JPH09110413A - Spherical silica gel having increased macropore and its production - Google Patents

Spherical silica gel having increased macropore and its production

Info

Publication number
JPH09110413A
JPH09110413A JP27544195A JP27544195A JPH09110413A JP H09110413 A JPH09110413 A JP H09110413A JP 27544195 A JP27544195 A JP 27544195A JP 27544195 A JP27544195 A JP 27544195A JP H09110413 A JPH09110413 A JP H09110413A
Authority
JP
Japan
Prior art keywords
silica gel
solid particles
sio
spherical silica
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27544195A
Other languages
Japanese (ja)
Other versions
JP3487987B2 (en
Inventor
Moritsugu Kojima
盛次 小島
Seiji Okabayashi
誠治 岡林
Kiyohiko Imai
喜代彦 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP27544195A priority Critical patent/JP3487987B2/en
Priority to CN96122871A priority patent/CN1090589C/en
Publication of JPH09110413A publication Critical patent/JPH09110413A/en
Application granted granted Critical
Publication of JP3487987B2 publication Critical patent/JP3487987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce spherical silica gel having remarkably increased macropores, remarkably improved water crushing resistance, improved resistance to temp. and pressure changes and remarkably increased rates of absorption and desorption. SOLUTION: When an alkali silicate soln. is instantaneously mixed with a mineral acid and the resultant sol is discharged into a gaseous medium to produce spherical silica gel, water-insoluble solid particles are dispersed as a macropore increaser in at least one of the alkali silicate soln. and the mineral acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マクロポアが増大し且
つ耐水破砕性が向上した球状シリカゲル及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to spherical silica gel having increased macropores and improved water crush resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】球状シリカゲルは、乾燥剤をはじめとし
て、各種吸着剤、各種触媒担体、その他の薬品の担体等
として広く使用されている。
2. Description of the Related Art Spherical silica gel is widely used as a desiccant, various adsorbents, various catalyst carriers and carriers for other chemicals.

【0003】球状シリカゲルの製法としては、シリカの
ヒドロゾルを灯油等の液体媒体に懸濁させ、懸濁中に固
化させる方法(特公昭26−4113号公報)や、ケイ
酸アルカリ水溶液と酸とを、放出口を有する容器内に別
個の導入口より同時に導入して、濃度に換算して濃度1
30乃至173g/1、pH6乃至10.5の1.2秒
以内でゲル化しうるシリカゾルを生成せしめ、該シリカ
ゾルを直ちに気体媒体中に放出して球状シリカゲルを得
る方法(特公昭48−13834号公報)等が知られて
いる。
As a method for producing spherical silica gel, a method in which a hydrosol of silica is suspended in a liquid medium such as kerosene and solidified in the suspension (JP-B-26-4113) or an aqueous solution of alkali silicate and an acid are used. , At the same time through separate inlets into a container with a discharge port, and converted to a concentration of 1
A method of forming a silica sol which can gel within 30 seconds from 30 to 173 g / 1 and pH 6 to 10.5 within 1.2 seconds, and immediately releasing the silica sol into a gas medium to obtain spherical silica gel (Japanese Patent Publication No. 48-13834). ) Etc. are known.

【0004】[0004]

【発明が解決しようとする課題】公知のシリカゲルは、
乾燥剤、吸着剤等の用途には、概ね満足しうるものでは
あるが、水と接触すると容易に破砕する、PSA方式の
吸着装置等に使用すると温度変化、圧力変化に対する耐
久性が未だ十分でない、また吸脱着の速度も未だ不十分
である、等の未だ解決すべき問題点を有している。
The known silica gel is
Although it is generally satisfactory for applications such as desiccants and adsorbents, it is easily crushed when it comes into contact with water, and when used in PSA type adsorbers, its durability against temperature changes and pressure changes is not yet sufficient. Moreover, there are still problems to be solved such as the adsorption and desorption speeds are still insufficient.

【0005】本発明者らの研究によると、公知のシリカ
ゲルは、吸着サイト或いは活性サイトとなるミクロポ
ア、メソポアは比較的大きいが、マクロポアの含有量が
比較的小さく、これが上記問題点の原因と考えられる。
According to the research conducted by the present inventors, the known silica gel has a relatively large amount of micropores and mesopores serving as adsorption sites or active sites, but has a relatively small content of macropores, which is considered to be the cause of the above problems. To be

【0006】本発明者らは、ケイ酸アルカリ溶液と鉱酸
とを瞬時に混合してゾルを形成させ、形成されるゾルを
気体媒体中に放出させてゲルを形成させる際、ケイ酸ア
ルカリ溶液或いは鉱酸の少なくとも一方に水不溶性固体
粒子を分散させておくと、この固体粒子がマクロポア増
進剤として作用し、球状シリカゲルのマクロポアが顕著
に増大することを見いだした。また、この球状シリカゲ
ルでは、耐水破砕性も著しく改善され、温度変化、圧力
変化に対する耐性も向上し、吸脱着の速度も顕著に向上
することを見いだした。
The present inventors have found that when an alkaline silicate solution and a mineral acid are instantaneously mixed to form a sol, and the sol formed is released into a gas medium to form a gel, the alkaline silicate solution is used. Alternatively, it has been found that when water-insoluble solid particles are dispersed in at least one of mineral acids, the solid particles act as a macropore enhancer and the macropores of spherical silica gel are remarkably increased. It was also found that this spherical silica gel has a significantly improved resistance to water crushing, an improved resistance to temperature changes and pressure changes, and a significantly improved adsorption / desorption rate.

【0007】即ち、本発明の目的は、マクロポアが顕著
に増大し、耐水破砕性も著しく改善され、温度変化、圧
力変化に対する耐性も向上し、吸脱着の速度も顕著に向
上した球状シリカゲル及びその製造方法を提供するにあ
る。
That is, the object of the present invention is to provide spherical silica gel having macropores remarkably increased, water crush resistance is remarkably improved, resistance to temperature change and pressure change is improved, and adsorption / desorption speed is remarkably improved, and spherical silica gel thereof. It is to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明によれば、ケイ酸
アルカリ溶液と鉱酸とを瞬時に混合してゾルを形成さ
せ、形成されるゾルを気体媒体中に放出させてゲルを形
成させることから成る球状シリカゲルの製造方法におい
て、ケイ酸アルカリ溶液或いは鉱酸の少なくとも一方に
水不溶性固体粒子をマクロポア増進剤として分散させる
ことを特徴とする球状シリカゲルの製造方法が提供され
る。
According to the present invention, an alkaline silicate solution and a mineral acid are instantaneously mixed to form a sol, and the formed sol is released into a gas medium to form a gel. In the method for producing spherical silica gel, the method for producing spherical silica gel is provided in which water-insoluble solid particles are dispersed as a macropore enhancer in at least one of an alkali silicate solution and a mineral acid.

【0009】本発明によればまた、シリカゲルのマトリ
ックスと該マトリックス中に分散されたマクロポア増進
剤としての水不溶性固体粒子とから成り、該マトリック
ス中のSiO2 と固体粒子(SP)とは、95:5乃至
55:45の重量比で存在し、水銀圧入法により細孔半
径7.5乃至7500nmの範囲で測定して、0.08
ml/g以上の細孔容積と耐水破砕性を有することを特
徴とする球状シリカゲルが提供される。
According to the present invention, a matrix of silica gel and water-insoluble solid particles as a macropore enhancing agent dispersed in the matrix are also included, and SiO 2 and solid particles (SP) in the matrix are 95 : 5 to 55:45 by weight and having a pore radius of 7.5 to 7500 nm as measured by mercury porosimetry, 0.08
Provided is a spherical silica gel having a pore volume of ml / g or more and a water crush resistance.

【0010】[0010]

【作用】本発明の製造方法は、ケイ酸アルカリ溶液と鉱
酸とを瞬時に混合してゾルを形成させ、形成されるゾル
を気体媒体中に放出させてゲルを形成させる点では、公
知の方法と変わるところがないが、ケイ酸アルカリ溶液
或いは鉱酸の少なくとも一方に水不溶性固体粒子をマク
ロポア増進剤として分散させることが特徴である。
The production method of the present invention is known in that an alkaline silicate solution and a mineral acid are instantaneously mixed to form a sol, and the formed sol is released into a gas medium to form a gel. Although there is no difference from the method, it is characterized in that water-insoluble solid particles are dispersed as a macropore enhancer in at least one of an alkali silicate solution and a mineral acid.

【0011】即ち、ケイ酸アルカリまたは鉱酸の何れか
に、予め水不溶性固体粒子を分散させておき、この状態
でケイ酸アルカリと鉱酸との反応によるシリカゾルの生
成及びゲル化を行うと、得られる球状シリカゲルのマク
ロポアが顕著に増大するのである。
That is, when water-insoluble solid particles are previously dispersed in either an alkali silicate or a mineral acid and silica sol is produced and gelled by the reaction between the alkali silicate and the mineral acid in this state, The macropores of the resulting spherical silica gel are significantly increased.

【0012】添付図面の図1は、ケイ酸アルカリに水酸
化アルミニウムに分散させた溶液と鉱酸とを反応させる
ことにより得られた球状シリカゲル、及び水酸化アルミ
ニウム未配合のケイ酸アルカリと鉱酸とから得られた球
状シリカゲルについて、水銀圧入法により得られた細孔
半径と細孔容積との関係をプロットしたものである(詳
細は後述する例参照)。この結果によると、水酸化アル
ミニウム未配合のケイ酸アルカリから得られた球状シリ
カゲル、即ち通常の球状シリカゲルは、細孔半径10n
m以上のマクロポアを殆ど有しないのに対して、水酸化
アルミニウムを配合したものでは、配合量の増大に伴っ
て、マクロポアが顕著に増大していることが了解され
る。
FIG. 1 of the accompanying drawings shows spherical silica gel obtained by reacting a mineral acid with a solution prepared by dispersing aluminum hydroxide in alkali silicate, and an alkali silicate and a mineral acid not blended with aluminum hydroxide. FIG. 3 is a plot of the relationship between the pore radius and the pore volume obtained by the mercury intrusion method for the spherical silica gel obtained from (see the example described later for details). According to these results, the spherical silica gel obtained from alkali silicate not containing aluminum hydroxide, that is, the ordinary spherical silica gel, has a pore radius of 10 n.
It is understood that, while it has almost no m or more macropores, the aluminum hydroxide compounded markedly increased the macropores as the compounding amount increased.

【0013】また、図2は、非晶質シリカ微粉末を分散
させた鉱酸とケイ酸アルカリ溶液とを反応させることに
より得られた球状シリカゲル、及び非晶質シリカ未配合
の鉱酸とケイ酸アルカリ溶液とから得られた球状シリカ
ゲルについて、水銀圧入法により得られた細孔半径と細
孔容積との関係をプロットしたものである(詳細は後述
する例参照)。この結果によると、非晶質シリカ未配合
の鉱酸とケイ酸アルカリから得られた球状シリカゲル、
即ち通常の球状シリカゲルは、細孔半径10nm以上の
マクロポアを殆ど有しないのに対して、非晶質シリカを
配合したものでは、配合量の増大に伴って、マクロポア
が顕著に増大していることが了解される。
Further, FIG. 2 shows spherical silica gel obtained by reacting a mineral acid in which fine powder of amorphous silica is dispersed with an alkali silicate solution, and a mineral acid not containing amorphous silica and silica. Fig. 3 is a plot of the relationship between the pore radius and the pore volume obtained by the mercury porosimetry method for spherical silica gel obtained from an acid-alkali solution (see the example described later for details). According to this result, spherical silica gel obtained from mineral acid not containing amorphous silica and alkali silicate,
That is, ordinary spherical silica gel has almost no macropores having a pore radius of 10 nm or more, whereas the one containing amorphous silica has a marked increase in macropores as the blending amount increases. Is understood.

【0014】本発明による球状シリカゲルは、水銀圧入
法により細孔半径10乃至7500nmの範囲で測定し
て、0.08ml/g以上、特に0.1ml/g以上の
細孔容積を有していることが顕著な特徴である。
The spherical silica gel according to the present invention has a pore volume of 0.08 ml / g or more, particularly 0.1 ml / g or more, as measured by a mercury penetration method in a pore radius range of 10 to 7500 nm. That is a remarkable feature.

【0015】本発明の球状シリカゲルは、マクロポアが
著しく増大していることに関連して、耐水破砕性も著し
く改善される。即ち、後述する例に示すとおり、マクロ
ポアの容積が0.06ml/gを下回る球状シリカゲル
では、水と接触したときの破砕個数%が60%以上であ
る(比較例1)のに対して、本発明に従いマクロポアが
上記の容積にある球状シリカゲルでは、水と接触したと
きの破砕個数%が1.0%以下に抑制される(実施例
1)のである。
The spherical silica gel of the present invention is also significantly improved in water crush resistance in connection with a marked increase in macropores. That is, as shown in an example described later, in the spherical silica gel having a macropore volume of less than 0.06 ml / g, the number% of crushed particles when contacted with water is 60% or more (Comparative Example 1). According to the invention, in the spherical silica gel having the macropores in the above volume, the crushed number% when contacted with water is suppressed to 1.0% or less (Example 1).

【0016】シリカゲルが水と接触したとき、このゲル
が破砕する理由は、吸着熱による著しい温度上昇によ
り、ゲルが熱膨張し、この膨張の歪みにゲルが耐えられ
ないためであるが、本発明による球状シリカゲルでは、
内部のマクロポアがこの歪みを緩和し、破砕を防止しう
るものと思われる。
The reason why the gel is crushed when the silica gel comes into contact with water is that the gel is thermally expanded due to a remarkable temperature rise due to the heat of adsorption and the gel cannot withstand the strain of the expansion. With spherical silica gel by
It is thought that the internal macropores can alleviate this distortion and prevent crushing.

【0017】上記のマクロポアは、PSA吸着装置にお
ける温度変化、圧力変化に対しても、これらの変化に対
応して発生する歪みを緩和させるように作用するので、
球状シリカゲルの耐性が顕著に向上し、乾燥剤、吸着
剤、担体としての寿命を著しく延長することができる。
Since the macropores described above also act to reduce the strain generated in response to these changes in temperature and pressure in the PSA adsorption device,
The durability of the spherical silica gel is remarkably improved, and the life as a desiccant, adsorbent or carrier can be remarkably extended.

【0018】また、シリカゲルの吸脱着に際しては、シ
リカゲルの活性サイトへの拡散活性サイトからの拡散が
律速となるが、本発明の球状シリカゲルでは、その中の
マクロポアが拡散を容易にするので、吸脱着の速度も顕
著に向上する。
When silica gel is adsorbed and desorbed, the diffusion from the active site to the active site of silica gel is rate-determining. However, in the spherical silica gel of the present invention, the macropores therein facilitate diffusion, The desorption rate is also significantly improved.

【0019】本発明において、水不溶性固体粒子の存在
により球状シリカゲルのマクロポアが増大する理由は、
シリカのゾル及びゲル中に固体粒子が骨材或いはスペー
サーとして存在し、これが最終ゲルへの形成時にゲルマ
トリックス中に空隙を形成するように作用するためと思
われる。
In the present invention, the reason why the macropores of spherical silica gel increase due to the presence of water-insoluble solid particles is as follows.
It is believed that solid particles are present as aggregates or spacers in silica sols and gels, which act to form voids in the gel matrix during formation into the final gel.

【0020】このため、固体粒子としては、水不溶性で
水性媒体になじみ(親和性)があり且つ安定であるもの
であれば、無機のものでも有機のものでも広く使用しう
るが、一般には無機のものが好ましい。
Therefore, as the solid particles, inorganic particles and organic particles can be widely used as long as they are water-insoluble, have compatibility (affinity) with an aqueous medium, and are stable, but generally, they are inorganic. Are preferred.

【0021】固体粒子は、ケイ酸アルカリ溶液に分散さ
せても、鉱酸に分散させてもよく、アルカリに安定な固
体粒子はケイ酸アルカリに加えるのがよく、一方、酸に
安定な固体粒子は鉱酸に加えるのがよい。
The solid particles may be dispersed in an alkali silicate solution or a mineral acid, and the alkali stable solid particles may be added to the alkali silicate, while the acid stable solid particles may be added. Should be added to the mineral acid.

【0022】固体粒子は、一般に0.1乃至15μm、
特に4乃至10μmの平均粒径を有する粒子であること
が好ましく、上記粒径より小さいとマクロポアの増大の
程度が小さくなり、また上記粒径よりも大きいとゲルの
強度が小さくなり、何れも好ましくない。
Solid particles are generally 0.1 to 15 μm,
In particular, particles having an average particle diameter of 4 to 10 μm are preferable, and when the particle diameter is smaller than the above particle diameter, the degree of increase of macropores is small, and when the particle diameter is larger than the above particle diameter, the gel strength is small, and both are preferable. Absent.

【0023】固体粒子(SP)は、ケイ酸アルカリ中の
シリカ(SiO2 )基準で、SiO 2 :SP=95:5
乃至55:45、特に85:15乃至70:30の重量
比となる量で用いるべきであるのがよく、固体粒子の量
が上記範囲より少ないとマクロポアの増大の程度が小さ
くなり、また上記範囲よりも多いとゲルの強度が小さく
なりまた吸着活性等も低下し、何れも好ましくない。
The solid particles (SP) are in an alkali silicate.
Silica (SiOTwo) By reference, SiO Two: SP = 95: 5
To 55:45, especially 85:15 to 70:30 weight
It should be used in proportion to the amount of solid particles
Is less than the above range, the degree of macropore increase is small
If it is more than the above range, the gel strength will be small.
In addition, the adsorption activity and the like also decrease, which is not preferable.

【0024】また、固体粒子を分散させたケイ酸アルカ
リ溶液或いは鉱酸は、20センチポイズ以下の粘度を有
するべきであり、上記粘度よりも高いと、ケイ酸アルカ
リと鉱酸との混合を極めて短時間の内にしかも均一に行
うことが困難となる。
Further, the alkali silicate solution or the mineral acid in which the solid particles are dispersed should have a viscosity of 20 centipoise or less, and if it is higher than the above viscosity, the mixing of the alkali silicate and the mineral acid is extremely short. It becomes difficult to perform the treatment uniformly within the time.

【0025】以上説明したとおり、本発明によれば、マ
クロポアが顕著に増大し、耐水破砕性も著しく改善さ
れ、温度変化、圧力変化に対する耐性も向上し、吸脱着
の速度も顕著に向上した球状シリカゲルが得られると共
に、必要な手段もケイ酸アルカリまたは鉱酸に固体粒子
を分散させることであるので、製造手段が簡単であり、
少ない工程数で、生産性よく、球状シリカゲルを製造で
きるという利点もある。
As described above, according to the present invention, the macropores are remarkably increased, the water crush resistance is also remarkably improved, the resistance to temperature change and pressure change is improved, and the adsorption / desorption rate is remarkably improved. Since silica gel is obtained and the necessary means is to disperse solid particles in alkali silicate or mineral acid, the manufacturing means is simple,
There is also an advantage that spherical silica gel can be produced with good productivity in a small number of steps.

【0026】[0026]

【発明の好適態様】BEST MODE FOR CARRYING OUT THE INVENTION

(ケイ酸アルカリ)ケイ酸アルカリとしては、式(1) Na2 O・mSiO2 ‥‥(1) 式中、mは1乃至4の数、特に2.5乃至3.5の数で
ある。の組成を有するケイ酸アルカリ、特にケイ酸ナト
リウムの水溶液を使用する。
(Alkali silicate) As the alkali silicate, in the formula (1) Na 2 O · mSiO 2 (1), m is a number of 1 to 4, particularly 2.5 to 3.5. An aqueous solution of an alkali silicate having the composition of, especially sodium silicate, is used.

【0027】このケイ酸アルカリの組成は、ゾルの安定
性と生成する粒子の収率及び粒子サイズとに関係してい
る。SiO2 のモル比(m)が上記範囲よりも小さい
と、収率が低下したり粒子形状や粒子形態が不揃いにな
り易く、また部分中和に多量の酸が必要になり好ましく
ない。一方、SiO2 のモル比が上記範囲よりも大きく
なると、ゾルの安定性が低下して吸着活性が低下した
り、粒子形態が真球状から外れたものとなったり、粒径
分布もシャープでなくなる等の不都合がある。
The composition of this alkali silicate is related to the stability of the sol and the yield and particle size of the particles produced. When the molar ratio (m) of SiO 2 is smaller than the above range, the yield is liable to be reduced, the particle shape and the particle morphology are likely to be uneven, and a large amount of acid is required for partial neutralization, which is not preferable. On the other hand, when the molar ratio of SiO 2 is larger than the above range, the stability of the sol is lowered and the adsorption activity is lowered, the particle morphology is out of the true sphere, and the particle size distribution is not sharp. There are inconveniences such as.

【0028】ケイ酸アルカリの濃度は、SiO2 基準で
100乃至225g/1の濃度、特に130乃至150
g/1の濃度を有するものが好適である。
The concentration of alkali silicate is 100 to 225 g / 1 based on SiO 2 , and particularly 130 to 150.
Those having a concentration of g / 1 are preferred.

【0029】(酸)酸としては、種々の無機酸や有機酸
が使用されるが、経済的見地からは、硫酸、塩酸、硝
酸、りん酸等の鉱酸を用いるのがよく、これらの内で
も、球状シリカゲルの性能、粒径及び形態の一様さの点
で硫酸が最も優れている。均質な反応を行うためには、
希釈水溶液の形で用いるのがよく、一般に1乃至15重
量%の濃度で使用するのがよい。
As the (acid) acid, various inorganic acids and organic acids are used. From the economical point of view, it is preferable to use mineral acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid. However, sulfuric acid is the best in terms of performance, particle size and morphology of spherical silica gel. In order to carry out a homogeneous reaction,
It is preferably used in the form of a dilute aqueous solution, and is generally used at a concentration of 1 to 15% by weight.

【0030】(固体粒子)固体粒子としては、水不溶性
で水性媒体になじみ(親和性)があり且つ安定であるも
のであれば、無機のものでも有機のものでも広く使用し
うるが、一般には無機のものが好ましい。
(Solid Particles) As the solid particles, inorganic particles and organic particles can be widely used as long as they are water-insoluble, have compatibility (affinity) with an aqueous medium, and are stable. Inorganic ones are preferred.

【0031】無機の固体粒子として、周期律表第III A
族、第IVA族、第IVB族、第VB族、或いは第VIII 族
元素の酸化物、複合酸化物、水酸化物、または複合水酸
化物を挙げることができる。具体的には、アルミナ、シ
リカ、チタニア、ジルコニア、酸化バナジウム、酸化ニ
オブ、酸化クロム、酸化モリブデン、酸化タングステ
ン、酸化鉄、酸化コバルト、酸化ニッケル、酸化パラジ
ウム、酸化白金、ケイ酸ジルコニウム等が挙げられる。
As inorganic solid particles, there are used IIIA of the periodic table.
Examples thereof include oxides, complex oxides, hydroxides, and complex hydroxides of Group I, Group IVA, Group IVB, Group VB, or Group VIII elements. Specific examples include alumina, silica, titania, zirconia, vanadium oxide, niobium oxide, chromium oxide, molybdenum oxide, tungsten oxide, iron oxide, cobalt oxide, nickel oxide, palladium oxide, platinum oxide, and zirconium silicate. .

【0032】これらの内でも、シリカ、アルミナ、チタ
ニアまたはジルコニアが好適なものであり、特にシリカ
としては非晶質シリカ、アルミナとしてはギブサイト型
水酸化アルミニウム、擬ベーマイト型アルミナゲル等の
比表面積が50m2 /g以上のものが有利に使用され
る。
Of these, silica, alumina, titania or zirconia is preferable, and particularly silica has a specific surface area such as amorphous silica, alumina has a specific surface area such as gibbsite type aluminum hydroxide, and pseudo-boehmite type alumina gel. Those of 50 m 2 / g or more are preferably used.

【0033】また、無機の固体粒子としては、テクトア
ルミノケイ酸塩或いはフィロアルミノケイ酸塩、特に天
然または合成の粘土或いはゼオライトを用いることがで
きる。粘土鉱物としては、モンモリロナイト、バイデラ
イト、ノントロナイト、サポナイト、ヘクトライト、ソ
ーコナイト、ハロイサイト、パイロフィライト、カオリ
ナイト、アンチゴライト、セピオライト、パリゴルスカ
イト、バーミキュライト等を挙げることができる。ゼオ
ライトとしては、A型、X型、Y型、P型の各種ゼオラ
イト、モルデナイト、シリカライト、GS5等を挙げる
ことができる。また、これらの酸処理物や焼成品を用い
ることもでき、更に、固体粒子として、活性炭を用いる
こともできる。
As the inorganic solid particles, tectoaluminosilicate or phyloaluminosilicate, particularly natural or synthetic clay or zeolite can be used. Examples of clay minerals include montmorillonite, beidellite, nontronite, saponite, hectorite, sauconite, halloysite, pyrophyllite, kaolinite, antigorite, sepiolite, palygorskite, vermiculite and the like. Examples of zeolites include various A-type, X-type, Y-type, and P-type zeolites, mordenite, silicalite, GS5, and the like. In addition, these acid-treated products and calcined products can be used, and activated carbon can also be used as solid particles.

【0034】固体粒子が0.1乃至15μmの平均粒
径、特に4〜10μmの平均粒径を有する粒子であるの
が好ましい。
The solid particles are preferably particles having an average particle size of 0.1 to 15 μm, especially 4 to 10 μm.

【0035】(原料液の調製)固体粒子は、ケイ酸アル
カリ溶液に分散させても、鉱酸に分散させてもよく、ア
ルカリに安定な固体粒子、例えば水酸化アルミニウムは
ケイ酸アルカリに加えるのがよく、一方酸に安定な固体
粒子、例えば非晶質シリカは鉱酸に加えるのがよい。
(Preparation of Raw Material Liquid) The solid particles may be dispersed in an alkali silicate solution or a mineral acid, and alkali stable solid particles such as aluminum hydroxide are added to the alkali silicate. While acid stable solid particles, such as amorphous silica, should be added to the mineral acid.

【0036】固体粒子(SP)は、ケイ酸アルカリ中の
シリカ(SiO2 )基準で、SiO 2 :SP=95:5
乃至55:45、特に85:15乃至70:30の重量
比となる量で用いるのがよい。
The solid particles (SP) are contained in alkali silicate.
Silica (SiOTwo) By reference, SiO Two: SP = 95: 5
To 55:45, especially 85:15 to 70:30 weight
It is better to use it in a ratio.

【0037】また、固体粒子を分散させたケイ酸アルカ
リ溶液或いは鉱酸は、20センチポイズ以下の粘度を有
するべきであり、上記粘度に維持することにより、ケイ
酸アルカリと鉱酸との混合を極めて短時間の内にしかも
均一に行うことができる。
Further, the alkali silicate solution or the mineral acid in which the solid particles are dispersed should have a viscosity of 20 centipoise or less, and by maintaining the above viscosity, the mixture of the alkali silicate and the mineral acid can be extremely suppressed. It can be performed uniformly in a short time.

【0038】(シリカゲルの製造)本発明によれば、こ
のように製造した、少なくとも一方に固体粒子が添加さ
れたケイ酸アルカリと鉱酸とを二流体ノズルに供給し、
両者を瞬時に混合してゾルを形成させ、次いで気体媒体
中に放出してゲル化させる。
(Production of Silica Gel) According to the present invention, the thus produced alkali silicate having at least one of which solid particles are added and mineral acid are supplied to a two-fluid nozzle,
The two are mixed instantaneously to form a sol, which is then released into a gaseous medium for gelation.

【0039】二流体ノズルに対するケイ酸アルカリ及び
鉱酸の供給比率は、混合時のpHが6乃至11となるよ
うなものであるのがよく、また流量の比率は、種々変化
させうるが、一般に70:30乃至50:50の範囲に
あるのが望ましい。
The ratio of the alkali silicate and the mineral acid supplied to the two-fluid nozzle should be such that the pH during mixing is 6 to 11, and the ratio of the flow rates can be variously changed, but in general, It is preferably in the range of 70:30 to 50:50.

【0040】二流体ノズルとしては、内筒部と外筒部と
を備え、内筒部の先に混合部及び混合部の先に吐出口が
あるノズルが使用され、内筒部に一方の流体を供給し、
内筒部と外筒部との間の環状部に他方の流体の通路があ
るものが適している。内筒部及び環状部に流体を供給す
るには、その接線方向に流体を導入して、旋回流を生じ
させることが瞬時の混合を可能にする上で好ましく、両
者の旋回方向が互いに逆向きであることが最も好まし
い。一般に必要でないが、特公昭48−13834号公
報に記載されているように旋回流発生用の案内羽根を設
けることもできる。
As the two-fluid nozzle, a nozzle having an inner tubular portion and an outer tubular portion, a mixing portion at the tip of the inner tubular portion and a discharge port at the tip of the mixing portion is used, and one fluid is provided in the inner tubular portion. Supply
It is suitable that the annular portion between the inner tubular portion and the outer tubular portion has a passage for the other fluid. In order to supply the fluid to the inner cylindrical portion and the annular portion, it is preferable to introduce the fluid in the tangential direction to generate a swirling flow in order to enable instantaneous mixing, and the swirling directions of both are opposite to each other. Is most preferable. Although not generally required, guide vanes for generating a swirling flow may be provided as described in JP-B-48-13834.

【0041】二流体ノズルから吐出されるシリカゾル
は、気体媒体中で液滴の形に保たれながらゲル化し、球
状のシリカヒドロゲルとなる。ノズルからのヒドロゾル
の吐出は、任意の方向に行ってよく、例えば円錐状に下
向きに行ってもよく、また上向き或いは横向きに行って
もよい。
The silica sol discharged from the two-fluid nozzle is gelled while being kept in the form of droplets in the gas medium, and becomes spherical silica hydrogel. The discharge of the hydrosol from the nozzle may be performed in any direction, for example, conically downwardly, or may be upwardly or laterally.

【0042】シリカヒドロゲルの落下方向には、水性媒
体を収容したシリカヒドロゲルの受け貯槽を設けるのが
よい。この受け貯槽では、シリカヒドロゲルの熟成或い
は脱アルカリ等を行わせることが好ましい。
A receiving and storing tank for the silica hydrogel containing an aqueous medium is preferably provided in the falling direction of the silica hydrogel. In this receiving and storage tank, it is preferable that the silica hydrogel is aged or dealkalized.

【0043】一般に、受け貯槽に希アルカリ水溶液を張
り込んでおくと、シリカヒドロゲルを破砕することなく
回収できると共に、これを熟成することによって、性能
及び形状の安定したシリカゲルを得ることができる。熟
成処理は、40乃至15℃の温度で4乃至16時間程度
が適当である。
In general, if a dilute alkaline aqueous solution is filled in the receiving tank, the silica hydrogel can be recovered without crushing, and by aging it, silica gel having stable performance and shape can be obtained. The aging treatment is suitable at a temperature of 40 to 15 ° C. for about 4 to 16 hours.

【0044】熟成処理を終えたシリカヒドロゲルは、ゲ
ル中に残留するアルカリ分を除くために、酸処理による
脱アルカリ処理に付するのがよい。この脱アルカリ処理
は、pH1乃至3.5の酸水溶液を使用して、40乃至
15℃の温度で8乃至24時間程度の処理が適当であ
る。
The silica hydrogel after the aging treatment is preferably subjected to dealkalization treatment by acid treatment in order to remove the alkali content remaining in the gel. This dealkalization treatment is suitably performed using an acid aqueous solution having a pH of 1 to 3.5 at a temperature of 40 to 15 ° C. for about 8 to 24 hours.

【0045】これらの処理を終えたシリカゲルは洗浄処
理に付する。洗浄処理は、流水を使用して、pHが7.
5±0.1の範囲にあり、且つ伝導度が50mSの範囲
となるようにするのがよい。
The silica gel which has been subjected to these treatments is subjected to a washing treatment. The washing treatment uses running water and the pH is 7.
It is preferable that the conductivity is in the range of 5 ± 0.1 and the conductivity is in the range of 50 mS.

【0046】最後に得られたシリカゲルを乾燥して、シ
リカのキセロゲルとする。この乾燥は、80乃至200
℃の温度で、12乃至48時間程度行うのが好ましい。
乾燥は、水蒸気の存在下に、所謂蒸し乾燥として行うこ
ともできる。
The silica gel finally obtained is dried to obtain a silica xerogel. This drying is 80 to 200
It is preferable to carry out at a temperature of ° C for about 12 to 48 hours.
The drying can also be performed as so-called steam drying in the presence of steam.

【0047】(シリカゲル)本発明によるシリカゲル
は、一般に1乃至6mm、特に2乃至5mmの平均粒径
を有することが最終用途の点で好ましい。
(Silica gel) The silica gel according to the present invention preferably has an average particle size of generally 1 to 6 mm, especially 2 to 5 mm, from the viewpoint of end use.

【0048】このシリカゲルは、一般に水銀圧入法によ
り細孔半径10乃至7500nmの範囲で測定して、
0.08ml/g以上、特に0.09乃至0.15ml
/gの細孔容積を有していることが好ましく、全細孔容
積は1.19cc/g乃至1.25cc/gの範囲にあ
るのが適当である。
This silica gel is generally measured by mercury porosimetry in a pore radius range of 10 to 7500 nm.
0.08ml / g or more, especially 0.09 to 0.15ml
It preferably has a pore volume of / g and the total pore volume is suitably in the range 1.19 cc / g to 1.25 cc / g.

【0049】また、その比表面積は250乃至650m
2 /g、特に500乃至600m2/gの範囲にあるの
がよい。本発明の球状シリカゲルは、マクロポアを多く
含有することに関連して軽量であるが、その嵩密度は
0.08乃至0.35g/mlの範囲にある。
The specific surface area is 250 to 650 m.
It is preferably in the range of 2 / g, particularly 500 to 600 m 2 / g. Although the spherical silica gel of the present invention is light in weight in relation to containing a large amount of macropores, its bulk density is in the range of 0.08 to 0.35 g / ml.

【0050】[0050]

【実施例】本発明を次の例で説明する。本発明によるマ
クロポア増進剤(以下SPと記す)を含む耐水破砕性と
高マクロポアを有する球状シリカゲルの製法とその物性
について次の例で説明する。尚本発明においての各種物
性の測定は次の方法によった。 (1)比表面積 カルロエルバ社製 Sorptomatic Series 1800 を使用
しBET法により測定した。 (2)細孔容積−1 (1)と同じく Sorptomatic Series 1800 BJH法
により測定した。 (3)細孔容積−2 150℃、3時間乾燥した試料0.5gを水銀圧入法ポ
ロシメーター(マイ クロメリチクス社製オートポア
9220)を用いて半径7.5〜7500n mのポ
アサイズに於ける細孔容積を求めた。 (4)充填密度 500mlメスシリンダーに試料200gを投入し試料
容積が変化しなくなるまで振とうさせて容量を読みと
る。同試料を150℃で2時間乾燥させて水分を測定
し、無水換算のg/mlを求めた。 (5)耐圧強度 アイコーエンジニアリング(社)製卓上荷重測定器に5
0kgf容量ロードセルを装着して測定を行った。又、
荷重スピードは5mm/minで、試料が破壊した時の
荷重がデジタル表示され、それを読みとるものである。 (6)粘度 20℃にてB型粘度計(東京計器製造所製)を用いて測
定した。 (7)耐水破砕性 150℃で乾燥した試料50粒を150mlの常温の水
に投入し、破砕するものの有無で耐水性を判断した。数
粒でも割れが認められるものは不良、全く割れの認めら
れないものを良とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the following examples. A method for producing spherical silica gel having a macro-pore enhancer (hereinafter referred to as SP) according to the present invention and having high water-crush resistance and high macropores and its physical properties will be described in the following examples. In the present invention, various physical properties were measured by the following methods. (1) Specific surface area The specific surface area was measured by the BET method using Sorptomatic Series 1800 manufactured by Carlo Erba. (2) Pore volume-1 As in (1), it was measured by the Sorptomatic Series 1800 BJH method. (3) Pore volume-2 0.5 g of a sample dried at 150 ° C. for 3 hours was subjected to a mercury porosimetry porosimeter (Autopore 9220, manufactured by Mycromeritics Co., Ltd.) to obtain a pore volume in a pore size of 7.5 to 7500 nm. I asked. (4) Packing Density 200 g of the sample is put into a 500 ml graduated cylinder and shaken until the sample volume does not change, and the volume is read. The same sample was dried at 150 ° C. for 2 hours to measure water content, and g / ml in terms of anhydrous was obtained. (5) Compressive strength 5 For a desktop load measuring device manufactured by Aiko Engineering Co., Ltd.
The measurement was performed with a 0 kgf capacity load cell attached. or,
The load speed is 5 mm / min, and the load when the sample breaks is digitally displayed and read. (6) Viscosity Measured at 20 ° C. using a B-type viscometer (manufactured by Tokyo Keiki Seisakusho). (7) Water crush resistance 50 samples dried at 150 ° C. were put into 150 ml of water at room temperature, and water resistance was judged by the presence or absence of crush. Those in which cracks were observed even with a few grains were evaluated as bad, and those in which no cracks were observed were regarded as good.

【0051】(実施例1)SiO2 基準で0.147g
/ml濃度の市販の3号珪酸ソーダ溶液(A液)に平均
粒子径8μmのギブサイト型水酸化アルミニウム粉末
(昭和電工製ハイジライトH−32)を(SP)とする
A液中のSiO2 基準でSiO2 :SP=85:15の
重量比で含む珪酸ソーダ溶液と10%濃度硫酸とを放出
口3mmΦ、長さ200mmの2流体ノズルを用いて、
それぞれ平均流速3.6リットル/mimと1.5リッ
トル/mimで放出口を約80゜斜め上方に向けて両者
を瞬時に混合大気中に放出(放出圧力約3.5kg/c
2 )させ、20m3 のステンレス製受け槽の水中に降
らせ、室温下にpH8〜10の範囲で熟成させ、シリカ
のゾル−ゲル反応によって、球状シリカゲルを調製し、
次いで濃度40%硫酸を添加し、全体がpH3〜4とし
た後、約2.5m3 /hrの流水下で、洗液の比抵抗が
6000Ωcmになるまで水洗し、約130〜140℃
で乾燥させて本発明による試料No.S−1の平均粒径
4.3mmの球状シリカゲルを得た。平均粒径4mm、
細孔容積−2 0.15cc/g、充填密度0.600g/
ml、耐圧強度18kgf、耐水破砕性は良好であっ
た。
(Example 1) 0.147 g based on SiO 2
/ Ml of commercially available sodium silicate No. 3 solution SiO 2 criteria A solution of gibbsite type aluminum hydroxide powder having an average particle diameter of 8μm in (A solution) and (produced by Showa Denko Higilite H-32) and (SP) concentration And a sodium silicate solution containing SiO 2 : SP = 85: 15 in a weight ratio of 10% sulfuric acid is used by using a two-fluid nozzle having a discharge port of 3 mmΦ and a length of 200 mm.
At an average flow rate of 3.6 liters / mim and 1.5 liters / mim, the discharge ports were directed obliquely upward by about 80 °, and both were instantaneously discharged into the mixed atmosphere (release pressure of about 3.5 kg / c.
m 2 ), let it fall in water in a stainless steel receiving tank of 20 m 3 and age it at room temperature at a pH range of 8 to 10 to prepare spherical silica gel by sol-gel reaction of silica.
Next, after adding 40% concentration of sulfuric acid to adjust the pH to 3 to 4, the whole is washed under running water of about 2.5 m 3 / hr until the specific resistance of the washing liquid becomes 6000 Ωcm, and about 130 to 140 ° C.
Sample No. A spherical silica gel having an average particle diameter of 4.3 mm of S-1 was obtained. Average particle size 4 mm,
Pore volume-2 0.15 cc / g, packing density 0.600 g /
ml, pressure strength 18 kgf, and water crush resistance were good.

【0052】(実施例2)SiO2 基準で0.100g
/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度=
8cp)に平均粒径6μmのシリカ粉末を(SP)とし
てA液中のSiO 2 基準でSiO2 :SP=95:5の
重量比で含む珪酸ソーダ溶液と6%濃度硫酸とを用いた
以外は、実施例1と同様にして本発明による球状シリカ
ゲルの試料No.S−2を得た。平均粒径3mm、細孔
容積0.12cc/g、充填密度0.650g/ml、
耐圧強度17kgf、耐水破砕性良好であった。
(Example 2) SiOTwo0.100 g as standard
/ Ml concentration of commercially available sodium silicate solution 3 (solution A, viscosity =
8cp) with silica powder having an average particle size of 6 μm as (SP)
SiO in liquid A TwoSiO as standardTwo: SP = 95: 5
A sodium silicate solution and a 6% strength sulfuric acid solution were used in a weight ratio.
The spherical silica according to the present invention is the same as in Example 1 except for the above.
Gel sample No. S-2 was obtained. Average particle size 3 mm, pores
Volume 0.12 cc / g, packing density 0.650 g / ml,
The pressure resistance was 17 kgf and the water crush resistance was good.

【0053】(実施例3)SiO2 基準で0.147g
/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度=
10cp)に平均粒径0.7μmの酸化チタン粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=85:15の重量比で含む珪酸ソーダ溶液と10%硫
酸とを用いた以外は、実施例1と同様にして本発明によ
る球状シリカゲルの試料No.S−3を得た。平均粒径
5mm、細孔容積−2 0.13cc/g、充填密度0.6
30g/ml、耐圧強度15kgf、耐水破砕性良好で
あった。
(Example 3) 0.147 g based on SiO 2
/ Ml concentration of commercially available sodium silicate solution 3 (solution A, viscosity =
10 cp) with titanium oxide powder having an average particle diameter of 0.7 μm as (SP), based on SiO 2 in the liquid A: SiO 2 : SP
= 85: 15 by weight, a spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that a sodium silicate solution and 10% sulfuric acid were used. S-3 was obtained. Average particle size 5 mm, pore volume-2 0.13 cc / g, packing density 0.6
30 g / ml, pressure resistance 15 kgf, and water crush resistance were good.

【0054】(実施例4)SiO2 基準で0.147g
/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度=
10cp)に平均粒径1μmのジルコニア粉末を(S
P)としてA液中のSiO2 基準でSiO2 :SP=8
0:20の重量比で含む珪酸ソーダ溶液と10%硫酸と
を用いた以外は、実施例1と同様にして本発明による球
状シリカゲルの試料No.S−4を得た。平均粒径5.
3mm、細孔容積−2 0.14cc/g、充填密度0.6
40g/ml、耐圧強度16kgf、耐水破砕性良好で
あった。
(Example 4) 0.147 g based on SiO 2
/ Ml concentration of commercially available sodium silicate solution 3 (solution A, viscosity =
10 cp) with zirconia powder having an average particle size of 1 μm (S
SP = 8: SiO 2 in SiO 2 criteria A solution as P)
A spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that a sodium silicate solution and a 10% sulfuric acid solution were used in a weight ratio of 0:20. S-4 was obtained. Average particle size5.
3 mm, pore volume-2 0.14 cc / g, packing density 0.6
It was 40 g / ml, pressure resistance was 16 kgf, and water crush resistance was good.

【0055】(実施例5)SiO2 基準で0.147g
/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度=
10cp)に平均粒径2μmの活性炭粉末を(SP)と
してA液中のSiO2 基準でSiO2 :SP=97:3
の重量比で含む珪酸ソーダ溶液と10%硫酸とを用いた
以外は、実施例1と同様にして本発明による球状シリカ
ゲルの試料No.S−5を得た。平均粒径4.8mm、
細孔容積0.1cc/g、充填密度0.650g/m
l、耐圧強度15kgf、耐水破砕性良好であった。
(Example 5) 0.147 g based on SiO 2
/ Ml concentration of commercially available sodium silicate solution 3 (solution A, viscosity =
SiO in SiO 2 criteria A solution of activated carbon powder having an average particle size of 2μm as (SP) to 10cp) 2: SP = 97: 3
Sample No. 1 of the spherical silica gel according to the present invention was prepared in the same manner as in Example 1 except that a sodium silicate solution and a 10% sulfuric acid solution were used in a weight ratio of. S-5 was obtained. Average particle size 4.8 mm,
Pore volume 0.1 cc / g, packing density 0.650 g / m
1, the pressure resistance was 15 kgf, and the water crush resistance was good.

【0056】(実施例6)SiO2 基準で0.147g
/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度=
10cp)に平均粒径6μmの酸化バナジウム粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=85:15の重量比で含む珪酸ソーダ溶液と10%硫
酸とを用いた以外は、実施例1と同様にして本発明によ
る球状シリカゲルの試料No.S−6を得た。平均粒径
5mm、細孔容積−2 0.08cc/g、充填密度0.6
60g/ml、耐圧強度16kgf、耐水破砕性良好で
あった。
(Example 6) 0.147 g based on SiO 2
/ Ml concentration of commercially available sodium silicate solution 3 (solution A, viscosity =
10cp) and vanadium oxide powder having an average particle size of 6 μm as (SP), based on SiO 2 in the liquid A: SiO 2 : SP
= 85: 15 by weight, a spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that a sodium silicate solution and 10% sulfuric acid were used. S-6 was obtained. Average particle size 5 mm, pore volume-2 0.08 cc / g, packing density 0.6
The pressure resistance was 60 g / ml, the pressure resistance was 16 kgf, and the water crush resistance was good.

【0057】(実施例7)SiO2 基準で0.147g
/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度=
10cp)に平均粒径4μmの酸化ニオブ粉末を(S
P)としてA液中のSiO2 基準でSiO2 :SP=9
0:10の重量比で含む珪酸ソーダ溶液と10%硫酸と
を用いた以外は、実施例1と同様にして本発明による球
状シリカゲルの試料No.S−7を得た。平均粒径6m
m、細孔容積−2 0.13cc/g、充填密度0.690
g/ml、耐圧強度17kgf、耐水破砕性良好であっ
た。
(Example 7) 0.147 g based on SiO 2
/ Ml concentration of commercially available sodium silicate solution 3 (solution A, viscosity =
10 cp) with niobium oxide powder having an average particle size of 4 μm (S
As P), based on the SiO 2 in the liquid A, SiO 2 : SP = 9
A spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that a sodium silicate solution containing a weight ratio of 0:10 and 10% sulfuric acid were used. S-7 was obtained. Average particle size 6m
m, pore volume-2 0.13 cc / g, packing density 0.690
g / ml, pressure resistance 17 kgf, and water crush resistance were good.

【0058】(実施例8)SiO2 基準で0.147g
/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度=
10cp)に平均粒径6μmの酸化クロム粉末を(S
P)としてA液中のSiO2 基準でSiO2 :SP=9
0:10の重量比で含む珪酸ソーダと10%硫酸とを用
いた以外は、実施例1と同様にして本発明による球状シ
リカゲルの試料No.S−8を得た。平均粒径4.6m
m、細孔容積−2 0.10cc/g、充填密度0.690
g/ml、耐圧強度18kgf、耐水破砕性良好であっ
た。
(Example 8) 0.147 g based on SiO 2
/ Ml concentration of commercially available sodium silicate solution 3 (solution A, viscosity =
10 cp) with chromium oxide powder having an average particle size of 6 μm (S
As P), based on the SiO 2 in the liquid A, SiO 2 : SP = 9
A spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that sodium silicate and a 10% sulfuric acid contained in a weight ratio of 0:10 were used. S-8 was obtained. Average particle size 4.6m
m, pore volume-2 0.10 cc / g, packing density 0.690
g / ml, pressure resistance 18 kgf, and water crush resistance were good.

【0059】(実施例9)SiO2 基準で0.150g
/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度=
10cp)に平均粒径5μmの酸化モリブデン粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=60:40の重量比で含む珪酸ソーダ溶液と10%硫
酸とを用いた以外は、実施例1と同様にして本発明によ
る球状シリカゲルの試料No.S−9を得た。平均粒径
5mm、細孔容積−2 0.14cc/g、充填密度0.6
70g/ml、耐圧強度17kgf、耐水破砕性良好で
あった。
Example 9 0.150 g based on SiO 2
/ Ml concentration of commercially available sodium silicate solution 3 (solution A, viscosity =
10cp) with molybdenum oxide powder having an average particle size of 5 μm as (SP), based on SiO 2 in the liquid A: SiO 2 : SP
= 60:40, a spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1, except that a sodium silicate solution and a 10% sulfuric acid solution were used. S-9 was obtained. Average particle size 5 mm, pore volume-2 0.14 cc / g, packing density 0.6
70 g / ml, pressure resistance 17 kgf, and water crush resistance were good.

【0060】(実施例10)SiO2 基準で0.147
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=10cp)に平均粒径5μmの酸化タングステン粉末
を(SP)としてA液中のSiO2 基準でSiO2 :S
P=85:15の重量比で含む珪酸ソーダと10%硫酸
とを用いた以外は、実施例1と同様にして本発明による
球状シリカゲルの試料No.S−10を得た。平均粒径
4.5mm、細孔容積−2 0.12cc/g、充填密度
0.700g/ml、耐圧強度16kgf、耐水破砕性
良好であった。
(Example 10) 0.147 based on SiO 2
g / ml of commercially available sodium silicate No. 3 solution having a concentration of (A liquid, viscosity = 10 cp) SiO in SiO 2 criteria A liquid tungsten oxide powder having an average particle diameter of 5μm to as (SP) 2: S
P = 85: 15 weight ratio of sodium silicate and 10% sulfuric acid were used, except that the spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1. S-10 was obtained. The average particle size was 4.5 mm, the pore volume was -0.12 cc / g, the packing density was 0.700 g / ml, the pressure resistance was 16 kgf, and the water crush resistance was good.

【0061】(実施例11)SiO2 基準で0.147
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=10cp)に平均粒径3μmの酸化マンガン粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=85:15の重量比で含む珪酸ソーダと10%硫酸と
を用いた以外は、実施例1と同様にして本発明による球
状シリカゲルの試料No.S−11を得た。平均粒径5
mm、細孔容積−2 0.13cc/g、充填密度0.68
0g/ml、耐圧強度15kgf、耐水破砕性良好であ
った。
(Embodiment 11) 0.147 based on SiO 2
g / ml of commercially available sodium silicate No. 3 solution having a concentration of (A liquid, viscosity = 10 cp) SiO in SiO 2 criteria A solution of manganese oxide powder having an average particle diameter of 3μm to as (SP) 2: SP
= 85: 15 by weight, the spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that sodium silicate and 10% sulfuric acid were used. S-11 was obtained. Average particle size 5
mm, pore volume-2 0.13 cc / g, packing density 0.68
0 g / ml, pressure resistance 15 kgf, and water crush resistance were good.

【0062】(実施例12)SiO2 基準で0.147
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=10cp)に平均粒子径0.5μmの酸化鉄粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=90:10の重量比で含む珪酸ソーダと10%硫酸と
を用いた以外は、実施例1と同様にして本発明による球
状シリカゲルの試料No.S−12を得た。平均粒径
4.8mm、細孔容積−2 0.11cc/g、充填密度
0.670g/ml、耐圧強度17kgf、耐水破砕性
良好であった。
(Example 12) 0.147 based on SiO 2
g / ml of commercially available sodium silicate No. 3 solution having a concentration of (A liquid, viscosity = 10 cp) SiO in SiO 2 criteria A solution of iron oxide powder having an average particle diameter of 0.5μm to as (SP) 2: SP
= 90:10, a spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that sodium silicate and 10% sulfuric acid were used. S-12 was obtained. The average particle size was 4.8 mm, the pore volume was -0.11 cc / g, the packing density was 0.670 g / ml, the pressure resistance was 17 kgf, and the water crush resistance was good.

【0063】(実施例13)SiO2 基準で0.147
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=10cp)に平均粒径10μmの酸化コバルト粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=95:5の重量比で含む珪酸ソーダ溶液と10%硫酸
とを用いた以外は、実施例1と同様にして本発明による
球状シリカゲルの試料No.S−13を得た。平均粒径
4.3mm、細孔容積−2 0.13cc/g、充填密度
0.650g/ml、耐圧強度18kgf、耐水破砕性
良好であった。
(Example 13) 0.147 based on SiO 2
g / ml of commercially available sodium silicate No. 3 solution having a concentration of (A liquid, viscosity = 10 cp) SiO in SiO 2 criteria A solution of cobalt oxide powder having an average particle diameter of 10μm to as (SP) 2: SP
= 95: 5 by weight, the spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that a sodium silicate solution and 10% sulfuric acid were used. S-13 was obtained. The average particle size was 4.3 mm, the pore volume was -0.13 cc / g, the packing density was 0.650 g / ml, the pressure resistance was 18 kgf, and the water crush resistance was good.

【0064】(実施例14)SiO2 基準で0.147
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=10cp)に平均粒径2μmの酸化ニッケル粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=95:5の重量比で含む珪酸ソーダと10%硫酸とを
用いた以外は、実施例1と同様にして本発明による球状
シリカゲルの試料No.S−14を得た。平均粒径5m
m、細孔容積−2 0.1cc/g、充填密度0.670
g/ml、耐圧強度17kgf、耐水破砕性良好であっ
た。
(Example 14) 0.147 based on SiO 2
g / ml of commercially available sodium silicate No. 3 solution having a concentration of (A liquid, viscosity = 10 cp) SiO in SiO 2 criteria A solution of nickel oxide powder having an average particle diameter of 2μm to as (SP) 2: SP
= 95: 5 by weight, sodium silicate and 10% sulfuric acid were used in the same manner as in Example 1, except that spherical silica gel sample No. 1 according to the present invention was used. S-14 was obtained. Average particle size 5m
m, pore volume-2 0.1 cc / g, packing density 0.670
g / ml, pressure resistance 17 kgf, and water crush resistance were good.

【0065】(実施例15)SiO2 基準で0.147
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=10cp)に平均粒径3μmのゼオライト粉末を(S
P)としてA液中のSiO2 基準でSiO2 :SP=5
5:45の重量比で含む珪酸ソーダと10%硫酸とを用
いた以外は、実施例1と同様にして本発明による球状シ
リカゲルの試料No.S−15を得た。平均粒径5.5
mm、細孔容積−2 0.14cc/g、充填密度0.68
0g/ml、耐圧強度15kgf、耐水破砕性良好であ
った。
(Example 15) 0.147 based on SiO 2
Zeolite powder having an average particle diameter of 3 μm was added to a commercially available sodium silicate solution No. 3 (solution A, viscosity = 10 cp) having a concentration of g / ml (S
As P), based on SiO 2 in the liquid A, SiO 2 : SP = 5
A spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that sodium silicate and 10% sulfuric acid were used in a weight ratio of 5:45. S-15 was obtained. Average particle size 5.5
mm, pore volume-2 0.14 cc / g, packing density 0.68
0 g / ml, pressure resistance 15 kgf, and water crush resistance were good.

【0066】(実施例16)SiO2 基準で0.147
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=10cp)に平均粒径13μmのベントナイト粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=90:10の重量比で含む珪酸ソーダと10%硫酸と
を用いた以外は、実施例1と同様にして本発明による球
状シリカゲルの試料No.S−16を得た。平均粒径
4.8mm、細孔容積−2 0.12cc/g、充填密度
0.650g/ml、耐圧強度15kgf、耐水破砕性
良好であった。
(Example 16) 0.147 based on SiO 2
g / ml of commercially available sodium silicate No. 3 solution having a concentration of (A liquid, viscosity = 10 cp) SiO in SiO 2 criteria A solution of bentonite powder having an average particle size of 13μm as (SP) in 2: SP
= 90:10, a spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that sodium silicate and 10% sulfuric acid were used. S-16 was obtained. The average particle size was 4.8 mm, the pore volume was -0.12 cc / g, the packing density was 0.650 g / ml, the pressure resistance was 15 kgf, and the water crush resistance was good.

【0067】(実施例17)SiO2 基準で0.225
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=12cp)に平均粒子径15μmの酸性白土粉末を
(SP)としてA液中のSiO2 基準でSiO2 :SP
=80:20の重量比で含む珪酸ソーダと12%硫酸と
を用いた以外は、実施例1と同様にして本発明による球
状シリカゲルの試料No.S−17を得た。平均粒径5
mm、細孔容積−2 0.13cc/g、充填密度0.69
0g/ml、耐圧強度15kgf、耐水破砕性良好であ
った。
(Example 17) 0.225 based on SiO 2
g / ml of commercially available sodium silicate No. 3 solution having a concentration of (A liquid, viscosity = 12 cp) SiO in SiO 2 criteria A solution of acid clay powder having an average particle diameter of 15μm as (SP) in 2: SP
Sample No. 2 of the spherical silica gel according to the present invention was carried out in the same manner as in Example 1 except that sodium silicate and 12% sulfuric acid contained in a weight ratio of 80:20 were used. S-17 was obtained. Average particle size 5
mm, pore volume-2 0.13 cc / g, packing density 0.69
0 g / ml, pressure resistance 15 kgf, and water crush resistance were good.

【0068】(実施例18)SiO2 基準で0.147
g/ml濃度の市販の3号珪酸ソーダ溶液(A液、粘度
=10cp)に平均粒径10μmの合成層状粘土化合物
のスチブンサイト粉末を(SP)としてA液中のSiO
2 基準でSiO2 :SP=90:5の重量比で含む珪酸
ソーダと10%硫酸とを用いた以外は、実施例1と同様
にして本発明による球状シリカゲルの試料No.S−1
8を得た。平均粒径5.2mm、細孔容積−2 0.11c
c/g、充填密度0.670g/ml、耐圧強度16k
gf、耐水破砕性良好であった。
(Example 18) 0.147 based on SiO 2
A commercially available sodium silicate solution (solution A, viscosity = 10 cp) having a concentration of g / ml was used as a mixture of stevensite powder of a synthetic layered clay compound having an average particle diameter of 10 μm (SP) and SiO in solution A.
The spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that sodium silicate and a 10% sulfuric acid contained in a weight ratio of SiO 2 : SP = 90: 5 on the basis of 2 were used. S-1
8 was obtained. Average particle size 5.2 mm, pore volume-2 0.11c
c / g, packing density 0.670 g / ml, pressure resistance 16 k
The gf and water crush resistance were good.

【0069】(実施例19)珪酸ソーダと硫酸の混合液
を下向きに放出した以外は、実施例1と同様にして、本
発明による球状シリカゲルの試料No.19を得た。平
均粒径400μm、細孔容積−2 0.14cc/g、充填
密度0.680g/ml、耐圧強度19kgf、耐水破
砕性良好であった。
(Example 19) A spherical silica gel sample No. 1 according to the present invention was prepared in the same manner as in Example 1 except that the mixed solution of sodium silicate and sulfuric acid was discharged downward. I got 19. The average particle size was 400 μm, the pore volume was −0.14 cc / g, the packing density was 0.680 g / ml, the pressure resistance was 19 kgf, and the water crush resistance was good.

【0070】(比較例1)SiO2 基準で0.147g
/ml濃度の市販の3号珪酸ソーダ溶液と10%濃度の
硫酸とを放出口3mmΦ、長さ200mmの2流体ノズ
ルを用いて、それぞれ平均流速3.6リットル/min
と1.5リットル/minで放出口を約80゜斜め上方
に向けて両者を瞬時に混合大気中に放出(放出圧力約
3.5kg/cm2 )させ、20m3 のステンレス製受
け槽の水中に降らせ、室温中にpH8〜10の範囲で熟
成させ、シリカのゾル−ゲル反応によって、球状シリカ
ゲルを調製し、次いで濃度40%硫酸を添加し、全体が
pH3〜4とした後、約2.5m3 /hrの流速で、洗
液の比抵抗が6000Ωcmになるまで水洗し、約13
0〜140℃で乾燥させて球状シリカゲルを得た。平均
粒径4.2μm、細孔容積0.05cc/g、充填密度
0.730g/ml、耐水破砕個数は70%であった。
Comparative Example 1 0.147 g based on SiO 2
/ Commercial sodium silicate solution with a concentration of / ml and sulfuric acid with a concentration of 10% were used with a two-fluid nozzle having a discharge port of 3 mmΦ and a length of 200 mm, and an average flow rate of 3.6 liter / min.
At 1.5 liters / min, the discharge port was directed obliquely upward by about 80 °, and both were instantaneously discharged into the mixed atmosphere (release pressure of about 3.5 kg / cm 2 ) and placed in a 20 m 3 stainless steel receiving tank in water. And aged at room temperature in the range of pH 8 to 10 to prepare spherical silica gel by silica sol-gel reaction, and then add 40% concentration of sulfuric acid to make the whole pH 3 to 4, and then about 2. Rinse with water at a flow rate of 5 m 3 / hr until the resistivity of the washing liquid reaches 6000 Ωcm,
It was dried at 0 to 140 ° C. to obtain spherical silica gel. The average particle size was 4.2 μm, the pore volume was 0.05 cc / g, the packing density was 0.730 g / ml, and the number of water crush resistant particles was 70%.

【0071】[0071]

【発明の効果】本発明によれば、マクロポアが顕著に増
大し、耐水破砕性も著しく改善され、温度変化、圧力変
化に対する耐性も向上し、吸脱着の速度も顕著に向上し
た球状シリカゲルが得られると共に、必要な手段もケイ
酸アルカリまたは鉱酸に固体粒子を分散させることであ
るので、製造手段が簡単であり、少ない工程数で、生産
性よく、球状シリカゲルを製造できるという利点もあ
る。
Industrial Applicability According to the present invention, spherical silica gel is obtained in which macropores are remarkably increased, water crush resistance is also remarkably improved, resistance to temperature change and pressure change is improved, and adsorption / desorption speed is remarkably improved. In addition, since the necessary means is to disperse the solid particles in alkali silicate or mineral acid, there is also an advantage that the manufacturing means is simple and the spherical silica gel can be manufactured with a small number of steps and high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ケイ酸アルカリに水酸化アルミニウムに分散さ
せた溶液と鉱酸とを反応させることにより得られた球状
シリカゲル、及び水酸化アルミニウム未配合のケイ酸ア
ルカリと鉱酸とから得られた球状シリカゲルについて、
水銀圧入法により得られた細孔半径と細孔容積との関係
をプロットしたグラフである。
FIG. 1 is a spherical silica gel obtained by reacting a solution prepared by dispersing aluminum hydroxide in alkali silicate and a mineral acid, and a spherical silica obtained from alkali silicate not blended with aluminum hydroxide and a mineral acid. For silica gel,
It is the graph which plotted the relationship between the pore radius and the pore volume obtained by the mercury intrusion method.

【図2】非晶質シリカ微粉末を分散させた鉱酸とケイ酸
アルカリ溶液とを反応させることにより得られた球状シ
リカゲル、及び非晶質シリカ未配合の鉱酸とケイ酸アル
カリ溶液とから得られた球状シリカゲルについて、水銀
圧入法により得られた細孔半径と細孔容積との関係をプ
ロットしたグラフである。
FIG. 2 shows spherical silica gel obtained by reacting a mineral acid having an amorphous silica fine powder dispersed therein with an alkali silicate solution, and a mineral acid not containing amorphous silica and an alkali silicate solution. It is the graph which plotted the relationship between the pore radius and the pore volume obtained by the mercury intrusion method about the obtained spherical silica gel.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ケイ酸アルカリ溶液と鉱酸とを瞬時に混
合してゾルを形成させ、形成されるゾルを気体媒体中に
放出させてゲルを形成させることから成る球状シリカゲ
ルの製造方法において、ケイ酸アルカリ溶液或いは鉱酸
の少なくとも一方に水不溶性固体粒子をマクロポア増進
剤として分散させることを特徴とする球状シリカゲルの
製造方法。
1. A method for producing spherical silica gel, which comprises mixing an alkaline silicate solution and a mineral acid instantaneously to form a sol, and releasing the formed sol into a gaseous medium to form a gel. A method for producing spherical silica gel, comprising dispersing water-insoluble solid particles as a macropore enhancer in at least one of an alkali silicate solution and a mineral acid.
【請求項2】 固体粒子が周期律表第IVB族、第III A
族、第IVA族、第VB族、或いは第VIII族元素の酸化
物、複合酸化物、水酸化物または複合水酸化物である請
求項1記載の製造方法。
2. The solid particles are group IVB or IIIA of the periodic table.
The production method according to claim 1, which is an oxide, a complex oxide, a hydroxide or a complex hydroxide of a Group I, Group IVA, Group VB or Group VIII element.
【請求項3】 固体粒子が、シリカ、アルミナ、チタニ
アまたはジルコニアである請求項1または2記載の製造
方法。
3. The method according to claim 1, wherein the solid particles are silica, alumina, titania or zirconia.
【請求項4】 固体粒子がテクトアルミノケイ酸塩或い
はフィロアルミノケイ酸塩、これらの酸処理物、または
焼成品である請求項1記載の製造方法。
4. The production method according to claim 1, wherein the solid particles are tectoaluminosilicate or phyloaluminosilicate, an acid-treated product thereof, or a fired product.
【請求項5】 固体粒子が天然または合成の粘土或いは
ゼオライトである請求項1または4記載の製造方法。
5. The method according to claim 1, wherein the solid particles are natural or synthetic clay or zeolite.
【請求項6】 固体粒子が活性炭である請求項1記載の
製造方法。
6. The method according to claim 1, wherein the solid particles are activated carbon.
【請求項7】 固体粒子が0.1乃至15μmの平均粒
径を有する粒子である請求項1乃至6の何れかに記載の
製造方法。
7. The manufacturing method according to claim 1, wherein the solid particles are particles having an average particle size of 0.1 to 15 μm.
【請求項8】 固体粒子(SP)を、ケイ酸アルカリ中
のシリカ(SiO2)基準で、SiO2 :SP=95:
5乃至55:45の重量比で用いる請求項1乃至7の何
れかに記載の製造方法。
8. Solid particles (SP) based on silica (SiO 2 ) in alkali silicate, SiO 2 : SP = 95:
The manufacturing method according to any one of claims 1 to 7, which is used in a weight ratio of 5 to 55:45.
【請求項9】 固体粒子を分散させたケイ酸アルカリ溶
液或いは鉱酸が20センチポイズ以下の粘度を有するも
のである請求項1乃至8の何れかに記載の製造方法。
9. The manufacturing method according to claim 1, wherein the alkali silicate solution or the mineral acid in which the solid particles are dispersed has a viscosity of 20 centipoise or less.
【請求項10】 ケイ酸アルカリ溶液が、SiO2 基準
で100乃至225g/1の濃度を有するものである請
求項1乃至9の何れかに記載の製造方法。
10. The method according to claim 1, wherein the alkali silicate solution has a concentration of 100 to 225 g / 1 based on SiO 2 .
【請求項11】 シリカゲルのマトリックスと該マトリ
ックス中に分散されたマクロポア増進剤としての水不溶
性固体粒子とから成り、該マトリックス中のSiO2
固体粒子(SP)とは、95:5乃至55:45の重量
比で存在し、水銀圧入法により細孔半径10乃至750
0nmの範囲で測定して、0.08ml/g以上の細孔
容積と耐水破砕性を有することを特徴とする球状シリカ
ゲル。
11. A matrix of silica gel and water-insoluble solid particles as a macropore enhancing agent dispersed in the matrix, wherein SiO 2 and solid particles (SP) in the matrix are 95: 5 to 55: It exists in a weight ratio of 45 and has a pore radius of 10 to 750 by the mercury intrusion method.
Spherical silica gel having a pore volume of 0.08 ml / g or more and a water crush resistance measured in a range of 0 nm.
JP27544195A 1995-10-24 1995-10-24 Spherical silica gel with increased macropores and method for producing the same Expired - Lifetime JP3487987B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27544195A JP3487987B2 (en) 1995-10-24 1995-10-24 Spherical silica gel with increased macropores and method for producing the same
CN96122871A CN1090589C (en) 1995-10-24 1996-10-23 Macropore amplifying spherical silica-gel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27544195A JP3487987B2 (en) 1995-10-24 1995-10-24 Spherical silica gel with increased macropores and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09110413A true JPH09110413A (en) 1997-04-28
JP3487987B2 JP3487987B2 (en) 2004-01-19

Family

ID=17555575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27544195A Expired - Lifetime JP3487987B2 (en) 1995-10-24 1995-10-24 Spherical silica gel with increased macropores and method for producing the same

Country Status (2)

Country Link
JP (1) JP3487987B2 (en)
CN (1) CN1090589C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293657A (en) * 2001-04-02 2002-10-09 Naohiro Soga Method of manufacturing inorganic porous composite containing dispersed particle
JP2004224816A (en) * 2003-01-20 2004-08-12 Emulsion Technology Co Ltd Aqueous non-slip coating material composition
JP2007022824A (en) * 2005-07-13 2007-02-01 Tokuyama Corp Manufacturing method of binary porous silica
JP2010155735A (en) * 2008-12-26 2010-07-15 Jgc Catalysts & Chemicals Ltd Flaky composite silica fine particle dispersion and method for producing the same
JP2020050565A (en) * 2018-09-28 2020-04-02 太平洋セメント株式会社 Method for washing silica
JP2020063172A (en) * 2018-10-17 2020-04-23 太平洋セメント株式会社 Silica purification method and silica particle
CN115448316A (en) * 2022-09-21 2022-12-09 江西联锴科技有限公司 Preparation method of large-aperture spherical silicon dioxide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436316C (en) * 2005-12-16 2008-11-26 厦门大学 Preparation method of silica gel carrier
CN105985458B (en) * 2015-02-02 2018-12-25 中国石油天然气股份有限公司 Silica gel/clay complex carrier, chromium-based catalysts, its preparation method and application
CN105195087A (en) * 2015-10-26 2015-12-30 王立卓 Extra-large-aperture silicon dioxide new material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084516A (en) * 1973-11-30 1975-07-08
JPS5085608A (en) * 1973-11-30 1975-07-10
CN1005404B (en) * 1987-03-02 1989-10-11 中国石油化工总公司上海石油化工研究所 Method for preparing silica gel with adjustable pore structure and without cracking when meeting water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293657A (en) * 2001-04-02 2002-10-09 Naohiro Soga Method of manufacturing inorganic porous composite containing dispersed particle
JP2004224816A (en) * 2003-01-20 2004-08-12 Emulsion Technology Co Ltd Aqueous non-slip coating material composition
JP2007022824A (en) * 2005-07-13 2007-02-01 Tokuyama Corp Manufacturing method of binary porous silica
JP4693531B2 (en) * 2005-07-13 2011-06-01 株式会社トクヤマ Method for producing dual pore silica
JP2010155735A (en) * 2008-12-26 2010-07-15 Jgc Catalysts & Chemicals Ltd Flaky composite silica fine particle dispersion and method for producing the same
JP2020050565A (en) * 2018-09-28 2020-04-02 太平洋セメント株式会社 Method for washing silica
JP2020063172A (en) * 2018-10-17 2020-04-23 太平洋セメント株式会社 Silica purification method and silica particle
CN115448316A (en) * 2022-09-21 2022-12-09 江西联锴科技有限公司 Preparation method of large-aperture spherical silicon dioxide
CN115448316B (en) * 2022-09-21 2024-02-27 江西联锴化学有限公司 Preparation method of large-aperture spherical silicon dioxide

Also Published As

Publication number Publication date
JP3487987B2 (en) 2004-01-19
CN1157260A (en) 1997-08-20
CN1090589C (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US7563744B2 (en) Catalyst featuring silicone dioxide based support material for the purification of exhaust gases
EP0260826B1 (en) Catalysts
JP3487987B2 (en) Spherical silica gel with increased macropores and method for producing the same
Deng et al. Granulation of sol‐gel‐derived nanostructured alumina
US5585082A (en) SOx/NOx sorbent and process of use
JP3266578B2 (en) Improved method for continuous removal of nitric oxide and sulfur oxide using novel adsorbent and method for regenerating adsorbent
JPH0674171B2 (en) Pressed product based on silicon dioxide / aluminum oxide mixed oxide obtained by thermal decomposition method, production method thereof, and catalyst carrier and catalyst comprising the pressed product
JPH0640714A (en) High-oil-absorptive porous silica, production thereof and carrier
JP2002284520A (en) Mesoporous silica-alumina gel, moisture conditioning agent, and catalyst carrier
US2645619A (en) Manufacture of silica
JPH11514291A (en) Honeycomb catalyst carrier
US5468558A (en) Process for preparing fracture-resistant sol/gel particles
US3567645A (en) Silica desiccants and method of manufacture
JP6347443B2 (en) Alumina particles
JP6245695B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP2015160763A (en) Alumina particle
JP3540040B2 (en) Adsorbent manufacturing method
FI57061B (en) FOERFARANDE FOER FRAMSTAELLNING AV FLYTBAEDDKATALYSATORER FOER OXIDERING AV SVAVELDIOXID
US3933991A (en) Sulfuric acid contact process
JP5828478B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP4726349B2 (en) Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide using the catalyst
USRE29145E (en) Catalyst for sulfuric acid contact process
JP3327709B2 (en) Method for producing silica microspherical particles
JP2023506983A (en) Catalyst carrier containing hollow microspheres
Chae et al. Use of V2O5/Ti-PILC catalyst for the reduction of NO by NH3

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030924

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151031

Year of fee payment: 12

EXPY Cancellation because of completion of term