JP6245695B2 - Exhaust gas purification catalyst carrier and exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst carrier and exhaust gas purification catalyst Download PDF

Info

Publication number
JP6245695B2
JP6245695B2 JP2013266289A JP2013266289A JP6245695B2 JP 6245695 B2 JP6245695 B2 JP 6245695B2 JP 2013266289 A JP2013266289 A JP 2013266289A JP 2013266289 A JP2013266289 A JP 2013266289A JP 6245695 B2 JP6245695 B2 JP 6245695B2
Authority
JP
Japan
Prior art keywords
silica
exhaust gas
alumina
catalyst
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013266289A
Other languages
Japanese (ja)
Other versions
JP2014140839A (en
Inventor
内澤 潤子
潤子 内澤
難波 哲哉
哲哉 難波
小渕 存
存 小渕
達朗 村上
達朗 村上
威 丹呉
威 丹呉
中川 英之
英之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mizusawa Industrial Chemicals Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2013266289A priority Critical patent/JP6245695B2/en
Publication of JP2014140839A publication Critical patent/JP2014140839A/en
Application granted granted Critical
Publication of JP6245695B2 publication Critical patent/JP6245695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、シリカ分散アルミナからなる排ガス浄化用触媒担体及び該触媒担体に白金族金属を担持した排ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purification catalyst carrier made of silica-dispersed alumina and an exhaust gas purification catalyst in which a platinum group metal is supported on the catalyst carrier.

白金、パラジウム、ロジウムに代表される白金族金属は、排ガス浄化用触媒としての機能を有しており、このような白金族金属を多孔質担体に担持させたものは、例えば自動車の排ガス中に含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)を浄化するための触媒として使用されている(特許文献1参照)。   Platinum group metals typified by platinum, palladium, and rhodium have a function as exhaust gas purifying catalysts, and those in which such a platinum group metal is supported on a porous carrier are, for example, in automobile exhaust gas. It is used as a catalyst for purifying contained hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxide (NOx) (see Patent Document 1).

ところで、上記のような白金族金属は貴金属であり、非常に高価であるため、その触媒機能が効率よく発揮されるように多孔質担体(触媒担体)に保持しなければならない。従って、触媒担体として好適に使用される多孔質担体についても種々の提案がなされている。   By the way, the platinum group metal as described above is a noble metal and is very expensive. Therefore, the platinum group metal must be held on a porous carrier (catalyst carrier) so that its catalytic function is efficiently exhibited. Accordingly, various proposals have been made for porous carriers that are suitably used as catalyst carriers.

例えば、特許文献1には、アルミナ、セリア、ジルコニア、チタニア、シリカ、ゼオライト及びメソポーラスシリカからなる群より選択された少なくとも1種を、上記白金族金属を担持させる触媒担体として用いることが提案されている。
また、特許文献2には、SiOとZrOとの複合酸化物を焼結したものを排ガス浄化用触媒の触媒担体として用いることが提案されている。
さらに、特許文献3には、規則的周期構造を有する均一なメソ孔を備え且つ一定割合でSi−O−Zr結合を有するメソポーラスシリカを触媒担体として用いることが提案されている。
For example, Patent Document 1 proposes that at least one selected from the group consisting of alumina, ceria, zirconia, titania, silica, zeolite, and mesoporous silica is used as a catalyst carrier for supporting the platinum group metal. Yes.
Patent Document 2 proposes that a composite oxide of SiO 2 and ZrO 2 is used as a catalyst carrier for an exhaust gas purification catalyst.
Further, Patent Document 3 proposes to use mesoporous silica having uniform mesopores having a regular periodic structure and having Si—O—Zr bonds at a certain ratio as a catalyst carrier.

上述した種々の触媒担体の中では、規則的周期構造を有する均一なメソ孔を備えたメソポーラスシリカは、白金族金属の粒子を凝集することなく均一に分散して保持することができるため、特に注目されている。   Among the various catalyst supports described above, mesoporous silica having uniform mesopores having a regular periodic structure can be uniformly dispersed and held without agglomerating the platinum group metal particles. Attention has been paid.

しかしながら、この種のメソポーラスシリカは、均一なメソ孔を形成するために、高価な界面活性剤を使用しなければならず、しかも、この界面活性剤は熱分解により除去されてしまうため、再利用することもできないという問題がある。即ち、このようなメソポーラスシリカは、極めて高価なものであり、これに白金族金属を担持させた排ガス浄化用触媒は、著しく高価なものとなってしまい、その実用化を妨げているのが難点である。
さらに、従来公知の触媒は、一般に耐熱耐久性が低く、例えば750℃、50時間のエージングを行った後では、350℃でのNO酸化率が大きく低下する傾向がある。
However, this type of mesoporous silica requires the use of an expensive surfactant in order to form uniform mesopores, and this surfactant is removed by thermal decomposition. There is a problem that can not be done. That is, such mesoporous silica is extremely expensive, and an exhaust gas purifying catalyst in which a platinum group metal is supported is extremely expensive, which hinders its practical application. It is.
Furthermore, conventionally known catalysts generally have low heat durability, and for example, after aging at 750 ° C. for 50 hours, the NO oxidation rate at 350 ° C. tends to be greatly reduced.

また、特許文献4には、白金族金属等の貴金属触媒の担持に適した細孔を有しているとともに、極めて安価に製造し得る新規な多孔質体として、非晶質シリカジルコニウム複合体からなる排ガス浄化用触媒担体が、本発明者等により提案されている。かかる担体は、極めて安価に製造できるばかりか、これに貴金属触媒が担持された排ガス浄化用触媒は、耐熱耐久性が改善されている。   Patent Document 4 discloses an amorphous silica-zirconium composite as a novel porous body that has pores suitable for supporting a noble metal catalyst such as a platinum group metal and can be manufactured at a very low cost. The present inventors have proposed an exhaust gas purifying catalyst carrier. Such a carrier can be produced at a very low cost, and the heat-resistant durability of the exhaust gas-purifying catalyst in which the noble metal catalyst is supported is improved.

さらに、本発明者等は、先に、Si/(Si+Al)が1.0〜10.0mol%の範囲にあり、Si粒子の面積占有率が70%以上であるシリカ分散アルミナからなる排ガス浄化用触媒担体を提案した(特開2013−188703)。かかる担体は、極めて安価に製造できるばかりか、これに貴金属触媒を担持した排ガス浄化用触媒は、良好な耐熱耐久性を示すと同時に、その触媒能(HC、CO、NOx等に対する浄化作用)も、前述した特許文献1〜4と同等である。   Furthermore, the present inventors have previously described for exhaust gas purification comprising silica-dispersed alumina in which Si / (Si + Al) is in the range of 1.0 to 10.0 mol% and the area occupancy of the Si particles is 70% or more. A catalyst carrier was proposed (Japanese Patent Laid-Open No. 2013-188703). Such a carrier can be manufactured at an extremely low cost, and an exhaust gas purifying catalyst carrying a noble metal catalyst on the carrier exhibits good heat resistance and durability, and also has a catalytic ability (purifying action against HC, CO, NOx, etc.). , Which is equivalent to Patent Documents 1 to 4 described above.

特開2004−148166号公報JP 2004-148166 A 特開平7−108137号公報JP 7-108137 A 特開2002−241123号公報Japanese Patent Laid-Open No. 2002-241123 特開2012−201553号公報JP 2012-201553 A

本発明者等は、極めて安価であり、貴金属触媒の担持に適した排ガス浄化用触媒担体について研究を重ねた結果、上記先願のようにシリカ粒子がアルミナ粒子に分散されたシリカ分散アルミナでは、ある程度以上の細孔容積を確保することが良好な排ガス浄化能を確保するために必要であり、このために、一定量以上のシリカ粒子を分散させるのであるが、このSi含有量が増大するにしたがい平均細孔直径が小さくなる傾向にあるという知見を得ると同時に、排ガス浄化作用をさらに向上させるためには、この細孔が大きい方が排ガス浄化特性が高いこと、及びシリカ分散アルミナの製造条件によっては、Si含有量を増大させながら(細孔容積を大きくする)、細孔径の低下を緩和できるという知見を見出し、本発明を完成させるに至った。   The inventors of the present invention have conducted research on an exhaust gas purification catalyst carrier that is extremely inexpensive and suitable for supporting a noble metal catalyst, and as a result, in silica-dispersed alumina in which silica particles are dispersed in alumina particles as in the previous application, It is necessary to ensure a pore volume of a certain level or more in order to ensure a good exhaust gas purification ability. For this reason, silica particles of a certain amount or more are dispersed, but this Si content increases. Accordingly, in order to obtain the knowledge that the average pore diameter tends to be smaller and at the same time to further improve the exhaust gas purification action, the larger the pores, the higher the exhaust gas purification characteristics, and the conditions for producing silica-dispersed alumina. In some cases, the inventors have found that the decrease in pore diameter can be alleviated while increasing the Si content (increasing the pore volume), thereby completing the present invention. .

即ち、本発明の目的は、Si含有量を増大させて細孔容積を大きくしながら細孔の小径化を抑制し、より優れた触媒浄化作用を示すことが可能なシリカ分散アルミナからなる排ガス浄化用触媒担体を提供することにある。
本発明のさらに他の目的は、上記の触媒担体に白金族金属を担持して得られ、耐熱耐久性に優れた排ガス浄化用触媒を提供することにある。
That is, an object of the present invention is to purify exhaust gas composed of silica-dispersed alumina capable of suppressing pore size reduction while increasing the Si content to increase the pore volume and exhibit a more excellent catalyst purification action. It is to provide a catalyst support for use.
Still another object of the present invention is to provide an exhaust gas purifying catalyst which is obtained by supporting a platinum group metal on the catalyst carrier and has excellent heat resistance.

本発明によれば、アルミナ粒子中にシリカ粒子が分散したシリカ分散アルミナからなる排ガス浄化用触媒担体であって、前記シリカ分散アルミナは、100×Si/(Si+Al)で表されるSi含有量が1.0〜10.0mol%の範囲内にあり、平均細孔直径が4.0nm以上であり、前記Si含有量をS(mol%)、前記平均細孔直径をMD(nm)としたとき、S×(MD/2)の値が340以上であり、倍率200,000倍の電子顕微鏡写真の画像解析で算出される面積90,000nmでのSi粒子の面積占有率が70%以上として観察されることを特徴とする排ガス浄化用触媒担体が提供される。 According to the present invention, there is provided an exhaust gas purifying catalyst carrier comprising silica-dispersed alumina in which silica particles are dispersed in alumina particles, wherein the silica-dispersed alumina has a Si content represented by 100 × Si / (Si + Al). When the average pore diameter is 4.0 nm or more in the range of 1.0 to 10.0 mol%, the Si content is S (mol%), and the average pore diameter is MD (nm) , S × (MD / 2) 4 has a value of 340 or more, and the area occupancy ratio of Si particles at an area of 90,000 nm 2 calculated by image analysis of an electron micrograph at a magnification of 200,000 times is 70% or more. The catalyst carrier for exhaust gas purification characterized by the above is provided.

本発明の排ガス浄化用触媒担体は、
(1) 細孔容積が0.25〜0.75cm/gであるという性質を有している。
The exhaust gas purifying catalyst carrier of the present invention comprises:
(1) It has the property that the pore volume is 0.25 to 0.75 cm 3 / g.

本発明によれば、また、上記触媒担体に白金族金属を担持してなる排ガス浄化用触媒が提供される。   According to the present invention, there is also provided an exhaust gas purifying catalyst comprising a platinum group metal supported on the catalyst carrier.

本発明の排ガス浄化用触媒担体は、例えば排ガス浄化用触媒として好適に機能する白金族金属触媒を効率よく担持させることができる。即ち、この触媒担体は、シリカ分散アルミナからなるものであり、アルミナを主成分(マトリックス)とし、特に少量のシリカ粒子のほとんどが、粒径が10nm以下の微細なシリカの形態で分散しており、このため、100×Si/(Si+Al)で表されるSi含有量が1.0〜10.0mol%の範囲内にあり、平均細孔直径(窒素吸着法により測定)が4.0nm以上(特に、5.0〜10.0nm)と大きく、電子顕微鏡により観察して、Si粒子の面積占有率が70%以上である。また、細孔容積が0.25〜0.75cm/gと大きい。
このような触媒担体では、白金等の白金族触媒を安定に担持することができ、しかも、この触媒担体は、高価な界面活性剤などを使用することなく、極めて安価に製造することができる。
The exhaust gas purifying catalyst carrier of the present invention can efficiently support, for example, a platinum group metal catalyst that functions suitably as an exhaust gas purifying catalyst. That is, this catalyst carrier is made of silica-dispersed alumina, and alumina is the main component (matrix), and most of the small amount of silica particles are dispersed in the form of fine silica having a particle size of 10 nm or less. Therefore, the Si content represented by 100 × Si / (Si + Al) is in the range of 1.0 to 10.0 mol%, and the average pore diameter (measured by the nitrogen adsorption method) is 4.0 nm or more ( In particular, the area occupancy of Si particles is 70% or more as observed with an electron microscope. Further, the pore volume is as large as 0.25 to 0.75 cm 3 / g.
With such a catalyst carrier, a platinum group catalyst such as platinum can be stably supported, and this catalyst carrier can be produced at an extremely low cost without using an expensive surfactant or the like.

また、本発明の触媒担体を構成するシリカ分散アルミナは、Si含有量の点では、本発明者等が特開2013−188703で提案したシリカ分散アルミナと同じであるが、Si含有量の増大に伴う細孔の小径化が抑制されており、前記Si含有量をS(mol%)、前記平均細孔直径をMD(nm)としたとき、関係式S×(MD/2)の値が325より大きいものとなっている。即ち、本発明者等が特開2013−188703で提案したシリカ分散アルミナでは、前記関係式(S×(MD/2))は、上記範囲よりも小さいものとなっている。この結果、後述する実施例で示されるように、これに貴金属触媒を担持させた排ガス浄化用触媒では、炭化水素(HC)や窒素酸化物(NOx)に対する浄化作用がさらに向上している。 Further, the silica-dispersed alumina constituting the catalyst carrier of the present invention is the same as the silica-dispersed alumina proposed by the present inventors in JP2013-188703 in terms of Si content. The accompanying pore size reduction is suppressed, and when the Si content is S (mol%) and the average pore diameter is MD (nm), the value of the relational expression S × (MD / 2) 4 is It is larger than 325. That is, in the silica-dispersed alumina proposed by the present inventors in JP2013-188703, the relational expression (S × (MD / 2) 4 ) is smaller than the above range. As a result, as shown in the examples described later, in the exhaust gas purification catalyst in which the noble metal catalyst is supported, the purification action against hydrocarbons (HC) and nitrogen oxides (NOx) is further improved.

さらに、上記の触媒担体に白金族金属を担持した本発明の排ガス浄化用触媒は、耐熱耐久性に優れており、例えば350℃でのNO酸化率が高いばかりか、750℃のエージングを行った後においてもNO酸化率はほとんど低下せず、さらに、900℃でエージングを行った場合にもNO酸化率の低下が抑制される。このことから理解されるように、本発明の排ガス浄化用触媒は、耐熱耐久性にも優れており、長期間にわたって、触媒活性が安定に維持されている。   Furthermore, the exhaust gas purifying catalyst of the present invention in which a platinum group metal is supported on the above catalyst carrier is excellent in heat resistance durability, for example, not only has a high NO oxidation rate at 350 ° C. but also aged at 750 ° C. Even later, the NO oxidation rate hardly decreases. Further, even when aging is performed at 900 ° C., the reduction of the NO oxidation rate is suppressed. As understood from this, the exhaust gas purifying catalyst of the present invention is excellent in heat resistance and durability, and its catalytic activity is stably maintained over a long period of time.

実施例1で得られたシリカ分散アルミナのTEM−EDXのマッピング像(倍率200,000倍)。TEM-EDX mapping image of the silica-dispersed alumina obtained in Example 1 (magnification 200,000 times). 実施例1、比較例2、比較例3で得られた内の、6.3〜6.7nmに平均細孔直径を有するシリカ分散アルミナについてのHC、NO酸化活性結果。HC and NO oxidation activity results for silica-dispersed alumina having an average pore diameter of 6.3 to 6.7 nm among those obtained in Example 1, Comparative Example 2, and Comparative Example 3. 実施例2、3、4で得られたシリカ分散アルミナの平均細孔直径測定結果。The average pore diameter measurement result of the silica dispersion | distribution alumina obtained in Example 2, 3, and 4. FIG. 実施例5、比較例5で得られたシリカ分散アルミナの平均細孔直径測定結果。The average pore diameter measurement result of the silica dispersion | distribution alumina obtained in Example 5 and the comparative example 5. FIG.

<シリカ分散アルミナ>
排ガス浄化用触媒として使用されるシリカ分散アルミナは、アルミナ中に微量の微細なシリカが分散された構造を有しており、100×Si/(Si+Al)で表されるSi含有量が1.0〜10.0mol%、特に1.5〜8.0mol%の範囲内にあると同時に、図1の電子顕微鏡写真から理解されるように、例えば倍率200,000倍の電子顕微鏡写真の画像解析で算出される面積90,000nmでのシリカ粒子の面積占有率(Si粒子の面積占有率という)は、常に70%以上であり、このことから、シリカ粒子が偏在しておらず、均一に分散されていることが判る。
<Silica-dispersed alumina>
Silica-dispersed alumina used as an exhaust gas purification catalyst has a structure in which a minute amount of fine silica is dispersed in alumina, and the Si content represented by 100 × Si / (Si + Al) is 1.0. As shown in the electron micrograph of FIG. 1, at the same time as being in the range of ˜10.0 mol%, particularly 1.5 to 8.0 mol%, for example, in the image analysis of an electron micrograph at a magnification of 200,000 times The area occupancy of the silica particles in the calculated area of 90,000 nm 2 (referred to as the area occupancy of the Si particles) is always 70% or more. Therefore, the silica particles are not unevenly distributed and are uniformly dispersed. It can be seen that

即ち、上記のようなシリカ分散アルミナに白金族触媒を担持させて排ガス浄化用触媒として使用するときには、その触媒活性の耐熱耐久性が極めて高く、750℃でエージング処理を行った場合においても、エージング処理前と同等の触媒活性を示し、例えば優れたNO酸化活性がエージング処理によって失われることはない。   That is, when a platinum group catalyst is supported on the silica-dispersed alumina as described above and used as an exhaust gas purification catalyst, the heat resistance and durability of the catalyst activity is extremely high, and even when aging is performed at 750 ° C. The catalyst activity is the same as that before the treatment, and for example, excellent NO oxidation activity is not lost by the aging treatment.

本発明において、上記のような優れた耐熱耐久性が得られることは、実験的に確認されてはいるが、その理由については明確に解明されていない。しかるに、本発明者等は次のように推定している。
即ち、極めて微細なシリカが微量分散されているシリカ分散アルミナでは、基本的にアルミナの細孔にPt等の触媒が担持されるが、これを高温に加熱したとき、アルミナの骨格内や粒子間隙に存在する微細なシリカが細孔の熱収縮を抑制するように作用し、この結果として、細孔内に触媒が安定に保持され、高温での熱処理によっても触媒活性が損なわれず、安定に維持されるものと考えられるのである。
In the present invention, it has been experimentally confirmed that excellent heat resistance as described above can be obtained, but the reason has not been clearly clarified. However, the present inventors estimate as follows.
That is, in silica-dispersed alumina in which a very small amount of fine silica is dispersed, a catalyst such as Pt is basically supported in the pores of the alumina. The fine silica present in the pores acts to suppress thermal contraction of the pores. As a result, the catalyst is stably held in the pores, and the catalytic activity is not impaired even by heat treatment at high temperature, and it is maintained stably. It is considered to be done.

例えば、Si含有量(mol%)が前述した範囲よりも大きい場合には、分散されているシリカ量が多く、この結果、細孔内への触媒担持に支障を来たし、触媒活性そのものが低下してしまう。また、Si含有量(mol%)が前述した範囲よりも小さいときには、分散されているシリカ量が少ないため、アルミナ細孔の熱収縮を十分に抑制することができず、触媒活性の耐熱耐久性が不満足なものとなってしまう。   For example, when the Si content (mol%) is larger than the above-mentioned range, the amount of dispersed silica is large, resulting in hindering catalyst loading in the pores and reducing the catalytic activity itself. End up. Further, when the Si content (mol%) is smaller than the above-mentioned range, the amount of silica dispersed is small, so that the heat shrinkage of the alumina pores cannot be sufficiently suppressed, and the heat resistance and durability of the catalytic activity. Becomes unsatisfactory.

さらに、Si粒子の面積占有率が前述した範囲より低い場合には、細孔の熱収縮の抑制に寄与する微細シリカ粒子の量が少なくなるばかりか、粗大な粒子の存在により、微細シリカ粒子が偏在するようになり、結局、粒径の大きな粒子が多く存在することとなり、アルミナ細孔の熱収縮を十分に抑制することができず、触媒活性の耐熱耐久性が不満足なものとなってしまう。   Furthermore, when the area occupancy of the Si particles is lower than the above-described range, not only the amount of fine silica particles contributing to the suppression of thermal contraction of the pores is reduced, but also the presence of coarse particles causes the fine silica particles to be reduced. As a result, there will be a large number of particles having a large particle size, and the thermal contraction of the alumina pores cannot be sufficiently suppressed, and the heat resistance and durability of the catalytic activity will be unsatisfactory. .

尚、シリカ分散アルミナ中のアルミナは、特に制限されるものではないが、γ、θ、δ、η、κ等の結晶構造を有するもの、特にγ−アルミナが好適である。   The alumina in the silica-dispersed alumina is not particularly limited, but those having a crystal structure such as γ, θ, δ, η, and κ, particularly γ-alumina are suitable.

さらに、本発明におけるシリカ分散アルミナにおいては、Si含有量が前述した範囲にあることに関連して、その平均細孔直径が4.0nm以上、特に5.0〜10.0nmと大きな値を示す。これに加えて細孔容積も0.25〜0.75cm/gと大きな値を示す。
即ち、シリカ分散アルミナでは、一般に、Si含有量の増大と共に細孔が小径化される傾向にある。これはシリカ分散アルミナを製造する際の熱履歴に伴い、シリカ粒子の熱収縮が大きく反映されていくためであると思われる。しかるに、本発明におけるシリカ分散アルミナでは、Si含有量の増大に伴う細孔の小径化が抑制されており、このため、上記のような大きな平均細孔直径を有しているわけである。また、細孔の小径化が抑制されていることは、後述する実施例にも示されているように、前記Si含有量をS(mol%)、前記平均細孔直径をMD(nm)としたとき、このシリカ分散アルミナにおける両者関係式S×(MD/2)が325より大きく、最も好ましくは593より大きな値を示すことに現れている。例えば、Si含有量の増大と共に細孔が小径化されている先願のシリカ分散アルミナ(表1の比較例1)では、その値は、本発明に比して、小さい値を示している。
Further, in the silica-dispersed alumina in the present invention, the average pore diameter is 4.0 nm or more, particularly a large value of 5.0 to 10.0 nm in relation to the Si content being in the above-mentioned range. . In addition to this, the pore volume also shows a large value of 0.25 to 0.75 cm 3 / g.
That is, in silica-dispersed alumina, in general, pores tend to be reduced in size as the Si content increases. This seems to be because the thermal shrinkage of the silica particles is largely reflected along with the thermal history when producing the silica-dispersed alumina. However, in the silica-dispersed alumina in the present invention, the reduction in the pore size due to the increase in the Si content is suppressed, and thus the large average pore diameter is as described above. In addition, the fact that the pore size reduction is suppressed, as shown in Examples described later, the Si content is S (mol%) and the average pore diameter is MD (nm). In this case, the relational expression S × (MD / 2) 4 in the silica-dispersed alumina is larger than 325, most preferably larger than 593. For example, in the silica-dispersed alumina (Comparative Example 1 in Table 1) of the prior application in which the pores are reduced in size as the Si content is increased, the value is smaller than that of the present invention.

このため、本発明で排ガス浄化用触媒の担体として用いるシリカ分散アルミナは、Si含有量が従来公知のシリカ分散アルミナと同じであったとしても、その平均細孔直径は大きい。即ち、このような大きな平均細孔直径を有する細孔が多く形成されていることに関連して、かかるシリカ分散アルミナを触媒担体として使用し、この触媒担体に貴金属触媒を担持させた排ガス浄化用触媒は、炭化水素(HC)や窒素酸化物(NOx)に対する浄化作用は、一層高められている。
このことから、本発明におけるシリカ分散アルミナは、炭化水素(HC)や窒素酸化物(NOx)の浄化にマッチしたサイズの細孔を多く含んでいるものと認識される。
For this reason, the silica-dispersed alumina used as the carrier for the exhaust gas purifying catalyst in the present invention has a large average pore diameter even if the Si content is the same as that of conventionally known silica-dispersed alumina. That is, in connection with the fact that many pores having such a large average pore diameter are formed, such silica-dispersed alumina is used as a catalyst carrier, and this catalyst carrier is used for exhaust gas purification in which a noble metal catalyst is supported. The catalyst has a further enhanced purification effect on hydrocarbons (HC) and nitrogen oxides (NOx).
From this, it is recognized that the silica-dispersed alumina in the present invention contains many pores having a size matching the purification of hydrocarbons (HC) and nitrogen oxides (NOx).

<シリカ分散アルミナの製造>
本発明のシリカ分散アルミナは、前述したように、極めて微細であり且つ微量のシリカ粒子が偏在することなく均一に分散しているという分散構造を有していると同時に、Si含有量の増大に伴う細孔の小径化が抑制されているという特有の性質を有しており、従って、単に微量の微細シリカをアルミナに混合するという手段によって得ることはできず、アルミナヒドロゲルからアルミナを製造する過程で微細シリカ(シリカゾル)を介在させておくと同時に、乾燥や焼成の熱処理を水分の存在下で行うという手段を採用することが必要である。
<Manufacture of silica-dispersed alumina>
As described above, the silica-dispersed alumina of the present invention is extremely fine and has a dispersion structure in which a minute amount of silica particles are uniformly dispersed without being unevenly distributed, while at the same time increasing the Si content. The process of producing alumina from an alumina hydrogel is not possible by simply mixing a minute amount of fine silica with alumina. In addition, it is necessary to adopt a means in which fine silica (silica sol) is interposed, and at the same time, heat treatment for drying and baking is performed in the presence of moisture.

具体的には、アルミナ源として硫酸アルミニウム溶液、シリカ源としてケイ酸の酸性ゾルを使用し、両者の混合液を原料とする。ゲル化、水洗、乾燥及び焼成の工程を経て、シリカ分散アルミナを製造するのであるが、特に乾燥や焼成の何れか、好ましくは焼成、最も好ましくは、乾燥及び焼成を水分の存在下で行うことが必要である。   Specifically, an aluminum sulfate solution is used as the alumina source, an acidic sol of silicic acid is used as the silica source, and a mixture of the two is used as a raw material. Silica-dispersed alumina is produced through steps of gelation, washing with water, drying and firing, and in particular, either drying or firing, preferably firing, most preferably drying and firing is performed in the presence of moisture. is necessary.

上記の方法で用いるケイ酸の酸性ゾルの調整には、工業製品としてJISに規格されている水ガラスのケイ酸ソーダやケイ酸カリが使用される。 For adjusting the acidic sol of silicic acid used in the above method, water glass sodium silicate or potassium silicate standardized by JIS as an industrial product is used.

また、この酸性ゾルは、酸性白土等の粘土質原料より回収した易反応性のシリカにアルカリ金属の水酸化物溶液を反応させてケイ酸アルカリを調製し、このケイ酸アルカリに塩酸や硫酸等の鉱酸を添加することによって製造することもできる。
例えば、SiO分を21〜23質量%含むケイ酸ソーダ水溶液と、42〜45質量%の濃度の硫酸水溶液を、容積比で約4:1になる量で連続的に高速混合してpHが1.6〜2.2の範囲になるように調整することにより、本発明で用いる酸性ゾルを得ることができる。
In addition, this acidic sol is prepared by reacting an alkali metal hydroxide solution with easily reactive silica recovered from clayey raw materials such as acidic clay, and preparing alkali silicate. It can also be produced by adding a mineral acid.
For example, a sodium silicate aqueous solution containing 21 to 23% by mass of SiO 2 and a sulfuric acid aqueous solution having a concentration of 42 to 45% by mass are continuously mixed at a high speed so as to have a volume ratio of about 4: 1. By adjusting so that it may become the range of 1.6-2.2, the acidic sol used by this invention can be obtained.

上記のケイ酸の酸性ゾルをアルミナ源の硫酸アルミニウム溶液に加えて原料液を調製するが、ケイ酸の酸性ゾルは、Si含有量、即ち、100×Si/(Si+Al)のmol比が前述した範囲(1.0〜10.0mol%、特に1.5〜8.0mol%)の範囲内となるような量で使用される。 Preparing a raw material liquid acidic sol of the silicate in addition to aluminum sulfate solution of an alumina source, but acidic sol silicate, Si content, namely, mol ratio of 100 × Si / (Si + Al ) is above It is used in such an amount that it falls within the range (1.0 to 10.0 mol%, particularly 1.5 to 8.0 mol%).

上記の原料液を用いてのゲル化は、該液を45.0〜80.0℃の温度に加熱したアルカリ溶液(例えば苛性ソーダや水酸化アンモニウムなど)に混合することにより行われ、ゲル形成後、水洗を行い、これにより、シリカ粒子が分散固定されたアルミナヒドロゲルが得られる。   The gelation using the above raw material liquid is performed by mixing the liquid with an alkaline solution (for example, caustic soda or ammonium hydroxide) heated to a temperature of 45.0 to 80.0 ° C. After the gel is formed. By washing with water, an alumina hydrogel in which silica particles are dispersed and fixed is obtained.

上記で得られたアルミナヒドロゲルを乾燥し、得られた空隙の多いキセロゲルを焼成することにより、シリカ分散アルミナが得られるが、先に述べたように、本発明では、乾燥及び焼成の何れかを水分の存在下で行うことが必要である。即ち、理論的に解明されているわけではないが、熱履歴に際しては水分を介在させることにより、粒子、特にシリカ粒子の熱収縮が抑制され、Si含有量の増大に伴う細孔の小径化が抑制されるものと思われる。   Silica-dispersed alumina is obtained by drying the alumina hydrogel obtained above and firing the resulting xerogel with many voids. As described above, in the present invention, either drying or firing is performed. It is necessary to carry out in the presence of moisture. That is, although not theoretically clarified, the thermal contraction of particles, particularly silica particles, is suppressed by interposing moisture in the thermal history, and the pore diameter is reduced as the Si content increases. It seems to be suppressed.

従って、乾燥は、所謂スチーム乾燥により行う。例えば60℃以上、特に100〜200℃の蒸気を吹き付けることや乾燥機内の排気を抑えヒドロゲルからの水分を長時間滞留させながら乾燥を行う。   Therefore, drying is performed by so-called steam drying. For example, drying is performed while spraying steam at 60 ° C. or higher, particularly 100 to 200 ° C., or suppressing exhaust in the dryer and retaining moisture from the hydrogel for a long time.

また、焼成は、スチーム焼成により行う。このスチーム焼成は、キセロゲル自体から発生する水分を長時間滞留させながら焼成することができる容器で所定の焼成温度に加熱することにより行われる。
焼成温度は、一般に600〜640℃程度である。この温度がα−アルミナ化するような高温だと、細孔収縮が大きく、触媒の担持に不適当となるおそれがある。また、温度が低すぎると、γ―アルミナ化しないおそれがある。
Moreover, baking is performed by steam baking. This steam firing is performed by heating to a predetermined firing temperature in a container that can be fired while retaining moisture generated from the xerogel itself for a long time.
The firing temperature is generally about 600 to 640 ° C. When this temperature is high enough to cause α-alumina, the pore shrinkage is large, which may be inappropriate for supporting the catalyst. If the temperature is too low, γ-alumina may not be formed.

尚、本発明においては、乾燥及び焼成の何れかを、上記のような水分存在下で行うことにより、目的とするシリカ分散アルミナを得ることができるが、好ましくは焼成をスチーム焼成とすることが好ましく、最も好ましくはスチーム乾燥とスチーム焼成との両方を行うのがよい。即ち、このような手段を採用することにより、より有効に粒子(特にシリカ粒子)の収縮が抑制され、Si含有量の増大に伴う細孔の小径化が確実に回避され、例えば前述したS×(MD/2)の値をより大きな値とすることができる。 In the present invention, the desired silica-dispersed alumina can be obtained by performing either drying or firing in the presence of moisture as described above, but preferably the firing is steam firing. Preferably, most preferably, both steam drying and steam baking are performed. That is, by adopting such means, the shrinkage of the particles (particularly silica particles) is more effectively suppressed, and the reduction in the diameter of the pores accompanying the increase in the Si content is surely avoided. (MD / 2) The value of 4 can be set to a larger value.

このようにして得られたシリカ分散アルミナは多孔質であり、内部に微量の微細シリカ粒子が均一に分散した構造を有しており、これにより、高温での熱処理による細孔の収縮が抑制され、さらにはSi含有量の増大に伴う細孔の小径化も有効に抑制されており、触媒担体として優れた特性を示すことになる。   The silica-dispersed alumina thus obtained is porous and has a structure in which a minute amount of fine silica particles are uniformly dispersed therein, thereby suppressing pore shrinkage due to heat treatment at high temperature. In addition, the reduction of the pore diameter due to the increase in the Si content is effectively suppressed, and excellent characteristics as a catalyst carrier are exhibited.

かかるシリカ分散アルミナゲルは、キセロゲルの焼成により得られるものであることに関連して比較的大きな比表面積を有しており、一般に、BET比表面積が150〜450m/g、好ましくは200〜400m/gの範囲にある。 Such a silica-dispersed alumina gel has a relatively large specific surface area in relation to being obtained by baking xerogel, and generally has a BET specific surface area of 150 to 450 m 2 / g, preferably 200 to 400 m. It is in the range of 2 / g.

<触媒>
上記のような特性を有するシリカ分散シリカゲルは、極めて安価であり、例えば押出成形、造粒成形等の公知の方法によって、円筒状、粒状、錠剤等の種々の形態に成形し、これに触媒を担持させて触媒としての使用に供される。特に触媒活性の耐熱耐久性に優れていることから、白金族金属を担持させた排ガス浄化用触媒として極めて好適であり、炭化水素の分解、NOx及びカーボンの酸化等を促進させ、自動車等の排ガスをクリーンに浄化することができる。
<Catalyst>
Silica-dispersed silica gel having the above characteristics is extremely inexpensive, and is formed into various shapes such as cylindrical, granular, and tablet by a known method such as extrusion molding and granulation molding, and a catalyst is applied to this. The catalyst is used for use as a catalyst. In particular, since it has excellent heat resistance and durability of catalytic activity, it is extremely suitable as an exhaust gas purification catalyst carrying a platinum group metal, promotes decomposition of hydrocarbons, oxidation of NOx and carbon, etc., and exhaust gas from automobiles, etc. Can be purified cleanly.

排ガス浄化用触媒として使用される白金族金属としては、白金、パラジウム、ロジウム、イリジウム、ルテニウムが代表的であるが、何れも極めて高価な貴金属である。このため、触媒活性を長期間にわたって維持させることができる本発明の排ガス浄化用触媒は、大幅なコストダウンを図ることができる。
また、上述した触媒担体として使用されるシリカ分散アルミナは、特に高価な白金族触媒以外にも、水素化精製触媒、水素化脱硫触媒、水素化脱窒素触媒等の触媒としての機能を有する他の金属、例えば、クロム、モリブデン、タングステン、鉄、コバルト、ニッケル、オスミウム、モリブデン−コバルト、モリブデン−ニッケル、タングステン−ニッケル、モリブデン−コバルト−ニッケル、タングステン−コバルト−ニッケルまたはモリブデン−タングステン−コバルト−ニッケル等を、必要に応じて担持させ、各種の触媒として使用することもできる。
Typical platinum group metals used as exhaust gas purifying catalysts are platinum, palladium, rhodium, iridium and ruthenium, all of which are extremely expensive noble metals. For this reason, the exhaust gas purifying catalyst of the present invention capable of maintaining the catalytic activity for a long period of time can greatly reduce the cost.
Further, the silica-dispersed alumina used as the above-described catalyst carrier is not limited to a particularly expensive platinum group catalyst, but has other functions as a catalyst such as a hydrorefining catalyst, hydrodesulfurization catalyst, hydrodenitrogenation catalyst. Metals such as chromium, molybdenum, tungsten, iron, cobalt, nickel, osmium, molybdenum-cobalt, molybdenum-nickel, tungsten-nickel, molybdenum-cobalt-nickel, tungsten-cobalt-nickel or molybdenum-tungsten-cobalt-nickel Can be supported as required and used as various catalysts.

金属触媒の担持方法としては、上述したシリカ分散アルミナの成形体(担体)を触媒金属の可溶性塩の溶液に浸漬し、該金属成分を担体中に導入する含浸法、或いは担体の製造の際、金属成分を同時に沈殿させる共沈法等、公知の方法を採用することができるが、操作上容易であり、触媒特性の安定化維持に好都合な含浸法によることが好ましい。例えば、担体を常温または常温以上で含浸溶液に浸漬して所望成分が十分担体中に含浸する条件下で保持するのがよい。含浸溶液の量および温度は、所望量の触媒金属成分が担持されるように適宜調整することができる。また、触媒金属成分の所望担持量により含浸溶液に浸漬する担体の量を決定することができる。   As a method for supporting the metal catalyst, the above-mentioned silica-dispersed alumina molded body (support) is immersed in a solution of a soluble salt of the catalyst metal, and the impregnation method in which the metal component is introduced into the support; Known methods such as a coprecipitation method for simultaneously precipitating metal components can be employed, but it is preferable to use an impregnation method that is easy in operation and convenient for maintaining the stabilization of catalyst characteristics. For example, the support may be immersed in an impregnation solution at room temperature or above and kept under conditions where the desired component is sufficiently impregnated in the support. The amount and temperature of the impregnating solution can be appropriately adjusted so that a desired amount of the catalytic metal component is supported. Further, the amount of the carrier immersed in the impregnation solution can be determined by the desired loading amount of the catalytic metal component.

尚、二種以上の触媒金属成分を担持するには、二種以上の触媒金属成分をあらかじめ混合し、その混合溶液から同時に含浸する一液含浸法を採用することができるし、また、二種以上の金属成分の溶液を別々に調製し、逐次含浸していく二液含浸法を採用することもできる。   In order to support two or more types of catalytic metal components, a one-component impregnation method in which two or more types of catalytic metal components are mixed in advance and simultaneously impregnated from the mixed solution can be adopted. A two-component impregnation method in which the above metal component solutions are separately prepared and sequentially impregnated can also be employed.

本発明を、次の実験例により詳細に説明する。
尚、以下の実験に用いた各種の測定方法は次の通りである。
The present invention will be described in detail by the following experimental examples.
Various measurement methods used in the following experiments are as follows.

(1)化学分析;
Si、Alの測定はJIS.M.8853に準拠して測定した。
(1) Chemical analysis;
Si and Al are measured according to JIS. M.M. Measured according to 8853.

(2)BET比表面積、細孔容積および細孔分布;
Micromeritics社製TriStarII 3020を用いて窒素吸着法にて測定を行った。細孔容積は、脱離側窒素吸着等温線からBJH法で求めた細孔分布において細孔直径2.0nm〜50nmまでの細孔容積を積算して求めた。比表面積は比圧が0.05から0.20の吸着側窒素吸着等温線からBET法で解析した。細孔直径はP/P=0.975未満のN吸着量をVとし、比表面積をAとして4V/Aより計算して求めた。
(2) BET specific surface area, pore volume and pore distribution;
Measurement was performed by a nitrogen adsorption method using TriStarII 3020 manufactured by Micromeritics. The pore volume was determined by integrating the pore volumes from 2.0 nm to 50 nm in pore diameter in the pore distribution determined by the BJH method from the desorption side nitrogen adsorption isotherm. The specific surface area was analyzed by the BET method from the adsorption side nitrogen adsorption isotherm having a specific pressure of 0.05 to 0.20. The pore diameter was determined by calculating from 4 V / A, where V is the N 2 adsorption amount of less than P / P 0 = 0.975, and A is the specific surface area.

(3)電子顕微鏡観察(TEM−EDX)および画像解析;
透過型電子顕微鏡で200,000倍の倍率で観察したTEM像を用いて、EDX分析を行ってSiをマッピングし、これを画像解析ソフト「ImageJ」を用いて解析し90,000nm中のSi粒子占有率を求めた。
(3) Electron microscope observation (TEM-EDX) and image analysis;
Using a TEM image observed with a transmission electron microscope at a magnification of 200,000, EDX analysis was performed to map Si, and this was analyzed using image analysis software “ImageJ”, and Si in 90,000 nm 2 The particle occupancy was determined.

(4)触媒調製(エージング);
シリカ分散アルミナに対して0.75wt%Pt+0.25wt%Pdとなるように白金およびパラジウムのジニトロジアンミン硝酸溶液を含浸担持し、水素中400℃で還元し空気中500℃で処理したものをエージング前試料とし、これを空気中750℃でエージング処理を行ったものをエージング後試料とした。
(4) Catalyst preparation (aging);
Before aging, impregnated and supported with a dinitrodiammine nitric acid solution of platinum and palladium to 0.75 wt% Pt + 0.25 wt% Pd with respect to silica-dispersed alumina, reduced at 400 ° C in hydrogen and treated at 500 ° C in air A sample which was aged at 750 ° C. in air was used as a sample after aging.

(5)HC、NO酸化活性評価;
常圧固定床流通反応法により行った。試料40mgに模擬排ガスとしてのNO200ppm+C1022(デカン)180ppm+C1110(α−メチルナフタレン)18ppm+10%HO+5%O(N希釈)を400mL・min−1流通させ、500℃から階段状に降温し、HCが50%転化する温度、及び350℃におけるNOからNOへの転化率を求めた。
(5) HC, NO oxidation activity evaluation;
It was carried out by a normal pressure fixed bed flow reaction method. A sample exhaust gas of NO200 ppm + C 10 H 22 (decane) 180 ppm + C 11 H 10 (α-methylnaphthalene) 18 ppm + 10% H 2 O + 5% O 2 (N 2 diluted) as 400 m · min −1 was passed through 400 mg · min −1 and stepped from 500 ° C. The temperature at which the HC was converted to 50% and the conversion rate from NO to NO 2 at 350 ° C. were determined.

(実施例1)
アルミナ源の原料として硫酸アルミニウム水溶液(Al 11.3%、SO 14.5%、SG 1.25)を使用した。シリカ源の原料として、ケイ酸ソーダ水溶液(SiO 22.5%、NaO 7.2%、SG 1.30)と45%濃度の硫酸を用い、両者が瞬時接触可能な装置を用いてケイ酸ソーダ水溶液7.5L/min、硫酸2.0L/minを該装置に供給し、この溶液に等倍の水を加えて酸性シリカゾルを調製した。硫酸アルミニウム水溶液1500gに対し、酸性シリカゾルを所定量(表1参照)注加し攪拌混合したものを、水3000mLと49%苛性ソーダ314gを混ぜ60℃に加熱した容器に注加し、60℃に加温したイオン交換水で、洗浄液が1μS/cm以下になるまで洗浄してシリカ分散アルミナヒドロゲル4種類を得た。このゲルを300mLビーカーにそれぞれ150mLずつ二等分して一方はそのまま150℃で24時間乾燥し、もう一方はアルミ箔で上部を覆うことで水熱雰囲気とし150℃で24時間乾燥しキセロゲル8種を得た。得られたキセロゲルのうちアルミ箔を使用せずに乾燥したものを36mLの坩堝に15.6g分取して蓋をして620℃で2時間焼成し、アルミ箔を使用したものについては36mLの坩堝に15.6gずつ分取して片方はそのまま620℃で2時間焼成し、もう一方は蓋をして620℃で2時間焼成してシリカ分散アルミナ計12種類(表1参照)を得た。得られたシリカ分散アルミナについて物性を測定し結果を表1に、この内、平均細孔直径が6.3〜6.7nmのシリカ分散アルミナについてのHC、NO酸化活性結果を図2に記した。
Example 1
An aluminum sulfate aqueous solution (Al 2 O 3 11.3%, SO 3 14.5%, SG 1.25) was used as a raw material for the alumina source. Using a silica silicate aqueous solution (SiO 2 22.5%, Na 2 O 7.2%, SG 1.30) and 45% sulfuric acid as raw materials for the silica source, both of which can be contacted instantaneously A sodium silicate aqueous solution ( 7.5 L / min) and sulfuric acid (2.0 L / min) were supplied to the apparatus, and an equal amount of water was added to the solution to prepare an acidic silica sol. A predetermined amount (see Table 1) of acidic silica sol was added to 1500 g of an aluminum sulfate aqueous solution and stirred and mixed. Washing was performed with warm ion-exchanged water until the cleaning liquid became 1 μS / cm or less, and four types of silica-dispersed alumina hydrogels were obtained. Divide this gel into two 150ml portions in a 300mL beaker, one is dried as it is at 150 ° C for 24 hours, and the other is covered with aluminum foil for 24 hours at 150 ° C in a hydrothermal atmosphere. Got. Of the obtained xerogel, the one dried without using aluminum foil was placed in a 36 mL crucible, covered and baked at 620 ° C. for 2 hours, and the one using aluminum foil was 36 mL. 15.6 g each was taken into a crucible, and one was baked as it was at 620 ° C. for 2 hours, and the other was covered and baked at 620 ° C. for 2 hours to obtain a total of 12 types of silica-dispersed alumina (see Table 1). . The physical properties of the obtained silica-dispersed alumina were measured, and the results are shown in Table 1. Of these, the results of HC and NO oxidation activity for silica-dispersed alumina having an average pore diameter of 6.3 to 6.7 nm are shown in FIG. .

(比較例1)
酸性シリカゾルを150g使用し、乾燥にアルミ箔を使用せず、焼成に蓋を使用しないこと以外は実施例1と同様の操作でシリカ分散アルミナを得た。物性測定の結果を表1に示す。
(Comparative Example 1)
A silica-dispersed alumina was obtained in the same manner as in Example 1 except that 150 g of acidic silica sol was used, no aluminum foil was used for drying, and no lid was used for firing. The results of physical property measurement are shown in Table 1.

(比較例2)
乾燥にアルミ箔を使用せず、焼成に蓋を使用しないこと以外は実施例1と同様の操作でシリカ分散アルミナ4種を得た。物性測定の結果を表1に、この内、平均細孔直径が6.3〜6.7nmのシリカ分散アルミナについてのHC、NO酸化活性結果を図2に示す。
(Comparative Example 2)
Four types of silica-dispersed alumina were obtained in the same manner as in Example 1 except that no aluminum foil was used for drying and no lid was used for firing. The physical property measurement results are shown in Table 1, and among these, the HC and NO oxidation activity results for silica-dispersed alumina having an average pore diameter of 6.3 to 6.7 nm are shown in FIG.

(比較例3)
酸性シリカゾルを19g使用したこと以外は実施例1と同様の操作でキセロゲル2種を得た。得られたキセロゲルを1種につき36mLの坩堝2個にそれぞれ15.6gずつ分取して、一方は蓋をし、もう一方はそのままで620℃で2時間焼成してシリカ分散アルミナ4種を得た。得られたシリカ分散アルミナについて物性測定の結果を表1に、この内、平均細孔直径が6.3〜6.7nmのシリカ分散アルミナについてのHC、NO酸化活性結果を図2に示す。
(Comparative Example 3)
Two types of xerogel were obtained by the same operation as in Example 1 except that 19 g of acidic silica sol was used. 15.6g each of the obtained xerogel was dispensed into two 36mL crucibles of one type, one was capped, and the other was baked at 620 ° C for 2 hours to obtain four types of silica-dispersed alumina. It was. Table 1 shows the results of measuring physical properties of the obtained silica-dispersed alumina, and FIG. 2 shows the results of HC and NO oxidation activity for silica-dispersed alumina having an average pore diameter of 6.3 to 6.7 nm.

(比較例4)
酸性シリカゾルではなくコロイダルシリカ「スノーテックス20L」を34.5g使い、乾燥にアルミ箔を使用せず、焼成に蓋を使用しないこと以外は実施例1と同様の操作を行い試料を得た。物性測定結果を表1に示す。
(Comparative Example 4)
A sample was obtained in the same manner as in Example 1 except that 34.5 g of colloidal silica “Snowtex 20L” was used instead of acidic silica sol, no aluminum foil was used for drying, and no lid was used for firing. The physical property measurement results are shown in Table 1.

表1より、本発明のシリカ分散アルミナ(実施例1−3、6、9、12)は乾燥、焼成をスチーム下で行うことで熱処理による細孔の収縮が抑制され、さらにはSi含有量の増大に伴う細孔の小径化も有効に抑制されており、比較例1と比較して高いHC、NO酸化活性を示す。更に、実施例1は微細なシリカが均一分散することにより、エージング後でも失活せず、比較例4と比較して高い活性を示すことが特徴である。   From Table 1, the silica-dispersed alumina of the present invention (Examples 1-3, 6, 9, and 12) is dried and fired under steam to suppress pore shrinkage due to heat treatment. The reduction in the diameter of the pores accompanying the increase is also effectively suppressed, and shows higher HC and NO oxidation activity than Comparative Example 1. Further, Example 1 is characterized in that fine silica is uniformly dispersed, so that it does not deactivate even after aging, and exhibits higher activity than Comparative Example 4.

(実施例2)
酸性シリカゾルを150g使ったこと以外は実施例1と同様の操作でアルミナヒドロゲルを得た。このゲルを300mLビーカー3つに100mLずつ分取した。乾燥条件は150℃24時間とし、一つはアルミ箔で蓋をして24時間乾燥し、もう一つは12時間乾燥後アルミ箔を剥がして引き続き12時間乾燥し、残る一つは蓋をしないで乾燥して3種のキセロゲルを得た。これらのキセロゲルを容積が36mLの坩堝に10gずつ分取し、蓋をすることで水熱雰囲気とし620℃で2時間焼成してシリカ分散アルミナ3種類(表2参照)を得た。得られたシリカ分散アルミナについて物性を測定し、結果を表2および図3に示す。
(Example 2)
An alumina hydrogel was obtained in the same manner as in Example 1 except that 150 g of acidic silica sol was used. 100 mL of this gel was dispensed into three 300 mL beakers. Drying conditions are 150 ° C. for 24 hours, one is covered with aluminum foil and dried for 24 hours, the other is dried for 12 hours, then the aluminum foil is peeled off and then dried for 12 hours, and the other is not covered. And dried to obtain three types of xerogel. 10 g of each of these xerogels was taken into a crucible having a volume of 36 mL and capped to form a hydrothermal atmosphere and fired at 620 ° C. for 2 hours to obtain three types of silica-dispersed alumina (see Table 2). Physical properties of the obtained silica-dispersed alumina were measured, and the results are shown in Table 2 and FIG.

(実施例3)
アルミナヒドロゲルを300mLビーカー3つに200mLずつ分取した以外は実施例2と同様の操作を行い3種のシリカ分散アルミナ(表2参照)を得た。得られたシリカ分散アルミナについて物性を測定し、結果を表2および図3に示す。
(Example 3)
Three types of silica-dispersed alumina (see Table 2) were obtained in the same manner as in Example 2 except that 200 mL each of the alumina hydrogel was dispensed into three 300 mL beakers. Physical properties of the obtained silica-dispersed alumina were measured, and the results are shown in Table 2 and FIG.

(実施例4)
アルミナヒドロゲルを300mLビーカー3つに300mLずつ分取した以外は実施例2と同様の操作を行い3種のシリカ分散アルミナ(表2参照)を得た。得られたシリカ分散アルミナについて物性を測定し、結果を表2および図3に示す。
Example 4
Three types of silica-dispersed alumina (see Table 2) were obtained in the same manner as in Example 2 except that 300 mL each of the alumina hydrogel was dispensed into three 300 mL beakers. Physical properties of the obtained silica-dispersed alumina were measured, and the results are shown in Table 2 and FIG.

表2より、本発明のシリカ分散アルミナ(実施例2、3、4)は仕込み量にかかわらずスチーム条件での乾燥時間が長いほど細孔の収縮が抑制される。   From Table 2, the silica-dispersed alumina of the present invention (Examples 2, 3, and 4) suppresses the shrinkage of the pores as the drying time under the steam condition is longer regardless of the charged amount.

(実施例5)
酸性シリカゾルを150g使ったこと以外は実施例1と同様の操作でアルミナヒドロゲルを得た。このゲルを300mLビーカーに300mL分取しアルミ箔で蓋をしないで150℃で24時間乾燥してキセロゲルを得た。得られたキセロゲルを36mLの坩堝にそれぞれ所定量(表3参照)分取して蓋をした。これらのキセロゲルを620℃で2時間の焼成処理を行う課程で一定時間毎に蓋を外すことで水熱処理時間の異なるシリカ分散アルミナ12種類を得た。得られたシリカ分散アルミナについて物性を測定し、結果を表3および図4に示す。
(Example 5)
An alumina hydrogel was obtained in the same manner as in Example 1 except that 150 g of acidic silica sol was used. 300 mL of this gel was dispensed into a 300 mL beaker and dried at 150 ° C. for 24 hours without covering with aluminum foil to obtain a xerogel. The obtained xerogel was dispensed into a 36 mL crucible in predetermined amounts (see Table 3) and covered. Twelve types of silica-dispersed alumina with different hydrothermal treatment times were obtained by removing the lids at regular intervals in the course of firing these xerogels at 620 ° C. for 2 hours. Physical properties of the obtained silica-dispersed alumina were measured, and the results are shown in Table 3 and FIG.

(比較例5)
36mLの坩堝に蓋をしないで620℃で2時間焼成したこと以外は実施例5と同様の操作で3種類のシリカ分散アルミナを得た。得られたシリカ分散アルミナについて物性を測定し、結果を表3および図4に示す。
(Comparative Example 5)
Three types of silica-dispersed alumina were obtained in the same manner as in Example 5 except that the 36 mL crucible was baked at 620 ° C. for 2 hours without a lid. Physical properties of the obtained silica-dispersed alumina were measured, and the results are shown in Table 3 and FIG.

表3より、本発明のシリカ分散アルミナ(実施例5)は焼成をスチーム下で行うことで熱処理による細孔の収縮が比較例5よりも抑制され、特に620℃で120分間焼成する過程の始めの30分を水熱処理することが細孔径を大きくする効果が高いことがわかる。また、焼成を行う際の試料充填量が坩堝容積を占める割合が多いほど(実施例5−1、4、7、10)その効果が高いことがわかる。   From Table 3, the silica-dispersed alumina of the present invention (Example 5) is fired under steam so that pore shrinkage due to heat treatment is suppressed as compared with Comparative Example 5, and in particular, the beginning of the process of firing at 620 ° C. for 120 minutes. It can be seen that hydrothermal treatment for 30 minutes is highly effective in increasing the pore size. Moreover, it turns out that the effect is so high that the sample filling amount at the time of baking occupies the ratio of a crucible volume (Examples 5-1, 4, 7, 10).

(実施例6)
実施例5−2で得られたシリカ分散アルミナを、前記測定方法(4)触媒調製の条件に従ってエージング前及びエージング後の試料を得た。エージング後の試料の一部を更に900℃焼成して触媒調製温度の異なる排ガス浄化用触媒三種類を得た。得られた排ガス浄化用触媒について物性を測定し、結果を表4に示す。
(Example 6)
The silica-dispersed alumina obtained in Example 5-2 was obtained before and after aging in accordance with the measurement method (4) catalyst preparation conditions. A part of the sample after aging was further calcined at 900 ° C. to obtain three types of exhaust gas purifying catalysts having different catalyst preparation temperatures. The physical properties of the obtained exhaust gas purification catalyst were measured, and the results are shown in Table 4.

(比較例6)
酸性シリカゾルを使用しなかったこと以外は比較例2と同様の操作でアルミナを得た。これを実施例6の触媒調製条件と同様の操作を行い、触媒調製温度の異なる排ガス浄化用触媒三種類を得た。得られた排ガス浄化用触媒について物性を測定し、結果を表4に示す。
(Comparative Example 6)
Alumina was obtained in the same manner as in Comparative Example 2 except that no acidic silica sol was used. This was performed in the same manner as the catalyst preparation conditions of Example 6 to obtain three types of exhaust gas purifying catalysts having different catalyst preparation temperatures. The physical properties of the obtained exhaust gas purification catalyst were measured, and the results are shown in Table 4.

表4より、本発明のシリカ分散アルミナを用いた排ガス浄化用触媒(実施例6)は比較例6と比較して、900℃で焼成したにも関わらず高いHC、NO酸化活性を示すことがわかる。   From Table 4, it can be seen that the exhaust gas purifying catalyst (Example 6) using the silica-dispersed alumina of the present invention exhibits higher HC and NO oxidation activity compared with Comparative Example 6 despite being calcined at 900 ° C. Recognize.

Claims (3)

アルミナ粒子中にシリカ粒子が分散したシリカ分散アルミナからなる排ガス浄化用触媒担体であって、前記シリカ分散アルミナは、100×Si/(Si+Al)で表されるSi含有量が1.0〜10.0mol%の範囲内にあり、平均細孔直径が4.0nm以上であり、前記Si含有量をS(mol%)、前記平均細孔直径をMD(nm)としたとき、S×(MD/2)の値が340以上であり、倍率200,000倍の電子顕微鏡写真の画像解析で算出される面積90,000nmでのSi粒子の面積占有率が70%以上として観察されることを特徴とする排ガス浄化用触媒担体。 An exhaust gas purifying catalyst carrier comprising silica-dispersed alumina in which silica particles are dispersed in alumina particles, wherein the silica-dispersed alumina has a Si content represented by 100 × Si / (Si + Al) of 1.0 to 10. When the average pore diameter is within a range of 0 mol%, the average pore diameter is 4.0 nm or more, the Si content is S (mol%), and the average pore diameter is MD (nm), S × (MD / 2) The value of 4 is 340 or more, and the area occupancy rate of Si particles in an area of 90,000 nm 2 calculated by image analysis of an electron micrograph at 200,000 times magnification is observed as 70% or more. A catalyst carrier for exhaust gas purification characterized. 細孔容積が0.25〜0.75cm/gである請求項1に記載の排ガス浄化用触媒担体。 Exhaust gas purifying catalyst carrier according to claim 1 pore volume is 0.25~0.75cm 3 / g. 請求項1または2に記載の触媒担体に白金族金属を担持してなる排ガス浄化用触媒。   An exhaust gas purifying catalyst obtained by supporting a platinum group metal on the catalyst carrier according to claim 1 or 2.
JP2013266289A 2012-12-26 2013-12-25 Exhaust gas purification catalyst carrier and exhaust gas purification catalyst Active JP6245695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013266289A JP6245695B2 (en) 2012-12-26 2013-12-25 Exhaust gas purification catalyst carrier and exhaust gas purification catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012282407 2012-12-26
JP2012282407 2012-12-26
JP2013266289A JP6245695B2 (en) 2012-12-26 2013-12-25 Exhaust gas purification catalyst carrier and exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2014140839A JP2014140839A (en) 2014-08-07
JP6245695B2 true JP6245695B2 (en) 2017-12-13

Family

ID=51422638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266289A Active JP6245695B2 (en) 2012-12-26 2013-12-25 Exhaust gas purification catalyst carrier and exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP6245695B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347443B2 (en) * 2014-08-29 2018-06-27 国立研究開発法人産業技術総合研究所 Alumina particles
JP7061299B2 (en) * 2017-09-21 2022-04-28 水澤化学工業株式会社 Exhaust gas purification catalyst carrier made of two-metal dispersed Al oxide
CN115007125A (en) * 2022-07-08 2022-09-06 湘潭大学 Sepiolite-loaded manganese-cerium composite catalyst and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829931B2 (en) * 1988-08-17 1996-03-27 東燃株式会社 Heat-resistant inorganic porous composition and catalyst carrier comprising the same
JPH0275341A (en) * 1988-09-12 1990-03-15 Tonen Corp Heat-resistant catalyst carrier molding and catalyst prepared therefrom
JPH02237640A (en) * 1988-11-30 1990-09-20 Tonen Corp Heat resistant catalyst carrier and catalyst for combustion
JP2000070730A (en) * 1998-08-27 2000-03-07 Sumitomo Metal Mining Co Ltd Production of spherical carrier for carrying catalyst
JP5828478B2 (en) * 2012-03-14 2015-12-09 国立研究開発法人産業技術総合研究所 Exhaust gas purification catalyst carrier and exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2014140839A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP4791445B2 (en) Compositions based on oxides of zirconium, praseodymium, lanthanum or neodymium, their preparation and use in catalyst systems
JP5148268B2 (en) Zirconium and yttrium based compositions, processes for their preparation and their use in catalyst systems
US20090098032A1 (en) Methods of making aluminosilicate coated alumina
CA2781794C (en) Complex oxide, method for producing same and exhaust gas purifying catalyst
JP4459170B2 (en) Compositions based on cerium oxide and zirconium oxide and having a specific surface area that is stable at 900 ° C. to 1000 ° C., their production method and their use as catalysts
JP5564109B2 (en) Composition comprising cerium oxide and zirconium oxide with specific porosity, its preparation method and its use in catalysis
JP5350249B2 (en) Method for treating diesel engine exhaust gas, method for producing a structure of alumina particles useful as a support component for noble metal catalyst for controlling harmful emissions of diesel engine, and catalyst composition for treating diesel engine exhaust gas
JP5801411B2 (en) Composition based on zirconium oxide and at least one oxide of rare earth elements other than cerium, having a unique porosity, its production process and its use in catalysis
EP1832345A1 (en) Catalyst for exhaust gas purification
JP5952293B2 (en) Sulfur resistant alumina catalyst support
WO2001072417A1 (en) Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent
JP5335505B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP2001170500A (en) Porous body, method of producing the same and exhaust gas purification catalyst using the porous body
JP6245695B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP2012040550A (en) Catalyst precursor dispersion, catalyst, and cleaning method of exhaust gas
JP6236647B2 (en) Alumina particles
KR102608017B1 (en) Hydrocarbon oil catalyst, production method, and hydrogenation method thereof
RU2660430C2 (en) Hydrogenation catalyst carrier, its production method, hydrogenation catalyst and the hydrogenation catalyst production method
JP5828478B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP6347443B2 (en) Alumina particles
JP5116377B2 (en) Exhaust NOx purification method
JP2009056456A (en) Method for manufacturing catalytic carrier
JP2007069095A (en) Carrier of catalyst for nox purification
JP2008215253A (en) NOx EMISSION CONTROL METHOD AND NOx EMISSION CONTROL DEVICE
JP7061299B2 (en) Exhaust gas purification catalyst carrier made of two-metal dispersed Al oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171110

R150 Certificate of patent or registration of utility model

Ref document number: 6245695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250