JPH09117666A - エチレンのオキシクロリネーション触媒 - Google Patents

エチレンのオキシクロリネーション触媒

Info

Publication number
JPH09117666A
JPH09117666A JP7278100A JP27810095A JPH09117666A JP H09117666 A JPH09117666 A JP H09117666A JP 7278100 A JP7278100 A JP 7278100A JP 27810095 A JP27810095 A JP 27810095A JP H09117666 A JPH09117666 A JP H09117666A
Authority
JP
Japan
Prior art keywords
catalyst
alumina particles
copper chloride
containing alumina
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7278100A
Other languages
English (en)
Inventor
Susumu Fujii
井 進 藤
Yusaku Arima
馬 悠 策 有
Yoshito Yamashita
下 義 人 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP7278100A priority Critical patent/JPH09117666A/ja
Publication of JPH09117666A publication Critical patent/JPH09117666A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【解決手段】 Cu含有量が8〜15重量%の範囲で、
Cu/Al23の重量比が0.10〜0.22の範囲にあ
り、かつCu/Al23(重量比)と比表面積(m2
g)との積が30m2/g以上である塩化銅含有アルミ
ナ粒子(A)と、比表面積が160m2/g以上のアル
ミナ粒子(B)との物理的混合物からなるエチレンのオ
キシクロリネーション用流動触媒。 【効果】 本発明では、触媒粒子同士の凝集を防止する
ことができ、触媒寿命が長くなり、しかも反応時の運転
操作が容易となる。また本発明の触媒は、エチレンから
EDCを製造する通常の反応条件で使用可能である。す
なわち、通常、反応原料の組成は、エチレン:酸素:塩
酸の割合が約1.0〜1.8:約0.55〜0.9:2モル
比の範囲で、反応温度は、190〜250℃の範囲で行
われる。なお酸素源としては、高濃度酸素や空気などが
使用可能である。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、流動床でエチレンのオ
キシクロリネーションを行うための触媒に関し、さらに
詳しくは、触媒活性、寿命に優れ、しかも触媒の使用に
際して反応時の運転操作が容易なエチレンのオキシクロ
リネーション用流動触媒に関する。
【0002】
【従来技術とその問題点】従来、流動床での炭化水素
(特にエチレン)のオキシクロリネーション用触媒とし
ては、塩化銅を種々の担体に担持させた固体触媒が広く
用いられており、担体としてはアルミナが一般的に使用
されている。たとえば特公昭45−21924号公報に
は、バイヤー法によって製造された活性アルミナ粉末
に、CuCl2水溶液を加え、混合濾過して得たケーキ
を100〜120℃で空気で乾燥して触媒を調製してい
る。この触媒のCu含有量は3.5〜7重量%である。
この触媒は、バイヤー法によって製造された活性アルミ
ナ粉末を担体としているため、比表面積および細孔容積
が小さく、Cu含有量も少ないため触媒活性が低く、使
用中に触媒粒子同士が凝集を起こすなどの問題があっ
た。
【0003】また、特公昭43−3761号公報には、
微粒状活性アルミナに塩化銅をCuとして4.7〜14.
2重量%含浸して調製された含浸触媒が記載されてい
る。浸漬法、含浸法によって調製された触媒は、Cuの
担持量に限界があり、また触媒の比表面積が小さくなる
ため触媒の活性および選択性が低く、また反応中に触媒
粒子同士が凝集を起こしやすくなり、反応時の運転操作
が難しいなどの問題があった。また、アルミン酸ナトリ
ウムと硫酸アルミニウムによるアルミナヒドロゲルにC
uCl2を加え触媒化した、後沈着法による触媒も同様
な傾向を有する。
【0004】特公昭45−39616号公報には、適当
な比重を有し、しかも粒子の形状、耐摩耗性、触媒活性
に優れたエチレンのオキシクロリネーション用流動触媒
の製造方法が開示されている。この触媒の製造方法は、
塩化第二銅の塩酸溶液と、アルミン酸ナトリウム溶液と
を混合することによって得られるゲル状共沈殿物を熟成
した後、噴霧乾燥して微小球体とし、さらにこれを焼成
することを特徴としている。このようにして調製された
触媒は、Cuの担持量を多くすることができ、しかも触
媒の比表面積が大きく、適当な比重、粒子の形状および
優れた耐摩耗性を有し、しかも高い触媒活性を有してい
る。しかしながら、触媒寿命、反応時の触媒の凝集に起
因する運転操作の難易性等の点で改善の余地があった。
【0005】
【発明の目的】本発明は、触媒活性、選択性、触媒寿命
に優れ、しかも触媒を流動床で使用する際に触媒粒子同
士の凝集を起こすことなく、反応時の運転操作が容易な
触媒を提供することを目的としている。
【0006】
【発明の概要】本発明に係るエチレンのオキシクロリネ
ーション用流動触媒は、Cu含有量が8〜15重量%の
範囲で、かつCu/Al23の重量比が0.10〜0.2
2の範囲にあり、しかもCu/Al23(重量比)と比
表面積との積が30m2/g以上である塩化銅含有アル
ミナ粒子(A)と、比表面積が160m2/g以上のア
ルミナ粒子(B)との物理的混合からなることを特徴と
している。
【0007】前記塩化銅含有アルミナ粒子(A)のアル
ミナは無定形アルミナであることが好ましい。また、前
記塩化銅含有アルミナ粒子(A)とアルミナ粒子(B)
の物理的混合物における混合割合(B)/(A)は、重
量比で3/97〜50/50の範囲であることが好まし
い。
【0008】
【発明の具体的説明】以下本発明に係るエチレンのオキ
シクロリネーション用流動触媒について具体的に説明す
る。
【0009】本発明に係るエチレンのオキシクロリネー
ション用流動触媒は、エチレンを流動床でオキシクロリ
ネーションするために用いられ、塩化銅含有アルミナ粒
子(A)とアルミナ粒子(B)との混合物からなってい
る。
【0010】塩化銅含有アルミナ粒子(A)は、Cu含
有量が8〜15重量%の範囲にある。Cu含有量が8重
量%よりも少ない場合には、触媒の活性が低下すること
があり、また、逆にCu含有量が15重量%よりも多く
なると、触媒の流動性が悪くなり、反応時の運転操作が
困難になることがある。好ましくは、Cuは、10〜1
4重量%の量で含有されている。なお、本明細書でのC
u含有量は、湿量基準での値である。
【0011】また塩化銅含有アルミナ粒子(A)は、C
u/Al23の重量比が0.10〜0.22の範囲にあ
る。塩化銅含有アルミナ粒子(A)は、粒子の焼成温度
により塩素の量が変わることがあり、また第3成分の含
有によってCu含有量も変化することがあるので、本明
細書では、Al23に対するCuの重量比でも規定して
いる。Cu/Al23の重量比が0.10よりも小さい
場合には、活性成分が少なく触媒活性が低くなり、ま
た、0.22よりも大きい場合には、触媒の比表面積が
極端に小さくなるため活性が低下し、また触媒の流動性
も悪くなる。Cu/Al23の重量比は、好ましくは
0.12〜0.20の範囲である。
【0012】またこの塩化銅含有アルミナ粒子(A)
は、平均粒子径が30〜120μm好ましくは50〜1
00μmであり、嵩密度は0.60〜1.40g/ml好ま
しくは0.80〜1.20g/mlであり、比表面積は18
0m2/g以上好ましくは200m2/g以上であること
が望ましい。このような塩化銅含有アルミナ粒子(A)
は、流動床で用いられた場合に、優れた耐摩耗性を示
す。
【0013】さらに、この塩化銅含有アルミナ粒子
(A)は、Cu/Al23(重量比)と比表面積(m2
/g)との積が30m2/g以上好ましくは35m2/g
以上である。
【0014】ここで、塩化銅含有アルミナ粒子(A)の
比表面積は、BET法により測定した値である。本発明
では、エチレンのオキシクロリネーション反応は、下記
で示され、エチレンから1,2-ジクロルエタン(EDC)
が生成する。
【0015】C24+2HCl+1/2O2 → C2
4Cl2+H2O 本発明者らの研究によれば、1,2-ジクロルエタン(ED
C)の生成量は、Cu/Al23重量比が大きいほど、
また、触媒の比表面積が高いほど多くなる。すなわち、
触媒の活性は、Cu/Al23重量比と比表面積(m2
/g)の積に比例する。したがって、Cu/Al2
3(重量比)と比表面積(m2/g)との積が30m2
gよりも小さい場合には、触媒の活性が低くなることが
ある。また本発明では、該塩化銅含有アルミナ粒子
(A)の比表面積は、180m2/g以上好ましくは2
00m2/g以上であることが望ましい。
【0016】このような塩化銅含有アルミナ粒子(A)
は、例えば特公昭45−39616号公報に記載されて
いる方法で調製することができる。すなわち、塩化第二
銅の塩酸水溶液とアルミン酸ナトリウム水溶液とを反応
させてゲル状共沈殿物を生成させ、得られたゲル状共沈
殿物を熟成した後、噴霧乾燥して微小球状粒子とし、該
粒子を洗浄、乾燥し、焼成すると、塩化銅含有アルミナ
粒子(A)を得ることができる。このような方法で得ら
れた塩化銅含有アルミナ粒子(A)は、X線回折で無定
形アルミナの回折図を示す。無定形アルミナは比表面積
が大きいので特に好ましい。なお、本発明での塩化銅含
有アルミナ粒子(A)は、前述の製造方法に限定される
ものではなく、所望の特性を有する物であれば、その製
造方法は問わない。
【0017】次に、アルミナ粒子(B)について説明す
る。該アルミナ粒子(B)は、前述の塩化銅含有アルミ
ナ粒子(A)と同程度の粒子径、嵩密度等の性状を有す
ることが触媒の流動性等の点から望ましい。すなわち、
該アルミナ粒子(B)の平均粒子径は、30〜120μ
mの範囲にあり、また嵩密度(CBD)は、0.60〜
1.40g/mlの範囲にあることが望ましい。また、該
アルミナ粒子(B)の比表面積は、大きい方が好まし
く、特に160m2/g以上、好ましくは200〜40
0m2/gの範囲のものが好ましい。該比表面積が16
0m2/gよりも小さい場合には、反応中に塩化銅含有
アルミナ粒子(A)から飛散した銅を補足する能力が劣
ることがある。
【0018】本発明でのアルミナ粒子(B)は、アルミ
ナ以外の第二成分を含有していてもよく、例えば、シリ
カなどを含有することも可能である。しかしアルミナの
含有量は50重量%以上、好ましくは80重量%以上、
さらに好ましくは95重量%以上であることが望まし
い。このアルミナ粒子(B)は、γ-アルミナであるこ
とが好ましい。
【0019】このようなアルミナ粒子(B)は、流動床
で用いられた場合に、優れた耐摩耗性を示す。本発明の
エチレンのオキシクロリネーション用流動触媒は、前述
の塩化銅含有アルミナ粒子(A)とアルミナ粒子(B)
との物理的混合物からなるが、混合割合(B)/(A)
は、重量比で3/97〜50/50の範囲にあることが
望ましい。
【0020】本発明では、塩化銅含有アルミナ粒子
(A)とアルミナ粒子(B)とを混合して、エチレンの
オキシクロリネーション用の流動床触媒として用いるこ
とにより、触媒粒子同士の凝集を防止することができ、
触媒寿命が長くなり、しかも反応時の運転操作が容易と
なる。
【0021】塩化銅含有アルミナ粒子(A)とアルミナ
粒子(B)との混合割合(B)/(A)が3/97(重
量比)よりも少ない場合には、触媒の寿命、反応時の運
転操作の容易性などの点で所望の効果が得られないこと
があり、また50/50(重量比)よりも多い場合に
は、触媒の活性等の点で所望の効果が得られないことが
ある。このため混合割合(B)/(A)は、好ましくは
重量比で5/95〜40/60の範囲である。
【0022】本発明の触媒は、使用に際して、所定の混
合割合で予め混合したものを使用してもよく、また、反
応器内で所定の混合割合となるように塩化銅含有アルミ
ナ粒子(A)と該アルミナ粒子(B)とを別々に添加し
てもよい。本発明の触媒は、エチレンからEDCを製造
する通常の反応条件で使用可能である。すなわち、通
常、反応原料の組成は、エチレン:酸素:塩酸の割合が
約1.0〜1.8:約0.55〜0.9:2モル比の範囲
で、反応温度は、190〜250℃の範囲で行われる。
なお酸素源としては、高濃度酸素や空気などが使用可能
である。
【0023】
【実施例】以下に実施例を示し、さらに本発明を具体的
に説明する。参考例1−5に塩化銅含有アルミナ粒子
(A)およびアルミナ粒子(B)の製造方法を示す。
【0024】
【参考例−1】5.02kgの塩化第二銅(二水和物)
を、35%塩酸37.0kgに溶解し、水を加えて全体を
134リットルに希釈した液と、45%水酸化ナトリウ
ム35.56kgに水酸化アルミニウム15.92kgを溶解
した。更に水を加えて67.6リットルに希釈した溶液
とを混合して、ゲル状共沈殿物を生成させた。該ゲル状
共沈殿物を室温で48時間熟成を行った後に、濾過水洗
し、得られたケーキに水をくわえてスラリーとし、噴霧
乾燥を行った。このようにして噴霧乾燥された微小球状
体の平均粒子径は64μmであった。
【0025】この微小球状体を400℃で3時間焼成を
行って、塩化銅含有アルミナ粒子(A)を得た。得られ
た塩化銅含有アルミナ粒子(A)[試料(ア)]の性状
を、表−1に示す。
【0026】
【参考例−2】参考例−1と同様な調製方法にて、表−
1に示すようなCu含有量の異なる塩化銅含有アルミナ
粒子(A)を調製した。得られた塩化銅含有アルミナ粒
子(A)である試料(イ)、(ウ)、(エ)の性状を表
−1に示す。
【0027】
【参考例−3】塩化第二銅(二水和物)10kgを30kg
の水に溶解した水溶液に、バイヤー法で得られた水酸化
アルミニウムを500℃で焼成して得た活性アルミナ微
粒子22.7kgを加えて1時間充分に撹拌し、濾過して
得られた粒子を110℃にて乾燥後、400℃で3時間
焼成を行った。このようにして浸漬法によって塩化銅含
有アルミナ粒子(A)を得た。得られた塩化銅含有アル
ミナ粒子(A)[試料(オ)]の性状を表−2に示す。
【0028】
【参考例−4】5重量%のアルミン酸ナトリウム40kg
に2.5重量%の硫酸アルミニウム40kgを混合して、
ゲル状沈殿物を生成させた。該ゲル状沈殿物を室温で5
時間熟成した後、濾過水洗し、得られたケーキに水を加
えてスラリーとし、これと塩化第二銅(二水和物)12
87gが水に溶解された塩化第二銅水溶液4800gと
を混合し、噴霧乾燥を行った。この乾燥粒子を400℃
で焼成し、後沈着法による塩化銅含有アルミナ粒子
(A)を得た。得られた塩化銅含有アルミナ粒子(A)
[試料(カ)]の性状を表−1に示す。
【0029】
【参考例−5】アルミン酸ナトリウム水溶液に硫酸アル
ミニウム水溶液を混合してゲル状沈殿物を生成させた。
該ゲル状沈殿物を室温で5時間熟成したのち、濾過水洗
し、得られたケーキに水を加えてスラリーとし、噴霧乾
燥後400℃で焼成を行い微粒子状活性アルミナを得
た。該微粒子状活性アルミナ3000gに、塩化第二銅
(二水和物)を565g含有する水溶液を含浸し、次い
で130℃で乾燥を行い400℃で3時間焼成して含浸
法による塩化銅含有アルミナ粒子(A)を得た。得られ
た塩化銅含有アルミナ粒子(A)[試料(キ)]の性状
を表−1に示す。
【0030】
【参考例−6】参考例−5で得た微粒子状活性アルミナ
3000gに、塩化第二銅(二水和物)が1200g含
有された水溶液を、含浸し次いで乾燥するという操作を
2回繰り返して、参考例−5と同様の方法で塩化銅含有
アルミナ粒子(A)を得た。得られた塩化銅含有アルミ
ナ粒子(A)[試料(ク)]の性状を表−1に示す。
【0031】
【参考例−7】5重量%のアルミン酸アルミニウム10
0kgに2.5重量%の硫酸アルミニウム100kgを混合
して、ゲル状沈澱物を生成し、室温で5時間熟成を行っ
た後、60℃の温水500kgで濾過水洗し、得られたケ
ーキに水を加えてスラリーとし、20%硝酸を7.0kg
加え、50℃で3時間熟成を行った。次いで、噴霧乾燥
し、500℃にて焼成を行ってアルミナ粒子(B)を得
た。得られたアルミナ粒子(B)の性状を表−1に示
す。
【0032】
【表1】
【0033】
【表2】
【0034】
【表3】
【0035】
【実施例−1】参考例−1〜6で調製した塩化銅含有ア
ルミナ粒子(A)の試料(ア)〜(ク)を単独で使用し
て、オキシクロリネーション反応活性(k)および流動
性インデックス(FI)の測定を行った。オキシクロリ
ネーション反応活性(k)の測定方法は、次の方法で行
った。すなわち粒子径が44〜150μmである塩化銅
含有アルミナ粒子(A)[試料(ア)〜(ク)]24.
5gを内径27mm、高さ500mmのガラス製流動反応装
置に挿入した。ついでエチレン、無水塩酸、酸素の混合
ガス(モル比1:1:0.5)を予熱温度150℃、対
重量空間速度4600(1-gas(N.T.P)/kg-cat.hr)
で、#2ガラスフィルターの散気板を経て、反応装置に
導入し、塩化銅含有アルミナ粒子(A)を流動化させ
た。流動化させながら反応温度を上昇させ反応温度21
0℃で反応せしめ、それぞれ表−2に示す初期反応活性
(k)を得た。(k)は、v=k[C24][HCl]
0.3[O20.3の式から算出した。ここでvは:触媒能
率(gEDC/g.cat.sec)を表す。
【0036】 [C24]:未反応エチレンのモル分率 [HCl]:未反応無水塩酸のモル分率 [O2] :未反応酸素のモル分率 次いで、流動性インデックス(FI)の観察を行った。
【0037】流動性インデックス(FI)の測定方法は
下記のとおりである。エチレン、無水塩酸、酸素の混合
ガス(モル比1:1:0.5)を上記のようにして反応
させ、これらのガスのうち酸素と無水塩酸の供給を停止
した後、引き続きエチレンガスのみで余熱温度150
℃、対重量空間速度3000(1-gas(N.T.P)/kg-cat.h
r)で触媒を流動化させた。流動層温度を210℃に保
ちながら触媒を還元させ流動状態を観察した。以下に流
動性インデックス(FI)を示す。(FI)は、反応中
またはエチレンのみの還元下までの触媒の流動状態の善
し悪しを判定するため、以下にしめす0〜6の7段階で
表示し、流動性インデックスの6が最も流動性の良い触
媒であることを表す。 流動性インデックス 触媒の流動状態 (FI) 0 C24、HCl、O2(1:1:0.5モル)流通開始 (反応開始)直後に触媒凝集固化。
【0038】 1 C24、HCl、O2(1:1:0.5モル)流通開始 後3時間以内で触媒凝集固化。 2 C24、HCl、O2(1:1:0.5モル)3時間反応後、 HCl、O2を停止しC24のみで通ガス3分以内に触媒 凝集固化。
【0039】 3 C24、HCl、O2(1:1:0.5モル)3時間反応後、 HCl、O2を停止しC24のみで通ガス10分以内に触媒 凝集固化。
【0040】 4 C24、HCl、O2(1:1:0.5モル)3時間反応後、 HCl、O2を停止しC24のみで通ガス15分以内に触媒 凝集固化。
【0041】 5 C24、HCl、O2(1:1:0.5モル)3時間反応後、 HCl、O2を停止しC24のみで通ガス15分以上触媒 凝集固化せず。
【0042】 6 上記3時間反応後、HCl、O2を停止しC24のみで 通ガス30分以上触媒凝集固化せず。 塩化銅含有アルミナ粒子(A)の単独での初期反応活性
(k)は、表−2および図−1に示す通り、Cu/Al
23(重量比)とSA(m2/g)との積と、kとの間
には正の相関が認められた。
【0043】
【実施例−2】実施例−1で調製した塩化銅含有アルミ
ナ(A)[試料(ア)]と、参考例−7で調製したアル
ミナ粒子(B)とを、(B)/(A)の重量比25/7
5で物理的に混合した触媒24.5gを内径27mm、高
さ500mmのガラス製流動反応装置に装入した。実施例
−1と同様にして、オキシクロリネーション初期反応活
性(k)と流動性インデックス(FI)を測定した。表
−3に反応活性と流動性インデックスとの関係を示す。
さらに(B)/(A)が重量比で25/75で物理的に
混合した上記触媒の活性の経時変化および塩化銅含有ア
ルミナ粒子(A)[試料(ア)]のみを用いた場合の触
媒活性の経時変化を調べた。オキシクロリネーション反
応活性(k)の変化を表−3および図−2に示す。表−
3および図−2から初期反応活性(k)は、アルミナ粒
子(B)を25%含有する触媒は、塩化銅含有アルミナ
粒子(A)のみからなる触媒よりもやや低いが、流動性
は、流動性インデックスが6と最も流動性に優れた触媒
となる。また図−2から、塩化銅含有アルミナ粒子
(A)とアルミナ粒子(B)との混合物からなる触媒
は、500時間後における反応活性(k)が、塩化銅含
有アルミナ粒子(A)のみからなる触媒よりも優れてい
ることがわかる。アルミナ粒子(B)を25%含有する
触媒の優れた効果は、流動性インデックスの向上により
触媒と原料ガスとの接触効率の向上、触媒の付着・凝集
の防止、塩化銅含有アルミナ粒子(A)から揮散した銅
およびクロルをアルミナ粒子(B)が捕捉することによ
り活性成分の揮散防止などによって達成されると思われ
る。
【0044】このように本発明の触媒は、流動性の良好
な長時間の使用に耐え得る高活性・長寿命触媒といえ
る。
【0045】
【表4】
【0046】
【比較例−1】参考例−4で得られた塩化銅含有アルミ
ナ粒子(A)[試料(カ)]のみを用いた場合と、該試
料(カ)と参考例−7のアルミナ粒子(B)を(B)/
(A)の混合割合25/75(重量比)で物理的に混合
した触媒について、実施例−2と同様にして評価した。
【0047】表−3および図−2に反応活性(k)流動
性インデックス(FI)および活性の経時変化の結果を
示す。塩化銅含有アルミナ粒子(A)試料(カ)とアル
ミナ粒子(B)とを物理的に混合した触媒は、流動性・
触媒寿命は改善されるものの、試料(カ)ではCu/A
23(重量比)と比表面積(m2/g)との積の値が
18と小さいため、反応活性が低い。
【0048】
【実施例−3】参考例−2で調製された塩化銅含有アル
ミナ粒子(A)[試料(エ)]に参考例6で調製された
アルミナ粒子(B)を25重量%の量で物理的に混合し
て得られた触媒を3.5kg用いて、反応管の内径100m
m、高さ3000mmで、周囲に熱媒体を循環できる外套
をつけ、下部に250メッシュの金網3枚を重ねたガス
分散板をつけた流動床反応器で反応を行った。
【0049】エチレン、無水塩酸、酸素の混合ガス(モ
ル比1.7:2.0:0.7)を150℃に予熱し、対触
媒重量空間速度1900(1-gas(N.T.P)/kg-cat.hr)
で導入して、エチレンのオキシクロリネーション反応を
行った。反応結果を表−4に示す。
【0050】
【比較例−2】実施例−3において、塩化銅含有アルミ
ナ粒子(A)[試料(エ)]の代わりに、参考例6で得
られた塩化銅含有アルミナ粒子(A)[試料(ク)]を
用いた以外は、実施例3と同様にして、エチレンのオキ
シクロリネーション反応を行った。反応結果を表−4に
示す。
【0051】表−4で明らかなように、本発明の触媒
は、圧力変動が少なく、また反応管内部の温度分布も安
定しており反応時の運転操作を円滑に遂行できた。ま
た、触媒活性が高くEDC収率が高い。
【0052】
【表5】
【図面の簡単な説明】
【図1】 図1は、Cu/Al23(重量比)と比表面
積との積と、初期反応活性(k)との関係を示す図であ
る。
【図2】 図2は、反応時間(hr)と、触媒活性(k×
10-3)との関係を示す図である。
フロントページの続き (72)発明者 山 下 義 人 大阪府高石市東羽衣6丁目3−2−241

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】Cu含有量が8〜15重量%の範囲で、C
    u/Al23の重量比が0.10〜0.22の範囲にあ
    り、かつCu/Al23(重量比)と比表面積(m2
    g)との積が30m2/g以上である塩化銅含有アルミ
    ナ粒子(A)と、 比表面積が160m2/g以上のアルミナ粒子(B)と
    の物理的混合物からなるエチレンのオキシクロリネーシ
    ョン用流動触媒。
  2. 【請求項2】 前記塩化銅含有アルミナ粒子(A)のア
    ルミナが無定形アルミナであることを特徴とする請求項
    1記載のエチレンのオキシクロリネーション用流動触
    媒。
  3. 【請求項3】 前記物理的混合物の混合割合(B)/
    (A)が重量比で3/97〜50/50の範囲であるこ
    とを特徴とする請求項1または2記載のエチレンのオキ
    シクロリネーション用流動触媒。
JP7278100A 1995-10-25 1995-10-25 エチレンのオキシクロリネーション触媒 Pending JPH09117666A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7278100A JPH09117666A (ja) 1995-10-25 1995-10-25 エチレンのオキシクロリネーション触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7278100A JPH09117666A (ja) 1995-10-25 1995-10-25 エチレンのオキシクロリネーション触媒

Publications (1)

Publication Number Publication Date
JPH09117666A true JPH09117666A (ja) 1997-05-06

Family

ID=17592638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7278100A Pending JPH09117666A (ja) 1995-10-25 1995-10-25 エチレンのオキシクロリネーション触媒

Country Status (1)

Country Link
JP (1) JPH09117666A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018358A (ja) * 2006-07-13 2008-01-31 Catalysts & Chem Ind Co Ltd オキシクロリネーション用触媒およびその製造方法
WO2010110392A1 (ja) * 2009-03-26 2010-09-30 三井化学株式会社 塩素製造用触媒および該触媒を用いた塩素の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018358A (ja) * 2006-07-13 2008-01-31 Catalysts & Chem Ind Co Ltd オキシクロリネーション用触媒およびその製造方法
WO2010110392A1 (ja) * 2009-03-26 2010-09-30 三井化学株式会社 塩素製造用触媒および該触媒を用いた塩素の製造方法
US9108845B2 (en) 2009-03-26 2015-08-18 Mitsui Chemicals, Inc. Chlorine production catalyst and chlorine production process using the catalyst

Similar Documents

Publication Publication Date Title
JP5743546B2 (ja) 不飽和炭化水素の水素化触媒およびこの調製プロセス
JP5231803B2 (ja) 高純度鉄先駆体で作成されるエチルベンゼンからスチレンへの脱水素化のための触媒
RU2387479C2 (ru) Каталитические композиции и процесс оксихлорирования
JPS60106534A (ja) メタノ−ル合成用流動触媒
WO2003072244A1 (en) Catalyst carriers
JP2012516377A5 (ja) シリカクラッドアルミナ担体に担持されている触媒
JP2006175436A (ja) メタノールのホルムアルデヒドへの酸化用触媒
US4451683A (en) Catalyst, catalyst support and oxychlorination process
EP3305404A1 (en) Copper/zinc/aluminium catalyst for the methanol synthesis prepared from a binary zinc-aluminium precursor solution
CN101786007A (zh) 用于乙烯氧氯化为1.2-二氯乙烷的催化剂
JP5269892B2 (ja) コバルト−酸化亜鉛フィッシャー・トロプシュ触媒の調製のためのプロセス
JPH10338502A (ja) 塩素の製造方法
JP2002361086A (ja) カルボン酸エステル合成用触媒及びカルボン酸エステルの製造方法
JP2595018B2 (ja) 塩素の製造方法
JPH09117666A (ja) エチレンのオキシクロリネーション触媒
JP4979926B2 (ja) オキシクロリネーション用触媒の製造方法
JP4312511B2 (ja) オキシクロリネーション用流動触媒の製造方法およびオキシクロリネーション用流動触媒
JP2000140641A (ja) エチレンの1,2―ジクロロエタンへのオキシ塩素化用触媒
JPH0114810B2 (ja)
JPH0114807B2 (ja)
JP4203010B2 (ja) 保護床及び銅含有触媒床の組合せ
JP5084193B2 (ja) オキシクロリネーション用流動触媒およびその製造方法
JP4210255B2 (ja) エチレンオキシド製造用銀触媒およびエチレンオキシドの製造方法
US3404099A (en) Process for the preparation of iron-base catalytic masses and the resulting products
JP5595005B2 (ja) オキシクロリネーション用触媒の製造方法