に、 リバースロール法、 ダイレク トロール法、 ブ レード法、 ナイフ法、 エタス トルージョン法、 カーテン法、 グラビア口 ール法、 バーコート法、 ディップ法、 キスコート法及びスクイズ法など の一般的によく知られた塗布法によつて電極活物質組成塗料を塗布する が、 なかでもエタス トルージョン法が好ましく、 5〜 1 0 0 m/分の速 度で塗布されるように、 塗料の溶剤組成、 乾燥条件を選定することによ り、 良好な塗布層の表面状態を得ることができる。 また塗布層の厚み、 長さや巾は、 最終的な電池の大きさにょリ決定されるが、 塗布層の厚み は塗布後に一般に採用されているプレス加工によって調整することが好 ましく、 その加工圧は、 0 . 2〜 1 0 t Z c m、 加工温度は、 1 0〜 1 5 0 °Cが好ましい。 図面の簡単な説明 Further, the current collector having such an electrode active material composition may be any current collector that does not cause a chemical change in the configured battery. Examples thereof include aluminum, copper, stainless steel, nickel, titanium, and fired. Carbon or the like can be used, and those surfaces may be treated with carbon, nickel, titanium, or silver, but aluminum is particularly preferred in consideration of oxidation resistance, electrode flexibility and cost, and the like. Foil or copper foil is preferred. On this current collector, reverse roll method, direct roll method, Electrode active material composition by generally well-known coating methods such as the lade method, knife method, ethus extrusion method, curtain method, gravure method, bar coat method, dip method, kiss coat method and squeeze method The paint is applied.Etrus extrusion method is particularly preferable.By selecting the solvent composition and drying conditions of the paint so that the paint is applied at a speed of 5 to 100 m / min, good The surface condition of the coating layer can be obtained. The thickness, length and width of the coating layer are determined by the size of the final battery, but it is preferable to adjust the thickness of the coating layer after coating by a commonly used press process. The pressure is preferably 0.2 to 10 tZ cm, and the processing temperature is preferably 10 to 150 ° C. BRIEF DESCRIPTION OF THE FIGURES
第 1図は充放電特性測定用セルの断面図である。 図中の符号は以下の ものを示す。  FIG. 1 is a sectional view of a cell for measuring charge / discharge characteristics. The symbols in the figure indicate the following.
1 ビーカー  1 beaker
2 シリコン栓  2 Silicon stopper
3 電極 (作用極)  3 electrodes (working electrode)
4 対極 4 Counter electrode
5 参照極  5 Reference pole
6 ルギン管  6 Luggin tube
7 電解液 発明の実施をするための最良の形態  7 Electrolyte Best mode for carrying out the invention
(負極)  (Negative electrode)
(実施例 1 )  (Example 1)
活物質層を以下のように作製した。 The active material layer was produced as follows.
(活物質層塗料組成) 活物質 難黒鉛化性炭素 : 8 0 中心粒径 4. 2 μ τα (Active material layer paint composition) Active material Non-graphitizable carbon: 80 Center particle size 4.2 μ τα
導電材 L ON Z A製 G r a p h i t e K S 2 5 : 1 0 中心粒径 1 1 μ m (鱗片状)  Conductive material L ON Z A Made of G r a p h i t e K S 25: 10 0 Center particle size 11 μm (scale-like)
結合剤 エルファルケムジャパン KYNAR 7 4 1 : 1 0 ポリフッ化ビニリデン ( P V D F ) 溶剤 N—メチルー 2 —ピロリ ドン (NMP) : 1 5 0 単位は重量部 Binder Elfarchem Japan KYNAR 741: 1: 10 Polyvinylidene fluoride (PVDF) solvent N-methyl-2-pyrrolidone (NMP): 150 Units are parts by weight
P VD F 1 0重量部を NMP 9 0重量部に溶解し、 結合剤溶液 1 0 0重量部を作製した。 難黒鉛化性炭素 8 0重量部と導電材 1 0 重量部をハイパーミキサ一で乾式混合し、 この混合物を加圧ニーダ一に 投入した。 この混合物に上記結合剤溶液 5 0重量部を加え、 加圧ニー ダ一のジャケッ トを水冷しながら、 6 0分間混練することで混合粉砕を 行なった。 この混練物を取リ出し、 結合剤溶液 5 0重量部と NMP 6 0重量部を加えて、 ハイパーミキサーにて溶解し、 活物質層塗料を得 た。 100 parts by weight of PVDF was dissolved in 90 parts by weight of NMP to prepare 100 parts by weight of a binder solution. 80 parts by weight of non-graphitizable carbon and 10 parts by weight of a conductive material were dry-mixed with a hyper mixer, and the mixture was charged into a pressure kneader. 50 parts by weight of the above binder solution was added to the mixture, and the mixture was kneaded for 60 minutes while the jacket of the pressure kneader was cooled with water to carry out mixing and grinding. The kneaded material was removed, 50 parts by weight of a binder solution and 60 parts by weight of NMP were added, and dissolved with a hyper mixer to obtain an active material layer paint.
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して実施例 1の電極を得た。 (実施例 2 )  Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, press-mold with a roller press machine and cut to predetermined size Thus, an electrode of Example 1 was obtained. (Example 2)
実施例 1の導電材を K S 1 5 ( L ON Z A製 G r a p h i t e 中心粒径 8 i m) に変更したほかは、 実施例 1と同様に行った。  Example 1 was repeated, except that the conductive material was changed to KS15 (Graphite, center particle size: 8 im, manufactured by LONZA).
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 口一ラープ レス機で圧縮成型し、 所定の大きさに切断して実施例 2の電極を得た。 (実施例 3 ) 実施例 1の導電材を K S 44 ( L ON Z A製 G r a p h i t e 中心粒径 1 7 μ πι) に変更したほかは、 実施例 1 と同様に行った。 The finished paint is applied to one side of the rolled copper foil current collector with a blade coater and 'dried,' then the same paint is applied to the back side.'Dry and then compression-molded with a single-lap press machine to a specified size. The electrode of Example 2 was obtained. (Example 3) Example 1 was carried out in the same manner as in Example 1 except that the conductive material was changed to KS44 (Graphite having a center particle size of 17 µπι manufactured by LON ZA).
できあがった塗料を、 ブレードコ一ターにて圧延銅箔の集電体片面に 塗布 .乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して実施例 3の電極を得た。 (実施例 4)  Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater.After drying, apply the same paint on the back side.After drying, press-mold with a roller press machine to a specified size. By cutting, the electrode of Example 3 was obtained. (Example 4)
実施例 1の導電材を鱗片状天然黒鉛 (中越黒鉛製 L F— 1 8A 中心 粒径 1 8 / m) に変更したほかは、 実施例 1 と同様に行った。  Example 1 was carried out in the same manner as in Example 1 except that the conductive material of Example 1 was changed to scaly natural graphite (LF- 18A center particle size of 18 / m, made by Chuetsu Graphite).
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 ' 乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して実施例 4の電極を得た。 (実施例 5)  Apply the finished paint to one side of the rolled copper foil current collector with a blade coater '' After drying, apply the same paint on the back side '' After drying, compression-mold with a roller press machine and cut to a predetermined size Thus, an electrode of Example 4 was obtained. (Example 5)
実施例 1の導電材を K S 6 ( LON ZA製 G r a p h i t e 中 心粒径 3. 8 μ τη) に変更したほかは、 実施例 1 と同様に行った。  Example 1 was repeated except that the conductive material of Example 1 was changed to KS6 (Graphite core particle size of 3.8 μτη manufactured by LON ZA).
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して実施例 5の電極を得た。 (比較例 1 )  Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, press-mold with a roller press machine and cut to predetermined size Thus, an electrode of Example 5 was obtained. (Comparative Example 1)
実施例 1の導電材 をアセチレンブラック (電気化学工業製デンカブ ラック) に変更したほかは、 実施例 1 と同様に行った。  Example 1 was repeated, except that the conductive material was changed to acetylene black (DENKA BLACK manufactured by Denki Kagaku Kogyo).
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して比較例 1の電極を得た。 (比較例 2)  Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, compress and mold with a roller press machine and cut to a predetermined size Thus, an electrode of Comparative Example 1 was obtained. (Comparative Example 2)
実施例 1の導電材 を気相成長炭素繊維 (昭和電工製 VGCF) に変 更したほかは、 実施例 1 と同様に行った。 できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 ·乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して比較例 2の電極を得た。 (比較例 3 ) Example 1 was carried out in the same manner as in Example 1 except that the conductive material was changed to vapor grown carbon fiber (VGCF manufactured by Showa Denko). Apply the finished paint to one side of the rolled copper foil current collector with a blade coater, dry it, apply the same paint to the back side, dry it, compress it with a roller press machine, and cut it to a predetermined size Thus, an electrode of Comparative Example 2 was obtained. (Comparative Example 3)
PVDF 1 5. 1重量部を NMP 1 3 5. 9重量部に溶解し、 結 合剤溶液 1 5 1重量部を作製した。 導電材 ( LONZA製 G r a p h i t e KS 2 5) 1 3 9重量部を加圧エーダーに投入し、 これ に上記結合剤溶液 50重量部を加え、 加圧ニーダ一のジャケッ トを水 冷しながら、 6 0分間混練した。 この混練物を取り出し、 混練物 Aとし た。 難黒鉛化性炭素 8 7重量部を加圧ニーダ一に投入し、 これに上記 結合剤溶液 50重量部を加え、 加圧ニーダ一のジャケッ トを水冷しな がら、 60分間混練した。 この混練物を取り出し、 混練物 Bとした。 混 練物 A 1 3. 6重量部と混練物 B 1 26重量部と結合剤溶液 50. 4重量部と NMP 60重量部を加えて、 ハイパーミキサーにて溶解し、 塗料を得た。  15.1 parts by weight of PVDF was dissolved in 13.5.9 parts by weight of NMP to prepare 151 parts by weight of a binder solution. Conductive material (Graphite KS 25 made by LONZA) 13 9 parts by weight is put into a pressure eider, 50 parts by weight of the above binder solution is added thereto, and while the jacket of the pressure kneader is cooled with water, 6 Kneaded for 0 minutes. The kneaded material was taken out and set as kneaded material A. 87 parts by weight of non-graphitizable carbon was charged into a pressure kneader, 50 parts by weight of the above binder solution was added thereto, and the jacket of the pressure kneader was kneaded for 60 minutes while cooling with water. The kneaded material was taken out and set as kneaded material B. Kneaded material A13.6 parts by weight, kneaded material B1 26 parts by weight, binder solution 50.4 parts by weight and NMP 60 parts by weight were added and dissolved with a hyper mixer to obtain a paint.
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して比較例 3の電極を得た。 (比較例 4)  Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, compress and mold with a roller press machine and cut to a predetermined size Thus, an electrode of Comparative Example 3 was obtained. (Comparative Example 4)
P VDF 1 0重量部を NMP 90重量部に溶解し、 結合剤溶液 1 0 0重量部を作製した。 難黒鉛化性炭素 80重量部と導電材 ( L ON ZA製 G r a p h i t e K S 25 ) 1 0重量部をヘンシェル ミキサーで乾式混合し、 この混合物に上記結合剤溶液 50重量部を加 え、 ヘンシェルミキサーのジャケッ トを水冷しながら、 60分間混合し た。 この混合物に、 結合剤溶液 50重量部と NMP 60重量部を加 えて溶解し、 活物質層塗料を得た。 JP98/023 できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 ' 乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して比較例 4の電極を得た。 (比較例 5 ) 10 parts by weight of PVDF was dissolved in 90 parts by weight of NMP to prepare 100 parts by weight of a binder solution. 80 parts by weight of non-graphitizable carbon and 10 parts by weight of a conductive material (Graphite KS 25 manufactured by LON ZA) are dry-mixed with a Henschel mixer, and 50 parts by weight of the above binder solution is added to the mixture. The jacket was mixed for 60 minutes while cooling with water. To this mixture, 50 parts by weight of a binder solution and 60 parts by weight of NMP were added and dissolved to obtain an active material layer paint. JP98 / 023 The finished paint is applied to one side of the current collector of rolled copper foil with a blade coater. 'After drying, apply the same paint to the back side.' After drying, press-mold with a roller press machine to a specified size. This was cut into pieces to obtain electrodes of Comparative Example 4. (Comparative Example 5)
P VD F 1 0重量部を NMP 9 0重量部に溶解し、 結合剤溶液 1 0 0重量部を作製した。 難黒鉛化性炭素 8 0重量部と導電材 ( L ON Z A製 G r a p h i t e K S 2 5) 1 0重量部をハイパーミ キサ一で乾式混合し、 この混合物に上記結合剤溶液 1 0 0重量部と N MP 6 0重量部を加えて、 6 0分間攪拌混合して、 活物質層塗料を得 た。  100 parts by weight of PVDF was dissolved in 90 parts by weight of NMP to prepare 100 parts by weight of a binder solution. 100 parts by weight of non-graphitizable carbon and 10 parts by weight of a conductive material (Graphite KS 25 made by LON ZA) were dry-mixed with a hyper mixer, and 100 parts by weight of the above binder solution and N were added to this mixture. MP 60 parts by weight was added, and the mixture was stirred and mixed for 60 minutes to obtain an active material layer paint.
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して比較例 5の電極を得た。 (比較例 6 )  Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, press-mold with a roller press machine and cut to predetermined size Thus, an electrode of Comparative Example 5 was obtained. (Comparative Example 6)
塗料の作製 Preparation of paint
比較例 4で得た塗料を分散メディアをジルコユアビーズとしたピン型 サンドグラインダーミルを用いて、 分散機滞留時間 6 0分となるように 分散し、 塗料を得た。  The paint obtained in Comparative Example 4 was dispersed using a pin-type sand grinder mill using zirconia beads as a dispersion medium so that the residence time of the disperser was 60 minutes, to obtain a paint.
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して比較例 6の電極を得た。 (比較例 7 )  Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, compress and mold with a roller press machine and cut to a predetermined size Thus, an electrode of Comparative Example 6 was obtained. (Comparative Example 7)
比較例 5の導電材 (L ON Z A製 G r a p h i t e K S 2 5) を K S 6 (L ON Z A製 G r a p h i t e 中心粒径 3. 8 μ m) に変 更したほかは、 比較例 5と同様に行なった。  Performed in the same manner as in Comparative Example 5, except that the conductive material of Comparative Example 5 (Graphite KS25 made by LON ZA) was changed to KS6 (Central particle size of Graphite made by LON ZA 3.8 μm). Was.
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して比較例 7の電極を得た。 評価方法 The finished paint is applied to one side of the rolled copper foil current collector with a blade coater. After applying and drying, the same paint was applied and dried on the back side, and then compression-molded with a roller press machine and cut into a predetermined size to obtain an electrode of Comparative Example 7. Evaluation method
(降伏値)  (Yield value)
活物質層塗料の粘度を、 コ一ンプレー ト型粘度計用いて測定し、 ずり 速度と応力の関係から降伏値を求めた。  The viscosity of the active material layer paint was measured using a composite plate viscometer, and the yield value was determined from the relationship between shear rate and stress.
(電極特性)  (Electrode characteristics)
実施例 1〜5、 比較例 1〜 7までの試料を、 縦 2 5 mm、 横 2 O mm に切断し、 上端部を 5 m mの幅で電極層を除去して 2 0 m m角の電極層 を残した。 電極層を除去した上端部にリードとしてステンレス線をスポ ッ ト溶接し、 この電極 (作用極) を作成した。  The samples of Examples 1 to 5 and Comparative Examples 1 to 7 were cut into a length of 25 mm and a width of 2 O mm, and the upper end was removed with a width of 5 mm to form a 20 mm square electrode layer. Left. A stainless wire was spot-welded as a lead to the upper end from which the electrode layer had been removed to form this electrode (working electrode).
図 1に示したように充放電容量測定用セルを作製し、 下記のようにし て充放電を行った。 ビーカー 1中に、 ステンレス線に接続したリチウ ム板を用いた 1対の対極 4と、 同様の参照極 5を有するルギン管 6と、 さらに対極の中間に上記で作成した電極 (作用極) 3を配置し、 電解液 7には、 電解質塩として 1 m o 1 / 1 の過塩素酸リチウムをエチレン力 一ボネィ ト、 ジェチルカーボネィ トの体積比 1 : 1 の混合溶媒に溶解し たものを用い、 ビーカーおよびルギン管にシリコン栓で封じで測定用セ ルを作成した。  A charge / discharge capacity measurement cell was prepared as shown in FIG. 1 and charged / discharged as follows. In a beaker 1, a pair of counter electrodes 4 using a lithium plate connected to a stainless steel wire, a lugine tube 6 having a similar reference electrode 5, and an electrode (working electrode) 3 created above between the counter electrodes Electrolyte 7 was prepared by dissolving 1 mo 1/1 lithium perchlorate as an electrolyte salt in a mixed solvent of ethylene power and getyl carbonate in a volume ratio of 1: 1. A cell for measurement was prepared by sealing the beaker and lugine tube with a silicon stopper.
そしてこのセルに、 2 m Aの定電流で 0 Vから 2 V ( P o t e n t i a 1 v s L i / L i +) までの範囲で充放電を 5回繰り返して行い、 1 回目の L iイオン放出時の容量を測定し、 初期容量とした。 また、 5回 目の容量も測定し、 充放電サイクル特性とした。 This cell is charged and discharged 5 times at a constant current of 2 mA from 0 V to 2 V (Potentia 1 vs. Li / Li + ), and during the first Li ion release. Was measured and used as the initial capacity. The fifth capacity was also measured, and the charge / discharge cycle characteristics were obtained.
(正極) (Positive electrode)
(実施例 6 ) 活物質層を以下のように作製した。 (Example 6) The active material layer was produced as follows.
(活物質層塗料組成)  (Active material layer paint composition)
活物質 L i C o 02 : 90 中心粒径 8 m Active material L i Co 0 2 : 90 Central particle size 8 m
導電材 LON ZA製 G r a p h i t e KS 2 5 : 4 中心粒径 1 1 m  Conductive material LON ZA made G r a p h i t e KS 25: 4 Center particle size 1 1 m
結合剤 エルファルケムジャパン KYNAR 74 1 : 6 ポリフッ化ビニリデン ( P V D F ) 溶剤 N—メチル一 2—ピロ リ ドン (NMP) : 6 7 単位は重量部 Binder Elfarchem Japan KYNAR 74 1: 6 Polyvinylidene fluoride (PVDF) solvent N-Methyl-1-pyrrolidone (NMP): 67 Units are parts by weight
PVDF 6重量部を NMP 54重量部に溶解し、 結合剤溶液 6 0重量部を作製した。 活物質 9 0重量部と導電材 4重量部をハイパ 一ミキサーで乾式混合し、 この混合物を加圧エーダーに投入した。 この 混合物に上記結合剤溶液 1 3重量部を加え、 加圧ニーダ一のジャケッ トを水冷しながら、 30分間混練することで混合粉砕を行なった。 この 混練物を取り出し、 結合剤溶液 4 2重量部とNMP 1 3重量部を加 えて、 ハイパーミキサーにて溶解し、 活物質層塗料を得た。 6 parts by weight of PVDF was dissolved in 54 parts by weight of NMP to prepare 60 parts by weight of a binder solution. 90 parts by weight of the active material and 4 parts by weight of the conductive material were dry-mixed with a hyper mixer, and the mixture was charged into a pressure eder. To this mixture, 13 parts by weight of the above binder solution was added, and the mixture was kneaded for 30 minutes while cooling the jacket of the pressure kneader with water to carry out mixing and grinding. The kneaded product was taken out, added with 42 parts by weight of a binder solution and 13 parts by weight of NMP, and dissolved with a hyper mixer to obtain an active material layer paint.
できあがった塗料を、 ブレードコーターにてアルミニウム箔の集電体 片面に塗布 '乾燥した後、 裏面に同一の塗料を塗布 ·乾燥した後、 ロー ラープレス機で圧縮成型し、 所定の大きさに切断して実施例 6の電極を 得た。  The finished paint is applied to one side of the aluminum foil current collector with a blade coater.After drying, apply the same paint to the back and dry.Then, compression molded with a roller press and cut to a predetermined size. Thus, an electrode of Example 6 was obtained.
(実施例 7)  (Example 7)
実施例 6の導電材を KS 6 ( LONZA製 G r a p h i t e 中 心粒径 3. 8 m) に変更したほかは、 実施例 6と同様に行った。 できあがった塗料を、 ブレードコーターにてアルミニウム箔の集電体 片面に塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ロー  Example 6 was carried out in the same manner as in Example 6, except that the conductive material was changed to KS6 (Granpite center diameter: 3.8 m, manufactured by LONZA). Apply the finished paint to one side of the aluminum foil current collector with a blade coater. 'Dry and then apply the same paint to the back.'
1フ ラープレス機で圧縮成型し、 所定の大きさに切断して実施例 7の電極を 得た。 1 f The electrode of Example 7 was obtained by compression molding with a roller press and cutting to a predetermined size.
(比較例 8)  (Comparative Example 8)
実施例 6の導電材をアセチレンブラック (電気化学工業製デンカブラ ック) に変更したほかは、 実施例 6と同様に行った。  Example 6 was carried out in the same manner as in Example 6, except that the conductive material was changed to acetylene black (DENKA BLACK manufactured by Denki Kagaku Kogyo).
できあがった塗料を、 ブレードコーターにてアルミニウム箔の集電体 片面に塗布 ·乾燥した後、 裏面に同一の塗料を塗布 ·乾燥した後、 ロー ラープレス機で圧縮成型し、 所定の大きさに切断して比較例 8の電極を 得た。  The finished paint is applied to one side of the aluminum foil current collector with a blade coater, dried, then the same paint is applied to the back side, dried, compression molded with a roller press, and cut to a predetermined size. Thus, an electrode of Comparative Example 8 was obtained.
(比較例 9)  (Comparative Example 9)
P VDF 6重量部を NMP 54重量部に溶解し、 結合剤溶液 6 0重量部を作製した。 活物質 9 0重量部と導電材 ( LONZA製 G r a p h i t e K S 2 5) 4重量部をハイパーミキサーで乾式混 合し、 この混合物に上記結合剤溶液 6 0重量部と NMP 1 3重量部 を加えて、 6 0分間攪拌混合して、 活物質層塗料を得た。  6 parts by weight of PVDF was dissolved in 54 parts by weight of NMP to prepare 60 parts by weight of a binder solution. 90 parts by weight of the active material and 4 parts by weight of a conductive material (Graphite KS25 manufactured by LONZA) are dry-mixed with a hypermixer, and 60 parts by weight of the above binder solution and 13 parts by weight of NMP are added to the mixture. The mixture was stirred and mixed for 60 minutes to obtain an active material layer paint.
できあがった塗料を、 ブレードコーターにてアルミニウム箔の集電体 片面に塗布 ·乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ロー ラープレス機で圧縮成型し、 所定の大きさに切断して比較例 9の電極を 得た。  The finished paint is applied to one side of the aluminum foil current collector with a blade coater, dried and then the same paint is applied to the back side.After drying, the product is compression molded with a roller press and cut to a predetermined size. Thus, an electrode of Comparative Example 9 was obtained.
(実施例 8)  (Example 8)
活物質層を以下のように作製した。  The active material layer was produced as follows.
(活物質層塗料組成)  (Active material layer paint composition)
活物質 L i N i 0. 8C o 0. 202 : 9 2 中心粒径 1 0 ^ m Active material L i N i 0. 8 C o 0. 2 0 2: 9 2 median particle size 1 0 ^ m
導電材 L O N Z A製 G r a p h i t e K S 2 5 : 4 中心粒径 1 1 μ m 結合剤 エルファ トケムジャパン KYNAR 74 1 : 4 ポリフッ化ビユリデン ( P V D F ) Conductive material Granzite KS 25: 4 made by LONZA 4 1 1 μm Binder Elpha Tochem Japan KYNAR 74 1: 4 Polyvinylidene fluoride (PVDF)
溶剤 N—メチルー 2—ピロリ ドン (NMP) : 6 7 単位は重量部 結合材 4重量部を溶剤 3 6重量部に溶解し、 結合剤溶液 40重 量部を作製した。 活物質 9 2重量部と導電材 4重量部をハイパーミ キサ一で乾式混合し、 この混合物を加圧ニーダ一に投入した。 この混合 物に上記結合剤溶液 1 3重量部を加え、 加圧ニーダ一のジャケッ トを 水冷しながら、 30分間混練することで混合粉碎を行なった。 この混練 物を敢リ出し、 結合剤溶液 2 7重量部と溶剤 3 1重量部を加えて、 ハイパーミキサーにて溶解し、 活物質層塗料を得た。  Solvent N-methyl-2-pyrrolidone (NMP): 67 parts by weight 4 parts by weight of binder was dissolved in 36 parts by weight of solvent to prepare 40 parts by weight of binder solution. 2 parts by weight of the active material 9 and 4 parts by weight of the conductive material were dry-mixed with a hyper mixer, and the mixture was charged into a pressure kneader. To this mixture, 13 parts by weight of the above binder solution was added, and the mixture in the pressurized kneader was kneaded for 30 minutes while being cooled with water, so that the mixture was ground. The kneaded material was removed and 27 parts by weight of a binder solution and 31 parts by weight of a solvent were added and dissolved by a hypermixer to obtain an active material layer paint.
できあがった塗料を、 ブレードコーターにて圧延銅箔の集電体片面に 塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ローラープ レス機で圧縮成型し、 所定の大きさに切断して実施例 8の電極を得た。 (実施例 9)  Apply the finished paint to one side of the current collector of rolled copper foil with a blade coater 'Dry, then apply the same paint on the back side' After drying, press-mold with a roller press machine and cut to predetermined size Thus, an electrode of Example 8 was obtained. (Example 9)
実施例 8の導電材を K S 6 ( LONZA製 G r a p h i t e 中 心粒径 3. 8 m) に変更したほかは、 実施例 6と同様に行った。  Example 8 was carried out in the same manner as in Example 6, except that the conductive material was changed to KS6 (Granpite center particle size: 3.8 m, manufactured by LONZA).
できあがった塗料を、 ブレードコーターにてアルミニウム箔の集電体 片面に塗布 ·乾燥した後、 裏面に同一の塗料を塗布 ·乾燥した後、 ロー ラープレス機で圧縮成型し、 所定の大きさに切断して実施例 9の電極を 得た。  The finished paint is applied to one side of the aluminum foil current collector with a blade coater, dried, then the same paint is applied to the back side, dried, compression molded with a roller press, and cut to a predetermined size. Thus, an electrode of Example 9 was obtained.
(比較例 1 0)  (Comparative Example 10)
結合剤 4重量部を溶剤 3 6重量部に溶解し、 結合剤溶液 40重 量部を作製した。 活物質 9 2重量部と導電材 4重量部をハイパーミ キサ一で乾式混合し、 この混合物に上記結合剤溶液 40重量部と溶剤 4 parts by weight of the binder was dissolved in 36 parts by weight of the solvent to prepare 40 parts by weight of the binder solution. 9 parts by weight of the active material 9 and 4 parts by weight of the conductive material were dry-mixed with a hypermixer, and 40 parts by weight of the binder solution and the solvent were added to the mixture.
3 1重量部を加えて、 30分間攪拌混合して、 活物質層塗料を得た。 できあがった塗料を、 ブレードコーターにてアルミニウム箔の集電体 片面に塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ロー ラープレス機で圧縮成型し、 所定の大きさに切断して比較例 1 0の電極 を得た。 31 parts by weight were added and mixed with stirring for 30 minutes to obtain an active material layer paint. The finished paint is applied to one side of the aluminum foil current collector with a blade coater. 'After drying, apply the same paint to the back side.'After drying, press-mold with a roller press and cut to a predetermined size. Thus, an electrode of Comparative Example 10 was obtained.
(比較例 1 1 )  (Comparative Example 11)
実施例 8の導電材をアセチレンブラック (電気化学工業製デンカブラ ック) に変更したほかは、 実施例 1 と同様に行った。  Example 8 was carried out in the same manner as in Example 1 except that the conductive material in Example 8 was changed to acetylene black (DENKA BLACK manufactured by Denki Kagaku Kogyo).
できあがった塗料を、 ブレードコーターにてアルミエゥム箔の集電体 片面に塗布 '乾燥した後、 裏面に同一の塗料を塗布 '乾燥した後、 ロー ラープレス機で圧縮成型し、 所定の大きさに切断して比較例 1 1の電極 を得た。  The finished paint is applied to one side of the aluminum foil current collector with a blade coater. 'After drying, apply the same paint to the back side.'After drying, press-mold with a roller press and cut to a predetermined size. Thus, an electrode of Comparative Example 11 was obtained.
評価方法 Evaluation method
(付着性)  (Adhesiveness)
J I S K 54 00 8. 5. 1 碁盤目法に準じて試験を行い、 塗膜のアルミニウム箔への付着性を調べた。 アルミニウム箔の両面に塗 布した塗膜の片面を引搔き試験器 (ER I CHS EN MODE L 2 9 5 1 mm間隔 1 1枚刃) を用いて碁盤目状に切り傷をつけ J I Sに 準じて点数をつけた。  JISK 54 00 8.5.1. A test was conducted according to the grid method, and the adhesion of the coating film to the aluminum foil was examined. Cut one side of the coating film coated on both sides of the aluminum foil with a tester (ER I CHS EN MODEL 295 1 mm interval 1 single blade) and make cuts in a grid pattern according to JIS. Scored.
(電極特性)  (Electrode characteristics)
実施例 6〜 9、 比較例 8〜 1 1の試料において評価用のセルの作製ま では負極と同様行った。 そしてこのセルに、 6 mAの定電流で 3 Vから 4. 2V (P o t e n t i a l v s L i /L i +) までの範囲で充放電 を 5回繰り返して行い、 1回目の L iイオン吸蔵時の容量を測定し、 初 期容量とした。 また、 5回目の容量も測定し、 充放電サイクル特性とし た。 第 1 表 For the samples of Examples 6 to 9 and Comparative Examples 8 to 11, the same procedure as that for the negative electrode was performed until the production of an evaluation cell. The cell is charged and discharged 5 times at a constant current of 6 mA in the range of 3 V to 4.2 V (Potentialvs L i / L i + ), and the capacity during the first Li ion occlusion is obtained. Was measured and used as the initial capacity. In addition, the capacity of the fifth cycle was also measured, and the charge / discharge cycle characteristics were obtained. Table 1
Figure imgf000023_0001
第 2 表
Figure imgf000023_0001
Table 2
Figure imgf000023_0002
第 3 表 装 置 Ai 材 混合粉砕 初期容量 5 t h容量 付 着 性
Figure imgf000023_0002
Table 3 Apparatus Ai material Mixed grinding Initial capacity 5th capacity
(mAh/g) (mAh/g) 碁盤目試験 実施例 8 加圧ニーダ一 K S 25 有 リ 1 90 1 8 3 8点 実施例 9 加圧ニーダ一 K S 6 有 リ 1 8 7 1 6 3 8点 比較例 10 ハイバ ミキサ- K S 25 無 し 1 69 144 8点 比較例 11 加圧二一ダー デンカブラック 有 リ 1 93 1 8 7 2点 第 1表からわかるように、 エーダーを使用して混練することで混合粉 砕した活物質層塗料は、 降伏値が増大し (粘度の構造性が増大する) 、 すなわちグラフアイ トの表面積が増大し、 分散が向上している結果を示 している。 またその結果として、 少ない量のグラフアイ トで活物質のの 特性を引き出すことが可能になっているため、 作成した電極の容量も大 きくなり、 二次電池の寿命を示唆するサイクル特性も向上している。 第(mAh / g) (mAh / g) Cross cut test Example 8 Press kneader KS 25 Yes 1 90 1 8 3 8 points Example 9 Press kneader KS 6 Yes 1 8 7 1 6 3 8 Comparative Example 10 Hiba Mixer-KS 25 None 1 69 144 8 points Comparative Example 11 Pressurized Nider Denka Black Yes 1 93 1 8 7 2 points As can be seen from Table 1, the active material layer paint that has been mixed and ground by kneading using an ada has an increased yield value (increased viscosity structure), that is, an increased surface area of the graphite. The results show that the variance has improved. As a result, the characteristics of the active material can be extracted with a small amount of graphite, which increases the capacity of the created electrode and improves the cycle characteristics that indicate the life of the secondary battery. are doing. No.
2表、 第 3表からも少量のグラフアイ トでも混合粉砕を行うことでサイ クル特性が向上していることがわかる。 また、 グラフアイ トを用いた電 極は付着性は良好で碁盤目試験においても高得点を得ている。 産業上の利用可能性 From Tables 2 and 3, it can be seen that even with a small amount of graphite, the cycle characteristics are improved by mixing and grinding. In addition, the electrodes using graphite have good adhesion and high scores in the grid test. Industrial applicability
本発明の方法で製造された非水電解質電池用電極は、 放電容量及び充 放電サイクル寿命等の充放電特性がよく物理的特性が改善されていて、 非水電解質電池用電極の利用分野で極めて有効に活用されるものである ( The electrode for a non-aqueous electrolyte battery produced by the method of the present invention has good charge / discharge characteristics such as discharge capacity and charge / discharge cycle life, and has improved physical characteristics. It can be used effectively (

Claims

請求の範囲 The scope of the claims
1 . 活物質と、 鱗片状を呈するグラフアイ トと、 結合剤とからなる電極 活物質層を、 集電体上に塗布する非水電解質電池用電極の製造方法にお いて、 前記活物質を用いて前記グラフアイ トを混合粉砕したことを特徴 とする非水電解質電池用電極の製造方法。 1. In a method for producing an electrode for a non-aqueous electrolyte battery, an electrode active material layer comprising an active material, a scale-shaped graphite, and a binder is applied on a current collector. A method for producing an electrode for a non-aqueous electrolyte battery, characterized in that the graphite is mixed and pulverized using the same.
2 . グラフアイ トの中心粒径が前記活物質の中心粒径より大きい請求の 範囲 1記載の非水電解質電池用電極の製造方法。 2. The method for producing an electrode for a non-aqueous electrolyte battery according to claim 1, wherein the central particle size of the graphite is larger than the central particle size of the active material.
PCT/JP1998/002312 1997-05-27 1998-05-27 Method of producing an electrode for non-aqueous electrolytic cells WO1998054769A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-1999-7010919A KR100502530B1 (en) 1997-05-27 1998-05-27 Method of producing an electrode for non-aqueous electrolytic cells
AU74517/98A AU7451798A (en) 1997-05-27 1998-05-27 Method of producing an electrode for non-aqueous electrolytic cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13666397 1997-05-27
JP9/136663 1997-05-27

Publications (1)

Publication Number Publication Date
WO1998054769A1 true WO1998054769A1 (en) 1998-12-03

Family

ID=15180595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002312 WO1998054769A1 (en) 1997-05-27 1998-05-27 Method of producing an electrode for non-aqueous electrolytic cells

Country Status (3)

Country Link
KR (1) KR100502530B1 (en)
AU (1) AU7451798A (en)
WO (1) WO1998054769A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143262A (en) * 1981-02-27 1982-09-04 Shin Kobe Electric Mach Co Ltd Manufacture of anode body for non-aqueous electrolyte battery
JPH08195201A (en) * 1995-01-17 1996-07-30 Fuji Photo Film Co Ltd Manufacture of negative electrode mix of nonaqueous secondary battery
JPH08222206A (en) * 1995-02-16 1996-08-30 Sumitomo Chem Co Ltd Positive electrode for lithium secondary battery and lithium secondary battry
JPH08273669A (en) * 1995-04-04 1996-10-18 Fuji Elelctrochem Co Ltd Manufacture of positive electrode for nonaqueous electrolyte battery
JPH09129238A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Battery
JPH09147839A (en) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JPH09171826A (en) * 1995-12-19 1997-06-30 Tdk Corp Lithium secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143262A (en) * 1981-02-27 1982-09-04 Shin Kobe Electric Mach Co Ltd Manufacture of anode body for non-aqueous electrolyte battery
JPH08195201A (en) * 1995-01-17 1996-07-30 Fuji Photo Film Co Ltd Manufacture of negative electrode mix of nonaqueous secondary battery
JPH08222206A (en) * 1995-02-16 1996-08-30 Sumitomo Chem Co Ltd Positive electrode for lithium secondary battery and lithium secondary battry
JPH08273669A (en) * 1995-04-04 1996-10-18 Fuji Elelctrochem Co Ltd Manufacture of positive electrode for nonaqueous electrolyte battery
JPH09129238A (en) * 1995-10-31 1997-05-16 Matsushita Electric Ind Co Ltd Battery
JPH09147839A (en) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JPH09171826A (en) * 1995-12-19 1997-06-30 Tdk Corp Lithium secondary battery

Also Published As

Publication number Publication date
KR20010012949A (en) 2001-02-26
KR100502530B1 (en) 2005-07-20
AU7451798A (en) 1998-12-30

Similar Documents

Publication Publication Date Title
KR102275042B1 (en) Graphene dispersion, method for preparing electrode paste, and method for preparing electrode
JP4262475B2 (en) Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
JP5684226B2 (en) Fluorinated binder composites and carbon nanotubes for lithium battery positive electrodes
EP2950375B1 (en) Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
EP3005450B1 (en) Electrode composition, electrochemical cell and method of making electrochemical cells
JP6996244B2 (en) Manufacturing method of all-solid-state battery, all-solid-state battery and slurry
JP2011076788A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery, and lithium ion secondary battery and electrochemical capacitor
CN110462884A (en) Lithium ion secondary battery anode and lithium ion secondary battery
WO2014112439A1 (en) Method for manufacturing conductive adhesive composition for electrochemical element electrode
CN106711460B (en) Electrode slurry composition and application thereof in preparing electrode and lithium ion battery
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
KR100600632B1 (en) Electrode for nonaqueous electrolyte battery
JP4203866B2 (en) Method for producing electrode for non-aqueous electrolyte battery
JP2015219989A (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
KR100544844B1 (en) Method of producing an electrode for non-aqueous electrolytic secondary cells
JP2011181387A (en) Manufacturing method of electrode mixture for electrochemical element
KR100506292B1 (en) Electrode for non-aqueous electrolytic cells
JPH1145705A (en) Manufacture of electrode for nonaqueous electric battery
WO1998054769A1 (en) Method of producing an electrode for non-aqueous electrolytic cells
KR100502531B1 (en) Method of producing an electrode for non-aqueous electrolytic cells
JP3884550B2 (en) Method for producing electrode for non-aqueous electrolyte battery
JPH1145704A (en) Manufacture of electrode for nonaqueous electrolytic battery
JPH1145703A (en) Electrode for use in nonaqueous electrolytic battery
EP4345953A1 (en) Positive electrode mixture layer, electroconductive auxiliary agent, positive electrode mixture, and lithium ion secondary battery
WO2024086622A2 (en) Electrodes for energy storage device comprising binders having hydrophilic functionality

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1019997010919

Country of ref document: KR

Ref document number: 09424591

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019997010919

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997010919

Country of ref document: KR